/* SPDX-License-Identifier: GPL-2.0 */ /* * fs/f2fs/segment.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include /* constant macro */ #define NULL_SEGNO ((unsigned int)(~0)) #define NULL_SECNO ((unsigned int)(~0)) #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ /* L: Logical segment # in volume, R: Relative segment # in main area */ #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, unsigned short seg_type) { f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); } #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) #define IS_CURSEG(sbi, seg) \ (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) #define IS_CURSEC(sbi, secno) \ (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ SEGS_PER_SEC(sbi)) || \ ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ SEGS_PER_SEC(sbi))) #define MAIN_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) #define SEG0_BLKADDR(sbi) \ (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) #define MAIN_SECS(sbi) ((sbi)->total_sections) #define TOTAL_SEGS(sbi) \ (SM_I(sbi) ? SM_I(sbi)->segment_count : \ le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ (sbi)->log_blocks_per_seg)) #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) #define NEXT_FREE_BLKADDR(sbi, curseg) \ (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) #define GET_SEGNO(sbi, blk_addr) \ ((!__is_valid_data_blkaddr(blk_addr)) ? \ NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ GET_SEGNO_FROM_SEG0(sbi, blk_addr))) #define CAP_BLKS_PER_SEC(sbi) \ (SEGS_PER_SEC(sbi) * BLKS_PER_SEG(sbi) - \ (sbi)->unusable_blocks_per_sec) #define CAP_SEGS_PER_SEC(sbi) \ (SEGS_PER_SEC(sbi) - ((sbi)->unusable_blocks_per_sec >> \ (sbi)->log_blocks_per_seg)) #define GET_SEC_FROM_SEG(sbi, segno) \ (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) #define GET_SEG_FROM_SEC(sbi, secno) \ ((secno) * SEGS_PER_SEC(sbi)) #define GET_ZONE_FROM_SEC(sbi, secno) \ (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) #define GET_ZONE_FROM_SEG(sbi, segno) \ GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) #define GET_SUM_BLOCK(sbi, segno) \ ((sbi)->sm_info->ssa_blkaddr + (segno)) #define GET_SUM_TYPE(footer) ((footer)->entry_type) #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) #define SIT_ENTRY_OFFSET(sit_i, segno) \ ((segno) % (sit_i)->sents_per_block) #define SIT_BLOCK_OFFSET(segno) \ ((segno) / SIT_ENTRY_PER_BLOCK) #define START_SEGNO(segno) \ (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) #define SIT_BLK_CNT(sbi) \ DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) #define f2fs_bitmap_size(nr) \ (BITS_TO_LONGS(nr) * sizeof(unsigned long)) #define SECTOR_FROM_BLOCK(blk_addr) \ (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) #define SECTOR_TO_BLOCK(sectors) \ ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) /* * In the victim_sel_policy->alloc_mode, there are three block allocation modes. * LFS writes data sequentially with cleaning operations. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into * fragmented segment which has similar aging degree. */ enum { LFS = 0, SSR, AT_SSR, }; /* * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. * GC_CB is based on cost-benefit algorithm. * GC_GREEDY is based on greedy algorithm. * GC_AT is based on age-threshold algorithm. */ enum { GC_CB = 0, GC_GREEDY, GC_AT, ALLOC_NEXT, FLUSH_DEVICE, MAX_GC_POLICY, }; /* * BG_GC means the background cleaning job. * FG_GC means the on-demand cleaning job. */ enum { BG_GC = 0, FG_GC, }; /* for a function parameter to select a victim segment */ struct victim_sel_policy { int alloc_mode; /* LFS or SSR */ int gc_mode; /* GC_CB or GC_GREEDY */ unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ unsigned int max_search; /* * maximum # of segments/sections * to search */ unsigned int offset; /* last scanned bitmap offset */ unsigned int ofs_unit; /* bitmap search unit */ unsigned int min_cost; /* minimum cost */ unsigned long long oldest_age; /* oldest age of segments having the same min cost */ unsigned int min_segno; /* segment # having min. cost */ unsigned long long age; /* mtime of GCed section*/ unsigned long long age_threshold;/* age threshold */ }; struct seg_entry { unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ unsigned int valid_blocks:10; /* # of valid blocks */ unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ unsigned int padding:6; /* padding */ unsigned char *cur_valid_map; /* validity bitmap of blocks */ #ifdef CONFIG_F2FS_CHECK_FS unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ #endif /* * # of valid blocks and the validity bitmap stored in the last * checkpoint pack. This information is used by the SSR mode. */ unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ unsigned char *discard_map; unsigned long long mtime; /* modification time of the segment */ }; struct sec_entry { unsigned int valid_blocks; /* # of valid blocks in a section */ }; #define MAX_SKIP_GC_COUNT 16 struct revoke_entry { struct list_head list; block_t old_addr; /* for revoking when fail to commit */ pgoff_t index; }; struct sit_info { block_t sit_base_addr; /* start block address of SIT area */ block_t sit_blocks; /* # of blocks used by SIT area */ block_t written_valid_blocks; /* # of valid blocks in main area */ char *bitmap; /* all bitmaps pointer */ char *sit_bitmap; /* SIT bitmap pointer */ #ifdef CONFIG_F2FS_CHECK_FS char *sit_bitmap_mir; /* SIT bitmap mirror */ /* bitmap of segments to be ignored by GC in case of errors */ unsigned long *invalid_segmap; #endif unsigned int bitmap_size; /* SIT bitmap size */ unsigned long *tmp_map; /* bitmap for temporal use */ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ unsigned int dirty_sentries; /* # of dirty sentries */ unsigned int sents_per_block; /* # of SIT entries per block */ struct rw_semaphore sentry_lock; /* to protect SIT cache */ struct seg_entry *sentries; /* SIT segment-level cache */ struct sec_entry *sec_entries; /* SIT section-level cache */ /* for cost-benefit algorithm in cleaning procedure */ unsigned long long elapsed_time; /* elapsed time after mount */ unsigned long long mounted_time; /* mount time */ unsigned long long min_mtime; /* min. modification time */ unsigned long long max_mtime; /* max. modification time */ unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ }; struct free_segmap_info { unsigned int start_segno; /* start segment number logically */ unsigned int free_segments; /* # of free segments */ unsigned int free_sections; /* # of free sections */ spinlock_t segmap_lock; /* free segmap lock */ unsigned long *free_segmap; /* free segment bitmap */ unsigned long *free_secmap; /* free section bitmap */ }; /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ enum dirty_type { DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ DIRTY, /* to count # of dirty segments */ PRE, /* to count # of entirely obsolete segments */ NR_DIRTY_TYPE }; struct dirty_seglist_info { unsigned long *dirty_segmap[NR_DIRTY_TYPE]; unsigned long *dirty_secmap; struct mutex seglist_lock; /* lock for segment bitmaps */ int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ unsigned long *victim_secmap; /* background GC victims */ unsigned long *pinned_secmap; /* pinned victims from foreground GC */ unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ bool enable_pin_section; /* enable pinning section */ }; /* for active log information */ struct curseg_info { struct mutex curseg_mutex; /* lock for consistency */ struct f2fs_summary_block *sum_blk; /* cached summary block */ struct rw_semaphore journal_rwsem; /* protect journal area */ struct f2fs_journal *journal; /* cached journal info */ unsigned char alloc_type; /* current allocation type */ unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ unsigned int segno; /* current segment number */ unsigned short next_blkoff; /* next block offset to write */ unsigned int zone; /* current zone number */ unsigned int next_segno; /* preallocated segment */ int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ bool inited; /* indicate inmem log is inited */ }; struct sit_entry_set { struct list_head set_list; /* link with all sit sets */ unsigned int start_segno; /* start segno of sits in set */ unsigned int entry_cnt; /* the # of sit entries in set */ }; /* * inline functions */ static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) { return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); } static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sentries[segno]; } static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; } static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno, bool use_section) { /* * In order to get # of valid blocks in a section instantly from many * segments, f2fs manages two counting structures separately. */ if (use_section && __is_large_section(sbi)) return get_sec_entry(sbi, segno)->valid_blocks; else return get_seg_entry(sbi, segno)->valid_blocks; } static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, unsigned int segno, bool use_section) { if (use_section && __is_large_section(sbi)) { unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int blocks = 0; int i; for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { struct seg_entry *se = get_seg_entry(sbi, start_segno); blocks += se->ckpt_valid_blocks; } return blocks; } return get_seg_entry(sbi, segno)->ckpt_valid_blocks; } static inline void seg_info_from_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { se->valid_blocks = GET_SIT_VBLOCKS(rs); se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); #ifdef CONFIG_F2FS_CHECK_FS memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); #endif se->type = GET_SIT_TYPE(rs); se->mtime = le64_to_cpu(rs->mtime); } static inline void __seg_info_to_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | se->valid_blocks; rs->vblocks = cpu_to_le16(raw_vblocks); memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); rs->mtime = cpu_to_le64(se->mtime); } static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, struct page *page, unsigned int start) { struct f2fs_sit_block *raw_sit; struct seg_entry *se; struct f2fs_sit_entry *rs; unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, (unsigned long)MAIN_SEGS(sbi)); int i; raw_sit = (struct f2fs_sit_block *)page_address(page); memset(raw_sit, 0, PAGE_SIZE); for (i = 0; i < end - start; i++) { rs = &raw_sit->entries[i]; se = get_seg_entry(sbi, start + i); __seg_info_to_raw_sit(se, rs); } } static inline void seg_info_to_raw_sit(struct seg_entry *se, struct f2fs_sit_entry *rs) { __seg_info_to_raw_sit(se, rs); memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); se->ckpt_valid_blocks = se->valid_blocks; } static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, unsigned int max, unsigned int segno) { unsigned int ret; spin_lock(&free_i->segmap_lock); ret = find_next_bit(free_i->free_segmap, max, segno); spin_unlock(&free_i->segmap_lock); return ret; } static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int next; unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); spin_lock(&free_i->segmap_lock); clear_bit(segno, free_i->free_segmap); free_i->free_segments++; next = find_next_bit(free_i->free_segmap, start_segno + SEGS_PER_SEC(sbi), start_segno); if (next >= start_segno + usable_segs) { clear_bit(secno, free_i->free_secmap); free_i->free_sections++; } spin_unlock(&free_i->segmap_lock); } static inline void __set_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); set_bit(segno, free_i->free_segmap); free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } static inline void __set_test_and_free(struct f2fs_sb_info *sbi, unsigned int segno, bool inmem) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); unsigned int next; unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); spin_lock(&free_i->segmap_lock); if (test_and_clear_bit(segno, free_i->free_segmap)) { free_i->free_segments++; if (!inmem && IS_CURSEC(sbi, secno)) goto skip_free; next = find_next_bit(free_i->free_segmap, start_segno + SEGS_PER_SEC(sbi), start_segno); if (next >= start_segno + usable_segs) { if (test_and_clear_bit(secno, free_i->free_secmap)) free_i->free_sections++; } } skip_free: spin_unlock(&free_i->segmap_lock); } static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, unsigned int segno) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); spin_lock(&free_i->segmap_lock); if (!test_and_set_bit(segno, free_i->free_segmap)) { free_i->free_segments--; if (!test_and_set_bit(secno, free_i->free_secmap)) free_i->free_sections--; } spin_unlock(&free_i->segmap_lock); } static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, void *dst_addr) { struct sit_info *sit_i = SIT_I(sbi); #ifdef CONFIG_F2FS_CHECK_FS if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, sit_i->bitmap_size)) f2fs_bug_on(sbi, 1); #endif memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); } static inline block_t written_block_count(struct f2fs_sb_info *sbi) { return SIT_I(sbi)->written_valid_blocks; } static inline unsigned int free_segments(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_segments; } static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->reserved_segments + SM_I(sbi)->additional_reserved_segments; } static inline unsigned int free_sections(struct f2fs_sb_info *sbi) { return FREE_I(sbi)->free_sections; } static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[PRE]; } static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) { return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; } static inline int overprovision_segments(struct f2fs_sb_info *sbi) { return SM_I(sbi)->ovp_segments; } static inline int reserved_sections(struct f2fs_sb_info *sbi) { return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); } static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, unsigned int node_blocks, unsigned int data_blocks, unsigned int dent_blocks) { unsigned int segno, left_blocks, blocks; int i; /* check current data/node sections in the worst case. */ for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { segno = CURSEG_I(sbi, i)->segno; left_blocks = CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true); blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; if (blocks > left_blocks) return false; } /* check current data section for dentry blocks. */ segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; left_blocks = CAP_BLKS_PER_SEC(sbi) - get_ckpt_valid_blocks(sbi, segno, true); if (dent_blocks > left_blocks) return false; return true; } /* * calculate needed sections for dirty node/dentry and call * has_curseg_enough_space, please note that, it needs to account * dirty data as well in lfs mode when checkpoint is disabled. */ static inline void __get_secs_required(struct f2fs_sb_info *sbi, unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) { unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + get_pages(sbi, F2FS_DIRTY_DENTS) + get_pages(sbi, F2FS_DIRTY_IMETA); unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); unsigned int total_data_blocks = 0; unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); unsigned int data_secs = 0; unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); unsigned int data_blocks = 0; if (f2fs_lfs_mode(sbi) && unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA); data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); } if (lower_p) *lower_p = node_secs + dent_secs + data_secs; if (upper_p) *upper_p = node_secs + dent_secs + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + (data_blocks ? 1 : 0); if (curseg_p) *curseg_p = has_curseg_enough_space(sbi, node_blocks, data_blocks, dent_blocks); } static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed, int needed) { unsigned int free_secs, lower_secs, upper_secs; bool curseg_space; if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) return false; __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space); free_secs = free_sections(sbi) + freed; lower_secs += needed + reserved_sections(sbi); upper_secs += needed + reserved_sections(sbi); if (free_secs > upper_secs) return false; if (free_secs <= lower_secs) return true; return !curseg_space; } static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, int freed, int needed) { return !has_not_enough_free_secs(sbi, freed, needed); } static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) { if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return true; if (likely(has_enough_free_secs(sbi, 0, 0))) return true; return false; } static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) { return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; } static inline int utilization(struct f2fs_sb_info *sbi) { return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); } /* * Sometimes f2fs may be better to drop out-of-place update policy. * And, users can control the policy through sysfs entries. * There are five policies with triggering conditions as follows. * F2FS_IPU_FORCE - all the time, * F2FS_IPU_SSR - if SSR mode is activated, * F2FS_IPU_UTIL - if FS utilization is over threashold, * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over * threashold, * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash * storages. IPU will be triggered only if the # of dirty * pages over min_fsync_blocks. (=default option) * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. * F2FS_IPU_NOCACHE - disable IPU bio cache. * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has * FI_OPU_WRITE flag. * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) */ #define DEF_MIN_IPU_UTIL 70 #define DEF_MIN_FSYNC_BLOCKS 8 #define DEF_MIN_HOT_BLOCKS 16 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ #define F2FS_IPU_DISABLE 0 /* Modification on enum should be synchronized with ipu_mode_names array */ enum { F2FS_IPU_FORCE, F2FS_IPU_SSR, F2FS_IPU_UTIL, F2FS_IPU_SSR_UTIL, F2FS_IPU_FSYNC, F2FS_IPU_ASYNC, F2FS_IPU_NOCACHE, F2FS_IPU_HONOR_OPU_WRITE, F2FS_IPU_MAX, }; static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) { return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; } #define F2FS_IPU_POLICY(name) \ static inline bool IS_##name(struct f2fs_sb_info *sbi) \ { \ return SM_I(sbi)->ipu_policy & BIT(name); \ } F2FS_IPU_POLICY(F2FS_IPU_FORCE); F2FS_IPU_POLICY(F2FS_IPU_SSR); F2FS_IPU_POLICY(F2FS_IPU_UTIL); F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); F2FS_IPU_POLICY(F2FS_IPU_FSYNC); F2FS_IPU_POLICY(F2FS_IPU_ASYNC); F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->segno; } static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); return curseg->alloc_type; } static inline bool valid_main_segno(struct f2fs_sb_info *sbi, unsigned int segno) { return segno <= (MAIN_SEGS(sbi) - 1); } static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) { struct f2fs_sb_info *sbi = fio->sbi; if (__is_valid_data_blkaddr(fio->old_blkaddr)) verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC); verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC_ENHANCE); } /* * Summary block is always treated as an invalid block */ static inline int check_block_count(struct f2fs_sb_info *sbi, int segno, struct f2fs_sit_entry *raw_sit) { bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; int valid_blocks = 0; int cur_pos = 0, next_pos; unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); /* check bitmap with valid block count */ do { if (is_valid) { next_pos = find_next_zero_bit_le(&raw_sit->valid_map, usable_blks_per_seg, cur_pos); valid_blocks += next_pos - cur_pos; } else next_pos = find_next_bit_le(&raw_sit->valid_map, usable_blks_per_seg, cur_pos); cur_pos = next_pos; is_valid = !is_valid; } while (cur_pos < usable_blks_per_seg); if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", GET_SIT_VBLOCKS(raw_sit), valid_blocks); set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); return -EFSCORRUPTED; } if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, BLKS_PER_SEG(sbi), usable_blks_per_seg) != BLKS_PER_SEG(sbi)); /* check segment usage, and check boundary of a given segment number */ if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg || !valid_main_segno(sbi, segno))) { f2fs_err(sbi, "Wrong valid blocks %d or segno %u", GET_SIT_VBLOCKS(raw_sit), segno); set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT); return -EFSCORRUPTED; } return 0; } static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(start); block_t blk_addr = sit_i->sit_base_addr + offset; f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); #ifdef CONFIG_F2FS_CHECK_FS if (f2fs_test_bit(offset, sit_i->sit_bitmap) != f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) f2fs_bug_on(sbi, 1); #endif /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; return blk_addr; } static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, pgoff_t block_addr) { struct sit_info *sit_i = SIT_I(sbi); block_addr -= sit_i->sit_base_addr; if (block_addr < sit_i->sit_blocks) block_addr += sit_i->sit_blocks; else block_addr -= sit_i->sit_blocks; return block_addr + sit_i->sit_base_addr; } static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) { unsigned int block_off = SIT_BLOCK_OFFSET(start); f2fs_change_bit(block_off, sit_i->sit_bitmap); #ifdef CONFIG_F2FS_CHECK_FS f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); #endif } static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, bool base_time) { struct sit_info *sit_i = SIT_I(sbi); time64_t diff, now = ktime_get_boottime_seconds(); if (now >= sit_i->mounted_time) return sit_i->elapsed_time + now - sit_i->mounted_time; /* system time is set to the past */ if (!base_time) { diff = sit_i->mounted_time - now; if (sit_i->elapsed_time >= diff) return sit_i->elapsed_time - diff; return 0; } return sit_i->elapsed_time; } static inline void set_summary(struct f2fs_summary *sum, nid_t nid, unsigned int ofs_in_node, unsigned char version) { sum->nid = cpu_to_le32(nid); sum->ofs_in_node = cpu_to_le16(ofs_in_node); sum->version = version; } static inline block_t start_sum_block(struct f2fs_sb_info *sbi) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) { return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) - (base + 1) + type; } static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) { if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) return true; return false; } /* * It is very important to gather dirty pages and write at once, so that we can * submit a big bio without interfering other data writes. * By default, 512 pages for directory data, * 512 pages (2MB) * 8 for nodes, and * 256 pages * 8 for meta are set. */ static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) { if (sbi->sb->s_bdi->wb.dirty_exceeded) return 0; if (type == DATA) return BLKS_PER_SEG(sbi); else if (type == NODE) return 8 * BLKS_PER_SEG(sbi); else if (type == META) return 8 * BIO_MAX_VECS; else return 0; } /* * When writing pages, it'd better align nr_to_write for segment size. */ static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, struct writeback_control *wbc) { long nr_to_write, desired; if (wbc->sync_mode != WB_SYNC_NONE) return 0; nr_to_write = wbc->nr_to_write; desired = BIO_MAX_VECS; if (type == NODE) desired <<= 1; wbc->nr_to_write = desired; return desired - nr_to_write; } static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) { struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; bool wakeup = false; int i; if (force) goto wake_up; mutex_lock(&dcc->cmd_lock); for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { if (i + 1 < dcc->discard_granularity) break; if (!list_empty(&dcc->pend_list[i])) { wakeup = true; break; } } mutex_unlock(&dcc->cmd_lock); if (!wakeup || !is_idle(sbi, DISCARD_TIME)) return; wake_up: dcc->discard_wake = true; wake_up_interruptible_all(&dcc->discard_wait_queue); } static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi) { int devi; for (devi = 0; devi < sbi->s_ndevs; devi++) if (bdev_is_zoned(FDEV(devi).bdev)) return GET_SEGNO(sbi, FDEV(devi).start_blk); return 0; }