// SPDX-License-Identifier: GPL-2.0 /* * fs/f2fs/file.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include "xattr.h" #include "acl.h" #include "gc.h" #include "iostat.h" #include #include static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) { struct inode *inode = file_inode(vmf->vma->vm_file); vm_fault_t ret; ret = filemap_fault(vmf); if (ret & VM_FAULT_LOCKED) f2fs_update_iostat(F2FS_I_SB(inode), inode, APP_MAPPED_READ_IO, F2FS_BLKSIZE); trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); return ret; } static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vmf->vma->vm_file); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; bool need_alloc = true; int err = 0; if (unlikely(IS_IMMUTABLE(inode))) return VM_FAULT_SIGBUS; if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) return VM_FAULT_SIGBUS; if (unlikely(f2fs_cp_error(sbi))) { err = -EIO; goto err; } if (!f2fs_is_checkpoint_ready(sbi)) { err = -ENOSPC; goto err; } err = f2fs_convert_inline_inode(inode); if (err) goto err; #ifdef CONFIG_F2FS_FS_COMPRESSION if (f2fs_compressed_file(inode)) { int ret = f2fs_is_compressed_cluster(inode, page->index); if (ret < 0) { err = ret; goto err; } else if (ret) { need_alloc = false; } } #endif /* should do out of any locked page */ if (need_alloc) f2fs_balance_fs(sbi, true); sb_start_pagefault(inode->i_sb); f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); file_update_time(vmf->vma->vm_file); filemap_invalidate_lock_shared(inode->i_mapping); lock_page(page); if (unlikely(page->mapping != inode->i_mapping || page_offset(page) > i_size_read(inode) || !PageUptodate(page))) { unlock_page(page); err = -EFAULT; goto out_sem; } if (need_alloc) { /* block allocation */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_block_locked(&dn, page->index); } #ifdef CONFIG_F2FS_FS_COMPRESSION if (!need_alloc) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); f2fs_put_dnode(&dn); } #endif if (err) { unlock_page(page); goto out_sem; } f2fs_wait_on_page_writeback(page, DATA, false, true); /* wait for GCed page writeback via META_MAPPING */ f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); /* * check to see if the page is mapped already (no holes) */ if (PageMappedToDisk(page)) goto out_sem; /* page is wholly or partially inside EOF */ if (((loff_t)(page->index + 1) << PAGE_SHIFT) > i_size_read(inode)) { loff_t offset; offset = i_size_read(inode) & ~PAGE_MASK; zero_user_segment(page, offset, PAGE_SIZE); } set_page_dirty(page); f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); f2fs_update_time(sbi, REQ_TIME); trace_f2fs_vm_page_mkwrite(page, DATA); out_sem: filemap_invalidate_unlock_shared(inode->i_mapping); sb_end_pagefault(inode->i_sb); err: return vmf_fs_error(err); } static const struct vm_operations_struct f2fs_file_vm_ops = { .fault = f2fs_filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = f2fs_vm_page_mkwrite, }; static int get_parent_ino(struct inode *inode, nid_t *pino) { struct dentry *dentry; /* * Make sure to get the non-deleted alias. The alias associated with * the open file descriptor being fsync()'ed may be deleted already. */ dentry = d_find_alias(inode); if (!dentry) return 0; *pino = parent_ino(dentry); dput(dentry); return 1; } static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); enum cp_reason_type cp_reason = CP_NO_NEEDED; if (!S_ISREG(inode->i_mode)) cp_reason = CP_NON_REGULAR; else if (f2fs_compressed_file(inode)) cp_reason = CP_COMPRESSED; else if (inode->i_nlink != 1) cp_reason = CP_HARDLINK; else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) cp_reason = CP_SB_NEED_CP; else if (file_wrong_pino(inode)) cp_reason = CP_WRONG_PINO; else if (!f2fs_space_for_roll_forward(sbi)) cp_reason = CP_NO_SPC_ROLL; else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) cp_reason = CP_NODE_NEED_CP; else if (test_opt(sbi, FASTBOOT)) cp_reason = CP_FASTBOOT_MODE; else if (F2FS_OPTION(sbi).active_logs == 2) cp_reason = CP_SPEC_LOG_NUM; else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && f2fs_need_dentry_mark(sbi, inode->i_ino) && f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO)) cp_reason = CP_RECOVER_DIR; return cp_reason; } static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) { struct page *i = find_get_page(NODE_MAPPING(sbi), ino); bool ret = false; /* But we need to avoid that there are some inode updates */ if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) ret = true; f2fs_put_page(i, 0); return ret; } static void try_to_fix_pino(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); nid_t pino; f2fs_down_write(&fi->i_sem); if (file_wrong_pino(inode) && inode->i_nlink == 1 && get_parent_ino(inode, &pino)) { f2fs_i_pino_write(inode, pino); file_got_pino(inode); } f2fs_up_write(&fi->i_sem); } static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, int datasync, bool atomic) { struct inode *inode = file->f_mapping->host; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t ino = inode->i_ino; int ret = 0; enum cp_reason_type cp_reason = 0; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; unsigned int seq_id = 0; if (unlikely(f2fs_readonly(inode->i_sb))) return 0; trace_f2fs_sync_file_enter(inode); if (S_ISDIR(inode->i_mode)) goto go_write; /* if fdatasync is triggered, let's do in-place-update */ if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) set_inode_flag(inode, FI_NEED_IPU); ret = file_write_and_wait_range(file, start, end); clear_inode_flag(inode, FI_NEED_IPU); if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); return ret; } /* if the inode is dirty, let's recover all the time */ if (!f2fs_skip_inode_update(inode, datasync)) { f2fs_write_inode(inode, NULL); goto go_write; } /* * if there is no written data, don't waste time to write recovery info. */ if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { /* it may call write_inode just prior to fsync */ if (need_inode_page_update(sbi, ino)) goto go_write; if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || f2fs_exist_written_data(sbi, ino, UPDATE_INO)) goto flush_out; goto out; } else { /* * for OPU case, during fsync(), node can be persisted before * data when lower device doesn't support write barrier, result * in data corruption after SPO. * So for strict fsync mode, force to use atomic write semantics * to keep write order in between data/node and last node to * avoid potential data corruption. */ if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && !atomic) atomic = true; } go_write: /* * Both of fdatasync() and fsync() are able to be recovered from * sudden-power-off. */ f2fs_down_read(&F2FS_I(inode)->i_sem); cp_reason = need_do_checkpoint(inode); f2fs_up_read(&F2FS_I(inode)->i_sem); if (cp_reason) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); /* * We've secured consistency through sync_fs. Following pino * will be used only for fsynced inodes after checkpoint. */ try_to_fix_pino(inode); clear_inode_flag(inode, FI_APPEND_WRITE); clear_inode_flag(inode, FI_UPDATE_WRITE); goto out; } sync_nodes: atomic_inc(&sbi->wb_sync_req[NODE]); ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); atomic_dec(&sbi->wb_sync_req[NODE]); if (ret) goto out; /* if cp_error was enabled, we should avoid infinite loop */ if (unlikely(f2fs_cp_error(sbi))) { ret = -EIO; goto out; } if (f2fs_need_inode_block_update(sbi, ino)) { f2fs_mark_inode_dirty_sync(inode, true); f2fs_write_inode(inode, NULL); goto sync_nodes; } /* * If it's atomic_write, it's just fine to keep write ordering. So * here we don't need to wait for node write completion, since we use * node chain which serializes node blocks. If one of node writes are * reordered, we can see simply broken chain, resulting in stopping * roll-forward recovery. It means we'll recover all or none node blocks * given fsync mark. */ if (!atomic) { ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); if (ret) goto out; } /* once recovery info is written, don't need to tack this */ f2fs_remove_ino_entry(sbi, ino, APPEND_INO); clear_inode_flag(inode, FI_APPEND_WRITE); flush_out: if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) ret = f2fs_issue_flush(sbi, inode->i_ino); if (!ret) { f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); clear_inode_flag(inode, FI_UPDATE_WRITE); f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); } f2fs_update_time(sbi, REQ_TIME); out: trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); return ret; } int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) return -EIO; return f2fs_do_sync_file(file, start, end, datasync, false); } static bool __found_offset(struct address_space *mapping, block_t blkaddr, pgoff_t index, int whence) { switch (whence) { case SEEK_DATA: if (__is_valid_data_blkaddr(blkaddr)) return true; if (blkaddr == NEW_ADDR && xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) return true; break; case SEEK_HOLE: if (blkaddr == NULL_ADDR) return true; break; } return false; } static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; struct dnode_of_data dn; pgoff_t pgofs, end_offset; loff_t data_ofs = offset; loff_t isize; int err = 0; inode_lock(inode); isize = i_size_read(inode); if (offset >= isize) goto fail; /* handle inline data case */ if (f2fs_has_inline_data(inode)) { if (whence == SEEK_HOLE) { data_ofs = isize; goto found; } else if (whence == SEEK_DATA) { data_ofs = offset; goto found; } } pgofs = (pgoff_t)(offset >> PAGE_SHIFT); for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); if (err && err != -ENOENT) { goto fail; } else if (err == -ENOENT) { /* direct node does not exists */ if (whence == SEEK_DATA) { pgofs = f2fs_get_next_page_offset(&dn, pgofs); continue; } else { goto found; } } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); /* find data/hole in dnode block */ for (; dn.ofs_in_node < end_offset; dn.ofs_in_node++, pgofs++, data_ofs = (loff_t)pgofs << PAGE_SHIFT) { block_t blkaddr; blkaddr = f2fs_data_blkaddr(&dn); if (__is_valid_data_blkaddr(blkaddr) && !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), blkaddr, DATA_GENERIC_ENHANCE)) { f2fs_put_dnode(&dn); goto fail; } if (__found_offset(file->f_mapping, blkaddr, pgofs, whence)) { f2fs_put_dnode(&dn); goto found; } } f2fs_put_dnode(&dn); } if (whence == SEEK_DATA) goto fail; found: if (whence == SEEK_HOLE && data_ofs > isize) data_ofs = isize; inode_unlock(inode); return vfs_setpos(file, data_ofs, maxbytes); fail: inode_unlock(inode); return -ENXIO; } static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; if (f2fs_compressed_file(inode)) maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, maxbytes, i_size_read(inode)); case SEEK_DATA: case SEEK_HOLE: if (offset < 0) return -ENXIO; return f2fs_seek_block(file, offset, whence); } return -EINVAL; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; f2fs_down_read(&F2FS_I(inode)->i_sem); set_inode_flag(inode, FI_MMAP_FILE); f2fs_up_read(&F2FS_I(inode)->i_sem); return 0; } static int f2fs_file_open(struct inode *inode, struct file *filp) { int err = fscrypt_file_open(inode, filp); if (err) return err; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; err = fsverity_file_open(inode, filp); if (err) return err; filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; filp->f_mode |= FMODE_CAN_ODIRECT; return dquot_file_open(inode, filp); } void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); int nr_free = 0, ofs = dn->ofs_in_node, len = count; __le32 *addr; bool compressed_cluster = false; int cluster_index = 0, valid_blocks = 0; int cluster_size = F2FS_I(dn->inode)->i_cluster_size; bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); addr = get_dnode_addr(dn->inode, dn->node_page) + ofs; /* Assumption: truncation starts with cluster */ for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { block_t blkaddr = le32_to_cpu(*addr); if (f2fs_compressed_file(dn->inode) && !(cluster_index & (cluster_size - 1))) { if (compressed_cluster) f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); compressed_cluster = (blkaddr == COMPRESS_ADDR); valid_blocks = 0; } if (blkaddr == NULL_ADDR) continue; f2fs_set_data_blkaddr(dn, NULL_ADDR); if (__is_valid_data_blkaddr(blkaddr)) { if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) continue; if (compressed_cluster) valid_blocks++; } f2fs_invalidate_blocks(sbi, blkaddr); if (!released || blkaddr != COMPRESS_ADDR) nr_free++; } if (compressed_cluster) f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); if (nr_free) { pgoff_t fofs; /* * once we invalidate valid blkaddr in range [ofs, ofs + count], * we will invalidate all blkaddr in the whole range. */ fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + ofs; f2fs_update_read_extent_cache_range(dn, fofs, 0, len); f2fs_update_age_extent_cache_range(dn, fofs, len); dec_valid_block_count(sbi, dn->inode, nr_free); } dn->ofs_in_node = ofs; f2fs_update_time(sbi, REQ_TIME); trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); } static int truncate_partial_data_page(struct inode *inode, u64 from, bool cache_only) { loff_t offset = from & (PAGE_SIZE - 1); pgoff_t index = from >> PAGE_SHIFT; struct address_space *mapping = inode->i_mapping; struct page *page; if (!offset && !cache_only) return 0; if (cache_only) { page = find_lock_page(mapping, index); if (page && PageUptodate(page)) goto truncate_out; f2fs_put_page(page, 1); return 0; } page = f2fs_get_lock_data_page(inode, index, true); if (IS_ERR(page)) return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); truncate_out: f2fs_wait_on_page_writeback(page, DATA, true, true); zero_user(page, offset, PAGE_SIZE - offset); /* An encrypted inode should have a key and truncate the last page. */ f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); if (!cache_only) set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; pgoff_t free_from; int count = 0, err = 0; struct page *ipage; bool truncate_page = false; trace_f2fs_truncate_blocks_enter(inode, from); free_from = (pgoff_t)F2FS_BLK_ALIGN(from); if (free_from >= max_file_blocks(inode)) goto free_partial; if (lock) f2fs_lock_op(sbi); ipage = f2fs_get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } if (f2fs_has_inline_data(inode)) { f2fs_truncate_inline_inode(inode, ipage, from); f2fs_put_page(ipage, 1); truncate_page = true; goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); if (err) { if (err == -ENOENT) goto free_next; goto out; } count = ADDRS_PER_PAGE(dn.node_page, inode); count -= dn.ofs_in_node; f2fs_bug_on(sbi, count < 0); if (dn.ofs_in_node || IS_INODE(dn.node_page)) { f2fs_truncate_data_blocks_range(&dn, count); free_from += count; } f2fs_put_dnode(&dn); free_next: err = f2fs_truncate_inode_blocks(inode, free_from); out: if (lock) f2fs_unlock_op(sbi); free_partial: /* lastly zero out the first data page */ if (!err) err = truncate_partial_data_page(inode, from, truncate_page); trace_f2fs_truncate_blocks_exit(inode, err); return err; } int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) { u64 free_from = from; int err; #ifdef CONFIG_F2FS_FS_COMPRESSION /* * for compressed file, only support cluster size * aligned truncation. */ if (f2fs_compressed_file(inode)) free_from = round_up(from, F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); #endif err = f2fs_do_truncate_blocks(inode, free_from, lock); if (err) return err; #ifdef CONFIG_F2FS_FS_COMPRESSION /* * For compressed file, after release compress blocks, don't allow write * direct, but we should allow write direct after truncate to zero. */ if (f2fs_compressed_file(inode) && !free_from && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) clear_inode_flag(inode, FI_COMPRESS_RELEASED); if (from != free_from) { err = f2fs_truncate_partial_cluster(inode, from, lock); if (err) return err; } #endif return 0; } int f2fs_truncate(struct inode *inode) { int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return 0; trace_f2fs_truncate(inode); if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) return -EIO; err = f2fs_dquot_initialize(inode); if (err) return err; /* we should check inline_data size */ if (!f2fs_may_inline_data(inode)) { err = f2fs_convert_inline_inode(inode); if (err) return err; } err = f2fs_truncate_blocks(inode, i_size_read(inode), true); if (err) return err; inode->i_mtime = inode_set_ctime_current(inode); f2fs_mark_inode_dirty_sync(inode, false); return 0; } static bool f2fs_force_buffered_io(struct inode *inode, int rw) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); if (!fscrypt_dio_supported(inode)) return true; if (fsverity_active(inode)) return true; if (f2fs_compressed_file(inode)) return true; /* disallow direct IO if any of devices has unaligned blksize */ if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) return true; /* * for blkzoned device, fallback direct IO to buffered IO, so * all IOs can be serialized by log-structured write. */ if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) return true; if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) return true; if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) return true; return false; } int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_inode *ri = NULL; unsigned int flags; if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { stat->result_mask |= STATX_BTIME; stat->btime.tv_sec = fi->i_crtime.tv_sec; stat->btime.tv_nsec = fi->i_crtime.tv_nsec; } /* * Return the DIO alignment restrictions if requested. We only return * this information when requested, since on encrypted files it might * take a fair bit of work to get if the file wasn't opened recently. * * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN * cannot represent that, so in that case we report no DIO support. */ if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { unsigned int bsize = i_blocksize(inode); stat->result_mask |= STATX_DIOALIGN; if (!f2fs_force_buffered_io(inode, WRITE)) { stat->dio_mem_align = bsize; stat->dio_offset_align = bsize; } } flags = fi->i_flags; if (flags & F2FS_COMPR_FL) stat->attributes |= STATX_ATTR_COMPRESSED; if (flags & F2FS_APPEND_FL) stat->attributes |= STATX_ATTR_APPEND; if (IS_ENCRYPTED(inode)) stat->attributes |= STATX_ATTR_ENCRYPTED; if (flags & F2FS_IMMUTABLE_FL) stat->attributes |= STATX_ATTR_IMMUTABLE; if (flags & F2FS_NODUMP_FL) stat->attributes |= STATX_ATTR_NODUMP; if (IS_VERITY(inode)) stat->attributes |= STATX_ATTR_VERITY; stat->attributes_mask |= (STATX_ATTR_COMPRESSED | STATX_ATTR_APPEND | STATX_ATTR_ENCRYPTED | STATX_ATTR_IMMUTABLE | STATX_ATTR_NODUMP | STATX_ATTR_VERITY); generic_fillattr(idmap, request_mask, inode, stat); /* we need to show initial sectors used for inline_data/dentries */ if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || f2fs_has_inline_dentry(inode)) stat->blocks += (stat->size + 511) >> 9; return 0; } #ifdef CONFIG_F2FS_FS_POSIX_ACL static void __setattr_copy(struct mnt_idmap *idmap, struct inode *inode, const struct iattr *attr) { unsigned int ia_valid = attr->ia_valid; i_uid_update(idmap, attr, inode); i_gid_update(idmap, attr, inode); if (ia_valid & ATTR_ATIME) inode->i_atime = attr->ia_atime; if (ia_valid & ATTR_MTIME) inode->i_mtime = attr->ia_mtime; if (ia_valid & ATTR_CTIME) inode_set_ctime_to_ts(inode, attr->ia_ctime); if (ia_valid & ATTR_MODE) { umode_t mode = attr->ia_mode; vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); if (!vfsgid_in_group_p(vfsgid) && !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) mode &= ~S_ISGID; set_acl_inode(inode, mode); } } #else #define __setattr_copy setattr_copy #endif int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (unlikely(IS_IMMUTABLE(inode))) return -EPERM; if (unlikely(IS_APPEND(inode) && (attr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | ATTR_TIMES_SET)))) return -EPERM; if ((attr->ia_valid & ATTR_SIZE) && !f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; err = setattr_prepare(idmap, dentry, attr); if (err) return err; err = fscrypt_prepare_setattr(dentry, attr); if (err) return err; err = fsverity_prepare_setattr(dentry, attr); if (err) return err; if (is_quota_modification(idmap, inode, attr)) { err = f2fs_dquot_initialize(inode); if (err) return err; } if (i_uid_needs_update(idmap, attr, inode) || i_gid_needs_update(idmap, attr, inode)) { f2fs_lock_op(F2FS_I_SB(inode)); err = dquot_transfer(idmap, inode, attr); if (err) { set_sbi_flag(F2FS_I_SB(inode), SBI_QUOTA_NEED_REPAIR); f2fs_unlock_op(F2FS_I_SB(inode)); return err; } /* * update uid/gid under lock_op(), so that dquot and inode can * be updated atomically. */ i_uid_update(idmap, attr, inode); i_gid_update(idmap, attr, inode); f2fs_mark_inode_dirty_sync(inode, true); f2fs_unlock_op(F2FS_I_SB(inode)); } if (attr->ia_valid & ATTR_SIZE) { loff_t old_size = i_size_read(inode); if (attr->ia_size > MAX_INLINE_DATA(inode)) { /* * should convert inline inode before i_size_write to * keep smaller than inline_data size with inline flag. */ err = f2fs_convert_inline_inode(inode); if (err) return err; } f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); truncate_setsize(inode, attr->ia_size); if (attr->ia_size <= old_size) err = f2fs_truncate(inode); /* * do not trim all blocks after i_size if target size is * larger than i_size. */ filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); if (err) return err; spin_lock(&F2FS_I(inode)->i_size_lock); inode->i_mtime = inode_set_ctime_current(inode); F2FS_I(inode)->last_disk_size = i_size_read(inode); spin_unlock(&F2FS_I(inode)->i_size_lock); } __setattr_copy(idmap, inode, attr); if (attr->ia_valid & ATTR_MODE) { err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); if (is_inode_flag_set(inode, FI_ACL_MODE)) { if (!err) inode->i_mode = F2FS_I(inode)->i_acl_mode; clear_inode_flag(inode, FI_ACL_MODE); } } /* file size may changed here */ f2fs_mark_inode_dirty_sync(inode, true); /* inode change will produce dirty node pages flushed by checkpoint */ f2fs_balance_fs(F2FS_I_SB(inode), true); return err; } const struct inode_operations f2fs_file_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_inode_acl = f2fs_get_acl, .set_acl = f2fs_set_acl, .listxattr = f2fs_listxattr, .fiemap = f2fs_fiemap, .fileattr_get = f2fs_fileattr_get, .fileattr_set = f2fs_fileattr_set, }; static int fill_zero(struct inode *inode, pgoff_t index, loff_t start, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct page *page; if (!len) return 0; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); page = f2fs_get_new_data_page(inode, NULL, index, false); f2fs_unlock_op(sbi); if (IS_ERR(page)) return PTR_ERR(page); f2fs_wait_on_page_writeback(page, DATA, true, true); zero_user(page, start, len); set_page_dirty(page); f2fs_put_page(page, 1); return 0; } int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { int err; while (pg_start < pg_end) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); if (err) { if (err == -ENOENT) { pg_start = f2fs_get_next_page_offset(&dn, pg_start); continue; } return err; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); f2fs_truncate_data_blocks_range(&dn, count); f2fs_put_dnode(&dn); pg_start += count; } return 0; } static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) { pgoff_t pg_start, pg_end; loff_t off_start, off_end; int ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; off_start = offset & (PAGE_SIZE - 1); off_end = (offset + len) & (PAGE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_SIZE - off_start); if (ret) return ret; } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) return ret; } if (pg_start < pg_end) { loff_t blk_start, blk_end; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); f2fs_balance_fs(sbi, true); blk_start = (loff_t)pg_start << PAGE_SHIFT; blk_end = (loff_t)pg_end << PAGE_SHIFT; f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); truncate_pagecache_range(inode, blk_start, blk_end - 1); f2fs_lock_op(sbi); ret = f2fs_truncate_hole(inode, pg_start, pg_end); f2fs_unlock_op(sbi); filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); } } return ret; } static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, int *do_replace, pgoff_t off, pgoff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; int ret, done, i; next_dnode: set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { return ret; } else if (ret == -ENOENT) { if (dn.max_level == 0) return -ENOENT; done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node, len); blkaddr += done; do_replace += done; goto next; } done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - dn.ofs_in_node, len); for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { *blkaddr = f2fs_data_blkaddr(&dn); if (__is_valid_data_blkaddr(*blkaddr) && !f2fs_is_valid_blkaddr(sbi, *blkaddr, DATA_GENERIC_ENHANCE)) { f2fs_put_dnode(&dn); f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); return -EFSCORRUPTED; } if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { if (f2fs_lfs_mode(sbi)) { f2fs_put_dnode(&dn); return -EOPNOTSUPP; } /* do not invalidate this block address */ f2fs_update_data_blkaddr(&dn, NULL_ADDR); *do_replace = 1; } } f2fs_put_dnode(&dn); next: len -= done; off += done; if (len) goto next_dnode; return 0; } static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, int *do_replace, pgoff_t off, int len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; int ret, i; for (i = 0; i < len; i++, do_replace++, blkaddr++) { if (*do_replace == 0) continue; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); if (ret) { dec_valid_block_count(sbi, inode, 1); f2fs_invalidate_blocks(sbi, *blkaddr); } else { f2fs_update_data_blkaddr(&dn, *blkaddr); } f2fs_put_dnode(&dn); } return 0; } static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, block_t *blkaddr, int *do_replace, pgoff_t src, pgoff_t dst, pgoff_t len, bool full) { struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); pgoff_t i = 0; int ret; while (i < len) { if (blkaddr[i] == NULL_ADDR && !full) { i++; continue; } if (do_replace[i] || blkaddr[i] == NULL_ADDR) { struct dnode_of_data dn; struct node_info ni; size_t new_size; pgoff_t ilen; set_new_dnode(&dn, dst_inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); if (ret) return ret; ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); if (ret) { f2fs_put_dnode(&dn); return ret; } ilen = min((pgoff_t) ADDRS_PER_PAGE(dn.node_page, dst_inode) - dn.ofs_in_node, len - i); do { dn.data_blkaddr = f2fs_data_blkaddr(&dn); f2fs_truncate_data_blocks_range(&dn, 1); if (do_replace[i]) { f2fs_i_blocks_write(src_inode, 1, false, false); f2fs_i_blocks_write(dst_inode, 1, true, false); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, blkaddr[i], ni.version, true, false); do_replace[i] = 0; } dn.ofs_in_node++; i++; new_size = (loff_t)(dst + i) << PAGE_SHIFT; if (dst_inode->i_size < new_size) f2fs_i_size_write(dst_inode, new_size); } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); f2fs_put_dnode(&dn); } else { struct page *psrc, *pdst; psrc = f2fs_get_lock_data_page(src_inode, src + i, true); if (IS_ERR(psrc)) return PTR_ERR(psrc); pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, true); if (IS_ERR(pdst)) { f2fs_put_page(psrc, 1); return PTR_ERR(pdst); } memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); set_page_dirty(pdst); set_page_private_gcing(pdst); f2fs_put_page(pdst, 1); f2fs_put_page(psrc, 1); ret = f2fs_truncate_hole(src_inode, src + i, src + i + 1); if (ret) return ret; i++; } } return 0; } static int __exchange_data_block(struct inode *src_inode, struct inode *dst_inode, pgoff_t src, pgoff_t dst, pgoff_t len, bool full) { block_t *src_blkaddr; int *do_replace; pgoff_t olen; int ret; while (len) { olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), array_size(olen, sizeof(block_t)), GFP_NOFS); if (!src_blkaddr) return -ENOMEM; do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), array_size(olen, sizeof(int)), GFP_NOFS); if (!do_replace) { kvfree(src_blkaddr); return -ENOMEM; } ret = __read_out_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); if (ret) goto roll_back; ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, do_replace, src, dst, olen, full); if (ret) goto roll_back; src += olen; dst += olen; len -= olen; kvfree(src_blkaddr); kvfree(do_replace); } return 0; roll_back: __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); kvfree(src_blkaddr); kvfree(do_replace); return ret; } static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); pgoff_t start = offset >> PAGE_SHIFT; pgoff_t end = (offset + len) >> PAGE_SHIFT; int ret; f2fs_balance_fs(sbi, true); /* avoid gc operation during block exchange */ f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); f2fs_lock_op(sbi); f2fs_drop_extent_tree(inode); truncate_pagecache(inode, offset); ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); f2fs_unlock_op(sbi); filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); return ret; } static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) { loff_t new_size; int ret; if (offset + len >= i_size_read(inode)) return -EINVAL; /* collapse range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; ret = f2fs_do_collapse(inode, offset, len); if (ret) return ret; /* write out all moved pages, if possible */ filemap_invalidate_lock(inode->i_mapping); filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); new_size = i_size_read(inode) - len; ret = f2fs_truncate_blocks(inode, new_size, true); filemap_invalidate_unlock(inode->i_mapping); if (!ret) f2fs_i_size_write(inode, new_size); return ret; } static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, pgoff_t end) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); pgoff_t index = start; unsigned int ofs_in_node = dn->ofs_in_node; blkcnt_t count = 0; int ret; for (; index < end; index++, dn->ofs_in_node++) { if (f2fs_data_blkaddr(dn) == NULL_ADDR) count++; } dn->ofs_in_node = ofs_in_node; ret = f2fs_reserve_new_blocks(dn, count); if (ret) return ret; dn->ofs_in_node = ofs_in_node; for (index = start; index < end; index++, dn->ofs_in_node++) { dn->data_blkaddr = f2fs_data_blkaddr(dn); /* * f2fs_reserve_new_blocks will not guarantee entire block * allocation. */ if (dn->data_blkaddr == NULL_ADDR) { ret = -ENOSPC; break; } if (dn->data_blkaddr == NEW_ADDR) continue; if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, DATA_GENERIC_ENHANCE)) { ret = -EFSCORRUPTED; f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); break; } f2fs_invalidate_blocks(sbi, dn->data_blkaddr); f2fs_set_data_blkaddr(dn, NEW_ADDR); } f2fs_update_read_extent_cache_range(dn, start, 0, index - start); f2fs_update_age_extent_cache_range(dn, start, index - start); return ret; } static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); if (ret) return ret; pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; off_start = offset & (PAGE_SIZE - 1); off_end = (offset + len) & (PAGE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, offset + len); } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_SIZE - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, (loff_t)pg_start << PAGE_SHIFT); } for (index = pg_start; index < pg_end;) { struct dnode_of_data dn; unsigned int end_offset; pgoff_t end; f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(mapping); truncate_pagecache_range(inode, (loff_t)index << PAGE_SHIFT, ((loff_t)pg_end << PAGE_SHIFT) - 1); f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); if (ret) { f2fs_unlock_op(sbi); filemap_invalidate_unlock(mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); goto out; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); end = min(pg_end, end_offset - dn.ofs_in_node + index); ret = f2fs_do_zero_range(&dn, index, end); f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); filemap_invalidate_unlock(mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); f2fs_balance_fs(sbi, dn.node_changed); if (ret) goto out; index = end; new_size = max_t(loff_t, new_size, (loff_t)index << PAGE_SHIFT); } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) goto out; new_size = max_t(loff_t, new_size, offset + len); } } out: if (new_size > i_size_read(inode)) { if (mode & FALLOC_FL_KEEP_SIZE) file_set_keep_isize(inode); else f2fs_i_size_write(inode, new_size); } return ret; } static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; pgoff_t nr, pg_start, pg_end, delta, idx; loff_t new_size; int ret = 0; new_size = i_size_read(inode) + len; ret = inode_newsize_ok(inode, new_size); if (ret) return ret; if (offset >= i_size_read(inode)) return -EINVAL; /* insert range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; f2fs_balance_fs(sbi, true); filemap_invalidate_lock(mapping); ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); filemap_invalidate_unlock(mapping); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); if (ret) return ret; pg_start = offset >> PAGE_SHIFT; pg_end = (offset + len) >> PAGE_SHIFT; delta = pg_end - pg_start; idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); /* avoid gc operation during block exchange */ f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(mapping); truncate_pagecache(inode, offset); while (!ret && idx > pg_start) { nr = idx - pg_start; if (nr > delta) nr = delta; idx -= nr; f2fs_lock_op(sbi); f2fs_drop_extent_tree(inode); ret = __exchange_data_block(inode, inode, idx, idx + delta, nr, false); f2fs_unlock_op(sbi); } filemap_invalidate_unlock(mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); /* write out all moved pages, if possible */ filemap_invalidate_lock(mapping); filemap_write_and_wait_range(mapping, offset, LLONG_MAX); truncate_pagecache(inode, offset); filemap_invalidate_unlock(mapping); if (!ret) f2fs_i_size_write(inode, new_size); return ret; } static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_map_blocks map = { .m_next_pgofs = NULL, .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, .m_may_create = true }; struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, .init_gc_type = FG_GC, .should_migrate_blocks = false, .err_gc_skipped = true, .nr_free_secs = 0 }; pgoff_t pg_start, pg_end; loff_t new_size; loff_t off_end; block_t expanded = 0; int err; err = inode_newsize_ok(inode, (len + offset)); if (err) return err; err = f2fs_convert_inline_inode(inode); if (err) return err; f2fs_balance_fs(sbi, true); pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; off_end = (offset + len) & (PAGE_SIZE - 1); map.m_lblk = pg_start; map.m_len = pg_end - pg_start; if (off_end) map.m_len++; if (!map.m_len) return 0; if (f2fs_is_pinned_file(inode)) { block_t sec_blks = CAP_BLKS_PER_SEC(sbi); block_t sec_len = roundup(map.m_len, sec_blks); map.m_len = sec_blks; next_alloc: if (has_not_enough_free_secs(sbi, 0, GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { f2fs_down_write(&sbi->gc_lock); stat_inc_gc_call_count(sbi, FOREGROUND); err = f2fs_gc(sbi, &gc_control); if (err && err != -ENODATA) goto out_err; } f2fs_down_write(&sbi->pin_sem); f2fs_lock_op(sbi); f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); f2fs_unlock_op(sbi); map.m_seg_type = CURSEG_COLD_DATA_PINNED; err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); file_dont_truncate(inode); f2fs_up_write(&sbi->pin_sem); expanded += map.m_len; sec_len -= map.m_len; map.m_lblk += map.m_len; if (!err && sec_len) goto next_alloc; map.m_len = expanded; } else { err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); expanded = map.m_len; } out_err: if (err) { pgoff_t last_off; if (!expanded) return err; last_off = pg_start + expanded - 1; /* update new size to the failed position */ new_size = (last_off == pg_end) ? offset + len : (loff_t)(last_off + 1) << PAGE_SHIFT; } else { new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; } if (new_size > i_size_read(inode)) { if (mode & FALLOC_FL_KEEP_SIZE) file_set_keep_isize(inode); else f2fs_i_size_write(inode, new_size); } return err; } static long f2fs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret = 0; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) return -ENOSPC; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; /* f2fs only support ->fallocate for regular file */ if (!S_ISREG(inode->i_mode)) return -EINVAL; if (IS_ENCRYPTED(inode) && (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) return -EOPNOTSUPP; /* * Pinned file should not support partial truncation since the block * can be used by applications. */ if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) return -EOPNOTSUPP; if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)) return -EOPNOTSUPP; inode_lock(inode); ret = file_modified(file); if (ret) goto out; if (mode & FALLOC_FL_PUNCH_HOLE) { if (offset >= inode->i_size) goto out; ret = f2fs_punch_hole(inode, offset, len); } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { ret = f2fs_collapse_range(inode, offset, len); } else if (mode & FALLOC_FL_ZERO_RANGE) { ret = f2fs_zero_range(inode, offset, len, mode); } else if (mode & FALLOC_FL_INSERT_RANGE) { ret = f2fs_insert_range(inode, offset, len); } else { ret = f2fs_expand_inode_data(inode, offset, len, mode); } if (!ret) { inode->i_mtime = inode_set_ctime_current(inode); f2fs_mark_inode_dirty_sync(inode, false); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); } out: inode_unlock(inode); trace_f2fs_fallocate(inode, mode, offset, len, ret); return ret; } static int f2fs_release_file(struct inode *inode, struct file *filp) { /* * f2fs_release_file is called at every close calls. So we should * not drop any inmemory pages by close called by other process. */ if (!(filp->f_mode & FMODE_WRITE) || atomic_read(&inode->i_writecount) != 1) return 0; inode_lock(inode); f2fs_abort_atomic_write(inode, true); inode_unlock(inode); return 0; } static int f2fs_file_flush(struct file *file, fl_owner_t id) { struct inode *inode = file_inode(file); /* * If the process doing a transaction is crashed, we should do * roll-back. Otherwise, other reader/write can see corrupted database * until all the writers close its file. Since this should be done * before dropping file lock, it needs to do in ->flush. */ if (F2FS_I(inode)->atomic_write_task == current && (current->flags & PF_EXITING)) { inode_lock(inode); f2fs_abort_atomic_write(inode, true); inode_unlock(inode); } return 0; } static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) { struct f2fs_inode_info *fi = F2FS_I(inode); u32 masked_flags = fi->i_flags & mask; /* mask can be shrunk by flags_valid selector */ iflags &= mask; /* Is it quota file? Do not allow user to mess with it */ if (IS_NOQUOTA(inode)) return -EPERM; if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_empty_dir(inode)) return -ENOTEMPTY; } if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) return -EINVAL; } if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { if (masked_flags & F2FS_COMPR_FL) { if (!f2fs_disable_compressed_file(inode)) return -EINVAL; } else { /* try to convert inline_data to support compression */ int err = f2fs_convert_inline_inode(inode); if (err) return err; f2fs_down_write(&F2FS_I(inode)->i_sem); if (!f2fs_may_compress(inode) || (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { f2fs_up_write(&F2FS_I(inode)->i_sem); return -EINVAL; } err = set_compress_context(inode); f2fs_up_write(&F2FS_I(inode)->i_sem); if (err) return err; } } fi->i_flags = iflags | (fi->i_flags & ~mask); f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && (fi->i_flags & F2FS_NOCOMP_FL)); if (fi->i_flags & F2FS_PROJINHERIT_FL) set_inode_flag(inode, FI_PROJ_INHERIT); else clear_inode_flag(inode, FI_PROJ_INHERIT); inode_set_ctime_current(inode); f2fs_set_inode_flags(inode); f2fs_mark_inode_dirty_sync(inode, true); return 0; } /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ /* * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. * * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and * FS_IOC_FSSETXATTR is done by the VFS. */ static const struct { u32 iflag; u32 fsflag; } f2fs_fsflags_map[] = { { F2FS_COMPR_FL, FS_COMPR_FL }, { F2FS_SYNC_FL, FS_SYNC_FL }, { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, { F2FS_APPEND_FL, FS_APPEND_FL }, { F2FS_NODUMP_FL, FS_NODUMP_FL }, { F2FS_NOATIME_FL, FS_NOATIME_FL }, { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, { F2FS_INDEX_FL, FS_INDEX_FL }, { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, }; #define F2FS_GETTABLE_FS_FL ( \ FS_COMPR_FL | \ FS_SYNC_FL | \ FS_IMMUTABLE_FL | \ FS_APPEND_FL | \ FS_NODUMP_FL | \ FS_NOATIME_FL | \ FS_NOCOMP_FL | \ FS_INDEX_FL | \ FS_DIRSYNC_FL | \ FS_PROJINHERIT_FL | \ FS_ENCRYPT_FL | \ FS_INLINE_DATA_FL | \ FS_NOCOW_FL | \ FS_VERITY_FL | \ FS_CASEFOLD_FL) #define F2FS_SETTABLE_FS_FL ( \ FS_COMPR_FL | \ FS_SYNC_FL | \ FS_IMMUTABLE_FL | \ FS_APPEND_FL | \ FS_NODUMP_FL | \ FS_NOATIME_FL | \ FS_NOCOMP_FL | \ FS_DIRSYNC_FL | \ FS_PROJINHERIT_FL | \ FS_CASEFOLD_FL) /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ static inline u32 f2fs_iflags_to_fsflags(u32 iflags) { u32 fsflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) if (iflags & f2fs_fsflags_map[i].iflag) fsflags |= f2fs_fsflags_map[i].fsflag; return fsflags; } /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) { u32 iflags = 0; int i; for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) if (fsflags & f2fs_fsflags_map[i].fsflag) iflags |= f2fs_fsflags_map[i].iflag; return iflags; } static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); return put_user(inode->i_generation, (int __user *)arg); } static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) { struct inode *inode = file_inode(filp); struct mnt_idmap *idmap = file_mnt_idmap(filp); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct inode *pinode; loff_t isize; int ret; if (!inode_owner_or_capable(idmap, inode)) return -EACCES; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (filp->f_flags & O_DIRECT) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (!f2fs_disable_compressed_file(inode)) { ret = -EINVAL; goto out; } if (f2fs_is_atomic_file(inode)) goto out; ret = f2fs_convert_inline_inode(inode); if (ret) goto out; f2fs_down_write(&fi->i_gc_rwsem[WRITE]); /* * Should wait end_io to count F2FS_WB_CP_DATA correctly by * f2fs_is_atomic_file. */ if (get_dirty_pages(inode)) f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", inode->i_ino, get_dirty_pages(inode)); ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) { f2fs_up_write(&fi->i_gc_rwsem[WRITE]); goto out; } /* Check if the inode already has a COW inode */ if (fi->cow_inode == NULL) { /* Create a COW inode for atomic write */ pinode = f2fs_iget(inode->i_sb, fi->i_pino); if (IS_ERR(pinode)) { f2fs_up_write(&fi->i_gc_rwsem[WRITE]); ret = PTR_ERR(pinode); goto out; } ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode); iput(pinode); if (ret) { f2fs_up_write(&fi->i_gc_rwsem[WRITE]); goto out; } set_inode_flag(fi->cow_inode, FI_COW_FILE); clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); } else { /* Reuse the already created COW inode */ ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); if (ret) { f2fs_up_write(&fi->i_gc_rwsem[WRITE]); goto out; } } f2fs_write_inode(inode, NULL); stat_inc_atomic_inode(inode); set_inode_flag(inode, FI_ATOMIC_FILE); isize = i_size_read(inode); fi->original_i_size = isize; if (truncate) { set_inode_flag(inode, FI_ATOMIC_REPLACE); truncate_inode_pages_final(inode->i_mapping); f2fs_i_size_write(inode, 0); isize = 0; } f2fs_i_size_write(fi->cow_inode, isize); f2fs_up_write(&fi->i_gc_rwsem[WRITE]); f2fs_update_time(sbi, REQ_TIME); fi->atomic_write_task = current; stat_update_max_atomic_write(inode); fi->atomic_write_cnt = 0; out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_commit_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); struct mnt_idmap *idmap = file_mnt_idmap(filp); int ret; if (!inode_owner_or_capable(idmap, inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; f2fs_balance_fs(F2FS_I_SB(inode), true); inode_lock(inode); if (f2fs_is_atomic_file(inode)) { ret = f2fs_commit_atomic_write(inode); if (!ret) ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); f2fs_abort_atomic_write(inode, ret); } else { ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); } inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_abort_atomic_write(struct file *filp) { struct inode *inode = file_inode(filp); struct mnt_idmap *idmap = file_mnt_idmap(filp); int ret; if (!inode_owner_or_capable(idmap, inode)) return -EACCES; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); f2fs_abort_atomic_write(inode, true); inode_unlock(inode); mnt_drop_write_file(filp); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return ret; } static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct super_block *sb = sbi->sb; __u32 in; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(in, (__u32 __user *)arg)) return -EFAULT; if (in != F2FS_GOING_DOWN_FULLSYNC) { ret = mnt_want_write_file(filp); if (ret) { if (ret == -EROFS) { ret = 0; f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); trace_f2fs_shutdown(sbi, in, ret); } return ret; } } switch (in) { case F2FS_GOING_DOWN_FULLSYNC: ret = freeze_bdev(sb->s_bdev); if (ret) goto out; f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); thaw_bdev(sb->s_bdev); break; case F2FS_GOING_DOWN_METASYNC: /* do checkpoint only */ ret = f2fs_sync_fs(sb, 1); if (ret) goto out; f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); break; case F2FS_GOING_DOWN_NOSYNC: f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); break; case F2FS_GOING_DOWN_METAFLUSH: f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); break; case F2FS_GOING_DOWN_NEED_FSCK: set_sbi_flag(sbi, SBI_NEED_FSCK); set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); set_sbi_flag(sbi, SBI_IS_DIRTY); /* do checkpoint only */ ret = f2fs_sync_fs(sb, 1); goto out; default: ret = -EINVAL; goto out; } f2fs_stop_gc_thread(sbi); f2fs_stop_discard_thread(sbi); f2fs_drop_discard_cmd(sbi); clear_opt(sbi, DISCARD); f2fs_update_time(sbi, REQ_TIME); out: if (in != F2FS_GOING_DOWN_FULLSYNC) mnt_drop_write_file(filp); trace_f2fs_shutdown(sbi, in, ret); return ret; } static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct super_block *sb = inode->i_sb; struct fstrim_range range; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!f2fs_hw_support_discard(F2FS_SB(sb))) return -EOPNOTSUPP; if (copy_from_user(&range, (struct fstrim_range __user *)arg, sizeof(range))) return -EFAULT; ret = mnt_want_write_file(filp); if (ret) return ret; range.minlen = max((unsigned int)range.minlen, bdev_discard_granularity(sb->s_bdev)); ret = f2fs_trim_fs(F2FS_SB(sb), &range); mnt_drop_write_file(filp); if (ret < 0) return ret; if (copy_to_user((struct fstrim_range __user *)arg, &range, sizeof(range))) return -EFAULT; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return 0; } static bool uuid_is_nonzero(__u8 u[16]) { int i; for (i = 0; i < 16; i++) if (u[i]) return true; return false; } static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) return -EOPNOTSUPP; f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); } static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_policy(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); u8 encrypt_pw_salt[16]; int err; if (!f2fs_sb_has_encrypt(sbi)) return -EOPNOTSUPP; err = mnt_want_write_file(filp); if (err) return err; f2fs_down_write(&sbi->sb_lock); if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) goto got_it; /* update superblock with uuid */ generate_random_uuid(sbi->raw_super->encrypt_pw_salt); err = f2fs_commit_super(sbi, false); if (err) { /* undo new data */ memset(sbi->raw_super->encrypt_pw_salt, 0, 16); goto out_err; } got_it: memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); out_err: f2fs_up_write(&sbi->sb_lock); mnt_drop_write_file(filp); if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) err = -EFAULT; return err; } static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); } static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_add_key(filp, (void __user *)arg); } static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_remove_key(filp, (void __user *)arg); } static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_key_status(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); } static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); } static int f2fs_ioc_gc(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, .no_bg_gc = false, .should_migrate_blocks = false, .nr_free_secs = 0 }; __u32 sync; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (get_user(sync, (__u32 __user *)arg)) return -EFAULT; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; if (!sync) { if (!f2fs_down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } } else { f2fs_down_write(&sbi->gc_lock); } gc_control.init_gc_type = sync ? FG_GC : BG_GC; gc_control.err_gc_skipped = sync; stat_inc_gc_call_count(sbi, FOREGROUND); ret = f2fs_gc(sbi, &gc_control); out: mnt_drop_write_file(filp); return ret; } static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) { struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); struct f2fs_gc_control gc_control = { .init_gc_type = range->sync ? FG_GC : BG_GC, .no_bg_gc = false, .should_migrate_blocks = false, .err_gc_skipped = range->sync, .nr_free_secs = 0 }; u64 end; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; end = range->start + range->len; if (end < range->start || range->start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) return -EINVAL; ret = mnt_want_write_file(filp); if (ret) return ret; do_more: if (!range->sync) { if (!f2fs_down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } } else { f2fs_down_write(&sbi->gc_lock); } gc_control.victim_segno = GET_SEGNO(sbi, range->start); stat_inc_gc_call_count(sbi, FOREGROUND); ret = f2fs_gc(sbi, &gc_control); if (ret) { if (ret == -EBUSY) ret = -EAGAIN; goto out; } range->start += CAP_BLKS_PER_SEC(sbi); if (range->start <= end) goto do_more; out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) { struct f2fs_gc_range range; if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, sizeof(range))) return -EFAULT; return __f2fs_ioc_gc_range(filp, &range); } static int f2fs_ioc_write_checkpoint(struct file *filp) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); return -EINVAL; } ret = mnt_want_write_file(filp); if (ret) return ret; ret = f2fs_sync_fs(sbi->sb, 1); mnt_drop_write_file(filp); return ret; } static int f2fs_defragment_range(struct f2fs_sb_info *sbi, struct file *filp, struct f2fs_defragment *range) { struct inode *inode = file_inode(filp); struct f2fs_map_blocks map = { .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, .m_may_create = false }; struct extent_info ei = {}; pgoff_t pg_start, pg_end, next_pgofs; unsigned int blk_per_seg = sbi->blocks_per_seg; unsigned int total = 0, sec_num; block_t blk_end = 0; bool fragmented = false; int err; pg_start = range->start >> PAGE_SHIFT; pg_end = (range->start + range->len) >> PAGE_SHIFT; f2fs_balance_fs(sbi, true); inode_lock(inode); if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { err = -EINVAL; goto unlock_out; } /* if in-place-update policy is enabled, don't waste time here */ set_inode_flag(inode, FI_OPU_WRITE); if (f2fs_should_update_inplace(inode, NULL)) { err = -EINVAL; goto out; } /* writeback all dirty pages in the range */ err = filemap_write_and_wait_range(inode->i_mapping, range->start, range->start + range->len - 1); if (err) goto out; /* * lookup mapping info in extent cache, skip defragmenting if physical * block addresses are continuous. */ if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { if (ei.fofs + ei.len >= pg_end) goto out; } map.m_lblk = pg_start; map.m_next_pgofs = &next_pgofs; /* * lookup mapping info in dnode page cache, skip defragmenting if all * physical block addresses are continuous even if there are hole(s) * in logical blocks. */ while (map.m_lblk < pg_end) { map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); if (err) goto out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk = next_pgofs; continue; } if (blk_end && blk_end != map.m_pblk) fragmented = true; /* record total count of block that we're going to move */ total += map.m_len; blk_end = map.m_pblk + map.m_len; map.m_lblk += map.m_len; } if (!fragmented) { total = 0; goto out; } sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); /* * make sure there are enough free section for LFS allocation, this can * avoid defragment running in SSR mode when free section are allocated * intensively */ if (has_not_enough_free_secs(sbi, 0, sec_num)) { err = -EAGAIN; goto out; } map.m_lblk = pg_start; map.m_len = pg_end - pg_start; total = 0; while (map.m_lblk < pg_end) { pgoff_t idx; int cnt = 0; do_map: map.m_len = pg_end - map.m_lblk; err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); if (err) goto clear_out; if (!(map.m_flags & F2FS_MAP_FLAGS)) { map.m_lblk = next_pgofs; goto check; } set_inode_flag(inode, FI_SKIP_WRITES); idx = map.m_lblk; while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { struct page *page; page = f2fs_get_lock_data_page(inode, idx, true); if (IS_ERR(page)) { err = PTR_ERR(page); goto clear_out; } set_page_dirty(page); set_page_private_gcing(page); f2fs_put_page(page, 1); idx++; cnt++; total++; } map.m_lblk = idx; check: if (map.m_lblk < pg_end && cnt < blk_per_seg) goto do_map; clear_inode_flag(inode, FI_SKIP_WRITES); err = filemap_fdatawrite(inode->i_mapping); if (err) goto out; } clear_out: clear_inode_flag(inode, FI_SKIP_WRITES); out: clear_inode_flag(inode, FI_OPU_WRITE); unlock_out: inode_unlock(inode); if (!err) range->len = (u64)total << PAGE_SHIFT; return err; } static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_defragment range; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, sizeof(range))) return -EFAULT; /* verify alignment of offset & size */ if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) return -EINVAL; if (unlikely((range.start + range.len) >> PAGE_SHIFT > max_file_blocks(inode))) return -EINVAL; err = mnt_want_write_file(filp); if (err) return err; err = f2fs_defragment_range(sbi, filp, &range); mnt_drop_write_file(filp); f2fs_update_time(sbi, REQ_TIME); if (err < 0) return err; if (copy_to_user((struct f2fs_defragment __user *)arg, &range, sizeof(range))) return -EFAULT; return 0; } static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len) { struct inode *src = file_inode(file_in); struct inode *dst = file_inode(file_out); struct f2fs_sb_info *sbi = F2FS_I_SB(src); size_t olen = len, dst_max_i_size = 0; size_t dst_osize; int ret; if (file_in->f_path.mnt != file_out->f_path.mnt || src->i_sb != dst->i_sb) return -EXDEV; if (unlikely(f2fs_readonly(src->i_sb))) return -EROFS; if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) return -EINVAL; if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) return -EOPNOTSUPP; if (pos_out < 0 || pos_in < 0) return -EINVAL; if (src == dst) { if (pos_in == pos_out) return 0; if (pos_out > pos_in && pos_out < pos_in + len) return -EINVAL; } inode_lock(src); if (src != dst) { ret = -EBUSY; if (!inode_trylock(dst)) goto out; } if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) { ret = -EOPNOTSUPP; goto out_unlock; } ret = -EINVAL; if (pos_in + len > src->i_size || pos_in + len < pos_in) goto out_unlock; if (len == 0) olen = len = src->i_size - pos_in; if (pos_in + len == src->i_size) len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; if (len == 0) { ret = 0; goto out_unlock; } dst_osize = dst->i_size; if (pos_out + olen > dst->i_size) dst_max_i_size = pos_out + olen; /* verify the end result is block aligned */ if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) goto out_unlock; ret = f2fs_convert_inline_inode(src); if (ret) goto out_unlock; ret = f2fs_convert_inline_inode(dst); if (ret) goto out_unlock; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(src->i_mapping, pos_in, pos_in + len); if (ret) goto out_unlock; ret = filemap_write_and_wait_range(dst->i_mapping, pos_out, pos_out + len); if (ret) goto out_unlock; f2fs_balance_fs(sbi, true); f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); if (src != dst) { ret = -EBUSY; if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) goto out_src; } f2fs_lock_op(sbi); ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, pos_out >> F2FS_BLKSIZE_BITS, len >> F2FS_BLKSIZE_BITS, false); if (!ret) { if (dst_max_i_size) f2fs_i_size_write(dst, dst_max_i_size); else if (dst_osize != dst->i_size) f2fs_i_size_write(dst, dst_osize); } f2fs_unlock_op(sbi); if (src != dst) f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); out_src: f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); if (ret) goto out_unlock; src->i_mtime = inode_set_ctime_current(src); f2fs_mark_inode_dirty_sync(src, false); if (src != dst) { dst->i_mtime = inode_set_ctime_current(dst); f2fs_mark_inode_dirty_sync(dst, false); } f2fs_update_time(sbi, REQ_TIME); out_unlock: if (src != dst) inode_unlock(dst); out: inode_unlock(src); return ret; } static int __f2fs_ioc_move_range(struct file *filp, struct f2fs_move_range *range) { struct fd dst; int err; if (!(filp->f_mode & FMODE_READ) || !(filp->f_mode & FMODE_WRITE)) return -EBADF; dst = fdget(range->dst_fd); if (!dst.file) return -EBADF; if (!(dst.file->f_mode & FMODE_WRITE)) { err = -EBADF; goto err_out; } err = mnt_want_write_file(filp); if (err) goto err_out; err = f2fs_move_file_range(filp, range->pos_in, dst.file, range->pos_out, range->len); mnt_drop_write_file(filp); err_out: fdput(dst); return err; } static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) { struct f2fs_move_range range; if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, sizeof(range))) return -EFAULT; return __f2fs_ioc_move_range(filp, &range); } static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct sit_info *sm = SIT_I(sbi); unsigned int start_segno = 0, end_segno = 0; unsigned int dev_start_segno = 0, dev_end_segno = 0; struct f2fs_flush_device range; struct f2fs_gc_control gc_control = { .init_gc_type = FG_GC, .should_migrate_blocks = true, .err_gc_skipped = true, .nr_free_secs = 0 }; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) return -EINVAL; if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, sizeof(range))) return -EFAULT; if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || __is_large_section(sbi)) { f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); return -EINVAL; } ret = mnt_want_write_file(filp); if (ret) return ret; if (range.dev_num != 0) dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); start_segno = sm->last_victim[FLUSH_DEVICE]; if (start_segno < dev_start_segno || start_segno >= dev_end_segno) start_segno = dev_start_segno; end_segno = min(start_segno + range.segments, dev_end_segno); while (start_segno < end_segno) { if (!f2fs_down_write_trylock(&sbi->gc_lock)) { ret = -EBUSY; goto out; } sm->last_victim[GC_CB] = end_segno + 1; sm->last_victim[GC_GREEDY] = end_segno + 1; sm->last_victim[ALLOC_NEXT] = end_segno + 1; gc_control.victim_segno = start_segno; stat_inc_gc_call_count(sbi, FOREGROUND); ret = f2fs_gc(sbi, &gc_control); if (ret == -EAGAIN) ret = 0; else if (ret < 0) break; start_segno++; } out: mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); /* Must validate to set it with SQLite behavior in Android. */ sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; return put_user(sb_feature, (u32 __user *)arg); } #ifdef CONFIG_QUOTA int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) { struct dquot *transfer_to[MAXQUOTAS] = {}; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct super_block *sb = sbi->sb; int err; transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); if (IS_ERR(transfer_to[PRJQUOTA])) return PTR_ERR(transfer_to[PRJQUOTA]); err = __dquot_transfer(inode, transfer_to); if (err) set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); dqput(transfer_to[PRJQUOTA]); return err; } static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode *ri = NULL; kprojid_t kprojid; int err; if (!f2fs_sb_has_project_quota(sbi)) { if (projid != F2FS_DEF_PROJID) return -EOPNOTSUPP; else return 0; } if (!f2fs_has_extra_attr(inode)) return -EOPNOTSUPP; kprojid = make_kprojid(&init_user_ns, (projid_t)projid); if (projid_eq(kprojid, fi->i_projid)) return 0; err = -EPERM; /* Is it quota file? Do not allow user to mess with it */ if (IS_NOQUOTA(inode)) return err; if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) return -EOVERFLOW; err = f2fs_dquot_initialize(inode); if (err) return err; f2fs_lock_op(sbi); err = f2fs_transfer_project_quota(inode, kprojid); if (err) goto out_unlock; fi->i_projid = kprojid; inode_set_ctime_current(inode); f2fs_mark_inode_dirty_sync(inode, true); out_unlock: f2fs_unlock_op(sbi); return err; } #else int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) { return 0; } static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) { if (projid != F2FS_DEF_PROJID) return -EOPNOTSUPP; return 0; } #endif int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); struct f2fs_inode_info *fi = F2FS_I(inode); u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); if (IS_ENCRYPTED(inode)) fsflags |= FS_ENCRYPT_FL; if (IS_VERITY(inode)) fsflags |= FS_VERITY_FL; if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) fsflags |= FS_INLINE_DATA_FL; if (is_inode_flag_set(inode, FI_PIN_FILE)) fsflags |= FS_NOCOW_FL; fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); return 0; } int f2fs_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; u32 iflags; int err; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) return -ENOSPC; if (fsflags & ~F2FS_GETTABLE_FS_FL) return -EOPNOTSUPP; fsflags &= F2FS_SETTABLE_FS_FL; if (!fa->flags_valid) mask &= FS_COMMON_FL; iflags = f2fs_fsflags_to_iflags(fsflags); if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) return -EOPNOTSUPP; err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); if (!err) err = f2fs_ioc_setproject(inode, fa->fsx_projid); return err; } int f2fs_pin_file_control(struct inode *inode, bool inc) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); /* Use i_gc_failures for normal file as a risk signal. */ if (inc) f2fs_i_gc_failures_write(inode, fi->i_gc_failures[GC_FAILURE_PIN] + 1); if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", __func__, inode->i_ino, fi->i_gc_failures[GC_FAILURE_PIN]); clear_inode_flag(inode, FI_PIN_FILE); return -EAGAIN; } return 0; } static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u32 pin; int ret = 0; if (get_user(pin, (__u32 __user *)arg)) return -EFAULT; if (!S_ISREG(inode->i_mode)) return -EINVAL; if (f2fs_readonly(F2FS_I_SB(inode)->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; inode_lock(inode); if (!pin) { clear_inode_flag(inode, FI_PIN_FILE); f2fs_i_gc_failures_write(inode, 0); goto done; } if (f2fs_should_update_outplace(inode, NULL)) { ret = -EINVAL; goto out; } if (f2fs_pin_file_control(inode, false)) { ret = -EAGAIN; goto out; } ret = f2fs_convert_inline_inode(inode); if (ret) goto out; if (!f2fs_disable_compressed_file(inode)) { ret = -EOPNOTSUPP; goto out; } set_inode_flag(inode, FI_PIN_FILE); ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; done: f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); out: inode_unlock(inode); mnt_drop_write_file(filp); return ret; } static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u32 pin = 0; if (is_inode_flag_set(inode, FI_PIN_FILE)) pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; return put_user(pin, (u32 __user *)arg); } int f2fs_precache_extents(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_map_blocks map; pgoff_t m_next_extent; loff_t end; int err; if (is_inode_flag_set(inode, FI_NO_EXTENT)) return -EOPNOTSUPP; map.m_lblk = 0; map.m_pblk = 0; map.m_next_pgofs = NULL; map.m_next_extent = &m_next_extent; map.m_seg_type = NO_CHECK_TYPE; map.m_may_create = false; end = max_file_blocks(inode); while (map.m_lblk < end) { map.m_len = end - map.m_lblk; f2fs_down_write(&fi->i_gc_rwsem[WRITE]); err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); f2fs_up_write(&fi->i_gc_rwsem[WRITE]); if (err) return err; map.m_lblk = m_next_extent; } return 0; } static int f2fs_ioc_precache_extents(struct file *filp) { return f2fs_precache_extents(file_inode(filp)); } static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) { struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); __u64 block_count; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (f2fs_readonly(sbi->sb)) return -EROFS; if (copy_from_user(&block_count, (void __user *)arg, sizeof(block_count))) return -EFAULT; return f2fs_resize_fs(filp, block_count); } static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { f2fs_warn(F2FS_I_SB(inode), "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", inode->i_ino); return -EOPNOTSUPP; } return fsverity_ioctl_enable(filp, (const void __user *)arg); } static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fsverity_ioctl_measure(filp, (void __user *)arg); } static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) { if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) return -EOPNOTSUPP; return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); } static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); char *vbuf; int count; int err = 0; vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); if (!vbuf) return -ENOMEM; f2fs_down_read(&sbi->sb_lock); count = utf16s_to_utf8s(sbi->raw_super->volume_name, ARRAY_SIZE(sbi->raw_super->volume_name), UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); f2fs_up_read(&sbi->sb_lock); if (copy_to_user((char __user *)arg, vbuf, min(FSLABEL_MAX, count))) err = -EFAULT; kfree(vbuf); return err; } static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); char *vbuf; int err = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); if (IS_ERR(vbuf)) return PTR_ERR(vbuf); err = mnt_want_write_file(filp); if (err) goto out; f2fs_down_write(&sbi->sb_lock); memset(sbi->raw_super->volume_name, 0, sizeof(sbi->raw_super->volume_name)); utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, sbi->raw_super->volume_name, ARRAY_SIZE(sbi->raw_super->volume_name)); err = f2fs_commit_super(sbi, false); f2fs_up_write(&sbi->sb_lock); mnt_drop_write_file(filp); out: kfree(vbuf); return err; } static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) { if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); return 0; } static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); __u64 blocks; int ret; ret = f2fs_get_compress_blocks(inode, &blocks); if (ret < 0) return ret; return put_user(blocks, (u64 __user *)arg); } static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); unsigned int released_blocks = 0; int cluster_size = F2FS_I(dn->inode)->i_cluster_size; block_t blkaddr; int i; for (i = 0; i < count; i++) { blkaddr = data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node + i); if (!__is_valid_data_blkaddr(blkaddr)) continue; if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))) { f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); return -EFSCORRUPTED; } } while (count) { int compr_blocks = 0; for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { blkaddr = f2fs_data_blkaddr(dn); if (i == 0) { if (blkaddr == COMPRESS_ADDR) continue; dn->ofs_in_node += cluster_size; goto next; } if (__is_valid_data_blkaddr(blkaddr)) compr_blocks++; if (blkaddr != NEW_ADDR) continue; f2fs_set_data_blkaddr(dn, NULL_ADDR); } f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); dec_valid_block_count(sbi, dn->inode, cluster_size - compr_blocks); released_blocks += cluster_size - compr_blocks; next: count -= cluster_size; } return released_blocks; } static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t page_idx = 0, last_idx; unsigned int released_blocks = 0; int ret; int writecount; if (!f2fs_sb_has_compression(sbi)) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; f2fs_balance_fs(sbi, true); inode_lock(inode); writecount = atomic_read(&inode->i_writecount); if ((filp->f_mode & FMODE_WRITE && writecount != 1) || (!(filp->f_mode & FMODE_WRITE) && writecount)) { ret = -EBUSY; goto out; } if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { ret = -EINVAL; goto out; } ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) goto out; if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) { ret = -EPERM; goto out; } set_inode_flag(inode, FI_COMPRESS_RELEASED); inode_set_ctime_current(inode); f2fs_mark_inode_dirty_sync(inode, true); f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); while (page_idx < last_idx) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); if (ret) { if (ret == -ENOENT) { page_idx = f2fs_get_next_page_offset(&dn, page_idx); ret = 0; continue; } break; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); count = round_up(count, F2FS_I(inode)->i_cluster_size); ret = release_compress_blocks(&dn, count); f2fs_put_dnode(&dn); if (ret < 0) break; page_idx += count; released_blocks += ret; } filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); out: inode_unlock(inode); mnt_drop_write_file(filp); if (ret >= 0) { ret = put_user(released_blocks, (u64 __user *)arg); } else if (released_blocks && atomic_read(&F2FS_I(inode)->i_compr_blocks)) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " "iblocks=%llu, released=%u, compr_blocks=%u, " "run fsck to fix.", __func__, inode->i_ino, inode->i_blocks, released_blocks, atomic_read(&F2FS_I(inode)->i_compr_blocks)); } return ret; } static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, unsigned int *reserved_blocks) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); int cluster_size = F2FS_I(dn->inode)->i_cluster_size; block_t blkaddr; int i; for (i = 0; i < count; i++) { blkaddr = data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node + i); if (!__is_valid_data_blkaddr(blkaddr)) continue; if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))) { f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); return -EFSCORRUPTED; } } while (count) { int compr_blocks = 0; blkcnt_t reserved; int ret; for (i = 0; i < cluster_size; i++) { blkaddr = data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node + i); if (i == 0) { if (blkaddr != COMPRESS_ADDR) { dn->ofs_in_node += cluster_size; goto next; } continue; } /* * compressed cluster was not released due to it * fails in release_compress_blocks(), so NEW_ADDR * is a possible case. */ if (blkaddr == NEW_ADDR || __is_valid_data_blkaddr(blkaddr)) { compr_blocks++; continue; } } reserved = cluster_size - compr_blocks; /* for the case all blocks in cluster were reserved */ if (reserved == 1) goto next; ret = inc_valid_block_count(sbi, dn->inode, &reserved, false); if (unlikely(ret)) return ret; for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { if (f2fs_data_blkaddr(dn) == NULL_ADDR) f2fs_set_data_blkaddr(dn, NEW_ADDR); } f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); *reserved_blocks += reserved; next: count -= cluster_size; } return 0; } static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t page_idx = 0, last_idx; unsigned int reserved_blocks = 0; int ret; if (!f2fs_sb_has_compression(sbi)) return -EOPNOTSUPP; if (!f2fs_compressed_file(inode)) return -EINVAL; if (f2fs_readonly(sbi->sb)) return -EROFS; ret = mnt_want_write_file(filp); if (ret) return ret; f2fs_balance_fs(sbi, true); inode_lock(inode); if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { ret = -EINVAL; goto unlock_inode; } if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) goto unlock_inode; f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); while (page_idx < last_idx) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); if (ret) { if (ret == -ENOENT) { page_idx = f2fs_get_next_page_offset(&dn, page_idx); ret = 0; continue; } break; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); count = round_up(count, F2FS_I(inode)->i_cluster_size); ret = reserve_compress_blocks(&dn, count, &reserved_blocks); f2fs_put_dnode(&dn); if (ret < 0) break; page_idx += count; } filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); if (!ret) { clear_inode_flag(inode, FI_COMPRESS_RELEASED); inode_set_ctime_current(inode); f2fs_mark_inode_dirty_sync(inode, true); } unlock_inode: inode_unlock(inode); mnt_drop_write_file(filp); if (!ret) { ret = put_user(reserved_blocks, (u64 __user *)arg); } else if (reserved_blocks && atomic_read(&F2FS_I(inode)->i_compr_blocks)) { set_sbi_flag(sbi, SBI_NEED_FSCK); f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " "iblocks=%llu, reserved=%u, compr_blocks=%u, " "run fsck to fix.", __func__, inode->i_ino, inode->i_blocks, reserved_blocks, atomic_read(&F2FS_I(inode)->i_compr_blocks)); } return ret; } static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, pgoff_t off, block_t block, block_t len, u32 flags) { sector_t sector = SECTOR_FROM_BLOCK(block); sector_t nr_sects = SECTOR_FROM_BLOCK(len); int ret = 0; if (flags & F2FS_TRIM_FILE_DISCARD) { if (bdev_max_secure_erase_sectors(bdev)) ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, GFP_NOFS); else ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS); } if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { if (IS_ENCRYPTED(inode)) ret = fscrypt_zeroout_range(inode, off, block, len); else ret = blkdev_issue_zeroout(bdev, sector, nr_sects, GFP_NOFS, 0); } return ret; } static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; struct block_device *prev_bdev = NULL; struct f2fs_sectrim_range range; pgoff_t index, pg_end, prev_index = 0; block_t prev_block = 0, len = 0; loff_t end_addr; bool to_end = false; int ret = 0; if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, sizeof(range))) return -EFAULT; if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || !S_ISREG(inode->i_mode)) return -EINVAL; if (((range.flags & F2FS_TRIM_FILE_DISCARD) && !f2fs_hw_support_discard(sbi)) || ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) return -EOPNOTSUPP; file_start_write(filp); inode_lock(inode); if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || range.start >= inode->i_size) { ret = -EINVAL; goto err; } if (range.len == 0) goto err; if (inode->i_size - range.start > range.len) { end_addr = range.start + range.len; } else { end_addr = range.len == (u64)-1 ? sbi->sb->s_maxbytes : inode->i_size; to_end = true; } if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { ret = -EINVAL; goto err; } index = F2FS_BYTES_TO_BLK(range.start); pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); ret = f2fs_convert_inline_inode(inode); if (ret) goto err; f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(mapping); ret = filemap_write_and_wait_range(mapping, range.start, to_end ? LLONG_MAX : end_addr - 1); if (ret) goto out; truncate_inode_pages_range(mapping, range.start, to_end ? -1 : end_addr - 1); while (index < pg_end) { struct dnode_of_data dn; pgoff_t end_offset, count; int i; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); if (ret) { if (ret == -ENOENT) { index = f2fs_get_next_page_offset(&dn, index); continue; } goto out; } end_offset = ADDRS_PER_PAGE(dn.node_page, inode); count = min(end_offset - dn.ofs_in_node, pg_end - index); for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { struct block_device *cur_bdev; block_t blkaddr = f2fs_data_blkaddr(&dn); if (!__is_valid_data_blkaddr(blkaddr)) continue; if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { ret = -EFSCORRUPTED; f2fs_put_dnode(&dn); f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); goto out; } cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); if (f2fs_is_multi_device(sbi)) { int di = f2fs_target_device_index(sbi, blkaddr); blkaddr -= FDEV(di).start_blk; } if (len) { if (prev_bdev == cur_bdev && index == prev_index + len && blkaddr == prev_block + len) { len++; } else { ret = f2fs_secure_erase(prev_bdev, inode, prev_index, prev_block, len, range.flags); if (ret) { f2fs_put_dnode(&dn); goto out; } len = 0; } } if (!len) { prev_bdev = cur_bdev; prev_index = index; prev_block = blkaddr; len = 1; } } f2fs_put_dnode(&dn); if (fatal_signal_pending(current)) { ret = -EINTR; goto out; } cond_resched(); } if (len) ret = f2fs_secure_erase(prev_bdev, inode, prev_index, prev_block, len, range.flags); out: filemap_invalidate_unlock(mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); err: inode_unlock(inode); file_end_write(filp); return ret; } static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_comp_option option; if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) return -EOPNOTSUPP; inode_lock_shared(inode); if (!f2fs_compressed_file(inode)) { inode_unlock_shared(inode); return -ENODATA; } option.algorithm = F2FS_I(inode)->i_compress_algorithm; option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; inode_unlock_shared(inode); if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, sizeof(option))) return -EFAULT; return 0; } static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_comp_option option; int ret = 0; if (!f2fs_sb_has_compression(sbi)) return -EOPNOTSUPP; if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, sizeof(option))) return -EFAULT; if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || option.algorithm >= COMPRESS_MAX) return -EINVAL; file_start_write(filp); inode_lock(inode); f2fs_down_write(&F2FS_I(inode)->i_sem); if (!f2fs_compressed_file(inode)) { ret = -EINVAL; goto out; } if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { ret = -EBUSY; goto out; } if (F2FS_HAS_BLOCKS(inode)) { ret = -EFBIG; goto out; } F2FS_I(inode)->i_compress_algorithm = option.algorithm; F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size); /* Set default level */ if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; else F2FS_I(inode)->i_compress_level = 0; /* Adjust mount option level */ if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && F2FS_OPTION(sbi).compress_level) F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level; f2fs_mark_inode_dirty_sync(inode, true); if (!f2fs_is_compress_backend_ready(inode)) f2fs_warn(sbi, "compression algorithm is successfully set, " "but current kernel doesn't support this algorithm."); out: f2fs_up_write(&F2FS_I(inode)->i_sem); inode_unlock(inode); file_end_write(filp); return ret; } static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) { DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); struct address_space *mapping = inode->i_mapping; struct page *page; pgoff_t redirty_idx = page_idx; int i, page_len = 0, ret = 0; page_cache_ra_unbounded(&ractl, len, 0); for (i = 0; i < len; i++, page_idx++) { page = read_cache_page(mapping, page_idx, NULL, NULL); if (IS_ERR(page)) { ret = PTR_ERR(page); break; } page_len++; } for (i = 0; i < page_len; i++, redirty_idx++) { page = find_lock_page(mapping, redirty_idx); /* It will never fail, when page has pinned above */ f2fs_bug_on(F2FS_I_SB(inode), !page); set_page_dirty(page); set_page_private_gcing(page); f2fs_put_page(page, 1); f2fs_put_page(page, 0); } return ret; } static int f2fs_ioc_decompress_file(struct file *filp) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); pgoff_t page_idx = 0, last_idx; unsigned int blk_per_seg = sbi->blocks_per_seg; int cluster_size = fi->i_cluster_size; int count, ret; if (!f2fs_sb_has_compression(sbi) || F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) return -EOPNOTSUPP; if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; if (!f2fs_compressed_file(inode)) return -EINVAL; f2fs_balance_fs(sbi, true); file_start_write(filp); inode_lock(inode); if (!f2fs_is_compress_backend_ready(inode)) { ret = -EOPNOTSUPP; goto out; } if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { ret = -EINVAL; goto out; } ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) goto out; if (!atomic_read(&fi->i_compr_blocks)) goto out; last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); count = last_idx - page_idx; while (count && count >= cluster_size) { ret = redirty_blocks(inode, page_idx, cluster_size); if (ret < 0) break; if (get_dirty_pages(inode) >= blk_per_seg) { ret = filemap_fdatawrite(inode->i_mapping); if (ret < 0) break; } count -= cluster_size; page_idx += cluster_size; cond_resched(); if (fatal_signal_pending(current)) { ret = -EINTR; break; } } if (!ret) ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", __func__, ret); out: inode_unlock(inode); file_end_write(filp); return ret; } static int f2fs_ioc_compress_file(struct file *filp) { struct inode *inode = file_inode(filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t page_idx = 0, last_idx; unsigned int blk_per_seg = sbi->blocks_per_seg; int cluster_size = F2FS_I(inode)->i_cluster_size; int count, ret; if (!f2fs_sb_has_compression(sbi) || F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) return -EOPNOTSUPP; if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; if (!f2fs_compressed_file(inode)) return -EINVAL; f2fs_balance_fs(sbi, true); file_start_write(filp); inode_lock(inode); if (!f2fs_is_compress_backend_ready(inode)) { ret = -EOPNOTSUPP; goto out; } if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { ret = -EINVAL; goto out; } ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (ret) goto out; set_inode_flag(inode, FI_ENABLE_COMPRESS); last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); count = last_idx - page_idx; while (count && count >= cluster_size) { ret = redirty_blocks(inode, page_idx, cluster_size); if (ret < 0) break; if (get_dirty_pages(inode) >= blk_per_seg) { ret = filemap_fdatawrite(inode->i_mapping); if (ret < 0) break; } count -= cluster_size; page_idx += cluster_size; cond_resched(); if (fatal_signal_pending(current)) { ret = -EINTR; break; } } if (!ret) ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); clear_inode_flag(inode, FI_ENABLE_COMPRESS); if (ret) f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", __func__, ret); out: inode_unlock(inode); file_end_write(filp); return ret; } static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case FS_IOC_GETVERSION: return f2fs_ioc_getversion(filp, arg); case F2FS_IOC_START_ATOMIC_WRITE: return f2fs_ioc_start_atomic_write(filp, false); case F2FS_IOC_START_ATOMIC_REPLACE: return f2fs_ioc_start_atomic_write(filp, true); case F2FS_IOC_COMMIT_ATOMIC_WRITE: return f2fs_ioc_commit_atomic_write(filp); case F2FS_IOC_ABORT_ATOMIC_WRITE: return f2fs_ioc_abort_atomic_write(filp); case F2FS_IOC_START_VOLATILE_WRITE: case F2FS_IOC_RELEASE_VOLATILE_WRITE: return -EOPNOTSUPP; case F2FS_IOC_SHUTDOWN: return f2fs_ioc_shutdown(filp, arg); case FITRIM: return f2fs_ioc_fitrim(filp, arg); case FS_IOC_SET_ENCRYPTION_POLICY: return f2fs_ioc_set_encryption_policy(filp, arg); case FS_IOC_GET_ENCRYPTION_POLICY: return f2fs_ioc_get_encryption_policy(filp, arg); case FS_IOC_GET_ENCRYPTION_PWSALT: return f2fs_ioc_get_encryption_pwsalt(filp, arg); case FS_IOC_GET_ENCRYPTION_POLICY_EX: return f2fs_ioc_get_encryption_policy_ex(filp, arg); case FS_IOC_ADD_ENCRYPTION_KEY: return f2fs_ioc_add_encryption_key(filp, arg); case FS_IOC_REMOVE_ENCRYPTION_KEY: return f2fs_ioc_remove_encryption_key(filp, arg); case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: return f2fs_ioc_remove_encryption_key_all_users(filp, arg); case FS_IOC_GET_ENCRYPTION_KEY_STATUS: return f2fs_ioc_get_encryption_key_status(filp, arg); case FS_IOC_GET_ENCRYPTION_NONCE: return f2fs_ioc_get_encryption_nonce(filp, arg); case F2FS_IOC_GARBAGE_COLLECT: return f2fs_ioc_gc(filp, arg); case F2FS_IOC_GARBAGE_COLLECT_RANGE: return f2fs_ioc_gc_range(filp, arg); case F2FS_IOC_WRITE_CHECKPOINT: return f2fs_ioc_write_checkpoint(filp); case F2FS_IOC_DEFRAGMENT: return f2fs_ioc_defragment(filp, arg); case F2FS_IOC_MOVE_RANGE: return f2fs_ioc_move_range(filp, arg); case F2FS_IOC_FLUSH_DEVICE: return f2fs_ioc_flush_device(filp, arg); case F2FS_IOC_GET_FEATURES: return f2fs_ioc_get_features(filp, arg); case F2FS_IOC_GET_PIN_FILE: return f2fs_ioc_get_pin_file(filp, arg); case F2FS_IOC_SET_PIN_FILE: return f2fs_ioc_set_pin_file(filp, arg); case F2FS_IOC_PRECACHE_EXTENTS: return f2fs_ioc_precache_extents(filp); case F2FS_IOC_RESIZE_FS: return f2fs_ioc_resize_fs(filp, arg); case FS_IOC_ENABLE_VERITY: return f2fs_ioc_enable_verity(filp, arg); case FS_IOC_MEASURE_VERITY: return f2fs_ioc_measure_verity(filp, arg); case FS_IOC_READ_VERITY_METADATA: return f2fs_ioc_read_verity_metadata(filp, arg); case FS_IOC_GETFSLABEL: return f2fs_ioc_getfslabel(filp, arg); case FS_IOC_SETFSLABEL: return f2fs_ioc_setfslabel(filp, arg); case F2FS_IOC_GET_COMPRESS_BLOCKS: return f2fs_ioc_get_compress_blocks(filp, arg); case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: return f2fs_release_compress_blocks(filp, arg); case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: return f2fs_reserve_compress_blocks(filp, arg); case F2FS_IOC_SEC_TRIM_FILE: return f2fs_sec_trim_file(filp, arg); case F2FS_IOC_GET_COMPRESS_OPTION: return f2fs_ioc_get_compress_option(filp, arg); case F2FS_IOC_SET_COMPRESS_OPTION: return f2fs_ioc_set_compress_option(filp, arg); case F2FS_IOC_DECOMPRESS_FILE: return f2fs_ioc_decompress_file(filp); case F2FS_IOC_COMPRESS_FILE: return f2fs_ioc_compress_file(filp); default: return -ENOTTY; } } long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) return -ENOSPC; return __f2fs_ioctl(filp, cmd, arg); } /* * Return %true if the given read or write request should use direct I/O, or * %false if it should use buffered I/O. */ static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, struct iov_iter *iter) { unsigned int align; if (!(iocb->ki_flags & IOCB_DIRECT)) return false; if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) return false; /* * Direct I/O not aligned to the disk's logical_block_size will be * attempted, but will fail with -EINVAL. * * f2fs additionally requires that direct I/O be aligned to the * filesystem block size, which is often a stricter requirement. * However, f2fs traditionally falls back to buffered I/O on requests * that are logical_block_size-aligned but not fs-block aligned. * * The below logic implements this behavior. */ align = iocb->ki_pos | iov_iter_alignment(iter); if (!IS_ALIGNED(align, i_blocksize(inode)) && IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) return false; return true; } static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); dec_page_count(sbi, F2FS_DIO_READ); if (error) return error; f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); return 0; } static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { .end_io = f2fs_dio_read_end_io, }; static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); const loff_t pos = iocb->ki_pos; const size_t count = iov_iter_count(to); struct iomap_dio *dio; ssize_t ret; if (count == 0) return 0; /* skip atime update */ trace_f2fs_direct_IO_enter(inode, iocb, count, READ); if (iocb->ki_flags & IOCB_NOWAIT) { if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { ret = -EAGAIN; goto out; } } else { f2fs_down_read(&fi->i_gc_rwsem[READ]); } /* * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of * the higher-level function iomap_dio_rw() in order to ensure that the * F2FS_DIO_READ counter will be decremented correctly in all cases. */ inc_page_count(sbi, F2FS_DIO_READ); dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, &f2fs_iomap_dio_read_ops, 0, NULL, 0); if (IS_ERR_OR_NULL(dio)) { ret = PTR_ERR_OR_ZERO(dio); if (ret != -EIOCBQUEUED) dec_page_count(sbi, F2FS_DIO_READ); } else { ret = iomap_dio_complete(dio); } f2fs_up_read(&fi->i_gc_rwsem[READ]); file_accessed(file); out: trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); return ret; } static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, int rw) { struct inode *inode = file_inode(file); char *buf, *path; buf = f2fs_getname(F2FS_I_SB(inode)); if (!buf) return; path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); if (IS_ERR(path)) goto free_buf; if (rw == WRITE) trace_f2fs_datawrite_start(inode, pos, count, current->pid, path, current->comm); else trace_f2fs_dataread_start(inode, pos, count, current->pid, path, current->comm); free_buf: f2fs_putname(buf); } static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); const loff_t pos = iocb->ki_pos; ssize_t ret; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; if (trace_f2fs_dataread_start_enabled()) f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, iov_iter_count(to), READ); if (f2fs_should_use_dio(inode, iocb, to)) { ret = f2fs_dio_read_iter(iocb, to); } else { ret = filemap_read(iocb, to, 0); if (ret > 0) f2fs_update_iostat(F2FS_I_SB(inode), inode, APP_BUFFERED_READ_IO, ret); } if (trace_f2fs_dataread_end_enabled()) trace_f2fs_dataread_end(inode, pos, ret); return ret; } static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct inode *inode = file_inode(in); const loff_t pos = *ppos; ssize_t ret; if (!f2fs_is_compress_backend_ready(inode)) return -EOPNOTSUPP; if (trace_f2fs_dataread_start_enabled()) f2fs_trace_rw_file_path(in, pos, len, READ); ret = filemap_splice_read(in, ppos, pipe, len, flags); if (ret > 0) f2fs_update_iostat(F2FS_I_SB(inode), inode, APP_BUFFERED_READ_IO, ret); if (trace_f2fs_dataread_end_enabled()) trace_f2fs_dataread_end(inode, pos, ret); return ret; } static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); ssize_t count; int err; if (IS_IMMUTABLE(inode)) return -EPERM; if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) return -EPERM; count = generic_write_checks(iocb, from); if (count <= 0) return count; err = file_modified(file); if (err) return err; return count; } /* * Preallocate blocks for a write request, if it is possible and helpful to do * so. Returns a positive number if blocks may have been preallocated, 0 if no * blocks were preallocated, or a negative errno value if something went * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the * requested blocks (not just some of them) have been allocated. */ static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, bool dio) { struct inode *inode = file_inode(iocb->ki_filp); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); const loff_t pos = iocb->ki_pos; const size_t count = iov_iter_count(iter); struct f2fs_map_blocks map = {}; int flag; int ret; /* If it will be an out-of-place direct write, don't bother. */ if (dio && f2fs_lfs_mode(sbi)) return 0; /* * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into * buffered IO, if DIO meets any holes. */ if (dio && i_size_read(inode) && (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) return 0; /* No-wait I/O can't allocate blocks. */ if (iocb->ki_flags & IOCB_NOWAIT) return 0; /* If it will be a short write, don't bother. */ if (fault_in_iov_iter_readable(iter, count)) return 0; if (f2fs_has_inline_data(inode)) { /* If the data will fit inline, don't bother. */ if (pos + count <= MAX_INLINE_DATA(inode)) return 0; ret = f2fs_convert_inline_inode(inode); if (ret) return ret; } /* Do not preallocate blocks that will be written partially in 4KB. */ map.m_lblk = F2FS_BLK_ALIGN(pos); map.m_len = F2FS_BYTES_TO_BLK(pos + count); if (map.m_len > map.m_lblk) map.m_len -= map.m_lblk; else map.m_len = 0; map.m_may_create = true; if (dio) { map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); flag = F2FS_GET_BLOCK_PRE_DIO; } else { map.m_seg_type = NO_CHECK_TYPE; flag = F2FS_GET_BLOCK_PRE_AIO; } ret = f2fs_map_blocks(inode, &map, flag); /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) return ret; if (ret == 0) set_inode_flag(inode, FI_PREALLOCATED_ALL); return map.m_len; } static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); ssize_t ret; if (iocb->ki_flags & IOCB_NOWAIT) return -EOPNOTSUPP; ret = generic_perform_write(iocb, from); if (ret > 0) { f2fs_update_iostat(F2FS_I_SB(inode), inode, APP_BUFFERED_IO, ret); } return ret; } static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, unsigned int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); dec_page_count(sbi, F2FS_DIO_WRITE); if (error) return error; f2fs_update_time(sbi, REQ_TIME); f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); return 0; } static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { .end_io = f2fs_dio_write_end_io, }; static void f2fs_flush_buffered_write(struct address_space *mapping, loff_t start_pos, loff_t end_pos) { int ret; ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); if (ret < 0) return; invalidate_mapping_pages(mapping, start_pos >> PAGE_SHIFT, end_pos >> PAGE_SHIFT); } static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, bool *may_need_sync) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); const bool do_opu = f2fs_lfs_mode(sbi); const loff_t pos = iocb->ki_pos; const ssize_t count = iov_iter_count(from); unsigned int dio_flags; struct iomap_dio *dio; ssize_t ret; trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); if (iocb->ki_flags & IOCB_NOWAIT) { /* f2fs_convert_inline_inode() and block allocation can block */ if (f2fs_has_inline_data(inode) || !f2fs_overwrite_io(inode, pos, count)) { ret = -EAGAIN; goto out; } if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { ret = -EAGAIN; goto out; } if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { f2fs_up_read(&fi->i_gc_rwsem[WRITE]); ret = -EAGAIN; goto out; } } else { ret = f2fs_convert_inline_inode(inode); if (ret) goto out; f2fs_down_read(&fi->i_gc_rwsem[WRITE]); if (do_opu) f2fs_down_read(&fi->i_gc_rwsem[READ]); } /* * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of * the higher-level function iomap_dio_rw() in order to ensure that the * F2FS_DIO_WRITE counter will be decremented correctly in all cases. */ inc_page_count(sbi, F2FS_DIO_WRITE); dio_flags = 0; if (pos + count > inode->i_size) dio_flags |= IOMAP_DIO_FORCE_WAIT; dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); if (IS_ERR_OR_NULL(dio)) { ret = PTR_ERR_OR_ZERO(dio); if (ret == -ENOTBLK) ret = 0; if (ret != -EIOCBQUEUED) dec_page_count(sbi, F2FS_DIO_WRITE); } else { ret = iomap_dio_complete(dio); } if (do_opu) f2fs_up_read(&fi->i_gc_rwsem[READ]); f2fs_up_read(&fi->i_gc_rwsem[WRITE]); if (ret < 0) goto out; if (pos + ret > inode->i_size) f2fs_i_size_write(inode, pos + ret); if (!do_opu) set_inode_flag(inode, FI_UPDATE_WRITE); if (iov_iter_count(from)) { ssize_t ret2; loff_t bufio_start_pos = iocb->ki_pos; /* * The direct write was partial, so we need to fall back to a * buffered write for the remainder. */ ret2 = f2fs_buffered_write_iter(iocb, from); if (iov_iter_count(from)) f2fs_write_failed(inode, iocb->ki_pos); if (ret2 < 0) goto out; /* * Ensure that the pagecache pages are written to disk and * invalidated to preserve the expected O_DIRECT semantics. */ if (ret2 > 0) { loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; ret += ret2; f2fs_flush_buffered_write(file->f_mapping, bufio_start_pos, bufio_end_pos); } } else { /* iomap_dio_rw() already handled the generic_write_sync(). */ *may_need_sync = false; } out: trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); return ret; } static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct inode *inode = file_inode(iocb->ki_filp); const loff_t orig_pos = iocb->ki_pos; const size_t orig_count = iov_iter_count(from); loff_t target_size; bool dio; bool may_need_sync = true; int preallocated; ssize_t ret; if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { ret = -EIO; goto out; } if (!f2fs_is_compress_backend_ready(inode)) { ret = -EOPNOTSUPP; goto out; } if (iocb->ki_flags & IOCB_NOWAIT) { if (!inode_trylock(inode)) { ret = -EAGAIN; goto out; } } else { inode_lock(inode); } ret = f2fs_write_checks(iocb, from); if (ret <= 0) goto out_unlock; /* Determine whether we will do a direct write or a buffered write. */ dio = f2fs_should_use_dio(inode, iocb, from); /* Possibly preallocate the blocks for the write. */ target_size = iocb->ki_pos + iov_iter_count(from); preallocated = f2fs_preallocate_blocks(iocb, from, dio); if (preallocated < 0) { ret = preallocated; } else { if (trace_f2fs_datawrite_start_enabled()) f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, orig_count, WRITE); /* Do the actual write. */ ret = dio ? f2fs_dio_write_iter(iocb, from, &may_need_sync) : f2fs_buffered_write_iter(iocb, from); if (trace_f2fs_datawrite_end_enabled()) trace_f2fs_datawrite_end(inode, orig_pos, ret); } /* Don't leave any preallocated blocks around past i_size. */ if (preallocated && i_size_read(inode) < target_size) { f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); filemap_invalidate_lock(inode->i_mapping); if (!f2fs_truncate(inode)) file_dont_truncate(inode); filemap_invalidate_unlock(inode->i_mapping); f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); } else { file_dont_truncate(inode); } clear_inode_flag(inode, FI_PREALLOCATED_ALL); out_unlock: inode_unlock(inode); out: trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); if (ret > 0 && may_need_sync) ret = generic_write_sync(iocb, ret); /* If buffered IO was forced, flush and drop the data from * the page cache to preserve O_DIRECT semantics */ if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, orig_pos, orig_pos + ret - 1); return ret; } static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, int advice) { struct address_space *mapping; struct backing_dev_info *bdi; struct inode *inode = file_inode(filp); int err; if (advice == POSIX_FADV_SEQUENTIAL) { if (S_ISFIFO(inode->i_mode)) return -ESPIPE; mapping = filp->f_mapping; if (!mapping || len < 0) return -EINVAL; bdi = inode_to_bdi(mapping->host); filp->f_ra.ra_pages = bdi->ra_pages * F2FS_I_SB(inode)->seq_file_ra_mul; spin_lock(&filp->f_lock); filp->f_mode &= ~FMODE_RANDOM; spin_unlock(&filp->f_lock); return 0; } err = generic_fadvise(filp, offset, len, advice); if (!err && advice == POSIX_FADV_DONTNEED && test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && f2fs_compressed_file(inode)) f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); return err; } #ifdef CONFIG_COMPAT struct compat_f2fs_gc_range { u32 sync; compat_u64 start; compat_u64 len; }; #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ struct compat_f2fs_gc_range) static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) { struct compat_f2fs_gc_range __user *urange; struct f2fs_gc_range range; int err; urange = compat_ptr(arg); err = get_user(range.sync, &urange->sync); err |= get_user(range.start, &urange->start); err |= get_user(range.len, &urange->len); if (err) return -EFAULT; return __f2fs_ioc_gc_range(file, &range); } struct compat_f2fs_move_range { u32 dst_fd; compat_u64 pos_in; compat_u64 pos_out; compat_u64 len; }; #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ struct compat_f2fs_move_range) static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) { struct compat_f2fs_move_range __user *urange; struct f2fs_move_range range; int err; urange = compat_ptr(arg); err = get_user(range.dst_fd, &urange->dst_fd); err |= get_user(range.pos_in, &urange->pos_in); err |= get_user(range.pos_out, &urange->pos_out); err |= get_user(range.len, &urange->len); if (err) return -EFAULT; return __f2fs_ioc_move_range(file, &range); } long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) return -EIO; if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) return -ENOSPC; switch (cmd) { case FS_IOC32_GETVERSION: cmd = FS_IOC_GETVERSION; break; case F2FS_IOC32_GARBAGE_COLLECT_RANGE: return f2fs_compat_ioc_gc_range(file, arg); case F2FS_IOC32_MOVE_RANGE: return f2fs_compat_ioc_move_range(file, arg); case F2FS_IOC_START_ATOMIC_WRITE: case F2FS_IOC_START_ATOMIC_REPLACE: case F2FS_IOC_COMMIT_ATOMIC_WRITE: case F2FS_IOC_START_VOLATILE_WRITE: case F2FS_IOC_RELEASE_VOLATILE_WRITE: case F2FS_IOC_ABORT_ATOMIC_WRITE: case F2FS_IOC_SHUTDOWN: case FITRIM: case FS_IOC_SET_ENCRYPTION_POLICY: case FS_IOC_GET_ENCRYPTION_PWSALT: case FS_IOC_GET_ENCRYPTION_POLICY: case FS_IOC_GET_ENCRYPTION_POLICY_EX: case FS_IOC_ADD_ENCRYPTION_KEY: case FS_IOC_REMOVE_ENCRYPTION_KEY: case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: case FS_IOC_GET_ENCRYPTION_KEY_STATUS: case FS_IOC_GET_ENCRYPTION_NONCE: case F2FS_IOC_GARBAGE_COLLECT: case F2FS_IOC_WRITE_CHECKPOINT: case F2FS_IOC_DEFRAGMENT: case F2FS_IOC_FLUSH_DEVICE: case F2FS_IOC_GET_FEATURES: case F2FS_IOC_GET_PIN_FILE: case F2FS_IOC_SET_PIN_FILE: case F2FS_IOC_PRECACHE_EXTENTS: case F2FS_IOC_RESIZE_FS: case FS_IOC_ENABLE_VERITY: case FS_IOC_MEASURE_VERITY: case FS_IOC_READ_VERITY_METADATA: case FS_IOC_GETFSLABEL: case FS_IOC_SETFSLABEL: case F2FS_IOC_GET_COMPRESS_BLOCKS: case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: case F2FS_IOC_SEC_TRIM_FILE: case F2FS_IOC_GET_COMPRESS_OPTION: case F2FS_IOC_SET_COMPRESS_OPTION: case F2FS_IOC_DECOMPRESS_FILE: case F2FS_IOC_COMPRESS_FILE: break; default: return -ENOIOCTLCMD; } return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); } #endif const struct file_operations f2fs_file_operations = { .llseek = f2fs_llseek, .read_iter = f2fs_file_read_iter, .write_iter = f2fs_file_write_iter, .iopoll = iocb_bio_iopoll, .open = f2fs_file_open, .release = f2fs_release_file, .mmap = f2fs_file_mmap, .flush = f2fs_file_flush, .fsync = f2fs_sync_file, .fallocate = f2fs_fallocate, .unlocked_ioctl = f2fs_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = f2fs_compat_ioctl, #endif .splice_read = f2fs_file_splice_read, .splice_write = iter_file_splice_write, .fadvise = f2fs_file_fadvise, };