/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FS_CEPH_SUPER_H #define _FS_CEPH_SUPER_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" /* large granularity for statfs utilization stats to facilitate * large volume sizes on 32-bit machines. */ #define CEPH_BLOCK_SHIFT 22 /* 4 MB */ #define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT) #define CEPH_4K_BLOCK_SHIFT 12 /* 4 KB */ #define CEPH_MOUNT_OPT_CLEANRECOVER (1<<1) /* auto reonnect (clean mode) after blocklisted */ #define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */ #define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */ #define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */ #define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */ #define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */ #define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */ #define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */ #define CEPH_MOUNT_OPT_MOUNTWAIT (1<<12) /* mount waits if no mds is up */ #define CEPH_MOUNT_OPT_NOQUOTADF (1<<13) /* no root dir quota in statfs */ #define CEPH_MOUNT_OPT_NOCOPYFROM (1<<14) /* don't use RADOS 'copy-from' op */ #define CEPH_MOUNT_OPT_ASYNC_DIROPS (1<<15) /* allow async directory ops */ #define CEPH_MOUNT_OPT_NOPAGECACHE (1<<16) /* bypass pagecache altogether */ #define CEPH_MOUNT_OPT_SPARSEREAD (1<<17) /* always do sparse reads */ #define CEPH_MOUNT_OPT_DEFAULT \ (CEPH_MOUNT_OPT_DCACHE | \ CEPH_MOUNT_OPT_NOCOPYFROM | \ CEPH_MOUNT_OPT_ASYNC_DIROPS) #define ceph_set_mount_opt(fsc, opt) \ (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt #define ceph_clear_mount_opt(fsc, opt) \ (fsc)->mount_options->flags &= ~CEPH_MOUNT_OPT_##opt #define ceph_test_mount_opt(fsc, opt) \ (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt)) /* max size of osd read request, limited by libceph */ #define CEPH_MAX_READ_SIZE CEPH_MSG_MAX_DATA_LEN /* osd has a configurable limitaion of max write size. * CEPH_MSG_MAX_DATA_LEN should be small enough. */ #define CEPH_MAX_WRITE_SIZE CEPH_MSG_MAX_DATA_LEN #define CEPH_RASIZE_DEFAULT (8192*1024) /* max readahead */ #define CEPH_MAX_READDIR_DEFAULT 1024 #define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024) #define CEPH_SNAPDIRNAME_DEFAULT ".snap" /* * Delay telling the MDS we no longer want caps, in case we reopen * the file. Delay a minimum amount of time, even if we send a cap * message for some other reason. Otherwise, take the oppotunity to * update the mds to avoid sending another message later. */ #define CEPH_CAPS_WANTED_DELAY_MIN_DEFAULT 5 /* cap release delay */ #define CEPH_CAPS_WANTED_DELAY_MAX_DEFAULT 60 /* cap release delay */ struct ceph_mount_options { unsigned int flags; unsigned int wsize; /* max write size */ unsigned int rsize; /* max read size */ unsigned int rasize; /* max readahead */ unsigned int congestion_kb; /* max writeback in flight */ unsigned int caps_wanted_delay_min, caps_wanted_delay_max; int caps_max; unsigned int max_readdir; /* max readdir result (entries) */ unsigned int max_readdir_bytes; /* max readdir result (bytes) */ bool new_dev_syntax; /* * everything above this point can be memcmp'd; everything below * is handled in compare_mount_options() */ char *snapdir_name; /* default ".snap" */ char *mds_namespace; /* default NULL */ char *server_path; /* default NULL (means "/") */ char *fscache_uniq; /* default NULL */ char *mon_addr; struct fscrypt_dummy_policy dummy_enc_policy; }; /* mount state */ enum { CEPH_MOUNT_MOUNTING, CEPH_MOUNT_MOUNTED, CEPH_MOUNT_UNMOUNTING, CEPH_MOUNT_UNMOUNTED, CEPH_MOUNT_SHUTDOWN, CEPH_MOUNT_RECOVER, CEPH_MOUNT_FENCE_IO, }; #define CEPH_ASYNC_CREATE_CONFLICT_BITS 8 struct ceph_fs_client { struct super_block *sb; struct list_head metric_wakeup; struct ceph_mount_options *mount_options; struct ceph_client *client; int mount_state; bool blocklisted; bool have_copy_from2; u32 filp_gen; loff_t max_file_size; struct ceph_mds_client *mdsc; atomic_long_t writeback_count; bool write_congested; struct workqueue_struct *inode_wq; struct workqueue_struct *cap_wq; DECLARE_HASHTABLE(async_unlink_conflict, CEPH_ASYNC_CREATE_CONFLICT_BITS); spinlock_t async_unlink_conflict_lock; #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_dentry_lru, *debugfs_caps; struct dentry *debugfs_congestion_kb; struct dentry *debugfs_bdi; struct dentry *debugfs_mdsc, *debugfs_mdsmap; struct dentry *debugfs_status; struct dentry *debugfs_mds_sessions; struct dentry *debugfs_metrics_dir; #endif #ifdef CONFIG_CEPH_FSCACHE struct fscache_volume *fscache; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_dummy_policy fsc_dummy_enc_policy; #endif }; /* * File i/o capability. This tracks shared state with the metadata * server that allows us to cache or writeback attributes or to read * and write data. For any given inode, we should have one or more * capabilities, one issued by each metadata server, and our * cumulative access is the OR of all issued capabilities. * * Each cap is referenced by the inode's i_caps rbtree and by per-mds * session capability lists. */ struct ceph_cap { struct ceph_inode_info *ci; struct rb_node ci_node; /* per-ci cap tree */ struct ceph_mds_session *session; struct list_head session_caps; /* per-session caplist */ u64 cap_id; /* unique cap id (mds provided) */ union { /* in-use caps */ struct { int issued; /* latest, from the mds */ int implemented; /* implemented superset of issued (for revocation) */ int mds; /* mds index for this cap */ int mds_wanted; /* caps wanted from this mds */ }; /* caps to release */ struct { u64 cap_ino; int queue_release; }; }; u32 seq, issue_seq, mseq; u32 cap_gen; /* active/stale cycle */ unsigned long last_used; struct list_head caps_item; }; #define CHECK_CAPS_AUTHONLY 1 /* only check auth cap */ #define CHECK_CAPS_FLUSH 2 /* flush any dirty caps */ #define CHECK_CAPS_NOINVAL 4 /* don't invalidate pagecache */ struct ceph_cap_flush { u64 tid; int caps; bool wake; /* wake up flush waiters when finish ? */ bool is_capsnap; /* true means capsnap */ struct list_head g_list; // global struct list_head i_list; // per inode }; /* * Snapped cap state that is pending flush to mds. When a snapshot occurs, * we first complete any in-process sync writes and writeback any dirty * data before flushing the snapped state (tracked here) back to the MDS. */ struct ceph_cap_snap { refcount_t nref; struct list_head ci_item; struct ceph_cap_flush cap_flush; u64 follows; int issued, dirty; struct ceph_snap_context *context; umode_t mode; kuid_t uid; kgid_t gid; struct ceph_buffer *xattr_blob; u64 xattr_version; u64 size; u64 change_attr; struct timespec64 mtime, atime, ctime, btime; u64 time_warp_seq; u64 truncate_size; u32 truncate_seq; int writing; /* a sync write is still in progress */ int dirty_pages; /* dirty pages awaiting writeback */ bool inline_data; bool need_flush; }; static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap) { if (refcount_dec_and_test(&capsnap->nref)) { if (capsnap->xattr_blob) ceph_buffer_put(capsnap->xattr_blob); kmem_cache_free(ceph_cap_snap_cachep, capsnap); } } /* * The frag tree describes how a directory is fragmented, potentially across * multiple metadata servers. It is also used to indicate points where * metadata authority is delegated, and whether/where metadata is replicated. * * A _leaf_ frag will be present in the i_fragtree IFF there is * delegation info. That is, if mds >= 0 || ndist > 0. */ #define CEPH_MAX_DIRFRAG_REP 4 struct ceph_inode_frag { struct rb_node node; /* fragtree state */ u32 frag; int split_by; /* i.e. 2^(split_by) children */ /* delegation and replication info */ int mds; /* -1 if same authority as parent */ int ndist; /* >0 if replicated */ int dist[CEPH_MAX_DIRFRAG_REP]; }; /* * We cache inode xattrs as an encoded blob until they are first used, * at which point we parse them into an rbtree. */ struct ceph_inode_xattr { struct rb_node node; const char *name; int name_len; const char *val; int val_len; int dirty; int should_free_name; int should_free_val; }; /* * Ceph dentry state */ struct ceph_dentry_info { struct dentry *dentry; struct ceph_mds_session *lease_session; struct list_head lease_list; struct hlist_node hnode; unsigned long flags; int lease_shared_gen; u32 lease_gen; u32 lease_seq; unsigned long lease_renew_after, lease_renew_from; unsigned long time; u64 offset; }; #define CEPH_DENTRY_REFERENCED (1 << 0) #define CEPH_DENTRY_LEASE_LIST (1 << 1) #define CEPH_DENTRY_SHRINK_LIST (1 << 2) #define CEPH_DENTRY_PRIMARY_LINK (1 << 3) #define CEPH_DENTRY_ASYNC_UNLINK_BIT (4) #define CEPH_DENTRY_ASYNC_UNLINK (1 << CEPH_DENTRY_ASYNC_UNLINK_BIT) #define CEPH_DENTRY_ASYNC_CREATE_BIT (5) #define CEPH_DENTRY_ASYNC_CREATE (1 << CEPH_DENTRY_ASYNC_CREATE_BIT) struct ceph_inode_xattrs_info { /* * (still encoded) xattr blob. we avoid the overhead of parsing * this until someone actually calls getxattr, etc. * * blob->vec.iov_len == 4 implies there are no xattrs; blob == * NULL means we don't know. */ struct ceph_buffer *blob, *prealloc_blob; struct rb_root index; bool dirty; int count; int names_size; int vals_size; u64 version, index_version; }; /* * Ceph inode. */ struct ceph_inode_info { struct netfs_inode netfs; /* Netfslib context and vfs inode */ struct ceph_vino i_vino; /* ceph ino + snap */ spinlock_t i_ceph_lock; u64 i_version; u64 i_inline_version; u32 i_time_warp_seq; unsigned long i_ceph_flags; atomic64_t i_release_count; atomic64_t i_ordered_count; atomic64_t i_complete_seq[2]; struct ceph_dir_layout i_dir_layout; struct ceph_file_layout i_layout; struct ceph_file_layout i_cached_layout; // for async creates char *i_symlink; /* for dirs */ struct timespec64 i_rctime; u64 i_rbytes, i_rfiles, i_rsubdirs, i_rsnaps; u64 i_files, i_subdirs; /* quotas */ u64 i_max_bytes, i_max_files; s32 i_dir_pin; struct rb_root i_fragtree; int i_fragtree_nsplits; struct mutex i_fragtree_mutex; struct ceph_inode_xattrs_info i_xattrs; /* capabilities. protected _both_ by i_ceph_lock and cap->session's * s_mutex. */ struct rb_root i_caps; /* cap list */ struct ceph_cap *i_auth_cap; /* authoritative cap, if any */ unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */ /* * Link to the auth cap's session's s_cap_dirty list. s_cap_dirty * is protected by the mdsc->cap_dirty_lock, but each individual item * is also protected by the inode's i_ceph_lock. Walking s_cap_dirty * requires the mdsc->cap_dirty_lock. List presence for an item can * be tested under the i_ceph_lock. Changing anything requires both. */ struct list_head i_dirty_item; /* * Link to session's s_cap_flushing list. Protected in a similar * fashion to i_dirty_item, but also by the s_mutex for changes. The * s_cap_flushing list can be walked while holding either the s_mutex * or msdc->cap_dirty_lock. List presence can also be checked while * holding the i_ceph_lock for this inode. */ struct list_head i_flushing_item; /* we need to track cap writeback on a per-cap-bit basis, to allow * overlapping, pipelined cap flushes to the mds. we can probably * reduce the tid to 8 bits if we're concerned about inode size. */ struct ceph_cap_flush *i_prealloc_cap_flush; struct list_head i_cap_flush_list; wait_queue_head_t i_cap_wq; /* threads waiting on a capability */ unsigned long i_hold_caps_max; /* jiffies */ struct list_head i_cap_delay_list; /* for delayed cap release to mds */ struct ceph_cap_reservation i_cap_migration_resv; struct list_head i_cap_snaps; /* snapped state pending flush to mds */ struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or dirty|flushing caps */ unsigned i_snap_caps; /* cap bits for snapped files */ unsigned long i_last_rd; unsigned long i_last_wr; int i_nr_by_mode[CEPH_FILE_MODE_BITS]; /* open file counts */ struct mutex i_truncate_mutex; u32 i_truncate_seq; /* last truncate to smaller size */ u64 i_truncate_size; /* and the size we last truncated down to */ int i_truncate_pending; /* still need to call vmtruncate */ /* * For none fscrypt case it equals to i_truncate_size or it will * equals to fscrypt_file_size */ u64 i_truncate_pagecache_size; u64 i_max_size; /* max file size authorized by mds */ u64 i_reported_size; /* (max_)size reported to or requested of mds */ u64 i_wanted_max_size; /* offset we'd like to write too */ u64 i_requested_max_size; /* max_size we've requested */ /* held references to caps */ int i_pin_ref; int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref, i_fx_ref; int i_wrbuffer_ref, i_wrbuffer_ref_head; atomic_t i_filelock_ref; atomic_t i_shared_gen; /* increment each time we get FILE_SHARED */ u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */ u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */ struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */ struct list_head i_unsafe_iops; /* uncommitted mds inode ops */ spinlock_t i_unsafe_lock; union { struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */ struct ceph_snapid_map *i_snapid_map; /* snapid -> dev_t */ }; struct list_head i_snap_realm_item; struct list_head i_snap_flush_item; struct timespec64 i_btime; struct timespec64 i_snap_btime; struct work_struct i_work; unsigned long i_work_mask; #ifdef CONFIG_FS_ENCRYPTION u32 fscrypt_auth_len; u32 fscrypt_file_len; u8 *fscrypt_auth; u8 *fscrypt_file; #endif }; struct ceph_netfs_request_data { int caps; /* * Maximum size of a file readahead request. * The fadvise could update the bdi's default ra_pages. */ unsigned int file_ra_pages; /* Set it if fadvise disables file readahead entirely */ bool file_ra_disabled; }; static inline struct ceph_inode_info * ceph_inode(const struct inode *inode) { return container_of(inode, struct ceph_inode_info, netfs.inode); } static inline struct ceph_fs_client * ceph_inode_to_fs_client(const struct inode *inode) { return (struct ceph_fs_client *)inode->i_sb->s_fs_info; } static inline struct ceph_fs_client * ceph_sb_to_fs_client(const struct super_block *sb) { return (struct ceph_fs_client *)sb->s_fs_info; } static inline struct ceph_mds_client * ceph_sb_to_mdsc(const struct super_block *sb) { return (struct ceph_mds_client *)ceph_sb_to_fs_client(sb)->mdsc; } static inline struct ceph_vino ceph_vino(const struct inode *inode) { return ceph_inode(inode)->i_vino; } static inline u32 ceph_ino_to_ino32(u64 vino) { u32 ino = vino & 0xffffffff; ino ^= vino >> 32; if (!ino) ino = 2; return ino; } /* * Inode numbers in cephfs are 64 bits, but inode->i_ino is 32-bits on * some arches. We generally do not use this value inside the ceph driver, but * we do want to set it to something, so that generic vfs code has an * appropriate value for tracepoints and the like. */ static inline ino_t ceph_vino_to_ino_t(struct ceph_vino vino) { if (sizeof(ino_t) == sizeof(u32)) return ceph_ino_to_ino32(vino.ino); return (ino_t)vino.ino; } /* for printf-style formatting */ #define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap static inline u64 ceph_ino(struct inode *inode) { return ceph_inode(inode)->i_vino.ino; } static inline u64 ceph_snap(struct inode *inode) { return ceph_inode(inode)->i_vino.snap; } /** * ceph_present_ino - format an inode number for presentation to userland * @sb: superblock where the inode lives * @ino: inode number to (possibly) convert * * If the user mounted with the ino32 option, then the 64-bit value needs * to be converted to something that can fit inside 32 bits. Note that * internal kernel code never uses this value, so this is entirely for * userland consumption. */ static inline u64 ceph_present_ino(struct super_block *sb, u64 ino) { if (unlikely(ceph_test_mount_opt(ceph_sb_to_fs_client(sb), INO32))) return ceph_ino_to_ino32(ino); return ino; } static inline u64 ceph_present_inode(struct inode *inode) { return ceph_present_ino(inode->i_sb, ceph_ino(inode)); } static inline int ceph_ino_compare(struct inode *inode, void *data) { struct ceph_vino *pvino = (struct ceph_vino *)data; struct ceph_inode_info *ci = ceph_inode(inode); return ci->i_vino.ino == pvino->ino && ci->i_vino.snap == pvino->snap; } /* * The MDS reserves a set of inodes for its own usage. These should never * be accessible by clients, and so the MDS has no reason to ever hand these * out. The range is CEPH_MDS_INO_MDSDIR_OFFSET..CEPH_INO_SYSTEM_BASE. * * These come from src/mds/mdstypes.h in the ceph sources. */ #define CEPH_MAX_MDS 0x100 #define CEPH_NUM_STRAY 10 #define CEPH_MDS_INO_MDSDIR_OFFSET (1 * CEPH_MAX_MDS) #define CEPH_MDS_INO_LOG_OFFSET (2 * CEPH_MAX_MDS) #define CEPH_INO_SYSTEM_BASE ((6*CEPH_MAX_MDS) + (CEPH_MAX_MDS * CEPH_NUM_STRAY)) static inline bool ceph_vino_is_reserved(const struct ceph_vino vino) { if (vino.ino >= CEPH_INO_SYSTEM_BASE || vino.ino < CEPH_MDS_INO_MDSDIR_OFFSET) return false; /* Don't warn on mdsdirs */ WARN_RATELIMIT(vino.ino >= CEPH_MDS_INO_LOG_OFFSET, "Attempt to access reserved inode number 0x%llx", vino.ino); return true; } static inline struct inode *ceph_find_inode(struct super_block *sb, struct ceph_vino vino) { if (ceph_vino_is_reserved(vino)) return NULL; /* * NB: The hashval will be run through the fs/inode.c hash function * anyway, so there is no need to squash the inode number down to * 32-bits first. Just use low-order bits on arches with 32-bit long. */ return ilookup5(sb, (unsigned long)vino.ino, ceph_ino_compare, &vino); } /* * Ceph inode. */ #define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */ #define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */ #define CEPH_I_POOL_PERM (1 << 3) /* pool rd/wr bits are valid */ #define CEPH_I_POOL_RD (1 << 4) /* can read from pool */ #define CEPH_I_POOL_WR (1 << 5) /* can write to pool */ #define CEPH_I_SEC_INITED (1 << 6) /* security initialized */ #define CEPH_I_KICK_FLUSH (1 << 7) /* kick flushing caps */ #define CEPH_I_FLUSH_SNAPS (1 << 8) /* need flush snapss */ #define CEPH_I_ERROR_WRITE (1 << 9) /* have seen write errors */ #define CEPH_I_ERROR_FILELOCK (1 << 10) /* have seen file lock errors */ #define CEPH_I_ODIRECT (1 << 11) /* inode in direct I/O mode */ #define CEPH_ASYNC_CREATE_BIT (12) /* async create in flight for this */ #define CEPH_I_ASYNC_CREATE (1 << CEPH_ASYNC_CREATE_BIT) #define CEPH_I_SHUTDOWN (1 << 13) /* inode is no longer usable */ #define CEPH_I_ASYNC_CHECK_CAPS (1 << 14) /* check caps immediately after async creating finishes */ /* * Masks of ceph inode work. */ #define CEPH_I_WORK_WRITEBACK 0 #define CEPH_I_WORK_INVALIDATE_PAGES 1 #define CEPH_I_WORK_VMTRUNCATE 2 #define CEPH_I_WORK_CHECK_CAPS 3 #define CEPH_I_WORK_FLUSH_SNAPS 4 /* * We set the ERROR_WRITE bit when we start seeing write errors on an inode * and then clear it when they start succeeding. Note that we do a lockless * check first, and only take the lock if it looks like it needs to be changed. * The write submission code just takes this as a hint, so we're not too * worried if a few slip through in either direction. */ static inline void ceph_set_error_write(struct ceph_inode_info *ci) { if (!(READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE)) { spin_lock(&ci->i_ceph_lock); ci->i_ceph_flags |= CEPH_I_ERROR_WRITE; spin_unlock(&ci->i_ceph_lock); } } static inline void ceph_clear_error_write(struct ceph_inode_info *ci) { if (READ_ONCE(ci->i_ceph_flags) & CEPH_I_ERROR_WRITE) { spin_lock(&ci->i_ceph_lock); ci->i_ceph_flags &= ~CEPH_I_ERROR_WRITE; spin_unlock(&ci->i_ceph_lock); } } static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci, long long release_count, long long ordered_count) { /* * Makes sure operations that setup readdir cache (update page * cache and i_size) are strongly ordered w.r.t. the following * atomic64_set() operations. */ smp_mb(); atomic64_set(&ci->i_complete_seq[0], release_count); atomic64_set(&ci->i_complete_seq[1], ordered_count); } static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci) { atomic64_inc(&ci->i_release_count); } static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci) { atomic64_inc(&ci->i_ordered_count); } static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci) { return atomic64_read(&ci->i_complete_seq[0]) == atomic64_read(&ci->i_release_count); } static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci) { return atomic64_read(&ci->i_complete_seq[0]) == atomic64_read(&ci->i_release_count) && atomic64_read(&ci->i_complete_seq[1]) == atomic64_read(&ci->i_ordered_count); } static inline void ceph_dir_clear_complete(struct inode *inode) { __ceph_dir_clear_complete(ceph_inode(inode)); } static inline void ceph_dir_clear_ordered(struct inode *inode) { __ceph_dir_clear_ordered(ceph_inode(inode)); } static inline bool ceph_dir_is_complete_ordered(struct inode *inode) { bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode)); smp_rmb(); return ret; } /* find a specific frag @f */ extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, u32 f); /* * choose fragment for value @v. copy frag content to pfrag, if leaf * exists */ extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, struct ceph_inode_frag *pfrag, int *found); static inline struct ceph_dentry_info *ceph_dentry(const struct dentry *dentry) { return (struct ceph_dentry_info *)dentry->d_fsdata; } /* * caps helpers */ static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci) { return !RB_EMPTY_ROOT(&ci->i_caps); } extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented); extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t); extern int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask, int t); extern int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *cap); static inline int ceph_caps_issued(struct ceph_inode_info *ci) { int issued; spin_lock(&ci->i_ceph_lock); issued = __ceph_caps_issued(ci, NULL); spin_unlock(&ci->i_ceph_lock); return issued; } static inline int ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask, int touch) { int r; spin_lock(&ci->i_ceph_lock); r = __ceph_caps_issued_mask_metric(ci, mask, touch); spin_unlock(&ci->i_ceph_lock); return r; } static inline int __ceph_caps_dirty(struct ceph_inode_info *ci) { return ci->i_dirty_caps | ci->i_flushing_caps; } extern struct ceph_cap_flush *ceph_alloc_cap_flush(void); extern void ceph_free_cap_flush(struct ceph_cap_flush *cf); extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, struct ceph_cap_flush **pcf); extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci, struct ceph_cap *ocap, int mask); extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask); extern int __ceph_caps_used(struct ceph_inode_info *ci); static inline bool __ceph_is_file_opened(struct ceph_inode_info *ci) { return ci->i_nr_by_mode[0]; } extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci); extern int __ceph_caps_wanted(struct ceph_inode_info *ci); /* what the mds thinks we want */ extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check); extern void ceph_caps_init(struct ceph_mds_client *mdsc); extern void ceph_caps_finalize(struct ceph_mds_client *mdsc); extern void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc, struct ceph_mount_options *fsopt); extern int ceph_reserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx, int need); extern void ceph_unreserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx); extern void ceph_reservation_status(struct ceph_fs_client *client, int *total, int *avail, int *used, int *reserved, int *min); extern void change_auth_cap_ses(struct ceph_inode_info *ci, struct ceph_mds_session *session); /* * we keep buffered readdir results attached to file->private_data */ #define CEPH_F_SYNC 1 #define CEPH_F_ATEND 2 struct ceph_file_info { short fmode; /* initialized on open */ short flags; /* CEPH_F_* */ spinlock_t rw_contexts_lock; struct list_head rw_contexts; u32 filp_gen; }; struct ceph_dir_file_info { struct ceph_file_info file_info; /* readdir: position within the dir */ u32 frag; struct ceph_mds_request *last_readdir; /* readdir: position within a frag */ unsigned next_offset; /* offset of next chunk (last_name's + 1) */ char *last_name; /* last entry in previous chunk */ long long dir_release_count; long long dir_ordered_count; int readdir_cache_idx; /* used for -o dirstat read() on directory thing */ char *dir_info; int dir_info_len; }; struct ceph_rw_context { struct list_head list; struct task_struct *thread; int caps; }; #define CEPH_DEFINE_RW_CONTEXT(_name, _caps) \ struct ceph_rw_context _name = { \ .thread = current, \ .caps = _caps, \ } static inline void ceph_add_rw_context(struct ceph_file_info *cf, struct ceph_rw_context *ctx) { spin_lock(&cf->rw_contexts_lock); list_add(&ctx->list, &cf->rw_contexts); spin_unlock(&cf->rw_contexts_lock); } static inline void ceph_del_rw_context(struct ceph_file_info *cf, struct ceph_rw_context *ctx) { spin_lock(&cf->rw_contexts_lock); list_del(&ctx->list); spin_unlock(&cf->rw_contexts_lock); } static inline struct ceph_rw_context* ceph_find_rw_context(struct ceph_file_info *cf) { struct ceph_rw_context *ctx, *found = NULL; spin_lock(&cf->rw_contexts_lock); list_for_each_entry(ctx, &cf->rw_contexts, list) { if (ctx->thread == current) { found = ctx; break; } } spin_unlock(&cf->rw_contexts_lock); return found; } struct ceph_readdir_cache_control { struct page *page; struct dentry **dentries; int index; }; /* * A "snap realm" describes a subset of the file hierarchy sharing * the same set of snapshots that apply to it. The realms themselves * are organized into a hierarchy, such that children inherit (some of) * the snapshots of their parents. * * All inodes within the realm that have capabilities are linked into a * per-realm list. */ struct ceph_snap_realm { u64 ino; struct inode *inode; atomic_t nref; struct rb_node node; u64 created, seq; u64 parent_ino; u64 parent_since; /* snapid when our current parent became so */ u64 *prior_parent_snaps; /* snaps inherited from any parents we */ u32 num_prior_parent_snaps; /* had prior to parent_since */ u64 *snaps; /* snaps specific to this realm */ u32 num_snaps; struct ceph_snap_realm *parent; struct list_head children; /* list of child realms */ struct list_head child_item; struct list_head empty_item; /* if i have ref==0 */ struct list_head dirty_item; /* if realm needs new context */ struct list_head rebuild_item; /* rebuild snap realms _downward_ in hierarchy */ /* the current set of snaps for this realm */ struct ceph_snap_context *cached_context; struct list_head inodes_with_caps; spinlock_t inodes_with_caps_lock; }; static inline int default_congestion_kb(void) { int congestion_kb; /* * Copied from NFS * * congestion size, scale with available memory. * * 64MB: 8192k * 128MB: 11585k * 256MB: 16384k * 512MB: 23170k * 1GB: 32768k * 2GB: 46340k * 4GB: 65536k * 8GB: 92681k * 16GB: 131072k * * This allows larger machines to have larger/more transfers. * Limit the default to 256M */ congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10); if (congestion_kb > 256*1024) congestion_kb = 256*1024; return congestion_kb; } /* super.c */ extern int ceph_force_reconnect(struct super_block *sb); /* snap.c */ struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, u64 ino); extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm); extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm); extern int ceph_update_snap_trace(struct ceph_mds_client *m, void *p, void *e, bool deletion, struct ceph_snap_realm **realm_ret); void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm); extern void ceph_handle_snap(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg); extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci, struct ceph_cap_snap *capsnap); extern void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc); extern struct ceph_snapid_map *ceph_get_snapid_map(struct ceph_mds_client *mdsc, u64 snap); extern void ceph_put_snapid_map(struct ceph_mds_client* mdsc, struct ceph_snapid_map *sm); extern void ceph_trim_snapid_map(struct ceph_mds_client *mdsc); extern void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc); void ceph_umount_begin(struct super_block *sb); /* * a cap_snap is "pending" if it is still awaiting an in-progress * sync write (that may/may not still update size, mtime, etc.). */ static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci) { return !list_empty(&ci->i_cap_snaps) && list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item)->writing; } /* inode.c */ struct ceph_mds_reply_info_in; struct ceph_mds_reply_dirfrag; struct ceph_acl_sec_ctx; extern const struct inode_operations ceph_file_iops; extern struct inode *ceph_alloc_inode(struct super_block *sb); extern void ceph_evict_inode(struct inode *inode); extern void ceph_free_inode(struct inode *inode); struct inode *ceph_new_inode(struct inode *dir, struct dentry *dentry, umode_t *mode, struct ceph_acl_sec_ctx *as_ctx); void ceph_as_ctx_to_req(struct ceph_mds_request *req, struct ceph_acl_sec_ctx *as_ctx); extern struct inode *ceph_get_inode(struct super_block *sb, struct ceph_vino vino, struct inode *newino); extern struct inode *ceph_get_snapdir(struct inode *parent); extern int ceph_fill_file_size(struct inode *inode, int issued, u32 truncate_seq, u64 truncate_size, u64 size); extern void ceph_fill_file_time(struct inode *inode, int issued, u64 time_warp_seq, struct timespec64 *ctime, struct timespec64 *mtime, struct timespec64 *atime); extern int ceph_fill_inode(struct inode *inode, struct page *locked_page, struct ceph_mds_reply_info_in *iinfo, struct ceph_mds_reply_dirfrag *dirinfo, struct ceph_mds_session *session, int cap_fmode, struct ceph_cap_reservation *caps_reservation); extern int ceph_fill_trace(struct super_block *sb, struct ceph_mds_request *req); extern int ceph_readdir_prepopulate(struct ceph_mds_request *req, struct ceph_mds_session *session); extern int ceph_inode_holds_cap(struct inode *inode, int mask); extern bool ceph_inode_set_size(struct inode *inode, loff_t size); extern void __ceph_do_pending_vmtruncate(struct inode *inode); void ceph_queue_inode_work(struct inode *inode, int work_bit); static inline void ceph_queue_vmtruncate(struct inode *inode) { ceph_queue_inode_work(inode, CEPH_I_WORK_VMTRUNCATE); } static inline void ceph_queue_invalidate(struct inode *inode) { ceph_queue_inode_work(inode, CEPH_I_WORK_INVALIDATE_PAGES); } static inline void ceph_queue_writeback(struct inode *inode) { ceph_queue_inode_work(inode, CEPH_I_WORK_WRITEBACK); } static inline void ceph_queue_check_caps(struct inode *inode) { ceph_queue_inode_work(inode, CEPH_I_WORK_CHECK_CAPS); } static inline void ceph_queue_flush_snaps(struct inode *inode) { ceph_queue_inode_work(inode, CEPH_I_WORK_FLUSH_SNAPS); } extern int ceph_try_to_choose_auth_mds(struct inode *inode, int mask); extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page, int mask, bool force); static inline int ceph_do_getattr(struct inode *inode, int mask, bool force) { return __ceph_do_getattr(inode, NULL, mask, force); } extern int ceph_permission(struct mnt_idmap *idmap, struct inode *inode, int mask); struct ceph_iattr { struct ceph_fscrypt_auth *fscrypt_auth; }; extern int __ceph_setattr(struct inode *inode, struct iattr *attr, struct ceph_iattr *cia); extern int ceph_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr); extern int ceph_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); void ceph_inode_shutdown(struct inode *inode); static inline bool ceph_inode_is_shutdown(struct inode *inode) { unsigned long flags = READ_ONCE(ceph_inode(inode)->i_ceph_flags); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); int state = READ_ONCE(fsc->mount_state); return (flags & CEPH_I_SHUTDOWN) || state >= CEPH_MOUNT_SHUTDOWN; } /* xattr.c */ int __ceph_setxattr(struct inode *, const char *, const void *, size_t, int); int ceph_do_getvxattr(struct inode *inode, const char *name, void *value, size_t size); ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t); extern ssize_t ceph_listxattr(struct dentry *, char *, size_t); extern struct ceph_buffer *__ceph_build_xattrs_blob(struct ceph_inode_info *ci); extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci); extern const struct xattr_handler *ceph_xattr_handlers[]; struct ceph_acl_sec_ctx { #ifdef CONFIG_CEPH_FS_POSIX_ACL void *default_acl; void *acl; #endif #ifdef CONFIG_CEPH_FS_SECURITY_LABEL void *sec_ctx; u32 sec_ctxlen; #endif #ifdef CONFIG_FS_ENCRYPTION struct ceph_fscrypt_auth *fscrypt_auth; #endif struct ceph_pagelist *pagelist; }; #ifdef CONFIG_SECURITY extern bool ceph_security_xattr_deadlock(struct inode *in); extern bool ceph_security_xattr_wanted(struct inode *in); #else static inline bool ceph_security_xattr_deadlock(struct inode *in) { return false; } static inline bool ceph_security_xattr_wanted(struct inode *in) { return false; } #endif #ifdef CONFIG_CEPH_FS_SECURITY_LABEL extern int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, struct ceph_acl_sec_ctx *ctx); static inline void ceph_security_invalidate_secctx(struct inode *inode) { security_inode_invalidate_secctx(inode); } #else static inline int ceph_security_init_secctx(struct dentry *dentry, umode_t mode, struct ceph_acl_sec_ctx *ctx) { return 0; } static inline void ceph_security_invalidate_secctx(struct inode *inode) { } #endif void ceph_release_acl_sec_ctx(struct ceph_acl_sec_ctx *as_ctx); /* acl.c */ #ifdef CONFIG_CEPH_FS_POSIX_ACL struct posix_acl *ceph_get_acl(struct inode *, int, bool); int ceph_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, struct posix_acl *acl, int type); int ceph_pre_init_acls(struct inode *dir, umode_t *mode, struct ceph_acl_sec_ctx *as_ctx); void ceph_init_inode_acls(struct inode *inode, struct ceph_acl_sec_ctx *as_ctx); static inline void ceph_forget_all_cached_acls(struct inode *inode) { forget_all_cached_acls(inode); } #else #define ceph_get_acl NULL #define ceph_set_acl NULL static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode, struct ceph_acl_sec_ctx *as_ctx) { return 0; } static inline void ceph_init_inode_acls(struct inode *inode, struct ceph_acl_sec_ctx *as_ctx) { } static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode) { return 0; } static inline void ceph_forget_all_cached_acls(struct inode *inode) { } #endif /* caps.c */ extern const char *ceph_cap_string(int c); extern void ceph_handle_caps(struct ceph_mds_session *session, struct ceph_msg *msg); extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx); extern void ceph_add_cap(struct inode *inode, struct ceph_mds_session *session, u64 cap_id, unsigned issued, unsigned wanted, unsigned cap, unsigned seq, u64 realmino, int flags, struct ceph_cap **new_cap); extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release); extern void ceph_remove_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, bool queue_release); extern void __ceph_remove_caps(struct ceph_inode_info *ci); extern void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap); extern int ceph_is_any_caps(struct inode *inode); extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc); extern int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync); extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session); extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session); void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session, struct ceph_inode_info *ci); extern struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds); extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds); extern void ceph_take_cap_refs(struct ceph_inode_info *ci, int caps, bool snap_rwsem_locked); extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps); extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had); extern void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had); extern void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci, int had); extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, struct ceph_snap_context *snapc); extern void __ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap, bool *wake_ci, bool *wake_mdsc); extern void ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap, bool *wake_ci, bool *wake_mdsc); extern void ceph_flush_snaps(struct ceph_inode_info *ci, struct ceph_mds_session **psession); extern bool __ceph_should_report_size(struct ceph_inode_info *ci); extern void ceph_check_caps(struct ceph_inode_info *ci, int flags); extern unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc); extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc); extern int ceph_drop_caps_for_unlink(struct inode *inode); extern int ceph_encode_inode_release(void **p, struct inode *inode, int mds, int drop, int unless, int force); extern int ceph_encode_dentry_release(void **p, struct dentry *dn, struct inode *dir, int mds, int drop, int unless); extern int __ceph_get_caps(struct inode *inode, struct ceph_file_info *fi, int need, int want, loff_t endoff, int *got); extern int ceph_get_caps(struct file *filp, int need, int want, loff_t endoff, int *got); extern int ceph_try_get_caps(struct inode *inode, int need, int want, bool nonblock, int *got); /* for counting open files by mode */ extern void ceph_get_fmode(struct ceph_inode_info *ci, int mode, int count); extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode, int count); extern void __ceph_touch_fmode(struct ceph_inode_info *ci, struct ceph_mds_client *mdsc, int fmode); /* addr.c */ extern const struct address_space_operations ceph_aops; extern const struct netfs_request_ops ceph_netfs_ops; extern int ceph_mmap(struct file *file, struct vm_area_struct *vma); extern int ceph_uninline_data(struct file *file); extern int ceph_pool_perm_check(struct inode *inode, int need); extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc); int ceph_purge_inode_cap(struct inode *inode, struct ceph_cap *cap, bool *invalidate); static inline bool ceph_has_inline_data(struct ceph_inode_info *ci) { if (ci->i_inline_version == CEPH_INLINE_NONE || ci->i_inline_version == 1) /* initial version, no data */ return false; return true; } /* file.c */ extern const struct file_operations ceph_file_fops; extern int ceph_renew_caps(struct inode *inode, int fmode); extern int ceph_open(struct inode *inode, struct file *file); extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry, struct file *file, unsigned flags, umode_t mode); extern ssize_t __ceph_sync_read(struct inode *inode, loff_t *ki_pos, struct iov_iter *to, int *retry_op, u64 *last_objver); extern int ceph_release(struct inode *inode, struct file *filp); extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, char *data, size_t len); /* dir.c */ extern const struct file_operations ceph_dir_fops; extern const struct file_operations ceph_snapdir_fops; extern const struct inode_operations ceph_dir_iops; extern const struct inode_operations ceph_snapdir_iops; extern const struct dentry_operations ceph_dentry_ops; extern loff_t ceph_make_fpos(unsigned high, unsigned off, bool hash_order); extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry); extern struct dentry *ceph_handle_snapdir(struct ceph_mds_request *req, struct dentry *dentry); extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req, struct dentry *dentry, int err); extern void __ceph_dentry_lease_touch(struct ceph_dentry_info *di); extern void __ceph_dentry_dir_lease_touch(struct ceph_dentry_info *di); extern void ceph_invalidate_dentry_lease(struct dentry *dentry); extern int ceph_trim_dentries(struct ceph_mds_client *mdsc); extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn); extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl); /* ioctl.c */ extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg); /* export.c */ extern const struct export_operations ceph_export_ops; struct inode *ceph_lookup_inode(struct super_block *sb, u64 ino); /* locks.c */ extern __init void ceph_flock_init(void); extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl); extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl); extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num); extern int ceph_encode_locks_to_buffer(struct inode *inode, struct ceph_filelock *flocks, int num_fcntl_locks, int num_flock_locks); extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks, struct ceph_pagelist *pagelist, int num_fcntl_locks, int num_flock_locks); /* debugfs.c */ extern void ceph_fs_debugfs_init(struct ceph_fs_client *client); extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client); /* quota.c */ enum quota_get_realm { QUOTA_GET_MAX_FILES, QUOTA_GET_MAX_BYTES, QUOTA_GET_ANY }; static inline bool __ceph_has_quota(struct ceph_inode_info *ci, enum quota_get_realm which) { bool has_quota = false; switch (which) { case QUOTA_GET_MAX_BYTES: has_quota = !!ci->i_max_bytes; break; case QUOTA_GET_MAX_FILES: has_quota = !!ci->i_max_files; break; default: has_quota = !!(ci->i_max_files || ci->i_max_bytes); } return has_quota; } extern void ceph_adjust_quota_realms_count(struct inode *inode, bool inc); static inline void __ceph_update_quota(struct ceph_inode_info *ci, u64 max_bytes, u64 max_files) { bool had_quota, has_quota; had_quota = __ceph_has_quota(ci, QUOTA_GET_ANY); ci->i_max_bytes = max_bytes; ci->i_max_files = max_files; has_quota = __ceph_has_quota(ci, QUOTA_GET_ANY); if (had_quota != has_quota) ceph_adjust_quota_realms_count(&ci->netfs.inode, has_quota); } extern void ceph_handle_quota(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg); extern bool ceph_quota_is_max_files_exceeded(struct inode *inode); extern bool ceph_quota_is_same_realm(struct inode *old, struct inode *new); extern bool ceph_quota_is_max_bytes_exceeded(struct inode *inode, loff_t newlen); extern bool ceph_quota_is_max_bytes_approaching(struct inode *inode, loff_t newlen); extern bool ceph_quota_update_statfs(struct ceph_fs_client *fsc, struct kstatfs *buf); extern void ceph_cleanup_quotarealms_inodes(struct ceph_mds_client *mdsc); bool ceph_inc_mds_stopping_blocker(struct ceph_mds_client *mdsc, struct ceph_mds_session *session); void ceph_dec_mds_stopping_blocker(struct ceph_mds_client *mdsc); bool ceph_inc_osd_stopping_blocker(struct ceph_mds_client *mdsc); void ceph_dec_osd_stopping_blocker(struct ceph_mds_client *mdsc); #endif /* _FS_CEPH_SUPER_H */