// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include "super.h" #include "mds_client.h" #include "cache.h" #include "metric.h" #include "crypto.h" #include #include /* * Ceph address space ops. * * There are a few funny things going on here. * * The page->private field is used to reference a struct * ceph_snap_context for _every_ dirty page. This indicates which * snapshot the page was logically dirtied in, and thus which snap * context needs to be associated with the osd write during writeback. * * Similarly, struct ceph_inode_info maintains a set of counters to * count dirty pages on the inode. In the absence of snapshots, * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. * * When a snapshot is taken (that is, when the client receives * notification that a snapshot was taken), each inode with caps and * with dirty pages (dirty pages implies there is a cap) gets a new * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending * order, new snaps go to the tail). The i_wrbuffer_ref_head count is * moved to capsnap->dirty. (Unless a sync write is currently in * progress. In that case, the capsnap is said to be "pending", new * writes cannot start, and the capsnap isn't "finalized" until the * write completes (or fails) and a final size/mtime for the inode for * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. * * On writeback, we must submit writes to the osd IN SNAP ORDER. So, * we look for the first capsnap in i_cap_snaps and write out pages in * that snap context _only_. Then we move on to the next capsnap, * eventually reaching the "live" or "head" context (i.e., pages that * are not yet snapped) and are writing the most recently dirtied * pages. * * Invalidate and so forth must take care to ensure the dirty page * accounting is preserved. */ #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) #define CONGESTION_OFF_THRESH(congestion_kb) \ (CONGESTION_ON_THRESH(congestion_kb) - \ (CONGESTION_ON_THRESH(congestion_kb) >> 2)) static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, struct folio **foliop, void **_fsdata); static inline struct ceph_snap_context *page_snap_context(struct page *page) { if (PagePrivate(page)) return (void *)page->private; return NULL; } /* * Dirty a page. Optimistically adjust accounting, on the assumption * that we won't race with invalidate. If we do, readjust. */ static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) { struct inode *inode; struct ceph_inode_info *ci; struct ceph_snap_context *snapc; if (folio_test_dirty(folio)) { dout("%p dirty_folio %p idx %lu -- already dirty\n", mapping->host, folio, folio->index); VM_BUG_ON_FOLIO(!folio_test_private(folio), folio); return false; } inode = mapping->host; ci = ceph_inode(inode); /* dirty the head */ spin_lock(&ci->i_ceph_lock); if (__ceph_have_pending_cap_snap(ci)) { struct ceph_cap_snap *capsnap = list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item); snapc = ceph_get_snap_context(capsnap->context); capsnap->dirty_pages++; } else { BUG_ON(!ci->i_head_snapc); snapc = ceph_get_snap_context(ci->i_head_snapc); ++ci->i_wrbuffer_ref_head; } if (ci->i_wrbuffer_ref == 0) ihold(inode); ++ci->i_wrbuffer_ref; dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " "snapc %p seq %lld (%d snaps)\n", mapping->host, folio, folio->index, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, snapc, snapc->seq, snapc->num_snaps); spin_unlock(&ci->i_ceph_lock); /* * Reference snap context in folio->private. Also set * PagePrivate so that we get invalidate_folio callback. */ VM_WARN_ON_FOLIO(folio->private, folio); folio_attach_private(folio, snapc); return ceph_fscache_dirty_folio(mapping, folio); } /* * If we are truncating the full folio (i.e. offset == 0), adjust the * dirty folio counters appropriately. Only called if there is private * data on the folio. */ static void ceph_invalidate_folio(struct folio *folio, size_t offset, size_t length) { struct inode *inode; struct ceph_inode_info *ci; struct ceph_snap_context *snapc; inode = folio->mapping->host; ci = ceph_inode(inode); if (offset != 0 || length != folio_size(folio)) { dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", inode, folio->index, offset, length); return; } WARN_ON(!folio_test_locked(folio)); if (folio_test_private(folio)) { dout("%p invalidate_folio idx %lu full dirty page\n", inode, folio->index); snapc = folio_detach_private(folio); ceph_put_wrbuffer_cap_refs(ci, 1, snapc); ceph_put_snap_context(snapc); } folio_wait_fscache(folio); } static bool ceph_release_folio(struct folio *folio, gfp_t gfp) { struct inode *inode = folio->mapping->host; dout("%llx:%llx release_folio idx %lu (%sdirty)\n", ceph_vinop(inode), folio->index, folio_test_dirty(folio) ? "" : "not "); if (folio_test_private(folio)) return false; if (folio_test_fscache(folio)) { if (current_is_kswapd() || !(gfp & __GFP_FS)) return false; folio_wait_fscache(folio); } ceph_fscache_note_page_release(inode); return true; } static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) { struct inode *inode = rreq->inode; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_file_layout *lo = &ci->i_layout; unsigned long max_pages = inode->i_sb->s_bdi->ra_pages; loff_t end = rreq->start + rreq->len, new_end; struct ceph_netfs_request_data *priv = rreq->netfs_priv; unsigned long max_len; u32 blockoff; if (priv) { /* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */ if (priv->file_ra_disabled) max_pages = 0; else max_pages = priv->file_ra_pages; } /* Readahead is disabled */ if (!max_pages) return; max_len = max_pages << PAGE_SHIFT; /* * Try to expand the length forward by rounding up it to the next * block, but do not exceed the file size, unless the original * request already exceeds it. */ new_end = min(round_up(end, lo->stripe_unit), rreq->i_size); if (new_end > end && new_end <= rreq->start + max_len) rreq->len = new_end - rreq->start; /* Try to expand the start downward */ div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); if (rreq->len + blockoff <= max_len) { rreq->start -= blockoff; rreq->len += blockoff; } } static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) { struct inode *inode = subreq->rreq->inode; struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_inode_info *ci = ceph_inode(inode); u64 objno, objoff; u32 xlen; /* Truncate the extent at the end of the current block */ ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, &objno, &objoff, &xlen); subreq->len = min(xlen, fsc->mount_options->rsize); return true; } static void finish_netfs_read(struct ceph_osd_request *req) { struct inode *inode = req->r_inode; struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); struct netfs_io_subrequest *subreq = req->r_priv; struct ceph_osd_req_op *op = &req->r_ops[0]; int err = req->r_result; bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ); ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, req->r_end_latency, osd_data->length, err); dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, subreq->len, i_size_read(req->r_inode)); /* no object means success but no data */ if (err == -ENOENT) err = 0; else if (err == -EBLOCKLISTED) fsc->blocklisted = true; if (err >= 0) { if (sparse && err > 0) err = ceph_sparse_ext_map_end(op); if (err < subreq->len) __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); if (IS_ENCRYPTED(inode) && err > 0) { err = ceph_fscrypt_decrypt_extents(inode, osd_data->pages, subreq->start, op->extent.sparse_ext, op->extent.sparse_ext_cnt); if (err > subreq->len) err = subreq->len; } } if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) { ceph_put_page_vector(osd_data->pages, calc_pages_for(osd_data->alignment, osd_data->length), false); } netfs_subreq_terminated(subreq, err, false); iput(req->r_inode); ceph_dec_osd_stopping_blocker(fsc->mdsc); } static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) { struct netfs_io_request *rreq = subreq->rreq; struct inode *inode = rreq->inode; struct ceph_mds_reply_info_parsed *rinfo; struct ceph_mds_reply_info_in *iinfo; struct ceph_mds_request *req; struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); struct ceph_inode_info *ci = ceph_inode(inode); struct iov_iter iter; ssize_t err = 0; size_t len; int mode; __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); if (subreq->start >= inode->i_size) goto out; /* We need to fetch the inline data. */ mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA); req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode); if (IS_ERR(req)) { err = PTR_ERR(req); goto out; } req->r_ino1 = ci->i_vino; req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); req->r_num_caps = 2; err = ceph_mdsc_do_request(mdsc, NULL, req); if (err < 0) goto out; rinfo = &req->r_reply_info; iinfo = &rinfo->targeti; if (iinfo->inline_version == CEPH_INLINE_NONE) { /* The data got uninlined */ ceph_mdsc_put_request(req); return false; } len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); if (err == 0) err = -EFAULT; ceph_mdsc_put_request(req); out: netfs_subreq_terminated(subreq, err, false); return true; } static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) { struct netfs_io_request *rreq = subreq->rreq; struct inode *inode = rreq->inode; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_osd_request *req = NULL; struct ceph_vino vino = ceph_vino(inode); struct iov_iter iter; int err = 0; u64 len = subreq->len; bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD); u64 off = subreq->start; if (ceph_inode_is_shutdown(inode)) { err = -EIO; goto out; } if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq)) return; ceph_fscrypt_adjust_off_and_len(inode, &off, &len); req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ, CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, NULL, ci->i_truncate_seq, ci->i_truncate_size, false); if (IS_ERR(req)) { err = PTR_ERR(req); req = NULL; goto out; } if (sparse) { err = ceph_alloc_sparse_ext_map(&req->r_ops[0]); if (err) goto out; } dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len); /* * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for * encrypted inodes. We'd need infrastructure that handles an iov_iter * instead of page arrays, and we don't have that as of yet. Once the * dust settles on the write helpers and encrypt/decrypt routines for * netfs, we should be able to rework this. */ if (IS_ENCRYPTED(inode)) { struct page **pages; size_t page_off; err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off); if (err < 0) { dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err); goto out; } /* should always give us a page-aligned read */ WARN_ON_ONCE(page_off); len = err; err = 0; osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false); } else { osd_req_op_extent_osd_iter(req, 0, &iter); } if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { err = -EIO; goto out; } req->r_callback = finish_netfs_read; req->r_priv = subreq; req->r_inode = inode; ihold(inode); ceph_osdc_start_request(req->r_osdc, req); out: ceph_osdc_put_request(req); if (err) netfs_subreq_terminated(subreq, err, false); dout("%s: result %d\n", __func__, err); } static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) { struct inode *inode = rreq->inode; int got = 0, want = CEPH_CAP_FILE_CACHE; struct ceph_netfs_request_data *priv; int ret = 0; if (rreq->origin != NETFS_READAHEAD) return 0; priv = kzalloc(sizeof(*priv), GFP_NOFS); if (!priv) return -ENOMEM; if (file) { struct ceph_rw_context *rw_ctx; struct ceph_file_info *fi = file->private_data; priv->file_ra_pages = file->f_ra.ra_pages; priv->file_ra_disabled = file->f_mode & FMODE_RANDOM; rw_ctx = ceph_find_rw_context(fi); if (rw_ctx) { rreq->netfs_priv = priv; return 0; } } /* * readahead callers do not necessarily hold Fcb caps * (e.g. fadvise, madvise). */ ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); if (ret < 0) { dout("start_read %p, error getting cap\n", inode); goto out; } if (!(got & want)) { dout("start_read %p, no cache cap\n", inode); ret = -EACCES; goto out; } if (ret == 0) { ret = -EACCES; goto out; } priv->caps = got; rreq->netfs_priv = priv; out: if (ret < 0) kfree(priv); return ret; } static void ceph_netfs_free_request(struct netfs_io_request *rreq) { struct ceph_netfs_request_data *priv = rreq->netfs_priv; if (!priv) return; if (priv->caps) ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps); kfree(priv); rreq->netfs_priv = NULL; } const struct netfs_request_ops ceph_netfs_ops = { .init_request = ceph_init_request, .free_request = ceph_netfs_free_request, .begin_cache_operation = ceph_begin_cache_operation, .issue_read = ceph_netfs_issue_read, .expand_readahead = ceph_netfs_expand_readahead, .clamp_length = ceph_netfs_clamp_length, .check_write_begin = ceph_netfs_check_write_begin, }; #ifdef CONFIG_CEPH_FSCACHE static void ceph_set_page_fscache(struct page *page) { set_page_fscache(page); } static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) { struct inode *inode = priv; if (IS_ERR_VALUE(error) && error != -ENOBUFS) ceph_fscache_invalidate(inode, false); } static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) { struct ceph_inode_info *ci = ceph_inode(inode); struct fscache_cookie *cookie = ceph_fscache_cookie(ci); fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), ceph_fscache_write_terminated, inode, caching); } #else static inline void ceph_set_page_fscache(struct page *page) { } static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) { } #endif /* CONFIG_CEPH_FSCACHE */ struct ceph_writeback_ctl { loff_t i_size; u64 truncate_size; u32 truncate_seq; bool size_stable; bool head_snapc; }; /* * Get ref for the oldest snapc for an inode with dirty data... that is, the * only snap context we are allowed to write back. */ static struct ceph_snap_context * get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, struct ceph_snap_context *page_snapc) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_snap_context *snapc = NULL; struct ceph_cap_snap *capsnap = NULL; spin_lock(&ci->i_ceph_lock); list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, capsnap->context, capsnap->dirty_pages); if (!capsnap->dirty_pages) continue; /* get i_size, truncate_{seq,size} for page_snapc? */ if (snapc && capsnap->context != page_snapc) continue; if (ctl) { if (capsnap->writing) { ctl->i_size = i_size_read(inode); ctl->size_stable = false; } else { ctl->i_size = capsnap->size; ctl->size_stable = true; } ctl->truncate_size = capsnap->truncate_size; ctl->truncate_seq = capsnap->truncate_seq; ctl->head_snapc = false; } if (snapc) break; snapc = ceph_get_snap_context(capsnap->context); if (!page_snapc || page_snapc == snapc || page_snapc->seq > snapc->seq) break; } if (!snapc && ci->i_wrbuffer_ref_head) { snapc = ceph_get_snap_context(ci->i_head_snapc); dout(" head snapc %p has %d dirty pages\n", snapc, ci->i_wrbuffer_ref_head); if (ctl) { ctl->i_size = i_size_read(inode); ctl->truncate_size = ci->i_truncate_size; ctl->truncate_seq = ci->i_truncate_seq; ctl->size_stable = false; ctl->head_snapc = true; } } spin_unlock(&ci->i_ceph_lock); return snapc; } static u64 get_writepages_data_length(struct inode *inode, struct page *page, u64 start) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_snap_context *snapc; struct ceph_cap_snap *capsnap = NULL; u64 end = i_size_read(inode); u64 ret; snapc = page_snap_context(ceph_fscrypt_pagecache_page(page)); if (snapc != ci->i_head_snapc) { bool found = false; spin_lock(&ci->i_ceph_lock); list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { if (capsnap->context == snapc) { if (!capsnap->writing) end = capsnap->size; found = true; break; } } spin_unlock(&ci->i_ceph_lock); WARN_ON(!found); } if (end > ceph_fscrypt_page_offset(page) + thp_size(page)) end = ceph_fscrypt_page_offset(page) + thp_size(page); ret = end > start ? end - start : 0; if (ret && fscrypt_is_bounce_page(page)) ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE); return ret; } /* * Write a single page, but leave the page locked. * * If we get a write error, mark the mapping for error, but still adjust the * dirty page accounting (i.e., page is no longer dirty). */ static int writepage_nounlock(struct page *page, struct writeback_control *wbc) { struct folio *folio = page_folio(page); struct inode *inode = page->mapping->host; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_snap_context *snapc, *oldest; loff_t page_off = page_offset(page); int err; loff_t len = thp_size(page); loff_t wlen; struct ceph_writeback_ctl ceph_wbc; struct ceph_osd_client *osdc = &fsc->client->osdc; struct ceph_osd_request *req; bool caching = ceph_is_cache_enabled(inode); struct page *bounce_page = NULL; dout("writepage %p idx %lu\n", page, page->index); if (ceph_inode_is_shutdown(inode)) return -EIO; /* verify this is a writeable snap context */ snapc = page_snap_context(page); if (!snapc) { dout("writepage %p page %p not dirty?\n", inode, page); return 0; } oldest = get_oldest_context(inode, &ceph_wbc, snapc); if (snapc->seq > oldest->seq) { dout("writepage %p page %p snapc %p not writeable - noop\n", inode, page, snapc); /* we should only noop if called by kswapd */ WARN_ON(!(current->flags & PF_MEMALLOC)); ceph_put_snap_context(oldest); redirty_page_for_writepage(wbc, page); return 0; } ceph_put_snap_context(oldest); /* is this a partial page at end of file? */ if (page_off >= ceph_wbc.i_size) { dout("folio at %lu beyond eof %llu\n", folio->index, ceph_wbc.i_size); folio_invalidate(folio, 0, folio_size(folio)); return 0; } if (ceph_wbc.i_size < page_off + len) len = ceph_wbc.i_size - page_off; wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len; dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", inode, page, page->index, page_off, wlen, snapc, snapc->seq); if (atomic_long_inc_return(&fsc->writeback_count) > CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) fsc->write_congested = true; req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, ceph_wbc.truncate_seq, ceph_wbc.truncate_size, true); if (IS_ERR(req)) { redirty_page_for_writepage(wbc, page); return PTR_ERR(req); } if (wlen < len) len = wlen; set_page_writeback(page); if (caching) ceph_set_page_fscache(page); ceph_fscache_write_to_cache(inode, page_off, len, caching); if (IS_ENCRYPTED(inode)) { bounce_page = fscrypt_encrypt_pagecache_blocks(page, CEPH_FSCRYPT_BLOCK_SIZE, 0, GFP_NOFS); if (IS_ERR(bounce_page)) { redirty_page_for_writepage(wbc, page); end_page_writeback(page); ceph_osdc_put_request(req); return PTR_ERR(bounce_page); } } /* it may be a short write due to an object boundary */ WARN_ON_ONCE(len > thp_size(page)); osd_req_op_extent_osd_data_pages(req, 0, bounce_page ? &bounce_page : &page, wlen, 0, false, false); dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n", page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not "); req->r_mtime = inode->i_mtime; ceph_osdc_start_request(osdc, req); err = ceph_osdc_wait_request(osdc, req); ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, req->r_end_latency, len, err); fscrypt_free_bounce_page(bounce_page); ceph_osdc_put_request(req); if (err == 0) err = len; if (err < 0) { struct writeback_control tmp_wbc; if (!wbc) wbc = &tmp_wbc; if (err == -ERESTARTSYS) { /* killed by SIGKILL */ dout("writepage interrupted page %p\n", page); redirty_page_for_writepage(wbc, page); end_page_writeback(page); return err; } if (err == -EBLOCKLISTED) fsc->blocklisted = true; dout("writepage setting page/mapping error %d %p\n", err, page); mapping_set_error(&inode->i_data, err); wbc->pages_skipped++; } else { dout("writepage cleaned page %p\n", page); err = 0; /* vfs expects us to return 0 */ } oldest = detach_page_private(page); WARN_ON_ONCE(oldest != snapc); end_page_writeback(page); ceph_put_wrbuffer_cap_refs(ci, 1, snapc); ceph_put_snap_context(snapc); /* page's reference */ if (atomic_long_dec_return(&fsc->writeback_count) < CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) fsc->write_congested = false; return err; } static int ceph_writepage(struct page *page, struct writeback_control *wbc) { int err; struct inode *inode = page->mapping->host; BUG_ON(!inode); ihold(inode); if (wbc->sync_mode == WB_SYNC_NONE && ceph_inode_to_fs_client(inode)->write_congested) { redirty_page_for_writepage(wbc, page); return AOP_WRITEPAGE_ACTIVATE; } wait_on_page_fscache(page); err = writepage_nounlock(page, wbc); if (err == -ERESTARTSYS) { /* direct memory reclaimer was killed by SIGKILL. return 0 * to prevent caller from setting mapping/page error */ err = 0; } unlock_page(page); iput(inode); return err; } /* * async writeback completion handler. * * If we get an error, set the mapping error bit, but not the individual * page error bits. */ static void writepages_finish(struct ceph_osd_request *req) { struct inode *inode = req->r_inode; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_osd_data *osd_data; struct page *page; int num_pages, total_pages = 0; int i, j; int rc = req->r_result; struct ceph_snap_context *snapc = req->r_snapc; struct address_space *mapping = inode->i_mapping; struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); unsigned int len = 0; bool remove_page; dout("writepages_finish %p rc %d\n", inode, rc); if (rc < 0) { mapping_set_error(mapping, rc); ceph_set_error_write(ci); if (rc == -EBLOCKLISTED) fsc->blocklisted = true; } else { ceph_clear_error_write(ci); } /* * We lost the cache cap, need to truncate the page before * it is unlocked, otherwise we'd truncate it later in the * page truncation thread, possibly losing some data that * raced its way in */ remove_page = !(ceph_caps_issued(ci) & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); /* clean all pages */ for (i = 0; i < req->r_num_ops; i++) { if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) { pr_warn("%s incorrect op %d req %p index %d tid %llu\n", __func__, req->r_ops[i].op, req, i, req->r_tid); break; } osd_data = osd_req_op_extent_osd_data(req, i); BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); len += osd_data->length; num_pages = calc_pages_for((u64)osd_data->alignment, (u64)osd_data->length); total_pages += num_pages; for (j = 0; j < num_pages; j++) { page = osd_data->pages[j]; if (fscrypt_is_bounce_page(page)) { page = fscrypt_pagecache_page(page); fscrypt_free_bounce_page(osd_data->pages[j]); osd_data->pages[j] = page; } BUG_ON(!page); WARN_ON(!PageUptodate(page)); if (atomic_long_dec_return(&fsc->writeback_count) < CONGESTION_OFF_THRESH( fsc->mount_options->congestion_kb)) fsc->write_congested = false; ceph_put_snap_context(detach_page_private(page)); end_page_writeback(page); dout("unlocking %p\n", page); if (remove_page) generic_error_remove_page(inode->i_mapping, page); unlock_page(page); } dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", inode, osd_data->length, rc >= 0 ? num_pages : 0); release_pages(osd_data->pages, num_pages); } ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, req->r_end_latency, len, rc); ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); osd_data = osd_req_op_extent_osd_data(req, 0); if (osd_data->pages_from_pool) mempool_free(osd_data->pages, ceph_wb_pagevec_pool); else kfree(osd_data->pages); ceph_osdc_put_request(req); ceph_dec_osd_stopping_blocker(fsc->mdsc); } /* * initiate async writeback */ static int ceph_writepages_start(struct address_space *mapping, struct writeback_control *wbc) { struct inode *inode = mapping->host; struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_vino vino = ceph_vino(inode); pgoff_t index, start_index, end = -1; struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; struct folio_batch fbatch; int rc = 0; unsigned int wsize = i_blocksize(inode); struct ceph_osd_request *req = NULL; struct ceph_writeback_ctl ceph_wbc; bool should_loop, range_whole = false; bool done = false; bool caching = ceph_is_cache_enabled(inode); xa_mark_t tag; if (wbc->sync_mode == WB_SYNC_NONE && fsc->write_congested) return 0; dout("writepages_start %p (mode=%s)\n", inode, wbc->sync_mode == WB_SYNC_NONE ? "NONE" : (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); if (ceph_inode_is_shutdown(inode)) { if (ci->i_wrbuffer_ref > 0) { pr_warn_ratelimited( "writepage_start %p %lld forced umount\n", inode, ceph_ino(inode)); } mapping_set_error(mapping, -EIO); return -EIO; /* we're in a forced umount, don't write! */ } if (fsc->mount_options->wsize < wsize) wsize = fsc->mount_options->wsize; folio_batch_init(&fbatch); start_index = wbc->range_cyclic ? mapping->writeback_index : 0; index = start_index; if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { tag = PAGECACHE_TAG_TOWRITE; } else { tag = PAGECACHE_TAG_DIRTY; } retry: /* find oldest snap context with dirty data */ snapc = get_oldest_context(inode, &ceph_wbc, NULL); if (!snapc) { /* hmm, why does writepages get called when there is no dirty data? */ dout(" no snap context with dirty data?\n"); goto out; } dout(" oldest snapc is %p seq %lld (%d snaps)\n", snapc, snapc->seq, snapc->num_snaps); should_loop = false; if (ceph_wbc.head_snapc && snapc != last_snapc) { /* where to start/end? */ if (wbc->range_cyclic) { index = start_index; end = -1; if (index > 0) should_loop = true; dout(" cyclic, start at %lu\n", index); } else { index = wbc->range_start >> PAGE_SHIFT; end = wbc->range_end >> PAGE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = true; dout(" not cyclic, %lu to %lu\n", index, end); } } else if (!ceph_wbc.head_snapc) { /* Do not respect wbc->range_{start,end}. Dirty pages * in that range can be associated with newer snapc. * They are not writeable until we write all dirty pages * associated with 'snapc' get written */ if (index > 0) should_loop = true; dout(" non-head snapc, range whole\n"); } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag_pages_for_writeback(mapping, index, end); ceph_put_snap_context(last_snapc); last_snapc = snapc; while (!done && index <= end) { int num_ops = 0, op_idx; unsigned i, nr_folios, max_pages, locked_pages = 0; struct page **pages = NULL, **data_pages; struct page *page; pgoff_t strip_unit_end = 0; u64 offset = 0, len = 0; bool from_pool = false; max_pages = wsize >> PAGE_SHIFT; get_more_pages: nr_folios = filemap_get_folios_tag(mapping, &index, end, tag, &fbatch); dout("pagevec_lookup_range_tag got %d\n", nr_folios); if (!nr_folios && !locked_pages) break; for (i = 0; i < nr_folios && locked_pages < max_pages; i++) { page = &fbatch.folios[i]->page; dout("? %p idx %lu\n", page, page->index); if (locked_pages == 0) lock_page(page); /* first page */ else if (!trylock_page(page)) break; /* only dirty pages, or our accounting breaks */ if (unlikely(!PageDirty(page)) || unlikely(page->mapping != mapping)) { dout("!dirty or !mapping %p\n", page); unlock_page(page); continue; } /* only if matching snap context */ pgsnapc = page_snap_context(page); if (pgsnapc != snapc) { dout("page snapc %p %lld != oldest %p %lld\n", pgsnapc, pgsnapc->seq, snapc, snapc->seq); if (!should_loop && !ceph_wbc.head_snapc && wbc->sync_mode != WB_SYNC_NONE) should_loop = true; unlock_page(page); continue; } if (page_offset(page) >= ceph_wbc.i_size) { struct folio *folio = page_folio(page); dout("folio at %lu beyond eof %llu\n", folio->index, ceph_wbc.i_size); if ((ceph_wbc.size_stable || folio_pos(folio) >= i_size_read(inode)) && folio_clear_dirty_for_io(folio)) folio_invalidate(folio, 0, folio_size(folio)); folio_unlock(folio); continue; } if (strip_unit_end && (page->index > strip_unit_end)) { dout("end of strip unit %p\n", page); unlock_page(page); break; } if (PageWriteback(page) || PageFsCache(page)) { if (wbc->sync_mode == WB_SYNC_NONE) { dout("%p under writeback\n", page); unlock_page(page); continue; } dout("waiting on writeback %p\n", page); wait_on_page_writeback(page); wait_on_page_fscache(page); } if (!clear_page_dirty_for_io(page)) { dout("%p !clear_page_dirty_for_io\n", page); unlock_page(page); continue; } /* * We have something to write. If this is * the first locked page this time through, * calculate max possinle write size and * allocate a page array */ if (locked_pages == 0) { u64 objnum; u64 objoff; u32 xlen; /* prepare async write request */ offset = (u64)page_offset(page); ceph_calc_file_object_mapping(&ci->i_layout, offset, wsize, &objnum, &objoff, &xlen); len = xlen; num_ops = 1; strip_unit_end = page->index + ((len - 1) >> PAGE_SHIFT); BUG_ON(pages); max_pages = calc_pages_for(0, (u64)len); pages = kmalloc_array(max_pages, sizeof(*pages), GFP_NOFS); if (!pages) { from_pool = true; pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); BUG_ON(!pages); } len = 0; } else if (page->index != (offset + len) >> PAGE_SHIFT) { if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : CEPH_OSD_MAX_OPS)) { redirty_page_for_writepage(wbc, page); unlock_page(page); break; } num_ops++; offset = (u64)page_offset(page); len = 0; } /* note position of first page in fbatch */ dout("%p will write page %p idx %lu\n", inode, page, page->index); if (atomic_long_inc_return(&fsc->writeback_count) > CONGESTION_ON_THRESH( fsc->mount_options->congestion_kb)) fsc->write_congested = true; if (IS_ENCRYPTED(inode)) { pages[locked_pages] = fscrypt_encrypt_pagecache_blocks(page, PAGE_SIZE, 0, locked_pages ? GFP_NOWAIT : GFP_NOFS); if (IS_ERR(pages[locked_pages])) { if (PTR_ERR(pages[locked_pages]) == -EINVAL) pr_err("%s: inode->i_blkbits=%hhu\n", __func__, inode->i_blkbits); /* better not fail on first page! */ BUG_ON(locked_pages == 0); pages[locked_pages] = NULL; redirty_page_for_writepage(wbc, page); unlock_page(page); break; } ++locked_pages; } else { pages[locked_pages++] = page; } fbatch.folios[i] = NULL; len += thp_size(page); } /* did we get anything? */ if (!locked_pages) goto release_folios; if (i) { unsigned j, n = 0; /* shift unused page to beginning of fbatch */ for (j = 0; j < nr_folios; j++) { if (!fbatch.folios[j]) continue; if (n < j) fbatch.folios[n] = fbatch.folios[j]; n++; } fbatch.nr = n; if (nr_folios && i == nr_folios && locked_pages < max_pages) { dout("reached end fbatch, trying for more\n"); folio_batch_release(&fbatch); goto get_more_pages; } } new_request: offset = ceph_fscrypt_page_offset(pages[0]); len = wsize; req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, offset, &len, 0, num_ops, CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, ceph_wbc.truncate_seq, ceph_wbc.truncate_size, false); if (IS_ERR(req)) { req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, offset, &len, 0, min(num_ops, CEPH_OSD_SLAB_OPS), CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, ceph_wbc.truncate_seq, ceph_wbc.truncate_size, true); BUG_ON(IS_ERR(req)); } BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) + thp_size(pages[locked_pages - 1]) - offset); if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) { rc = -EIO; goto release_folios; } req->r_callback = writepages_finish; req->r_inode = inode; /* Format the osd request message and submit the write */ len = 0; data_pages = pages; op_idx = 0; for (i = 0; i < locked_pages; i++) { struct page *page = ceph_fscrypt_pagecache_page(pages[i]); u64 cur_offset = page_offset(page); /* * Discontinuity in page range? Ceph can handle that by just passing * multiple extents in the write op. */ if (offset + len != cur_offset) { /* If it's full, stop here */ if (op_idx + 1 == req->r_num_ops) break; /* Kick off an fscache write with what we have so far. */ ceph_fscache_write_to_cache(inode, offset, len, caching); /* Start a new extent */ osd_req_op_extent_dup_last(req, op_idx, cur_offset - offset); dout("writepages got pages at %llu~%llu\n", offset, len); osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 0, from_pool, false); osd_req_op_extent_update(req, op_idx, len); len = 0; offset = cur_offset; data_pages = pages + i; op_idx++; } set_page_writeback(page); if (caching) ceph_set_page_fscache(page); len += thp_size(page); } ceph_fscache_write_to_cache(inode, offset, len, caching); if (ceph_wbc.size_stable) { len = min(len, ceph_wbc.i_size - offset); } else if (i == locked_pages) { /* writepages_finish() clears writeback pages * according to the data length, so make sure * data length covers all locked pages */ u64 min_len = len + 1 - thp_size(page); len = get_writepages_data_length(inode, pages[i - 1], offset); len = max(len, min_len); } if (IS_ENCRYPTED(inode)) len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE); dout("writepages got pages at %llu~%llu\n", offset, len); if (IS_ENCRYPTED(inode) && ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK)) pr_warn("%s: bad encrypted write offset=%lld len=%llu\n", __func__, offset, len); osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 0, from_pool, false); osd_req_op_extent_update(req, op_idx, len); BUG_ON(op_idx + 1 != req->r_num_ops); from_pool = false; if (i < locked_pages) { BUG_ON(num_ops <= req->r_num_ops); num_ops -= req->r_num_ops; locked_pages -= i; /* allocate new pages array for next request */ data_pages = pages; pages = kmalloc_array(locked_pages, sizeof(*pages), GFP_NOFS); if (!pages) { from_pool = true; pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); BUG_ON(!pages); } memcpy(pages, data_pages + i, locked_pages * sizeof(*pages)); memset(data_pages + i, 0, locked_pages * sizeof(*pages)); } else { BUG_ON(num_ops != req->r_num_ops); index = pages[i - 1]->index + 1; /* request message now owns the pages array */ pages = NULL; } req->r_mtime = inode->i_mtime; ceph_osdc_start_request(&fsc->client->osdc, req); req = NULL; wbc->nr_to_write -= i; if (pages) goto new_request; /* * We stop writing back only if we are not doing * integrity sync. In case of integrity sync we have to * keep going until we have written all the pages * we tagged for writeback prior to entering this loop. */ if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) done = true; release_folios: dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr, fbatch.nr ? fbatch.folios[0] : NULL); folio_batch_release(&fbatch); } if (should_loop && !done) { /* more to do; loop back to beginning of file */ dout("writepages looping back to beginning of file\n"); end = start_index - 1; /* OK even when start_index == 0 */ /* to write dirty pages associated with next snapc, * we need to wait until current writes complete */ if (wbc->sync_mode != WB_SYNC_NONE && start_index == 0 && /* all dirty pages were checked */ !ceph_wbc.head_snapc) { struct page *page; unsigned i, nr; index = 0; while ((index <= end) && (nr = filemap_get_folios_tag(mapping, &index, (pgoff_t)-1, PAGECACHE_TAG_WRITEBACK, &fbatch))) { for (i = 0; i < nr; i++) { page = &fbatch.folios[i]->page; if (page_snap_context(page) != snapc) continue; wait_on_page_writeback(page); } folio_batch_release(&fbatch); cond_resched(); } } start_index = 0; index = 0; goto retry; } if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = index; out: ceph_osdc_put_request(req); ceph_put_snap_context(last_snapc); dout("writepages dend - startone, rc = %d\n", rc); return rc; } /* * See if a given @snapc is either writeable, or already written. */ static int context_is_writeable_or_written(struct inode *inode, struct ceph_snap_context *snapc) { struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); int ret = !oldest || snapc->seq <= oldest->seq; ceph_put_snap_context(oldest); return ret; } /** * ceph_find_incompatible - find an incompatible context and return it * @page: page being dirtied * * We are only allowed to write into/dirty a page if the page is * clean, or already dirty within the same snap context. Returns a * conflicting context if there is one, NULL if there isn't, or a * negative error code on other errors. * * Must be called with page lock held. */ static struct ceph_snap_context * ceph_find_incompatible(struct page *page) { struct inode *inode = page->mapping->host; struct ceph_inode_info *ci = ceph_inode(inode); if (ceph_inode_is_shutdown(inode)) { dout(" page %p %llx:%llx is shutdown\n", page, ceph_vinop(inode)); return ERR_PTR(-ESTALE); } for (;;) { struct ceph_snap_context *snapc, *oldest; wait_on_page_writeback(page); snapc = page_snap_context(page); if (!snapc || snapc == ci->i_head_snapc) break; /* * this page is already dirty in another (older) snap * context! is it writeable now? */ oldest = get_oldest_context(inode, NULL, NULL); if (snapc->seq > oldest->seq) { /* not writeable -- return it for the caller to deal with */ ceph_put_snap_context(oldest); dout(" page %p snapc %p not current or oldest\n", page, snapc); return ceph_get_snap_context(snapc); } ceph_put_snap_context(oldest); /* yay, writeable, do it now (without dropping page lock) */ dout(" page %p snapc %p not current, but oldest\n", page, snapc); if (clear_page_dirty_for_io(page)) { int r = writepage_nounlock(page, NULL); if (r < 0) return ERR_PTR(r); } } return NULL; } static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, struct folio **foliop, void **_fsdata) { struct inode *inode = file_inode(file); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_snap_context *snapc; snapc = ceph_find_incompatible(folio_page(*foliop, 0)); if (snapc) { int r; folio_unlock(*foliop); folio_put(*foliop); *foliop = NULL; if (IS_ERR(snapc)) return PTR_ERR(snapc); ceph_queue_writeback(inode); r = wait_event_killable(ci->i_cap_wq, context_is_writeable_or_written(inode, snapc)); ceph_put_snap_context(snapc); return r == 0 ? -EAGAIN : r; } return 0; } /* * We are only allowed to write into/dirty the page if the page is * clean, or already dirty within the same snap context. */ static int ceph_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct inode *inode = file_inode(file); struct ceph_inode_info *ci = ceph_inode(inode); struct folio *folio = NULL; int r; r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL); if (r < 0) return r; folio_wait_fscache(folio); WARN_ON_ONCE(!folio_test_locked(folio)); *pagep = &folio->page; return 0; } /* * we don't do anything in here that simple_write_end doesn't do * except adjust dirty page accounting */ static int ceph_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *subpage, void *fsdata) { struct folio *folio = page_folio(subpage); struct inode *inode = file_inode(file); bool check_cap = false; dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, inode, folio, (int)pos, (int)copied, (int)len); if (!folio_test_uptodate(folio)) { /* just return that nothing was copied on a short copy */ if (copied < len) { copied = 0; goto out; } folio_mark_uptodate(folio); } /* did file size increase? */ if (pos+copied > i_size_read(inode)) check_cap = ceph_inode_set_size(inode, pos+copied); folio_mark_dirty(folio); out: folio_unlock(folio); folio_put(folio); if (check_cap) ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY); return copied; } const struct address_space_operations ceph_aops = { .read_folio = netfs_read_folio, .readahead = netfs_readahead, .writepage = ceph_writepage, .writepages = ceph_writepages_start, .write_begin = ceph_write_begin, .write_end = ceph_write_end, .dirty_folio = ceph_dirty_folio, .invalidate_folio = ceph_invalidate_folio, .release_folio = ceph_release_folio, .direct_IO = noop_direct_IO, }; static void ceph_block_sigs(sigset_t *oldset) { sigset_t mask; siginitsetinv(&mask, sigmask(SIGKILL)); sigprocmask(SIG_BLOCK, &mask, oldset); } static void ceph_restore_sigs(sigset_t *oldset) { sigprocmask(SIG_SETMASK, oldset, NULL); } /* * vm ops */ static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct inode *inode = file_inode(vma->vm_file); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_file_info *fi = vma->vm_file->private_data; loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; int want, got, err; sigset_t oldset; vm_fault_t ret = VM_FAULT_SIGBUS; if (ceph_inode_is_shutdown(inode)) return ret; ceph_block_sigs(&oldset); dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", inode, ceph_vinop(inode), off); if (fi->fmode & CEPH_FILE_MODE_LAZY) want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; else want = CEPH_CAP_FILE_CACHE; got = 0; err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); if (err < 0) goto out_restore; dout("filemap_fault %p %llu got cap refs on %s\n", inode, off, ceph_cap_string(got)); if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || !ceph_has_inline_data(ci)) { CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); ceph_add_rw_context(fi, &rw_ctx); ret = filemap_fault(vmf); ceph_del_rw_context(fi, &rw_ctx); dout("filemap_fault %p %llu drop cap refs %s ret %x\n", inode, off, ceph_cap_string(got), ret); } else err = -EAGAIN; ceph_put_cap_refs(ci, got); if (err != -EAGAIN) goto out_restore; /* read inline data */ if (off >= PAGE_SIZE) { /* does not support inline data > PAGE_SIZE */ ret = VM_FAULT_SIGBUS; } else { struct address_space *mapping = inode->i_mapping; struct page *page; filemap_invalidate_lock_shared(mapping); page = find_or_create_page(mapping, 0, mapping_gfp_constraint(mapping, ~__GFP_FS)); if (!page) { ret = VM_FAULT_OOM; goto out_inline; } err = __ceph_do_getattr(inode, page, CEPH_STAT_CAP_INLINE_DATA, true); if (err < 0 || off >= i_size_read(inode)) { unlock_page(page); put_page(page); ret = vmf_error(err); goto out_inline; } if (err < PAGE_SIZE) zero_user_segment(page, err, PAGE_SIZE); else flush_dcache_page(page); SetPageUptodate(page); vmf->page = page; ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; out_inline: filemap_invalidate_unlock_shared(mapping); dout("filemap_fault %p %llu read inline data ret %x\n", inode, off, ret); } out_restore: ceph_restore_sigs(&oldset); if (err < 0) ret = vmf_error(err); return ret; } static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct inode *inode = file_inode(vma->vm_file); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_file_info *fi = vma->vm_file->private_data; struct ceph_cap_flush *prealloc_cf; struct page *page = vmf->page; loff_t off = page_offset(page); loff_t size = i_size_read(inode); size_t len; int want, got, err; sigset_t oldset; vm_fault_t ret = VM_FAULT_SIGBUS; if (ceph_inode_is_shutdown(inode)) return ret; prealloc_cf = ceph_alloc_cap_flush(); if (!prealloc_cf) return VM_FAULT_OOM; sb_start_pagefault(inode->i_sb); ceph_block_sigs(&oldset); if (off + thp_size(page) <= size) len = thp_size(page); else len = offset_in_thp(page, size); dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", inode, ceph_vinop(inode), off, len, size); if (fi->fmode & CEPH_FILE_MODE_LAZY) want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; else want = CEPH_CAP_FILE_BUFFER; got = 0; err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); if (err < 0) goto out_free; dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", inode, off, len, ceph_cap_string(got)); /* Update time before taking page lock */ file_update_time(vma->vm_file); inode_inc_iversion_raw(inode); do { struct ceph_snap_context *snapc; lock_page(page); if (page_mkwrite_check_truncate(page, inode) < 0) { unlock_page(page); ret = VM_FAULT_NOPAGE; break; } snapc = ceph_find_incompatible(page); if (!snapc) { /* success. we'll keep the page locked. */ set_page_dirty(page); ret = VM_FAULT_LOCKED; break; } unlock_page(page); if (IS_ERR(snapc)) { ret = VM_FAULT_SIGBUS; break; } ceph_queue_writeback(inode); err = wait_event_killable(ci->i_cap_wq, context_is_writeable_or_written(inode, snapc)); ceph_put_snap_context(snapc); } while (err == 0); if (ret == VM_FAULT_LOCKED) { int dirty; spin_lock(&ci->i_ceph_lock); dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); spin_unlock(&ci->i_ceph_lock); if (dirty) __mark_inode_dirty(inode, dirty); } dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", inode, off, len, ceph_cap_string(got), ret); ceph_put_cap_refs_async(ci, got); out_free: ceph_restore_sigs(&oldset); sb_end_pagefault(inode->i_sb); ceph_free_cap_flush(prealloc_cf); if (err < 0) ret = vmf_error(err); return ret; } void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, char *data, size_t len) { struct address_space *mapping = inode->i_mapping; struct page *page; if (locked_page) { page = locked_page; } else { if (i_size_read(inode) == 0) return; page = find_or_create_page(mapping, 0, mapping_gfp_constraint(mapping, ~__GFP_FS)); if (!page) return; if (PageUptodate(page)) { unlock_page(page); put_page(page); return; } } dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", inode, ceph_vinop(inode), len, locked_page); if (len > 0) { void *kaddr = kmap_atomic(page); memcpy(kaddr, data, len); kunmap_atomic(kaddr); } if (page != locked_page) { if (len < PAGE_SIZE) zero_user_segment(page, len, PAGE_SIZE); else flush_dcache_page(page); SetPageUptodate(page); unlock_page(page); put_page(page); } } int ceph_uninline_data(struct file *file) { struct inode *inode = file_inode(file); struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_fs_client *fsc = ceph_inode_to_fs_client(inode); struct ceph_osd_request *req = NULL; struct ceph_cap_flush *prealloc_cf = NULL; struct folio *folio = NULL; u64 inline_version = CEPH_INLINE_NONE; struct page *pages[1]; int err = 0; u64 len; spin_lock(&ci->i_ceph_lock); inline_version = ci->i_inline_version; spin_unlock(&ci->i_ceph_lock); dout("uninline_data %p %llx.%llx inline_version %llu\n", inode, ceph_vinop(inode), inline_version); if (ceph_inode_is_shutdown(inode)) { err = -EIO; goto out; } if (inline_version == CEPH_INLINE_NONE) return 0; prealloc_cf = ceph_alloc_cap_flush(); if (!prealloc_cf) return -ENOMEM; if (inline_version == 1) /* initial version, no data */ goto out_uninline; folio = read_mapping_folio(inode->i_mapping, 0, file); if (IS_ERR(folio)) { err = PTR_ERR(folio); goto out; } folio_lock(folio); len = i_size_read(inode); if (len > folio_size(folio)) len = folio_size(folio); req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, ceph_vino(inode), 0, &len, 0, 1, CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, NULL, 0, 0, false); if (IS_ERR(req)) { err = PTR_ERR(req); goto out_unlock; } req->r_mtime = inode->i_mtime; ceph_osdc_start_request(&fsc->client->osdc, req); err = ceph_osdc_wait_request(&fsc->client->osdc, req); ceph_osdc_put_request(req); if (err < 0) goto out_unlock; req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, ceph_vino(inode), 0, &len, 1, 3, CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, NULL, ci->i_truncate_seq, ci->i_truncate_size, false); if (IS_ERR(req)) { err = PTR_ERR(req); goto out_unlock; } pages[0] = folio_page(folio, 0); osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); { __le64 xattr_buf = cpu_to_le64(inline_version); err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, "inline_version", &xattr_buf, sizeof(xattr_buf), CEPH_OSD_CMPXATTR_OP_GT, CEPH_OSD_CMPXATTR_MODE_U64); if (err) goto out_put_req; } { char xattr_buf[32]; int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), "%llu", inline_version); err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, "inline_version", xattr_buf, xattr_len, 0, 0); if (err) goto out_put_req; } req->r_mtime = inode->i_mtime; ceph_osdc_start_request(&fsc->client->osdc, req); err = ceph_osdc_wait_request(&fsc->client->osdc, req); ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, req->r_end_latency, len, err); out_uninline: if (!err) { int dirty; /* Set to CAP_INLINE_NONE and dirty the caps */ down_read(&fsc->mdsc->snap_rwsem); spin_lock(&ci->i_ceph_lock); ci->i_inline_version = CEPH_INLINE_NONE; dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); spin_unlock(&ci->i_ceph_lock); up_read(&fsc->mdsc->snap_rwsem); if (dirty) __mark_inode_dirty(inode, dirty); } out_put_req: ceph_osdc_put_request(req); if (err == -ECANCELED) err = 0; out_unlock: if (folio) { folio_unlock(folio); folio_put(folio); } out: ceph_free_cap_flush(prealloc_cf); dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", inode, ceph_vinop(inode), inline_version, err); return err; } static const struct vm_operations_struct ceph_vmops = { .fault = ceph_filemap_fault, .page_mkwrite = ceph_page_mkwrite, }; int ceph_mmap(struct file *file, struct vm_area_struct *vma) { struct address_space *mapping = file->f_mapping; if (!mapping->a_ops->read_folio) return -ENOEXEC; vma->vm_ops = &ceph_vmops; return 0; } enum { POOL_READ = 1, POOL_WRITE = 2, }; static int __ceph_pool_perm_get(struct ceph_inode_info *ci, s64 pool, struct ceph_string *pool_ns) { struct ceph_fs_client *fsc = ceph_inode_to_fs_client(&ci->netfs.inode); struct ceph_mds_client *mdsc = fsc->mdsc; struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; struct rb_node **p, *parent; struct ceph_pool_perm *perm; struct page **pages; size_t pool_ns_len; int err = 0, err2 = 0, have = 0; down_read(&mdsc->pool_perm_rwsem); p = &mdsc->pool_perm_tree.rb_node; while (*p) { perm = rb_entry(*p, struct ceph_pool_perm, node); if (pool < perm->pool) p = &(*p)->rb_left; else if (pool > perm->pool) p = &(*p)->rb_right; else { int ret = ceph_compare_string(pool_ns, perm->pool_ns, perm->pool_ns_len); if (ret < 0) p = &(*p)->rb_left; else if (ret > 0) p = &(*p)->rb_right; else { have = perm->perm; break; } } } up_read(&mdsc->pool_perm_rwsem); if (*p) goto out; if (pool_ns) dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", pool, (int)pool_ns->len, pool_ns->str); else dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); down_write(&mdsc->pool_perm_rwsem); p = &mdsc->pool_perm_tree.rb_node; parent = NULL; while (*p) { parent = *p; perm = rb_entry(parent, struct ceph_pool_perm, node); if (pool < perm->pool) p = &(*p)->rb_left; else if (pool > perm->pool) p = &(*p)->rb_right; else { int ret = ceph_compare_string(pool_ns, perm->pool_ns, perm->pool_ns_len); if (ret < 0) p = &(*p)->rb_left; else if (ret > 0) p = &(*p)->rb_right; else { have = perm->perm; break; } } } if (*p) { up_write(&mdsc->pool_perm_rwsem); goto out; } rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1, false, GFP_NOFS); if (!rd_req) { err = -ENOMEM; goto out_unlock; } rd_req->r_flags = CEPH_OSD_FLAG_READ; osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); rd_req->r_base_oloc.pool = pool; if (pool_ns) rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); if (err) goto out_unlock; wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1, false, GFP_NOFS); if (!wr_req) { err = -ENOMEM; goto out_unlock; } wr_req->r_flags = CEPH_OSD_FLAG_WRITE; osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); if (err) goto out_unlock; /* one page should be large enough for STAT data */ pages = ceph_alloc_page_vector(1, GFP_KERNEL); if (IS_ERR(pages)) { err = PTR_ERR(pages); goto out_unlock; } osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 0, false, true); ceph_osdc_start_request(&fsc->client->osdc, rd_req); wr_req->r_mtime = ci->netfs.inode.i_mtime; ceph_osdc_start_request(&fsc->client->osdc, wr_req); err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); if (err >= 0 || err == -ENOENT) have |= POOL_READ; else if (err != -EPERM) { if (err == -EBLOCKLISTED) fsc->blocklisted = true; goto out_unlock; } if (err2 == 0 || err2 == -EEXIST) have |= POOL_WRITE; else if (err2 != -EPERM) { if (err2 == -EBLOCKLISTED) fsc->blocklisted = true; err = err2; goto out_unlock; } pool_ns_len = pool_ns ? pool_ns->len : 0; perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); if (!perm) { err = -ENOMEM; goto out_unlock; } perm->pool = pool; perm->perm = have; perm->pool_ns_len = pool_ns_len; if (pool_ns_len > 0) memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); perm->pool_ns[pool_ns_len] = 0; rb_link_node(&perm->node, parent, p); rb_insert_color(&perm->node, &mdsc->pool_perm_tree); err = 0; out_unlock: up_write(&mdsc->pool_perm_rwsem); ceph_osdc_put_request(rd_req); ceph_osdc_put_request(wr_req); out: if (!err) err = have; if (pool_ns) dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", pool, (int)pool_ns->len, pool_ns->str, err); else dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); return err; } int ceph_pool_perm_check(struct inode *inode, int need) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_string *pool_ns; s64 pool; int ret, flags; /* Only need to do this for regular files */ if (!S_ISREG(inode->i_mode)) return 0; if (ci->i_vino.snap != CEPH_NOSNAP) { /* * Pool permission check needs to write to the first object. * But for snapshot, head of the first object may have alread * been deleted. Skip check to avoid creating orphan object. */ return 0; } if (ceph_test_mount_opt(ceph_inode_to_fs_client(inode), NOPOOLPERM)) return 0; spin_lock(&ci->i_ceph_lock); flags = ci->i_ceph_flags; pool = ci->i_layout.pool_id; spin_unlock(&ci->i_ceph_lock); check: if (flags & CEPH_I_POOL_PERM) { if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { dout("ceph_pool_perm_check pool %lld no read perm\n", pool); return -EPERM; } if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { dout("ceph_pool_perm_check pool %lld no write perm\n", pool); return -EPERM; } return 0; } pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); ret = __ceph_pool_perm_get(ci, pool, pool_ns); ceph_put_string(pool_ns); if (ret < 0) return ret; flags = CEPH_I_POOL_PERM; if (ret & POOL_READ) flags |= CEPH_I_POOL_RD; if (ret & POOL_WRITE) flags |= CEPH_I_POOL_WR; spin_lock(&ci->i_ceph_lock); if (pool == ci->i_layout.pool_id && pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { ci->i_ceph_flags |= flags; } else { pool = ci->i_layout.pool_id; flags = ci->i_ceph_flags; } spin_unlock(&ci->i_ceph_lock); goto check; } void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) { struct ceph_pool_perm *perm; struct rb_node *n; while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { n = rb_first(&mdsc->pool_perm_tree); perm = rb_entry(n, struct ceph_pool_perm, node); rb_erase(n, &mdsc->pool_perm_tree); kfree(perm); } }