// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2013 Fusion IO. All rights reserved. */ #include #include #include #include #include #include "btrfs-tests.h" #include "../ctree.h" #include "../extent_io.h" #include "../disk-io.h" #include "../btrfs_inode.h" #define PROCESS_UNLOCK (1 << 0) #define PROCESS_RELEASE (1 << 1) #define PROCESS_TEST_LOCKED (1 << 2) static noinline int process_page_range(struct inode *inode, u64 start, u64 end, unsigned long flags) { int ret; struct folio_batch fbatch; unsigned long index = start >> PAGE_SHIFT; unsigned long end_index = end >> PAGE_SHIFT; int i; int count = 0; int loops = 0; folio_batch_init(&fbatch); while (index <= end_index) { ret = filemap_get_folios_contig(inode->i_mapping, &index, end_index, &fbatch); for (i = 0; i < ret; i++) { struct folio *folio = fbatch.folios[i]; if (flags & PROCESS_TEST_LOCKED && !folio_test_locked(folio)) count++; if (flags & PROCESS_UNLOCK && folio_test_locked(folio)) folio_unlock(folio); if (flags & PROCESS_RELEASE) folio_put(folio); } folio_batch_release(&fbatch); cond_resched(); loops++; if (loops > 100000) { printk(KERN_ERR "stuck in a loop, start %llu, end %llu, ret %d\n", start, end, ret); break; } } return count; } #define STATE_FLAG_STR_LEN 256 #define PRINT_ONE_FLAG(state, dest, cur, name) \ ({ \ if (state->state & EXTENT_##name) \ cur += scnprintf(dest + cur, STATE_FLAG_STR_LEN - cur, \ "%s" #name, cur == 0 ? "" : "|"); \ }) static void extent_flag_to_str(const struct extent_state *state, char *dest) { int cur = 0; dest[0] = 0; PRINT_ONE_FLAG(state, dest, cur, DIRTY); PRINT_ONE_FLAG(state, dest, cur, UPTODATE); PRINT_ONE_FLAG(state, dest, cur, LOCKED); PRINT_ONE_FLAG(state, dest, cur, NEW); PRINT_ONE_FLAG(state, dest, cur, DELALLOC); PRINT_ONE_FLAG(state, dest, cur, DEFRAG); PRINT_ONE_FLAG(state, dest, cur, BOUNDARY); PRINT_ONE_FLAG(state, dest, cur, NODATASUM); PRINT_ONE_FLAG(state, dest, cur, CLEAR_META_RESV); PRINT_ONE_FLAG(state, dest, cur, NEED_WAIT); PRINT_ONE_FLAG(state, dest, cur, NORESERVE); PRINT_ONE_FLAG(state, dest, cur, QGROUP_RESERVED); PRINT_ONE_FLAG(state, dest, cur, CLEAR_DATA_RESV); } static void dump_extent_io_tree(const struct extent_io_tree *tree) { struct rb_node *node; char flags_str[STATE_FLAG_STR_LEN]; node = rb_first(&tree->state); test_msg("io tree content:"); while (node) { struct extent_state *state; state = rb_entry(node, struct extent_state, rb_node); extent_flag_to_str(state, flags_str); test_msg(" start=%llu len=%llu flags=%s", state->start, state->end + 1 - state->start, flags_str); node = rb_next(node); } } static int test_find_delalloc(u32 sectorsize, u32 nodesize) { struct btrfs_fs_info *fs_info; struct btrfs_root *root = NULL; struct inode *inode = NULL; struct extent_io_tree *tmp; struct page *page; struct page *locked_page = NULL; unsigned long index = 0; /* In this test we need at least 2 file extents at its maximum size */ u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; u64 total_dirty = 2 * max_bytes; u64 start, end, test_start; bool found; int ret = -EINVAL; test_msg("running find delalloc tests"); fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize); if (!fs_info) { test_std_err(TEST_ALLOC_FS_INFO); return -ENOMEM; } root = btrfs_alloc_dummy_root(fs_info); if (IS_ERR(root)) { test_std_err(TEST_ALLOC_ROOT); ret = PTR_ERR(root); goto out; } inode = btrfs_new_test_inode(); if (!inode) { test_std_err(TEST_ALLOC_INODE); ret = -ENOMEM; goto out; } tmp = &BTRFS_I(inode)->io_tree; BTRFS_I(inode)->root = root; /* * Passing NULL as we don't have fs_info but tracepoints are not used * at this point */ extent_io_tree_init(NULL, tmp, IO_TREE_SELFTEST); /* * First go through and create and mark all of our pages dirty, we pin * everything to make sure our pages don't get evicted and screw up our * test. */ for (index = 0; index < (total_dirty >> PAGE_SHIFT); index++) { page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); if (!page) { test_err("failed to allocate test page"); ret = -ENOMEM; goto out; } SetPageDirty(page); if (index) { unlock_page(page); } else { get_page(page); locked_page = page; } } /* Test this scenario * |--- delalloc ---| * |--- search ---| */ set_extent_bit(tmp, 0, sectorsize - 1, EXTENT_DELALLOC, NULL); start = 0; end = start + PAGE_SIZE - 1; found = find_lock_delalloc_range(inode, locked_page, &start, &end); if (!found) { test_err("should have found at least one delalloc"); goto out_bits; } if (start != 0 || end != (sectorsize - 1)) { test_err("expected start 0 end %u, got start %llu end %llu", sectorsize - 1, start, end); goto out_bits; } unlock_extent(tmp, start, end, NULL); unlock_page(locked_page); put_page(locked_page); /* * Test this scenario * * |--- delalloc ---| * |--- search ---| */ test_start = SZ_64M; locked_page = find_lock_page(inode->i_mapping, test_start >> PAGE_SHIFT); if (!locked_page) { test_err("couldn't find the locked page"); goto out_bits; } set_extent_bit(tmp, sectorsize, max_bytes - 1, EXTENT_DELALLOC, NULL); start = test_start; end = start + PAGE_SIZE - 1; found = find_lock_delalloc_range(inode, locked_page, &start, &end); if (!found) { test_err("couldn't find delalloc in our range"); goto out_bits; } if (start != test_start || end != max_bytes - 1) { test_err("expected start %llu end %llu, got start %llu, end %llu", test_start, max_bytes - 1, start, end); goto out_bits; } if (process_page_range(inode, start, end, PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) { test_err("there were unlocked pages in the range"); goto out_bits; } unlock_extent(tmp, start, end, NULL); /* locked_page was unlocked above */ put_page(locked_page); /* * Test this scenario * |--- delalloc ---| * |--- search ---| */ test_start = max_bytes + sectorsize; locked_page = find_lock_page(inode->i_mapping, test_start >> PAGE_SHIFT); if (!locked_page) { test_err("couldn't find the locked page"); goto out_bits; } start = test_start; end = start + PAGE_SIZE - 1; found = find_lock_delalloc_range(inode, locked_page, &start, &end); if (found) { test_err("found range when we shouldn't have"); goto out_bits; } if (end != test_start + PAGE_SIZE - 1) { test_err("did not return the proper end offset"); goto out_bits; } /* * Test this scenario * [------- delalloc -------| * [max_bytes]|-- search--| * * We are re-using our test_start from above since it works out well. */ set_extent_bit(tmp, max_bytes, total_dirty - 1, EXTENT_DELALLOC, NULL); start = test_start; end = start + PAGE_SIZE - 1; found = find_lock_delalloc_range(inode, locked_page, &start, &end); if (!found) { test_err("didn't find our range"); goto out_bits; } if (start != test_start || end != total_dirty - 1) { test_err("expected start %llu end %llu, got start %llu end %llu", test_start, total_dirty - 1, start, end); goto out_bits; } if (process_page_range(inode, start, end, PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) { test_err("pages in range were not all locked"); goto out_bits; } unlock_extent(tmp, start, end, NULL); /* * Now to test where we run into a page that is no longer dirty in the * range we want to find. */ page = find_get_page(inode->i_mapping, (max_bytes + SZ_1M) >> PAGE_SHIFT); if (!page) { test_err("couldn't find our page"); goto out_bits; } ClearPageDirty(page); put_page(page); /* We unlocked it in the previous test */ lock_page(locked_page); start = test_start; end = start + PAGE_SIZE - 1; /* * Currently if we fail to find dirty pages in the delalloc range we * will adjust max_bytes down to PAGE_SIZE and then re-search. If * this changes at any point in the future we will need to fix this * tests expected behavior. */ found = find_lock_delalloc_range(inode, locked_page, &start, &end); if (!found) { test_err("didn't find our range"); goto out_bits; } if (start != test_start && end != test_start + PAGE_SIZE - 1) { test_err("expected start %llu end %llu, got start %llu end %llu", test_start, test_start + PAGE_SIZE - 1, start, end); goto out_bits; } if (process_page_range(inode, start, end, PROCESS_TEST_LOCKED | PROCESS_UNLOCK)) { test_err("pages in range were not all locked"); goto out_bits; } ret = 0; out_bits: if (ret) dump_extent_io_tree(tmp); clear_extent_bits(tmp, 0, total_dirty - 1, (unsigned)-1); out: if (locked_page) put_page(locked_page); process_page_range(inode, 0, total_dirty - 1, PROCESS_UNLOCK | PROCESS_RELEASE); iput(inode); btrfs_free_dummy_root(root); btrfs_free_dummy_fs_info(fs_info); return ret; } static int check_eb_bitmap(unsigned long *bitmap, struct extent_buffer *eb) { unsigned long i; for (i = 0; i < eb->len * BITS_PER_BYTE; i++) { int bit, bit1; bit = !!test_bit(i, bitmap); bit1 = !!extent_buffer_test_bit(eb, 0, i); if (bit1 != bit) { u8 has; u8 expect; read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1); expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE)); test_err( "bits do not match, start byte 0 bit %lu, byte %lu has 0x%02x expect 0x%02x", i, i / BITS_PER_BYTE, has, expect); return -EINVAL; } bit1 = !!extent_buffer_test_bit(eb, i / BITS_PER_BYTE, i % BITS_PER_BYTE); if (bit1 != bit) { u8 has; u8 expect; read_extent_buffer(eb, &has, i / BITS_PER_BYTE, 1); expect = bitmap_get_value8(bitmap, ALIGN(i, BITS_PER_BYTE)); test_err( "bits do not match, start byte %lu bit %lu, byte %lu has 0x%02x expect 0x%02x", i / BITS_PER_BYTE, i % BITS_PER_BYTE, i / BITS_PER_BYTE, has, expect); return -EINVAL; } } return 0; } static int test_bitmap_set(const char *name, unsigned long *bitmap, struct extent_buffer *eb, unsigned long byte_start, unsigned long bit_start, unsigned long bit_len) { int ret; bitmap_set(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len); extent_buffer_bitmap_set(eb, byte_start, bit_start, bit_len); ret = check_eb_bitmap(bitmap, eb); if (ret < 0) test_err("%s test failed", name); return ret; } static int test_bitmap_clear(const char *name, unsigned long *bitmap, struct extent_buffer *eb, unsigned long byte_start, unsigned long bit_start, unsigned long bit_len) { int ret; bitmap_clear(bitmap, byte_start * BITS_PER_BYTE + bit_start, bit_len); extent_buffer_bitmap_clear(eb, byte_start, bit_start, bit_len); ret = check_eb_bitmap(bitmap, eb); if (ret < 0) test_err("%s test failed", name); return ret; } static int __test_eb_bitmaps(unsigned long *bitmap, struct extent_buffer *eb) { unsigned long i, j; unsigned long byte_len = eb->len; u32 x; int ret; ret = test_bitmap_clear("clear all run 1", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE); if (ret < 0) return ret; ret = test_bitmap_set("set all", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE); if (ret < 0) return ret; ret = test_bitmap_clear("clear all run 2", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE); if (ret < 0) return ret; ret = test_bitmap_set("same byte set", bitmap, eb, 0, 2, 4); if (ret < 0) return ret; ret = test_bitmap_clear("same byte partial clear", bitmap, eb, 0, 4, 1); if (ret < 0) return ret; ret = test_bitmap_set("cross byte set", bitmap, eb, 2, 4, 8); if (ret < 0) return ret; ret = test_bitmap_set("cross multi byte set", bitmap, eb, 4, 4, 24); if (ret < 0) return ret; ret = test_bitmap_clear("cross byte clear", bitmap, eb, 2, 6, 4); if (ret < 0) return ret; ret = test_bitmap_clear("cross multi byte clear", bitmap, eb, 4, 6, 20); if (ret < 0) return ret; /* Straddling pages test */ if (byte_len > PAGE_SIZE) { ret = test_bitmap_set("cross page set", bitmap, eb, PAGE_SIZE - sizeof(long) / 2, 0, sizeof(long) * BITS_PER_BYTE); if (ret < 0) return ret; ret = test_bitmap_set("cross page set all", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE); if (ret < 0) return ret; ret = test_bitmap_clear("cross page clear", bitmap, eb, PAGE_SIZE - sizeof(long) / 2, 0, sizeof(long) * BITS_PER_BYTE); if (ret < 0) return ret; } /* * Generate a wonky pseudo-random bit pattern for the sake of not using * something repetitive that could miss some hypothetical off-by-n bug. */ x = 0; ret = test_bitmap_clear("clear all run 3", bitmap, eb, 0, 0, byte_len * BITS_PER_BYTE); if (ret < 0) return ret; for (i = 0; i < byte_len * BITS_PER_BYTE / 32; i++) { x = (0x19660dULL * (u64)x + 0x3c6ef35fULL) & 0xffffffffU; for (j = 0; j < 32; j++) { if (x & (1U << j)) { bitmap_set(bitmap, i * 32 + j, 1); extent_buffer_bitmap_set(eb, 0, i * 32 + j, 1); } } } ret = check_eb_bitmap(bitmap, eb); if (ret) { test_err("random bit pattern failed"); return ret; } return 0; } static int test_eb_bitmaps(u32 sectorsize, u32 nodesize) { struct btrfs_fs_info *fs_info; unsigned long *bitmap = NULL; struct extent_buffer *eb = NULL; int ret; test_msg("running extent buffer bitmap tests"); fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize); if (!fs_info) { test_std_err(TEST_ALLOC_FS_INFO); return -ENOMEM; } bitmap = kmalloc(nodesize, GFP_KERNEL); if (!bitmap) { test_err("couldn't allocate test bitmap"); ret = -ENOMEM; goto out; } eb = __alloc_dummy_extent_buffer(fs_info, 0, nodesize); if (!eb) { test_std_err(TEST_ALLOC_ROOT); ret = -ENOMEM; goto out; } ret = __test_eb_bitmaps(bitmap, eb); if (ret) goto out; free_extent_buffer(eb); /* * Test again for case where the tree block is sectorsize aligned but * not nodesize aligned. */ eb = __alloc_dummy_extent_buffer(fs_info, sectorsize, nodesize); if (!eb) { test_std_err(TEST_ALLOC_ROOT); ret = -ENOMEM; goto out; } ret = __test_eb_bitmaps(bitmap, eb); out: free_extent_buffer(eb); kfree(bitmap); btrfs_free_dummy_fs_info(fs_info); return ret; } static int test_find_first_clear_extent_bit(void) { struct extent_io_tree tree; u64 start, end; int ret = -EINVAL; test_msg("running find_first_clear_extent_bit test"); extent_io_tree_init(NULL, &tree, IO_TREE_SELFTEST); /* Test correct handling of empty tree */ find_first_clear_extent_bit(&tree, 0, &start, &end, CHUNK_TRIMMED); if (start != 0 || end != -1) { test_err( "error getting a range from completely empty tree: start %llu end %llu", start, end); goto out; } /* * Set 1M-4M alloc/discard and 32M-64M thus leaving a hole between * 4M-32M */ set_extent_bit(&tree, SZ_1M, SZ_4M - 1, CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL); find_first_clear_extent_bit(&tree, SZ_512K, &start, &end, CHUNK_TRIMMED | CHUNK_ALLOCATED); if (start != 0 || end != SZ_1M - 1) { test_err("error finding beginning range: start %llu end %llu", start, end); goto out; } /* Now add 32M-64M so that we have a hole between 4M-32M */ set_extent_bit(&tree, SZ_32M, SZ_64M - 1, CHUNK_TRIMMED | CHUNK_ALLOCATED, NULL); /* * Request first hole starting at 12M, we should get 4M-32M */ find_first_clear_extent_bit(&tree, 12 * SZ_1M, &start, &end, CHUNK_TRIMMED | CHUNK_ALLOCATED); if (start != SZ_4M || end != SZ_32M - 1) { test_err("error finding trimmed range: start %llu end %llu", start, end); goto out; } /* * Search in the middle of allocated range, should get the next one * available, which happens to be unallocated -> 4M-32M */ find_first_clear_extent_bit(&tree, SZ_2M, &start, &end, CHUNK_TRIMMED | CHUNK_ALLOCATED); if (start != SZ_4M || end != SZ_32M - 1) { test_err("error finding next unalloc range: start %llu end %llu", start, end); goto out; } /* * Set 64M-72M with CHUNK_ALLOC flag, then search for CHUNK_TRIMMED flag * being unset in this range, we should get the entry in range 64M-72M */ set_extent_bit(&tree, SZ_64M, SZ_64M + SZ_8M - 1, CHUNK_ALLOCATED, NULL); find_first_clear_extent_bit(&tree, SZ_64M + SZ_1M, &start, &end, CHUNK_TRIMMED); if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) { test_err("error finding exact range: start %llu end %llu", start, end); goto out; } find_first_clear_extent_bit(&tree, SZ_64M - SZ_8M, &start, &end, CHUNK_TRIMMED); /* * Search in the middle of set range whose immediate neighbour doesn't * have the bits set so it must be returned */ if (start != SZ_64M || end != SZ_64M + SZ_8M - 1) { test_err("error finding next alloc range: start %llu end %llu", start, end); goto out; } /* * Search beyond any known range, shall return after last known range * and end should be -1 */ find_first_clear_extent_bit(&tree, -1, &start, &end, CHUNK_TRIMMED); if (start != SZ_64M + SZ_8M || end != -1) { test_err( "error handling beyond end of range search: start %llu end %llu", start, end); goto out; } ret = 0; out: if (ret) dump_extent_io_tree(&tree); clear_extent_bits(&tree, 0, (u64)-1, CHUNK_TRIMMED | CHUNK_ALLOCATED); return ret; } static void dump_eb_and_memory_contents(struct extent_buffer *eb, void *memory, const char *test_name) { for (int i = 0; i < eb->len; i++) { struct page *page = eb->pages[i >> PAGE_SHIFT]; void *addr = page_address(page) + offset_in_page(i); if (memcmp(addr, memory + i, 1) != 0) { test_err("%s failed", test_name); test_err("eb and memory diffs at byte %u, eb has 0x%02x memory has 0x%02x", i, *(u8 *)addr, *(u8 *)(memory + i)); return; } } } static int verify_eb_and_memory(struct extent_buffer *eb, void *memory, const char *test_name) { for (int i = 0; i < (eb->len >> PAGE_SHIFT); i++) { void *eb_addr = page_address(eb->pages[i]); if (memcmp(memory + (i << PAGE_SHIFT), eb_addr, PAGE_SIZE) != 0) { dump_eb_and_memory_contents(eb, memory, test_name); return -EUCLEAN; } } return 0; } /* * Init both memory and extent buffer contents to the same randomly generated * contents. */ static void init_eb_and_memory(struct extent_buffer *eb, void *memory) { get_random_bytes(memory, eb->len); write_extent_buffer(eb, memory, 0, eb->len); } static int test_eb_mem_ops(u32 sectorsize, u32 nodesize) { struct btrfs_fs_info *fs_info; struct extent_buffer *eb = NULL; void *memory = NULL; int ret; test_msg("running extent buffer memory operation tests"); fs_info = btrfs_alloc_dummy_fs_info(nodesize, sectorsize); if (!fs_info) { test_std_err(TEST_ALLOC_FS_INFO); return -ENOMEM; } memory = kvzalloc(nodesize, GFP_KERNEL); if (!memory) { test_err("failed to allocate memory"); ret = -ENOMEM; goto out; } eb = __alloc_dummy_extent_buffer(fs_info, SZ_1M, nodesize); if (!eb) { test_std_err(TEST_ALLOC_EXTENT_BUFFER); ret = -ENOMEM; goto out; } init_eb_and_memory(eb, memory); ret = verify_eb_and_memory(eb, memory, "full eb write"); if (ret < 0) goto out; memcpy(memory, memory + 16, 16); memcpy_extent_buffer(eb, 0, 16, 16); ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 1"); if (ret < 0) goto out; memcpy(memory, memory + 2048, 16); memcpy_extent_buffer(eb, 0, 2048, 16); ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 2"); if (ret < 0) goto out; memcpy(memory, memory + 2048, 2048); memcpy_extent_buffer(eb, 0, 2048, 2048); ret = verify_eb_and_memory(eb, memory, "same page non-overlapping memcpy 3"); if (ret < 0) goto out; memmove(memory + 512, memory + 256, 512); memmove_extent_buffer(eb, 512, 256, 512); ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 1"); if (ret < 0) goto out; memmove(memory + 2048, memory + 512, 2048); memmove_extent_buffer(eb, 2048, 512, 2048); ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 2"); if (ret < 0) goto out; memmove(memory + 512, memory + 2048, 2048); memmove_extent_buffer(eb, 512, 2048, 2048); ret = verify_eb_and_memory(eb, memory, "same page overlapping memcpy 3"); if (ret < 0) goto out; if (nodesize > PAGE_SIZE) { memcpy(memory, memory + 4096 - 128, 256); memcpy_extent_buffer(eb, 0, 4096 - 128, 256); ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 1"); if (ret < 0) goto out; memcpy(memory + 4096 - 128, memory + 4096 + 128, 256); memcpy_extent_buffer(eb, 4096 - 128, 4096 + 128, 256); ret = verify_eb_and_memory(eb, memory, "cross page non-overlapping memcpy 2"); if (ret < 0) goto out; memmove(memory + 4096 - 128, memory + 4096 - 64, 256); memmove_extent_buffer(eb, 4096 - 128, 4096 - 64, 256); ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 1"); if (ret < 0) goto out; memmove(memory + 4096 - 64, memory + 4096 - 128, 256); memmove_extent_buffer(eb, 4096 - 64, 4096 - 128, 256); ret = verify_eb_and_memory(eb, memory, "cross page overlapping memcpy 2"); if (ret < 0) goto out; } out: free_extent_buffer(eb); kvfree(memory); btrfs_free_dummy_fs_info(fs_info); return ret; } int btrfs_test_extent_io(u32 sectorsize, u32 nodesize) { int ret; test_msg("running extent I/O tests"); ret = test_find_delalloc(sectorsize, nodesize); if (ret) goto out; ret = test_find_first_clear_extent_bit(); if (ret) goto out; ret = test_eb_bitmaps(sectorsize, nodesize); if (ret) goto out; ret = test_eb_mem_ops(sectorsize, nodesize); out: return ret; }