/* * drivers/video/asiliantfb.c * frame buffer driver for Asiliant 69000 chip * Copyright (C) 2001-2003 Saito.K & Jeanne * * from driver/video/chipsfb.c and, * * drivers/video/asiliantfb.c -- frame buffer device for * Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies) * Author: apc@agelectronics.co.uk * Copyright (C) 2000 AG Electronics * Note: the data sheets don't seem to be available from Asiliant. * They are available by searching developer.intel.com, but are not otherwise * linked to. * * This driver should be portable with minimal effort to the 69000 display * chip, and to the twin-display mode of the 69030. * Contains code from Thomas Hhenleitner (thanks) * * Derived from the CT65550 driver chipsfb.c: * Copyright (C) 1998 Paul Mackerras * ...which was derived from the Powermac "chips" driver: * Copyright (C) 1997 Fabio Riccardi. * And from the frame buffer device for Open Firmware-initialized devices: * Copyright (C) 1997 Geert Uytterhoeven. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Built in clock of the 69030 */ static const unsigned Fref = 14318180; #define mmio_base (p->screen_base + 0x400000) #define mm_write_ind(num, val, ap, dp) do { \ writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \ } while (0) static void mm_write_xr(struct fb_info *p, u8 reg, u8 data) { mm_write_ind(reg, data, 0x7ac, 0x7ad); } #define write_xr(num, val) mm_write_xr(p, num, val) static void mm_write_fr(struct fb_info *p, u8 reg, u8 data) { mm_write_ind(reg, data, 0x7a0, 0x7a1); } #define write_fr(num, val) mm_write_fr(p, num, val) static void mm_write_cr(struct fb_info *p, u8 reg, u8 data) { mm_write_ind(reg, data, 0x7a8, 0x7a9); } #define write_cr(num, val) mm_write_cr(p, num, val) static void mm_write_gr(struct fb_info *p, u8 reg, u8 data) { mm_write_ind(reg, data, 0x79c, 0x79d); } #define write_gr(num, val) mm_write_gr(p, num, val) static void mm_write_sr(struct fb_info *p, u8 reg, u8 data) { mm_write_ind(reg, data, 0x788, 0x789); } #define write_sr(num, val) mm_write_sr(p, num, val) static void mm_write_ar(struct fb_info *p, u8 reg, u8 data) { readb(mmio_base + 0x7b4); mm_write_ind(reg, data, 0x780, 0x780); } #define write_ar(num, val) mm_write_ar(p, num, val) static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *); static int asiliantfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info); static int asiliantfb_set_par(struct fb_info *info); static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info); static const struct fb_ops asiliantfb_ops = { .owner = THIS_MODULE, .fb_check_var = asiliantfb_check_var, .fb_set_par = asiliantfb_set_par, .fb_setcolreg = asiliantfb_setcolreg, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, }; /* Calculate the ratios for the dot clocks without using a single long long * value */ static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div) { unsigned pixclock = *ppixclock; unsigned Ftarget; unsigned n; unsigned best_error = 0xffffffff; unsigned best_m = 0xffffffff, best_n = 0xffffffff; unsigned ratio; unsigned remainder; unsigned char divisor = 0; /* Calculate the frequency required. This is hard enough. */ ratio = 1000000 / pixclock; remainder = 1000000 % pixclock; Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock; while (Ftarget < 100000000) { divisor += 0x10; Ftarget <<= 1; } ratio = Ftarget / Fref; remainder = Ftarget % Fref; /* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz, * together with 3 <= n <= 257. */ for (n = 3; n <= 257; n++) { unsigned m = n * ratio + (n * remainder) / Fref; /* 3 <= m <= 257 */ if (m >= 3 && m <= 257) { unsigned new_error = Ftarget * n >= Fref * m ? ((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n)); if (new_error < best_error) { best_n = n; best_m = m; best_error = new_error; } } /* But if VLD = 4, then 4m <= 1028 */ else if (m <= 1028) { /* remember there are still only 8-bits of precision in m, so * avoid over-optimistic error calculations */ unsigned new_error = Ftarget * n >= Fref * (m & ~3) ? ((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n)); if (new_error < best_error) { best_n = n; best_m = m; best_error = new_error; } } } if (best_m > 257) best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */ else divisor |= 4; /* or set VCO loop divide to 1 */ *dclk2_m = best_m - 2; *dclk2_n = best_n - 2; *dclk2_div = divisor; *ppixclock = pixclock; return; } static void asiliant_set_timing(struct fb_info *p) { unsigned hd = p->var.xres / 8; unsigned hs = (p->var.xres + p->var.right_margin) / 8; unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8; unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8; unsigned vd = p->var.yres; unsigned vs = p->var.yres + p->var.lower_margin; unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len; unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len; unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8; if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) { write_fr(0x01, 0x02); /* LCD */ } else { write_fr(0x01, 0x01); /* CRT */ } write_cr(0x11, (ve - 1) & 0x0f); write_cr(0x00, (ht - 5) & 0xff); write_cr(0x01, hd - 1); write_cr(0x02, hd); write_cr(0x03, ((ht - 1) & 0x1f) | 0x80); write_cr(0x04, hs); write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f)); write_cr(0x3c, (ht - 1) & 0xc0); write_cr(0x06, (vt - 2) & 0xff); write_cr(0x30, (vt - 2) >> 8); write_cr(0x07, 0x00); write_cr(0x08, 0x00); write_cr(0x09, 0x00); write_cr(0x10, (vs - 1) & 0xff); write_cr(0x32, ((vs - 1) >> 8) & 0xf); write_cr(0x11, ((ve - 1) & 0x0f) | 0x80); write_cr(0x12, (vd - 1) & 0xff); write_cr(0x31, ((vd - 1) & 0xf00) >> 8); write_cr(0x13, wd & 0xff); write_cr(0x41, (wd & 0xf00) >> 8); write_cr(0x15, (vs - 1) & 0xff); write_cr(0x33, ((vs - 1) >> 8) & 0xf); write_cr(0x38, ((ht - 5) & 0x100) >> 8); write_cr(0x16, (vt - 1) & 0xff); write_cr(0x18, 0x00); if (p->var.xres == 640) { writeb(0xc7, mmio_base + 0x784); /* set misc output reg */ } else { writeb(0x07, mmio_base + 0x784); /* set misc output reg */ } } static int asiliantfb_check_var(struct fb_var_screeninfo *var, struct fb_info *p) { unsigned long Ftarget, ratio, remainder; if (!var->pixclock) return -EINVAL; ratio = 1000000 / var->pixclock; remainder = 1000000 % var->pixclock; Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock; /* First check the constraint that the maximum post-VCO divisor is 32, * and the maximum Fvco is 220MHz */ if (Ftarget > 220000000 || Ftarget < 3125000) { printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n"); return -ENXIO; } var->xres_virtual = var->xres; var->yres_virtual = var->yres; if (var->bits_per_pixel == 24) { var->red.offset = 16; var->green.offset = 8; var->blue.offset = 0; var->red.length = var->blue.length = var->green.length = 8; } else if (var->bits_per_pixel == 16) { switch (var->red.offset) { case 11: var->green.length = 6; break; case 10: var->green.length = 5; break; default: return -EINVAL; } var->green.offset = 5; var->blue.offset = 0; var->red.length = var->blue.length = 5; } else if (var->bits_per_pixel == 8) { var->red.offset = var->green.offset = var->blue.offset = 0; var->red.length = var->green.length = var->blue.length = 8; } return 0; } static int asiliantfb_set_par(struct fb_info *p) { u8 dclk2_m; /* Holds m-2 value for register */ u8 dclk2_n; /* Holds n-2 value for register */ u8 dclk2_div; /* Holds divisor bitmask */ /* Set pixclock */ asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div); /* Set color depth */ if (p->var.bits_per_pixel == 24) { write_xr(0x81, 0x16); /* 24 bit packed color mode */ write_xr(0x82, 0x00); /* Disable palettes */ write_xr(0x20, 0x20); /* 24 bit blitter mode */ } else if (p->var.bits_per_pixel == 16) { if (p->var.red.offset == 11) write_xr(0x81, 0x15); /* 16 bit color mode */ else write_xr(0x81, 0x14); /* 15 bit color mode */ write_xr(0x82, 0x00); /* Disable palettes */ write_xr(0x20, 0x10); /* 16 bit blitter mode */ } else if (p->var.bits_per_pixel == 8) { write_xr(0x0a, 0x02); /* Linear */ write_xr(0x81, 0x12); /* 8 bit color mode */ write_xr(0x82, 0x00); /* Graphics gamma enable */ write_xr(0x20, 0x00); /* 8 bit blitter mode */ } p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3); p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; write_xr(0xc4, dclk2_m); write_xr(0xc5, dclk2_n); write_xr(0xc7, dclk2_div); /* Set up the CR registers */ asiliant_set_timing(p); return 0; } static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *p) { if (regno > 255) return 1; red >>= 8; green >>= 8; blue >>= 8; /* Set hardware palete */ writeb(regno, mmio_base + 0x790); udelay(1); writeb(red, mmio_base + 0x791); writeb(green, mmio_base + 0x791); writeb(blue, mmio_base + 0x791); if (regno < 16) { switch(p->var.red.offset) { case 10: /* RGB 555 */ ((u32 *)(p->pseudo_palette))[regno] = ((red & 0xf8) << 7) | ((green & 0xf8) << 2) | ((blue & 0xf8) >> 3); break; case 11: /* RGB 565 */ ((u32 *)(p->pseudo_palette))[regno] = ((red & 0xf8) << 8) | ((green & 0xfc) << 3) | ((blue & 0xf8) >> 3); break; case 16: /* RGB 888 */ ((u32 *)(p->pseudo_palette))[regno] = (red << 16) | (green << 8) | (blue); break; } } return 0; } struct chips_init_reg { unsigned char addr; unsigned char data; }; static struct chips_init_reg chips_init_sr[] = { {0x00, 0x03}, /* Reset register */ {0x01, 0x01}, /* Clocking mode */ {0x02, 0x0f}, /* Plane mask */ {0x04, 0x0e} /* Memory mode */ }; static struct chips_init_reg chips_init_gr[] = { {0x03, 0x00}, /* Data rotate */ {0x05, 0x00}, /* Graphics mode */ {0x06, 0x01}, /* Miscellaneous */ {0x08, 0x00} /* Bit mask */ }; static struct chips_init_reg chips_init_ar[] = { {0x10, 0x01}, /* Mode control */ {0x11, 0x00}, /* Overscan */ {0x12, 0x0f}, /* Memory plane enable */ {0x13, 0x00} /* Horizontal pixel panning */ }; static struct chips_init_reg chips_init_cr[] = { {0x0c, 0x00}, /* Start address high */ {0x0d, 0x00}, /* Start address low */ {0x40, 0x00}, /* Extended Start Address */ {0x41, 0x00}, /* Extended Start Address */ {0x14, 0x00}, /* Underline location */ {0x17, 0xe3}, /* CRT mode control */ {0x70, 0x00} /* Interlace control */ }; static struct chips_init_reg chips_init_fr[] = { {0x01, 0x02}, {0x03, 0x08}, {0x08, 0xcc}, {0x0a, 0x08}, {0x18, 0x00}, {0x1e, 0x80}, {0x40, 0x83}, {0x41, 0x00}, {0x48, 0x13}, {0x4d, 0x60}, {0x4e, 0x0f}, {0x0b, 0x01}, {0x21, 0x51}, {0x22, 0x1d}, {0x23, 0x5f}, {0x20, 0x4f}, {0x34, 0x00}, {0x24, 0x51}, {0x25, 0x00}, {0x27, 0x0b}, {0x26, 0x00}, {0x37, 0x80}, {0x33, 0x0b}, {0x35, 0x11}, {0x36, 0x02}, {0x31, 0xea}, {0x32, 0x0c}, {0x30, 0xdf}, {0x10, 0x0c}, {0x11, 0xe0}, {0x12, 0x50}, {0x13, 0x00}, {0x16, 0x03}, {0x17, 0xbd}, {0x1a, 0x00}, }; static struct chips_init_reg chips_init_xr[] = { {0xce, 0x00}, /* set default memory clock */ {0xcc, 200 }, /* MCLK ratio M */ {0xcd, 18 }, /* MCLK ratio N */ {0xce, 0x90}, /* MCLK divisor = 2 */ {0xc4, 209 }, {0xc5, 118 }, {0xc7, 32 }, {0xcf, 0x06}, {0x09, 0x01}, /* IO Control - CRT controller extensions */ {0x0a, 0x02}, /* Frame buffer mapping */ {0x0b, 0x01}, /* PCI burst write */ {0x40, 0x03}, /* Memory access control */ {0x80, 0x82}, /* Pixel pipeline configuration 0 */ {0x81, 0x12}, /* Pixel pipeline configuration 1 */ {0x82, 0x08}, /* Pixel pipeline configuration 2 */ {0xd0, 0x0f}, {0xd1, 0x01}, }; static void chips_hw_init(struct fb_info *p) { int i; for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i) write_xr(chips_init_xr[i].addr, chips_init_xr[i].data); write_xr(0x81, 0x12); write_xr(0x82, 0x08); write_xr(0x20, 0x00); for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i) write_sr(chips_init_sr[i].addr, chips_init_sr[i].data); for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i) write_gr(chips_init_gr[i].addr, chips_init_gr[i].data); for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i) write_ar(chips_init_ar[i].addr, chips_init_ar[i].data); /* Enable video output in attribute index register */ writeb(0x20, mmio_base + 0x780); for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i) write_cr(chips_init_cr[i].addr, chips_init_cr[i].data); for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i) write_fr(chips_init_fr[i].addr, chips_init_fr[i].data); } static const struct fb_fix_screeninfo asiliantfb_fix = { .id = "Asiliant 69000", .type = FB_TYPE_PACKED_PIXELS, .visual = FB_VISUAL_PSEUDOCOLOR, .accel = FB_ACCEL_NONE, .line_length = 640, .smem_len = 0x200000, /* 2MB */ }; static const struct fb_var_screeninfo asiliantfb_var = { .xres = 640, .yres = 480, .xres_virtual = 640, .yres_virtual = 480, .bits_per_pixel = 8, .red = { .length = 8 }, .green = { .length = 8 }, .blue = { .length = 8 }, .height = -1, .width = -1, .vmode = FB_VMODE_NONINTERLACED, .pixclock = 39722, .left_margin = 48, .right_margin = 16, .upper_margin = 33, .lower_margin = 10, .hsync_len = 96, .vsync_len = 2, }; static int init_asiliant(struct fb_info *p, unsigned long addr) { int err; p->fix = asiliantfb_fix; p->fix.smem_start = addr; p->var = asiliantfb_var; p->fbops = &asiliantfb_ops; err = fb_alloc_cmap(&p->cmap, 256, 0); if (err) { printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n"); return err; } err = register_framebuffer(p); if (err < 0) { printk(KERN_ERR "C&T 69000 framebuffer failed to register\n"); fb_dealloc_cmap(&p->cmap); return err; } fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n", p->fix.smem_len / 1024); writeb(0xff, mmio_base + 0x78c); chips_hw_init(p); return 0; } static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *ent) { unsigned long addr, size; struct fb_info *p; int err; err = aperture_remove_conflicting_pci_devices(dp, "asiliantfb"); if (err) return err; if ((dp->resource[0].flags & IORESOURCE_MEM) == 0) return -ENODEV; addr = pci_resource_start(dp, 0); size = pci_resource_len(dp, 0); if (addr == 0) return -ENODEV; if (!request_mem_region(addr, size, "asiliantfb")) return -EBUSY; p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev); if (!p) { release_mem_region(addr, size); return -ENOMEM; } p->pseudo_palette = p->par; p->par = NULL; p->screen_base = ioremap(addr, 0x800000); if (p->screen_base == NULL) { release_mem_region(addr, size); framebuffer_release(p); return -ENOMEM; } pci_write_config_dword(dp, 4, 0x02800083); writeb(3, p->screen_base + 0x400784); err = init_asiliant(p, addr); if (err) { iounmap(p->screen_base); release_mem_region(addr, size); framebuffer_release(p); return err; } pci_set_drvdata(dp, p); return 0; } static void asiliantfb_remove(struct pci_dev *dp) { struct fb_info *p = pci_get_drvdata(dp); unregister_framebuffer(p); fb_dealloc_cmap(&p->cmap); iounmap(p->screen_base); release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0)); framebuffer_release(p); } static const struct pci_device_id asiliantfb_pci_tbl[] = { { PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID }, { 0 } }; MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl); static struct pci_driver asiliantfb_driver = { .name = "asiliantfb", .id_table = asiliantfb_pci_tbl, .probe = asiliantfb_pci_init, .remove = asiliantfb_remove, }; static int __init asiliantfb_init(void) { if (fb_modesetting_disabled("asiliantfb")) return -ENODEV; if (fb_get_options("asiliantfb", NULL)) return -ENODEV; return pci_register_driver(&asiliantfb_driver); } module_init(asiliantfb_init); static void __exit asiliantfb_exit(void) { pci_unregister_driver(&asiliantfb_driver); } MODULE_LICENSE("GPL");