// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2021, HiSilicon Ltd.
 */

#include <linux/device.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include <linux/hisi_acc_qm.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/vfio.h>
#include <linux/vfio_pci_core.h>
#include <linux/anon_inodes.h>

#include "hisi_acc_vfio_pci.h"

/* Return 0 on VM acc device ready, -ETIMEDOUT hardware timeout */
static int qm_wait_dev_not_ready(struct hisi_qm *qm)
{
	u32 val;

	return readl_relaxed_poll_timeout(qm->io_base + QM_VF_STATE,
				val, !(val & 0x1), MB_POLL_PERIOD_US,
				MB_POLL_TIMEOUT_US);
}

/*
 * Each state Reg is checked 100 times,
 * with a delay of 100 microseconds after each check
 */
static u32 qm_check_reg_state(struct hisi_qm *qm, u32 regs)
{
	int check_times = 0;
	u32 state;

	state = readl(qm->io_base + regs);
	while (state && check_times < ERROR_CHECK_TIMEOUT) {
		udelay(CHECK_DELAY_TIME);
		state = readl(qm->io_base + regs);
		check_times++;
	}

	return state;
}

static int qm_read_regs(struct hisi_qm *qm, u32 reg_addr,
			u32 *data, u8 nums)
{
	int i;

	if (nums < 1 || nums > QM_REGS_MAX_LEN)
		return -EINVAL;

	for (i = 0; i < nums; i++) {
		data[i] = readl(qm->io_base + reg_addr);
		reg_addr += QM_REG_ADDR_OFFSET;
	}

	return 0;
}

static int qm_write_regs(struct hisi_qm *qm, u32 reg,
			 u32 *data, u8 nums)
{
	int i;

	if (nums < 1 || nums > QM_REGS_MAX_LEN)
		return -EINVAL;

	for (i = 0; i < nums; i++)
		writel(data[i], qm->io_base + reg + i * QM_REG_ADDR_OFFSET);

	return 0;
}

static int qm_get_vft(struct hisi_qm *qm, u32 *base)
{
	u64 sqc_vft;
	u32 qp_num;
	int ret;

	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
	if (ret)
		return ret;

	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
		  QM_XQC_ADDR_OFFSET);
	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
	qp_num = (QM_SQC_VFT_NUM_MASK_V2 &
		  (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;

	return qp_num;
}

static int qm_get_sqc(struct hisi_qm *qm, u64 *addr)
{
	int ret;

	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, 0, 0, 1);
	if (ret)
		return ret;

	*addr = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
		  QM_XQC_ADDR_OFFSET);

	return 0;
}

static int qm_get_cqc(struct hisi_qm *qm, u64 *addr)
{
	int ret;

	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, 0, 0, 1);
	if (ret)
		return ret;

	*addr = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
		  QM_XQC_ADDR_OFFSET);

	return 0;
}

static int qm_get_regs(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
	struct device *dev = &qm->pdev->dev;
	int ret;

	ret = qm_read_regs(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_VF_AEQ_INT_MASK\n");
		return ret;
	}

	ret = qm_read_regs(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_VF_EQ_INT_MASK\n");
		return ret;
	}

	ret = qm_read_regs(qm, QM_IFC_INT_SOURCE_V,
			   &vf_data->ifc_int_source, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_SOURCE_V\n");
		return ret;
	}

	ret = qm_read_regs(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_MASK\n");
		return ret;
	}

	ret = qm_read_regs(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_IFC_INT_SET_V\n");
		return ret;
	}

	ret = qm_read_regs(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_PAGE_SIZE\n");
		return ret;
	}

	/* QM_EQC_DW has 7 regs */
	ret = qm_read_regs(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to read QM_EQC_DW\n");
		return ret;
	}

	/* QM_AEQC_DW has 7 regs */
	ret = qm_read_regs(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to read QM_AEQC_DW\n");
		return ret;
	}

	return 0;
}

static int qm_set_regs(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
	struct device *dev = &qm->pdev->dev;
	int ret;

	/* Check VF state */
	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
		dev_err(&qm->pdev->dev, "QM device is not ready to write\n");
		return -EBUSY;
	}

	ret = qm_write_regs(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_AEQ_INT_MASK\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_EQ_INT_MASK\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_IFC_INT_SOURCE_V,
			    &vf_data->ifc_int_source, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_SOURCE_V\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_MASK\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_IFC_INT_SET_V\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_QUE_ISO_CFG_V, &vf_data->que_iso_cfg, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_QUE_ISO_CFG_V\n");
		return ret;
	}

	ret = qm_write_regs(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_PAGE_SIZE\n");
		return ret;
	}

	/* QM_EQC_DW has 7 regs */
	ret = qm_write_regs(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to write QM_EQC_DW\n");
		return ret;
	}

	/* QM_AEQC_DW has 7 regs */
	ret = qm_write_regs(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
	if (ret) {
		dev_err(dev, "failed to write QM_AEQC_DW\n");
		return ret;
	}

	return 0;
}

static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd,
		  u16 index, u8 priority)
{
	u64 doorbell;
	u64 dbase;
	u16 randata = 0;

	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
		dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
	else
		dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;

	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);

	writeq(doorbell, qm->io_base + dbase);
}

static int pf_qm_get_qp_num(struct hisi_qm *qm, int vf_id, u32 *rbase)
{
	unsigned int val;
	u64 sqc_vft;
	u32 qp_num;
	int ret;

	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
					 val & BIT(0), MB_POLL_PERIOD_US,
					 MB_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
	/* 0 mean SQC VFT */
	writel(0x0, qm->io_base + QM_VFT_CFG_TYPE);
	writel(vf_id, qm->io_base + QM_VFT_CFG);

	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);

	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
					 val & BIT(0), MB_POLL_PERIOD_US,
					 MB_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	sqc_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) <<
		  QM_XQC_ADDR_OFFSET);
	*rbase = QM_SQC_VFT_BASE_MASK_V2 &
		  (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
	qp_num = (QM_SQC_VFT_NUM_MASK_V2 &
		  (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;

	return qp_num;
}

static void qm_dev_cmd_init(struct hisi_qm *qm)
{
	/* Clear VF communication status registers. */
	writel(0x1, qm->io_base + QM_IFC_INT_SOURCE_V);

	/* Enable pf and vf communication. */
	writel(0x0, qm->io_base + QM_IFC_INT_MASK);
}

static int vf_qm_cache_wb(struct hisi_qm *qm)
{
	unsigned int val;

	writel(0x1, qm->io_base + QM_CACHE_WB_START);
	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
				       val, val & BIT(0), MB_POLL_PERIOD_US,
				       MB_POLL_TIMEOUT_US)) {
		dev_err(&qm->pdev->dev, "vf QM writeback sqc cache fail\n");
		return -EINVAL;
	}

	return 0;
}

static void vf_qm_fun_reset(struct hisi_qm *qm)
{
	int i;

	for (i = 0; i < qm->qp_num; i++)
		qm_db(qm, i, QM_DOORBELL_CMD_SQ, 0, 1);
}

static int vf_qm_func_stop(struct hisi_qm *qm)
{
	return hisi_qm_mb(qm, QM_MB_CMD_PAUSE_QM, 0, 0, 0);
}

static int vf_qm_check_match(struct hisi_acc_vf_core_device *hisi_acc_vdev,
			     struct hisi_acc_vf_migration_file *migf)
{
	struct acc_vf_data *vf_data = &migf->vf_data;
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
	struct hisi_qm *pf_qm = hisi_acc_vdev->pf_qm;
	struct device *dev = &vf_qm->pdev->dev;
	u32 que_iso_state;
	int ret;

	if (migf->total_length < QM_MATCH_SIZE || hisi_acc_vdev->match_done)
		return 0;

	if (vf_data->acc_magic != ACC_DEV_MAGIC) {
		dev_err(dev, "failed to match ACC_DEV_MAGIC\n");
		return -EINVAL;
	}

	if (vf_data->dev_id != hisi_acc_vdev->vf_dev->device) {
		dev_err(dev, "failed to match VF devices\n");
		return -EINVAL;
	}

	/* VF qp num check */
	ret = qm_get_vft(vf_qm, &vf_qm->qp_base);
	if (ret <= 0) {
		dev_err(dev, "failed to get vft qp nums\n");
		return -EINVAL;
	}

	if (ret != vf_data->qp_num) {
		dev_err(dev, "failed to match VF qp num\n");
		return -EINVAL;
	}

	vf_qm->qp_num = ret;

	/* VF isolation state check */
	ret = qm_read_regs(pf_qm, QM_QUE_ISO_CFG_V, &que_iso_state, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_QUE_ISO_CFG_V\n");
		return ret;
	}

	if (vf_data->que_iso_cfg != que_iso_state) {
		dev_err(dev, "failed to match isolation state\n");
		return -EINVAL;
	}

	ret = qm_write_regs(vf_qm, QM_VF_STATE, &vf_data->vf_qm_state, 1);
	if (ret) {
		dev_err(dev, "failed to write QM_VF_STATE\n");
		return ret;
	}

	hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;
	hisi_acc_vdev->match_done = true;
	return 0;
}

static int vf_qm_get_match_data(struct hisi_acc_vf_core_device *hisi_acc_vdev,
				struct acc_vf_data *vf_data)
{
	struct hisi_qm *pf_qm = hisi_acc_vdev->pf_qm;
	struct device *dev = &pf_qm->pdev->dev;
	int vf_id = hisi_acc_vdev->vf_id;
	int ret;

	vf_data->acc_magic = ACC_DEV_MAGIC;
	/* Save device id */
	vf_data->dev_id = hisi_acc_vdev->vf_dev->device;

	/* VF qp num save from PF */
	ret = pf_qm_get_qp_num(pf_qm, vf_id, &vf_data->qp_base);
	if (ret <= 0) {
		dev_err(dev, "failed to get vft qp nums!\n");
		return -EINVAL;
	}

	vf_data->qp_num = ret;

	/* VF isolation state save from PF */
	ret = qm_read_regs(pf_qm, QM_QUE_ISO_CFG_V, &vf_data->que_iso_cfg, 1);
	if (ret) {
		dev_err(dev, "failed to read QM_QUE_ISO_CFG_V!\n");
		return ret;
	}

	return 0;
}

static int vf_qm_load_data(struct hisi_acc_vf_core_device *hisi_acc_vdev,
			   struct hisi_acc_vf_migration_file *migf)
{
	struct hisi_qm *qm = &hisi_acc_vdev->vf_qm;
	struct device *dev = &qm->pdev->dev;
	struct acc_vf_data *vf_data = &migf->vf_data;
	int ret;

	/* Return if only match data was transferred */
	if (migf->total_length == QM_MATCH_SIZE)
		return 0;

	if (migf->total_length < sizeof(struct acc_vf_data))
		return -EINVAL;

	qm->eqe_dma = vf_data->eqe_dma;
	qm->aeqe_dma = vf_data->aeqe_dma;
	qm->sqc_dma = vf_data->sqc_dma;
	qm->cqc_dma = vf_data->cqc_dma;

	qm->qp_base = vf_data->qp_base;
	qm->qp_num = vf_data->qp_num;

	ret = qm_set_regs(qm, vf_data);
	if (ret) {
		dev_err(dev, "set VF regs failed\n");
		return ret;
	}

	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
	if (ret) {
		dev_err(dev, "set sqc failed\n");
		return ret;
	}

	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
	if (ret) {
		dev_err(dev, "set cqc failed\n");
		return ret;
	}

	qm_dev_cmd_init(qm);
	return 0;
}

static int vf_qm_state_save(struct hisi_acc_vf_core_device *hisi_acc_vdev,
			    struct hisi_acc_vf_migration_file *migf)
{
	struct acc_vf_data *vf_data = &migf->vf_data;
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
	struct device *dev = &vf_qm->pdev->dev;
	int ret;

	if (unlikely(qm_wait_dev_not_ready(vf_qm))) {
		/* Update state and return with match data */
		vf_data->vf_qm_state = QM_NOT_READY;
		hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;
		migf->total_length = QM_MATCH_SIZE;
		return 0;
	}

	vf_data->vf_qm_state = QM_READY;
	hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;

	ret = vf_qm_cache_wb(vf_qm);
	if (ret) {
		dev_err(dev, "failed to writeback QM Cache!\n");
		return ret;
	}

	ret = qm_get_regs(vf_qm, vf_data);
	if (ret)
		return -EINVAL;

	/* Every reg is 32 bit, the dma address is 64 bit. */
	vf_data->eqe_dma = vf_data->qm_eqc_dw[1];
	vf_data->eqe_dma <<= QM_XQC_ADDR_OFFSET;
	vf_data->eqe_dma |= vf_data->qm_eqc_dw[0];
	vf_data->aeqe_dma = vf_data->qm_aeqc_dw[1];
	vf_data->aeqe_dma <<= QM_XQC_ADDR_OFFSET;
	vf_data->aeqe_dma |= vf_data->qm_aeqc_dw[0];

	/* Through SQC_BT/CQC_BT to get sqc and cqc address */
	ret = qm_get_sqc(vf_qm, &vf_data->sqc_dma);
	if (ret) {
		dev_err(dev, "failed to read SQC addr!\n");
		return -EINVAL;
	}

	ret = qm_get_cqc(vf_qm, &vf_data->cqc_dma);
	if (ret) {
		dev_err(dev, "failed to read CQC addr!\n");
		return -EINVAL;
	}

	migf->total_length = sizeof(struct acc_vf_data);
	return 0;
}

static struct hisi_acc_vf_core_device *hisi_acc_drvdata(struct pci_dev *pdev)
{
	struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);

	return container_of(core_device, struct hisi_acc_vf_core_device,
			    core_device);
}

/* Check the PF's RAS state and Function INT state */
static int
hisi_acc_check_int_state(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct hisi_qm *vfqm = &hisi_acc_vdev->vf_qm;
	struct hisi_qm *qm = hisi_acc_vdev->pf_qm;
	struct pci_dev *vf_pdev = hisi_acc_vdev->vf_dev;
	struct device *dev = &qm->pdev->dev;
	u32 state;

	/* Check RAS state */
	state = qm_check_reg_state(qm, QM_ABNORMAL_INT_STATUS);
	if (state) {
		dev_err(dev, "failed to check QM RAS state!\n");
		return -EBUSY;
	}

	/* Check Function Communication state between PF and VF */
	state = qm_check_reg_state(vfqm, QM_IFC_INT_STATUS);
	if (state) {
		dev_err(dev, "failed to check QM IFC INT state!\n");
		return -EBUSY;
	}
	state = qm_check_reg_state(vfqm, QM_IFC_INT_SET_V);
	if (state) {
		dev_err(dev, "failed to check QM IFC INT SET state!\n");
		return -EBUSY;
	}

	/* Check submodule task state */
	switch (vf_pdev->device) {
	case PCI_DEVICE_ID_HUAWEI_SEC_VF:
		state = qm_check_reg_state(qm, SEC_CORE_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM SEC Core INT state!\n");
			return -EBUSY;
		}
		return 0;
	case PCI_DEVICE_ID_HUAWEI_HPRE_VF:
		state = qm_check_reg_state(qm, HPRE_HAC_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM HPRE HAC INT state!\n");
			return -EBUSY;
		}
		return 0;
	case PCI_DEVICE_ID_HUAWEI_ZIP_VF:
		state = qm_check_reg_state(qm, HZIP_CORE_INT_STATUS);
		if (state) {
			dev_err(dev, "failed to check QM ZIP Core INT state!\n");
			return -EBUSY;
		}
		return 0;
	default:
		dev_err(dev, "failed to detect acc module type!\n");
		return -EINVAL;
	}
}

static void hisi_acc_vf_disable_fd(struct hisi_acc_vf_migration_file *migf)
{
	mutex_lock(&migf->lock);
	migf->disabled = true;
	migf->total_length = 0;
	migf->filp->f_pos = 0;
	mutex_unlock(&migf->lock);
}

static void hisi_acc_vf_disable_fds(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	if (hisi_acc_vdev->resuming_migf) {
		hisi_acc_vf_disable_fd(hisi_acc_vdev->resuming_migf);
		fput(hisi_acc_vdev->resuming_migf->filp);
		hisi_acc_vdev->resuming_migf = NULL;
	}

	if (hisi_acc_vdev->saving_migf) {
		hisi_acc_vf_disable_fd(hisi_acc_vdev->saving_migf);
		fput(hisi_acc_vdev->saving_migf->filp);
		hisi_acc_vdev->saving_migf = NULL;
	}
}

/*
 * This function is called in all state_mutex unlock cases to
 * handle a 'deferred_reset' if exists.
 */
static void
hisi_acc_vf_state_mutex_unlock(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
again:
	spin_lock(&hisi_acc_vdev->reset_lock);
	if (hisi_acc_vdev->deferred_reset) {
		hisi_acc_vdev->deferred_reset = false;
		spin_unlock(&hisi_acc_vdev->reset_lock);
		hisi_acc_vdev->vf_qm_state = QM_NOT_READY;
		hisi_acc_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
		hisi_acc_vf_disable_fds(hisi_acc_vdev);
		goto again;
	}
	mutex_unlock(&hisi_acc_vdev->state_mutex);
	spin_unlock(&hisi_acc_vdev->reset_lock);
}

static void hisi_acc_vf_start_device(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;

	if (hisi_acc_vdev->vf_qm_state != QM_READY)
		return;

	/* Make sure the device is enabled */
	qm_dev_cmd_init(vf_qm);

	vf_qm_fun_reset(vf_qm);
}

static int hisi_acc_vf_load_state(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct device *dev = &hisi_acc_vdev->vf_dev->dev;
	struct hisi_acc_vf_migration_file *migf = hisi_acc_vdev->resuming_migf;
	int ret;

	/* Recover data to VF */
	ret = vf_qm_load_data(hisi_acc_vdev, migf);
	if (ret) {
		dev_err(dev, "failed to recover the VF!\n");
		return ret;
	}

	return 0;
}

static int hisi_acc_vf_release_file(struct inode *inode, struct file *filp)
{
	struct hisi_acc_vf_migration_file *migf = filp->private_data;

	hisi_acc_vf_disable_fd(migf);
	mutex_destroy(&migf->lock);
	kfree(migf);
	return 0;
}

static ssize_t hisi_acc_vf_resume_write(struct file *filp, const char __user *buf,
					size_t len, loff_t *pos)
{
	struct hisi_acc_vf_migration_file *migf = filp->private_data;
	loff_t requested_length;
	ssize_t done = 0;
	int ret;

	if (pos)
		return -ESPIPE;
	pos = &filp->f_pos;

	if (*pos < 0 ||
	    check_add_overflow((loff_t)len, *pos, &requested_length))
		return -EINVAL;

	if (requested_length > sizeof(struct acc_vf_data))
		return -ENOMEM;

	mutex_lock(&migf->lock);
	if (migf->disabled) {
		done = -ENODEV;
		goto out_unlock;
	}

	ret = copy_from_user(&migf->vf_data, buf, len);
	if (ret) {
		done = -EFAULT;
		goto out_unlock;
	}
	*pos += len;
	done = len;
	migf->total_length += len;

	ret = vf_qm_check_match(migf->hisi_acc_vdev, migf);
	if (ret)
		done = -EFAULT;
out_unlock:
	mutex_unlock(&migf->lock);
	return done;
}

static const struct file_operations hisi_acc_vf_resume_fops = {
	.owner = THIS_MODULE,
	.write = hisi_acc_vf_resume_write,
	.release = hisi_acc_vf_release_file,
	.llseek = no_llseek,
};

static struct hisi_acc_vf_migration_file *
hisi_acc_vf_pci_resume(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct hisi_acc_vf_migration_file *migf;

	migf = kzalloc(sizeof(*migf), GFP_KERNEL_ACCOUNT);
	if (!migf)
		return ERR_PTR(-ENOMEM);

	migf->filp = anon_inode_getfile("hisi_acc_vf_mig", &hisi_acc_vf_resume_fops, migf,
					O_WRONLY);
	if (IS_ERR(migf->filp)) {
		int err = PTR_ERR(migf->filp);

		kfree(migf);
		return ERR_PTR(err);
	}

	stream_open(migf->filp->f_inode, migf->filp);
	mutex_init(&migf->lock);
	migf->hisi_acc_vdev = hisi_acc_vdev;
	return migf;
}

static long hisi_acc_vf_precopy_ioctl(struct file *filp,
				      unsigned int cmd, unsigned long arg)
{
	struct hisi_acc_vf_migration_file *migf = filp->private_data;
	struct hisi_acc_vf_core_device *hisi_acc_vdev = migf->hisi_acc_vdev;
	loff_t *pos = &filp->f_pos;
	struct vfio_precopy_info info;
	unsigned long minsz;
	int ret;

	if (cmd != VFIO_MIG_GET_PRECOPY_INFO)
		return -ENOTTY;

	minsz = offsetofend(struct vfio_precopy_info, dirty_bytes);

	if (copy_from_user(&info, (void __user *)arg, minsz))
		return -EFAULT;
	if (info.argsz < minsz)
		return -EINVAL;

	mutex_lock(&hisi_acc_vdev->state_mutex);
	if (hisi_acc_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY) {
		mutex_unlock(&hisi_acc_vdev->state_mutex);
		return -EINVAL;
	}

	mutex_lock(&migf->lock);

	if (migf->disabled) {
		ret = -ENODEV;
		goto out;
	}

	if (*pos > migf->total_length) {
		ret = -EINVAL;
		goto out;
	}

	info.dirty_bytes = 0;
	info.initial_bytes = migf->total_length - *pos;

	ret = copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
out:
	mutex_unlock(&migf->lock);
	mutex_unlock(&hisi_acc_vdev->state_mutex);
	return ret;
}

static ssize_t hisi_acc_vf_save_read(struct file *filp, char __user *buf, size_t len,
				     loff_t *pos)
{
	struct hisi_acc_vf_migration_file *migf = filp->private_data;
	ssize_t done = 0;
	int ret;

	if (pos)
		return -ESPIPE;
	pos = &filp->f_pos;

	mutex_lock(&migf->lock);
	if (*pos > migf->total_length) {
		done = -EINVAL;
		goto out_unlock;
	}

	if (migf->disabled) {
		done = -ENODEV;
		goto out_unlock;
	}

	len = min_t(size_t, migf->total_length - *pos, len);
	if (len) {
		ret = copy_to_user(buf, &migf->vf_data, len);
		if (ret) {
			done = -EFAULT;
			goto out_unlock;
		}
		*pos += len;
		done = len;
	}
out_unlock:
	mutex_unlock(&migf->lock);
	return done;
}

static const struct file_operations hisi_acc_vf_save_fops = {
	.owner = THIS_MODULE,
	.read = hisi_acc_vf_save_read,
	.unlocked_ioctl = hisi_acc_vf_precopy_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.release = hisi_acc_vf_release_file,
	.llseek = no_llseek,
};

static struct hisi_acc_vf_migration_file *
hisi_acc_open_saving_migf(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct hisi_acc_vf_migration_file *migf;
	int ret;

	migf = kzalloc(sizeof(*migf), GFP_KERNEL_ACCOUNT);
	if (!migf)
		return ERR_PTR(-ENOMEM);

	migf->filp = anon_inode_getfile("hisi_acc_vf_mig", &hisi_acc_vf_save_fops, migf,
					O_RDONLY);
	if (IS_ERR(migf->filp)) {
		int err = PTR_ERR(migf->filp);

		kfree(migf);
		return ERR_PTR(err);
	}

	stream_open(migf->filp->f_inode, migf->filp);
	mutex_init(&migf->lock);
	migf->hisi_acc_vdev = hisi_acc_vdev;

	ret = vf_qm_get_match_data(hisi_acc_vdev, &migf->vf_data);
	if (ret) {
		fput(migf->filp);
		return ERR_PTR(ret);
	}

	return migf;
}

static struct hisi_acc_vf_migration_file *
hisi_acc_vf_pre_copy(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct hisi_acc_vf_migration_file *migf;

	migf = hisi_acc_open_saving_migf(hisi_acc_vdev);
	if (IS_ERR(migf))
		return migf;

	migf->total_length = QM_MATCH_SIZE;
	return migf;
}

static struct hisi_acc_vf_migration_file *
hisi_acc_vf_stop_copy(struct hisi_acc_vf_core_device *hisi_acc_vdev, bool open)
{
	int ret;
	struct hisi_acc_vf_migration_file *migf = NULL;

	if (open) {
		/*
		 * Userspace didn't use PRECOPY support. Hence saving_migf
		 * is not opened yet.
		 */
		migf = hisi_acc_open_saving_migf(hisi_acc_vdev);
		if (IS_ERR(migf))
			return migf;
	} else {
		migf = hisi_acc_vdev->saving_migf;
	}

	ret = vf_qm_state_save(hisi_acc_vdev, migf);
	if (ret)
		return ERR_PTR(ret);

	return open ? migf : NULL;
}

static int hisi_acc_vf_stop_device(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct device *dev = &hisi_acc_vdev->vf_dev->dev;
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
	int ret;

	ret = vf_qm_func_stop(vf_qm);
	if (ret) {
		dev_err(dev, "failed to stop QM VF function!\n");
		return ret;
	}

	ret = hisi_acc_check_int_state(hisi_acc_vdev);
	if (ret) {
		dev_err(dev, "failed to check QM INT state!\n");
		return ret;
	}
	return 0;
}

static struct file *
hisi_acc_vf_set_device_state(struct hisi_acc_vf_core_device *hisi_acc_vdev,
			     u32 new)
{
	u32 cur = hisi_acc_vdev->mig_state;
	int ret;

	if (cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_PRE_COPY) {
		struct hisi_acc_vf_migration_file *migf;

		migf = hisi_acc_vf_pre_copy(hisi_acc_vdev);
		if (IS_ERR(migf))
			return ERR_CAST(migf);
		get_file(migf->filp);
		hisi_acc_vdev->saving_migf = migf;
		return migf->filp;
	}

	if (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_STOP_COPY) {
		struct hisi_acc_vf_migration_file *migf;

		ret = hisi_acc_vf_stop_device(hisi_acc_vdev);
		if (ret)
			return ERR_PTR(ret);

		migf = hisi_acc_vf_stop_copy(hisi_acc_vdev, false);
		if (IS_ERR(migf))
			return ERR_CAST(migf);

		return NULL;
	}

	if (cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_STOP) {
		ret = hisi_acc_vf_stop_device(hisi_acc_vdev);
		if (ret)
			return ERR_PTR(ret);
		return NULL;
	}

	if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_STOP_COPY) {
		struct hisi_acc_vf_migration_file *migf;

		migf = hisi_acc_vf_stop_copy(hisi_acc_vdev, true);
		if (IS_ERR(migf))
			return ERR_CAST(migf);
		get_file(migf->filp);
		hisi_acc_vdev->saving_migf = migf;
		return migf->filp;
	}

	if ((cur == VFIO_DEVICE_STATE_STOP_COPY && new == VFIO_DEVICE_STATE_STOP)) {
		hisi_acc_vf_disable_fds(hisi_acc_vdev);
		return NULL;
	}

	if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RESUMING) {
		struct hisi_acc_vf_migration_file *migf;

		migf = hisi_acc_vf_pci_resume(hisi_acc_vdev);
		if (IS_ERR(migf))
			return ERR_CAST(migf);
		get_file(migf->filp);
		hisi_acc_vdev->resuming_migf = migf;
		return migf->filp;
	}

	if (cur == VFIO_DEVICE_STATE_RESUMING && new == VFIO_DEVICE_STATE_STOP) {
		ret = hisi_acc_vf_load_state(hisi_acc_vdev);
		if (ret)
			return ERR_PTR(ret);
		hisi_acc_vf_disable_fds(hisi_acc_vdev);
		return NULL;
	}

	if (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_RUNNING) {
		hisi_acc_vf_disable_fds(hisi_acc_vdev);
		return NULL;
	}

	if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RUNNING) {
		hisi_acc_vf_start_device(hisi_acc_vdev);
		return NULL;
	}

	/*
	 * vfio_mig_get_next_state() does not use arcs other than the above
	 */
	WARN_ON(true);
	return ERR_PTR(-EINVAL);
}

static struct file *
hisi_acc_vfio_pci_set_device_state(struct vfio_device *vdev,
				   enum vfio_device_mig_state new_state)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(vdev,
			struct hisi_acc_vf_core_device, core_device.vdev);
	enum vfio_device_mig_state next_state;
	struct file *res = NULL;
	int ret;

	mutex_lock(&hisi_acc_vdev->state_mutex);
	while (new_state != hisi_acc_vdev->mig_state) {
		ret = vfio_mig_get_next_state(vdev,
					      hisi_acc_vdev->mig_state,
					      new_state, &next_state);
		if (ret) {
			res = ERR_PTR(-EINVAL);
			break;
		}

		res = hisi_acc_vf_set_device_state(hisi_acc_vdev, next_state);
		if (IS_ERR(res))
			break;
		hisi_acc_vdev->mig_state = next_state;
		if (WARN_ON(res && new_state != hisi_acc_vdev->mig_state)) {
			fput(res);
			res = ERR_PTR(-EINVAL);
			break;
		}
	}
	hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
	return res;
}

static int
hisi_acc_vfio_pci_get_data_size(struct vfio_device *vdev,
				unsigned long *stop_copy_length)
{
	*stop_copy_length = sizeof(struct acc_vf_data);
	return 0;
}

static int
hisi_acc_vfio_pci_get_device_state(struct vfio_device *vdev,
				   enum vfio_device_mig_state *curr_state)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(vdev,
			struct hisi_acc_vf_core_device, core_device.vdev);

	mutex_lock(&hisi_acc_vdev->state_mutex);
	*curr_state = hisi_acc_vdev->mig_state;
	hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
	return 0;
}

static void hisi_acc_vf_pci_aer_reset_done(struct pci_dev *pdev)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = hisi_acc_drvdata(pdev);

	if (hisi_acc_vdev->core_device.vdev.migration_flags !=
				VFIO_MIGRATION_STOP_COPY)
		return;

	/*
	 * As the higher VFIO layers are holding locks across reset and using
	 * those same locks with the mm_lock we need to prevent ABBA deadlock
	 * with the state_mutex and mm_lock.
	 * In case the state_mutex was taken already we defer the cleanup work
	 * to the unlock flow of the other running context.
	 */
	spin_lock(&hisi_acc_vdev->reset_lock);
	hisi_acc_vdev->deferred_reset = true;
	if (!mutex_trylock(&hisi_acc_vdev->state_mutex)) {
		spin_unlock(&hisi_acc_vdev->reset_lock);
		return;
	}
	spin_unlock(&hisi_acc_vdev->reset_lock);
	hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
}

static int hisi_acc_vf_qm_init(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
	struct vfio_pci_core_device *vdev = &hisi_acc_vdev->core_device;
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
	struct pci_dev *vf_dev = vdev->pdev;

	/*
	 * ACC VF dev BAR2 region consists of both functional register space
	 * and migration control register space. For migration to work, we
	 * need access to both. Hence, we map the entire BAR2 region here.
	 * But unnecessarily exposing the migration BAR region to the Guest
	 * has the potential to prevent/corrupt the Guest migration. Hence,
	 * we restrict access to the migration control space from
	 * Guest(Please see mmap/ioctl/read/write override functions).
	 *
	 * Please note that it is OK to expose the entire VF BAR if migration
	 * is not supported or required as this cannot affect the ACC PF
	 * configurations.
	 *
	 * Also the HiSilicon ACC VF devices supported by this driver on
	 * HiSilicon hardware platforms are integrated end point devices
	 * and the platform lacks the capability to perform any PCIe P2P
	 * between these devices.
	 */

	vf_qm->io_base =
		ioremap(pci_resource_start(vf_dev, VFIO_PCI_BAR2_REGION_INDEX),
			pci_resource_len(vf_dev, VFIO_PCI_BAR2_REGION_INDEX));
	if (!vf_qm->io_base)
		return -EIO;

	vf_qm->fun_type = QM_HW_VF;
	vf_qm->pdev = vf_dev;
	mutex_init(&vf_qm->mailbox_lock);

	return 0;
}

static struct hisi_qm *hisi_acc_get_pf_qm(struct pci_dev *pdev)
{
	struct hisi_qm	*pf_qm;
	struct pci_driver *pf_driver;

	if (!pdev->is_virtfn)
		return NULL;

	switch (pdev->device) {
	case PCI_DEVICE_ID_HUAWEI_SEC_VF:
		pf_driver = hisi_sec_get_pf_driver();
		break;
	case PCI_DEVICE_ID_HUAWEI_HPRE_VF:
		pf_driver = hisi_hpre_get_pf_driver();
		break;
	case PCI_DEVICE_ID_HUAWEI_ZIP_VF:
		pf_driver = hisi_zip_get_pf_driver();
		break;
	default:
		return NULL;
	}

	if (!pf_driver)
		return NULL;

	pf_qm = pci_iov_get_pf_drvdata(pdev, pf_driver);

	return !IS_ERR(pf_qm) ? pf_qm : NULL;
}

static int hisi_acc_pci_rw_access_check(struct vfio_device *core_vdev,
					size_t count, loff_t *ppos,
					size_t *new_count)
{
	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
	struct vfio_pci_core_device *vdev =
		container_of(core_vdev, struct vfio_pci_core_device, vdev);

	if (index == VFIO_PCI_BAR2_REGION_INDEX) {
		loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
		resource_size_t end = pci_resource_len(vdev->pdev, index) / 2;

		/* Check if access is for migration control region */
		if (pos >= end)
			return -EINVAL;

		*new_count = min(count, (size_t)(end - pos));
	}

	return 0;
}

static int hisi_acc_vfio_pci_mmap(struct vfio_device *core_vdev,
				  struct vm_area_struct *vma)
{
	struct vfio_pci_core_device *vdev =
		container_of(core_vdev, struct vfio_pci_core_device, vdev);
	unsigned int index;

	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
	if (index == VFIO_PCI_BAR2_REGION_INDEX) {
		u64 req_len, pgoff, req_start;
		resource_size_t end = pci_resource_len(vdev->pdev, index) / 2;

		req_len = vma->vm_end - vma->vm_start;
		pgoff = vma->vm_pgoff &
			((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
		req_start = pgoff << PAGE_SHIFT;

		if (req_start + req_len > end)
			return -EINVAL;
	}

	return vfio_pci_core_mmap(core_vdev, vma);
}

static ssize_t hisi_acc_vfio_pci_write(struct vfio_device *core_vdev,
				       const char __user *buf, size_t count,
				       loff_t *ppos)
{
	size_t new_count = count;
	int ret;

	ret = hisi_acc_pci_rw_access_check(core_vdev, count, ppos, &new_count);
	if (ret)
		return ret;

	return vfio_pci_core_write(core_vdev, buf, new_count, ppos);
}

static ssize_t hisi_acc_vfio_pci_read(struct vfio_device *core_vdev,
				      char __user *buf, size_t count,
				      loff_t *ppos)
{
	size_t new_count = count;
	int ret;

	ret = hisi_acc_pci_rw_access_check(core_vdev, count, ppos, &new_count);
	if (ret)
		return ret;

	return vfio_pci_core_read(core_vdev, buf, new_count, ppos);
}

static long hisi_acc_vfio_pci_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
				    unsigned long arg)
{
	if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
		struct vfio_pci_core_device *vdev =
			container_of(core_vdev, struct vfio_pci_core_device, vdev);
		struct pci_dev *pdev = vdev->pdev;
		struct vfio_region_info info;
		unsigned long minsz;

		minsz = offsetofend(struct vfio_region_info, offset);

		if (copy_from_user(&info, (void __user *)arg, minsz))
			return -EFAULT;

		if (info.argsz < minsz)
			return -EINVAL;

		if (info.index == VFIO_PCI_BAR2_REGION_INDEX) {
			info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);

			/*
			 * ACC VF dev BAR2 region consists of both functional
			 * register space and migration control register space.
			 * Report only the functional region to Guest.
			 */
			info.size = pci_resource_len(pdev, info.index) / 2;

			info.flags = VFIO_REGION_INFO_FLAG_READ |
					VFIO_REGION_INFO_FLAG_WRITE |
					VFIO_REGION_INFO_FLAG_MMAP;

			return copy_to_user((void __user *)arg, &info, minsz) ?
					    -EFAULT : 0;
		}
	}
	return vfio_pci_core_ioctl(core_vdev, cmd, arg);
}

static int hisi_acc_vfio_pci_open_device(struct vfio_device *core_vdev)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(core_vdev,
			struct hisi_acc_vf_core_device, core_device.vdev);
	struct vfio_pci_core_device *vdev = &hisi_acc_vdev->core_device;
	int ret;

	ret = vfio_pci_core_enable(vdev);
	if (ret)
		return ret;

	if (core_vdev->mig_ops) {
		ret = hisi_acc_vf_qm_init(hisi_acc_vdev);
		if (ret) {
			vfio_pci_core_disable(vdev);
			return ret;
		}
		hisi_acc_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
	}

	vfio_pci_core_finish_enable(vdev);
	return 0;
}

static void hisi_acc_vfio_pci_close_device(struct vfio_device *core_vdev)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(core_vdev,
			struct hisi_acc_vf_core_device, core_device.vdev);
	struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;

	iounmap(vf_qm->io_base);
	vfio_pci_core_close_device(core_vdev);
}

static const struct vfio_migration_ops hisi_acc_vfio_pci_migrn_state_ops = {
	.migration_set_state = hisi_acc_vfio_pci_set_device_state,
	.migration_get_state = hisi_acc_vfio_pci_get_device_state,
	.migration_get_data_size = hisi_acc_vfio_pci_get_data_size,
};

static int hisi_acc_vfio_pci_migrn_init_dev(struct vfio_device *core_vdev)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(core_vdev,
			struct hisi_acc_vf_core_device, core_device.vdev);
	struct pci_dev *pdev = to_pci_dev(core_vdev->dev);
	struct hisi_qm *pf_qm = hisi_acc_get_pf_qm(pdev);

	hisi_acc_vdev->vf_id = pci_iov_vf_id(pdev) + 1;
	hisi_acc_vdev->pf_qm = pf_qm;
	hisi_acc_vdev->vf_dev = pdev;
	mutex_init(&hisi_acc_vdev->state_mutex);

	core_vdev->migration_flags = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY;
	core_vdev->mig_ops = &hisi_acc_vfio_pci_migrn_state_ops;

	return vfio_pci_core_init_dev(core_vdev);
}

static const struct vfio_device_ops hisi_acc_vfio_pci_migrn_ops = {
	.name = "hisi-acc-vfio-pci-migration",
	.init = hisi_acc_vfio_pci_migrn_init_dev,
	.release = vfio_pci_core_release_dev,
	.open_device = hisi_acc_vfio_pci_open_device,
	.close_device = hisi_acc_vfio_pci_close_device,
	.ioctl = hisi_acc_vfio_pci_ioctl,
	.device_feature = vfio_pci_core_ioctl_feature,
	.read = hisi_acc_vfio_pci_read,
	.write = hisi_acc_vfio_pci_write,
	.mmap = hisi_acc_vfio_pci_mmap,
	.request = vfio_pci_core_request,
	.match = vfio_pci_core_match,
	.bind_iommufd = vfio_iommufd_physical_bind,
	.unbind_iommufd = vfio_iommufd_physical_unbind,
	.attach_ioas = vfio_iommufd_physical_attach_ioas,
};

static const struct vfio_device_ops hisi_acc_vfio_pci_ops = {
	.name = "hisi-acc-vfio-pci",
	.init = vfio_pci_core_init_dev,
	.release = vfio_pci_core_release_dev,
	.open_device = hisi_acc_vfio_pci_open_device,
	.close_device = vfio_pci_core_close_device,
	.ioctl = vfio_pci_core_ioctl,
	.device_feature = vfio_pci_core_ioctl_feature,
	.read = vfio_pci_core_read,
	.write = vfio_pci_core_write,
	.mmap = vfio_pci_core_mmap,
	.request = vfio_pci_core_request,
	.match = vfio_pci_core_match,
	.bind_iommufd = vfio_iommufd_physical_bind,
	.unbind_iommufd = vfio_iommufd_physical_unbind,
	.attach_ioas = vfio_iommufd_physical_attach_ioas,
};

static int hisi_acc_vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev;
	const struct vfio_device_ops *ops = &hisi_acc_vfio_pci_ops;
	struct hisi_qm *pf_qm;
	int vf_id;
	int ret;

	pf_qm = hisi_acc_get_pf_qm(pdev);
	if (pf_qm && pf_qm->ver >= QM_HW_V3) {
		vf_id = pci_iov_vf_id(pdev);
		if (vf_id >= 0)
			ops = &hisi_acc_vfio_pci_migrn_ops;
		else
			pci_warn(pdev, "migration support failed, continue with generic interface\n");
	}

	hisi_acc_vdev = vfio_alloc_device(hisi_acc_vf_core_device,
					  core_device.vdev, &pdev->dev, ops);
	if (IS_ERR(hisi_acc_vdev))
		return PTR_ERR(hisi_acc_vdev);

	dev_set_drvdata(&pdev->dev, &hisi_acc_vdev->core_device);
	ret = vfio_pci_core_register_device(&hisi_acc_vdev->core_device);
	if (ret)
		goto out_put_vdev;
	return 0;

out_put_vdev:
	vfio_put_device(&hisi_acc_vdev->core_device.vdev);
	return ret;
}

static void hisi_acc_vfio_pci_remove(struct pci_dev *pdev)
{
	struct hisi_acc_vf_core_device *hisi_acc_vdev = hisi_acc_drvdata(pdev);

	vfio_pci_core_unregister_device(&hisi_acc_vdev->core_device);
	vfio_put_device(&hisi_acc_vdev->core_device.vdev);
}

static const struct pci_device_id hisi_acc_vfio_pci_table[] = {
	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_SEC_VF) },
	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_VF) },
	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_ZIP_VF) },
	{ }
};

MODULE_DEVICE_TABLE(pci, hisi_acc_vfio_pci_table);

static const struct pci_error_handlers hisi_acc_vf_err_handlers = {
	.reset_done = hisi_acc_vf_pci_aer_reset_done,
	.error_detected = vfio_pci_core_aer_err_detected,
};

static struct pci_driver hisi_acc_vfio_pci_driver = {
	.name = KBUILD_MODNAME,
	.id_table = hisi_acc_vfio_pci_table,
	.probe = hisi_acc_vfio_pci_probe,
	.remove = hisi_acc_vfio_pci_remove,
	.err_handler = &hisi_acc_vf_err_handlers,
	.driver_managed_dma = true,
};

module_pci_driver(hisi_acc_vfio_pci_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Liu Longfang <liulongfang@huawei.com>");
MODULE_AUTHOR("Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>");
MODULE_DESCRIPTION("HiSilicon VFIO PCI - VFIO PCI driver with live migration support for HiSilicon ACC device family");