// SPDX-License-Identifier: GPL-2.0-only /* * Intel IFC VF NIC driver for virtio dataplane offloading * * Copyright (C) 2020 Intel Corporation. * * Author: Zhu Lingshan * */ #include "ifcvf_base.h" u16 ifcvf_set_vq_vector(struct ifcvf_hw *hw, u16 qid, int vector) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(vector, &cfg->queue_msix_vector); return vp_ioread16(&cfg->queue_msix_vector); } u16 ifcvf_set_config_vector(struct ifcvf_hw *hw, int vector) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(vector, &cfg->msix_config); return vp_ioread16(&cfg->msix_config); } static void __iomem *get_cap_addr(struct ifcvf_hw *hw, struct virtio_pci_cap *cap) { u32 length, offset; u8 bar; length = le32_to_cpu(cap->length); offset = le32_to_cpu(cap->offset); bar = cap->bar; if (bar >= IFCVF_PCI_MAX_RESOURCE) { IFCVF_DBG(hw->pdev, "Invalid bar number %u to get capabilities\n", bar); return NULL; } if (offset + length > pci_resource_len(hw->pdev, bar)) { IFCVF_DBG(hw->pdev, "offset(%u) + len(%u) overflows bar%u's capability\n", offset, length, bar); return NULL; } return hw->base[bar] + offset; } static int ifcvf_read_config_range(struct pci_dev *dev, uint32_t *val, int size, int where) { int ret, i; for (i = 0; i < size; i += 4) { ret = pci_read_config_dword(dev, where + i, val + i / 4); if (ret < 0) return ret; } return 0; } static u16 ifcvf_get_vq_size(struct ifcvf_hw *hw, u16 qid) { u16 queue_size; vp_iowrite16(qid, &hw->common_cfg->queue_select); queue_size = vp_ioread16(&hw->common_cfg->queue_size); return queue_size; } /* This function returns the max allowed safe size for * all virtqueues. It is the minimal size that can be * suppprted by all virtqueues. */ u16 ifcvf_get_max_vq_size(struct ifcvf_hw *hw) { u16 queue_size, max_size, qid; max_size = ifcvf_get_vq_size(hw, 0); for (qid = 1; qid < hw->nr_vring; qid++) { queue_size = ifcvf_get_vq_size(hw, qid); /* 0 means the queue is unavailable */ if (!queue_size) continue; max_size = min(queue_size, max_size); } return max_size; } int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev) { struct virtio_pci_cap cap; u16 notify_off; int ret; u8 pos; u32 i; ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); if (ret) { IFCVF_ERR(pdev, "Failed to read PCI capability list\n"); return -EIO; } hw->pdev = pdev; while (pos) { ret = ifcvf_read_config_range(pdev, (u32 *)&cap, sizeof(cap), pos); if (ret < 0) { IFCVF_ERR(pdev, "Failed to get PCI capability at %x\n", pos); break; } if (cap.cap_vndr != PCI_CAP_ID_VNDR) goto next; switch (cap.cfg_type) { case VIRTIO_PCI_CAP_COMMON_CFG: hw->common_cfg = get_cap_addr(hw, &cap); IFCVF_DBG(pdev, "hw->common_cfg = %p\n", hw->common_cfg); break; case VIRTIO_PCI_CAP_NOTIFY_CFG: pci_read_config_dword(pdev, pos + sizeof(cap), &hw->notify_off_multiplier); hw->notify_bar = cap.bar; hw->notify_base = get_cap_addr(hw, &cap); hw->notify_base_pa = pci_resource_start(pdev, cap.bar) + le32_to_cpu(cap.offset); IFCVF_DBG(pdev, "hw->notify_base = %p\n", hw->notify_base); break; case VIRTIO_PCI_CAP_ISR_CFG: hw->isr = get_cap_addr(hw, &cap); IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr); break; case VIRTIO_PCI_CAP_DEVICE_CFG: hw->dev_cfg = get_cap_addr(hw, &cap); hw->cap_dev_config_size = le32_to_cpu(cap.length); IFCVF_DBG(pdev, "hw->dev_cfg = %p\n", hw->dev_cfg); break; } next: pos = cap.cap_next; } if (hw->common_cfg == NULL || hw->notify_base == NULL || hw->isr == NULL || hw->dev_cfg == NULL) { IFCVF_ERR(pdev, "Incomplete PCI capabilities\n"); return -EIO; } hw->nr_vring = vp_ioread16(&hw->common_cfg->num_queues); hw->vring = kzalloc(sizeof(struct vring_info) * hw->nr_vring, GFP_KERNEL); if (!hw->vring) return -ENOMEM; for (i = 0; i < hw->nr_vring; i++) { vp_iowrite16(i, &hw->common_cfg->queue_select); notify_off = vp_ioread16(&hw->common_cfg->queue_notify_off); hw->vring[i].notify_addr = hw->notify_base + notify_off * hw->notify_off_multiplier; hw->vring[i].notify_pa = hw->notify_base_pa + notify_off * hw->notify_off_multiplier; hw->vring[i].irq = -EINVAL; } hw->lm_cfg = hw->base[IFCVF_LM_BAR]; IFCVF_DBG(pdev, "PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n", hw->common_cfg, hw->notify_base, hw->isr, hw->dev_cfg, hw->notify_off_multiplier); hw->vqs_reused_irq = -EINVAL; hw->config_irq = -EINVAL; return 0; } u8 ifcvf_get_status(struct ifcvf_hw *hw) { return vp_ioread8(&hw->common_cfg->device_status); } void ifcvf_set_status(struct ifcvf_hw *hw, u8 status) { vp_iowrite8(status, &hw->common_cfg->device_status); } void ifcvf_reset(struct ifcvf_hw *hw) { ifcvf_set_status(hw, 0); while (ifcvf_get_status(hw)) msleep(1); } u64 ifcvf_get_hw_features(struct ifcvf_hw *hw) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u32 features_lo, features_hi; u64 features; vp_iowrite32(0, &cfg->device_feature_select); features_lo = vp_ioread32(&cfg->device_feature); vp_iowrite32(1, &cfg->device_feature_select); features_hi = vp_ioread32(&cfg->device_feature); features = ((u64)features_hi << 32) | features_lo; return features; } /* return provisioned vDPA dev features */ u64 ifcvf_get_dev_features(struct ifcvf_hw *hw) { return hw->dev_features; } u64 ifcvf_get_driver_features(struct ifcvf_hw *hw) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u32 features_lo, features_hi; u64 features; vp_iowrite32(0, &cfg->device_feature_select); features_lo = vp_ioread32(&cfg->guest_feature); vp_iowrite32(1, &cfg->device_feature_select); features_hi = vp_ioread32(&cfg->guest_feature); features = ((u64)features_hi << 32) | features_lo; return features; } int ifcvf_verify_min_features(struct ifcvf_hw *hw, u64 features) { if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) { IFCVF_ERR(hw->pdev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n"); return -EINVAL; } return 0; } u32 ifcvf_get_config_size(struct ifcvf_hw *hw) { u32 net_config_size = sizeof(struct virtio_net_config); u32 blk_config_size = sizeof(struct virtio_blk_config); u32 cap_size = hw->cap_dev_config_size; u32 config_size; /* If the onboard device config space size is greater than * the size of struct virtio_net/blk_config, only the spec * implementing contents size is returned, this is very * unlikely, defensive programming. */ switch (hw->dev_type) { case VIRTIO_ID_NET: config_size = min(cap_size, net_config_size); break; case VIRTIO_ID_BLOCK: config_size = min(cap_size, blk_config_size); break; default: config_size = 0; IFCVF_ERR(hw->pdev, "VIRTIO ID %u not supported\n", hw->dev_type); } return config_size; } void ifcvf_read_dev_config(struct ifcvf_hw *hw, u64 offset, void *dst, int length) { u8 old_gen, new_gen, *p; int i; WARN_ON(offset + length > hw->config_size); do { old_gen = vp_ioread8(&hw->common_cfg->config_generation); p = dst; for (i = 0; i < length; i++) *p++ = vp_ioread8(hw->dev_cfg + offset + i); new_gen = vp_ioread8(&hw->common_cfg->config_generation); } while (old_gen != new_gen); } void ifcvf_write_dev_config(struct ifcvf_hw *hw, u64 offset, const void *src, int length) { const u8 *p; int i; p = src; WARN_ON(offset + length > hw->config_size); for (i = 0; i < length; i++) vp_iowrite8(*p++, hw->dev_cfg + offset + i); } void ifcvf_set_driver_features(struct ifcvf_hw *hw, u64 features) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite32(0, &cfg->guest_feature_select); vp_iowrite32((u32)features, &cfg->guest_feature); vp_iowrite32(1, &cfg->guest_feature_select); vp_iowrite32(features >> 32, &cfg->guest_feature); } u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid) { struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; u16 last_avail_idx; last_avail_idx = vp_ioread16(&lm_cfg->vq_state_region + qid * 2); return last_avail_idx; } int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num) { struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; vp_iowrite16(num, &lm_cfg->vq_state_region + qid * 2); return 0; } void ifcvf_set_vq_num(struct ifcvf_hw *hw, u16 qid, u32 num) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(num, &cfg->queue_size); } int ifcvf_set_vq_address(struct ifcvf_hw *hw, u16 qid, u64 desc_area, u64 driver_area, u64 device_area) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite64_twopart(desc_area, &cfg->queue_desc_lo, &cfg->queue_desc_hi); vp_iowrite64_twopart(driver_area, &cfg->queue_avail_lo, &cfg->queue_avail_hi); vp_iowrite64_twopart(device_area, &cfg->queue_used_lo, &cfg->queue_used_hi); return 0; } bool ifcvf_get_vq_ready(struct ifcvf_hw *hw, u16 qid) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; u16 queue_enable; vp_iowrite16(qid, &cfg->queue_select); queue_enable = vp_ioread16(&cfg->queue_enable); return (bool)queue_enable; } void ifcvf_set_vq_ready(struct ifcvf_hw *hw, u16 qid, bool ready) { struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; vp_iowrite16(qid, &cfg->queue_select); vp_iowrite16(ready, &cfg->queue_enable); } static void ifcvf_reset_vring(struct ifcvf_hw *hw) { u16 qid; for (qid = 0; qid < hw->nr_vring; qid++) { hw->vring[qid].cb.callback = NULL; hw->vring[qid].cb.private = NULL; ifcvf_set_vq_vector(hw, qid, VIRTIO_MSI_NO_VECTOR); } } static void ifcvf_reset_config_handler(struct ifcvf_hw *hw) { hw->config_cb.callback = NULL; hw->config_cb.private = NULL; ifcvf_set_config_vector(hw, VIRTIO_MSI_NO_VECTOR); } static void ifcvf_synchronize_irq(struct ifcvf_hw *hw) { u32 nvectors = hw->num_msix_vectors; struct pci_dev *pdev = hw->pdev; int i, irq; for (i = 0; i < nvectors; i++) { irq = pci_irq_vector(pdev, i); if (irq >= 0) synchronize_irq(irq); } } void ifcvf_stop(struct ifcvf_hw *hw) { ifcvf_synchronize_irq(hw); ifcvf_reset_vring(hw); ifcvf_reset_config_handler(hw); } void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid) { vp_iowrite16(qid, hw->vring[qid].notify_addr); }