// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2010 Google, Inc. * Copyright (C) 2013 NVIDIA Corporation * * Author: * Erik Gilling <konkers@google.com> * Benoit Goby <benoit@android.com> * Venu Byravarasu <vbyravarasu@nvidia.com> */ #include <linux/delay.h> #include <linux/err.h> #include <linux/export.h> #include <linux/gpio/consumer.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/resource.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/regulator/consumer.h> #include <linux/usb/ehci_def.h> #include <linux/usb/of.h> #include <linux/usb/tegra_usb_phy.h> #include <linux/usb/ulpi.h> #define ULPI_VIEWPORT 0x170 /* PORTSC PTS/PHCD bits, Tegra20 only */ #define TEGRA_USB_PORTSC1 0x184 #define TEGRA_USB_PORTSC1_PTS(x) (((x) & 0x3) << 30) #define TEGRA_USB_PORTSC1_PHCD BIT(23) /* HOSTPC1 PTS/PHCD bits, Tegra30 and above */ #define TEGRA_USB_HOSTPC1_DEVLC 0x1b4 #define TEGRA_USB_HOSTPC1_DEVLC_PTS(x) (((x) & 0x7) << 29) #define TEGRA_USB_HOSTPC1_DEVLC_PHCD BIT(22) /* Bits of PORTSC1, which will get cleared by writing 1 into them */ #define TEGRA_PORTSC1_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) #define USB_SUSP_CTRL 0x400 #define USB_WAKE_ON_RESUME_EN BIT(2) #define USB_WAKE_ON_CNNT_EN_DEV BIT(3) #define USB_WAKE_ON_DISCON_EN_DEV BIT(4) #define USB_SUSP_CLR BIT(5) #define USB_PHY_CLK_VALID BIT(7) #define UTMIP_RESET BIT(11) #define UHSIC_RESET BIT(11) #define UTMIP_PHY_ENABLE BIT(12) #define ULPI_PHY_ENABLE BIT(13) #define USB_SUSP_SET BIT(14) #define USB_WAKEUP_DEBOUNCE_COUNT(x) (((x) & 0x7) << 16) #define USB_PHY_VBUS_SENSORS 0x404 #define B_SESS_VLD_WAKEUP_EN BIT(14) #define A_SESS_VLD_WAKEUP_EN BIT(22) #define A_VBUS_VLD_WAKEUP_EN BIT(30) #define USB_PHY_VBUS_WAKEUP_ID 0x408 #define VBUS_WAKEUP_STS BIT(10) #define VBUS_WAKEUP_WAKEUP_EN BIT(30) #define USB1_LEGACY_CTRL 0x410 #define USB1_NO_LEGACY_MODE BIT(0) #define USB1_VBUS_SENSE_CTL_MASK (3 << 1) #define USB1_VBUS_SENSE_CTL_VBUS_WAKEUP (0 << 1) #define USB1_VBUS_SENSE_CTL_AB_SESS_VLD_OR_VBUS_WAKEUP \ (1 << 1) #define USB1_VBUS_SENSE_CTL_AB_SESS_VLD (2 << 1) #define USB1_VBUS_SENSE_CTL_A_SESS_VLD (3 << 1) #define ULPI_TIMING_CTRL_0 0x424 #define ULPI_OUTPUT_PINMUX_BYP BIT(10) #define ULPI_CLKOUT_PINMUX_BYP BIT(11) #define ULPI_TIMING_CTRL_1 0x428 #define ULPI_DATA_TRIMMER_LOAD BIT(0) #define ULPI_DATA_TRIMMER_SEL(x) (((x) & 0x7) << 1) #define ULPI_STPDIRNXT_TRIMMER_LOAD BIT(16) #define ULPI_STPDIRNXT_TRIMMER_SEL(x) (((x) & 0x7) << 17) #define ULPI_DIR_TRIMMER_LOAD BIT(24) #define ULPI_DIR_TRIMMER_SEL(x) (((x) & 0x7) << 25) #define UTMIP_PLL_CFG1 0x804 #define UTMIP_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0) #define UTMIP_PLLU_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27) #define UTMIP_XCVR_CFG0 0x808 #define UTMIP_XCVR_SETUP(x) (((x) & 0xf) << 0) #define UTMIP_XCVR_SETUP_MSB(x) ((((x) & 0x70) >> 4) << 22) #define UTMIP_XCVR_LSRSLEW(x) (((x) & 0x3) << 8) #define UTMIP_XCVR_LSFSLEW(x) (((x) & 0x3) << 10) #define UTMIP_FORCE_PD_POWERDOWN BIT(14) #define UTMIP_FORCE_PD2_POWERDOWN BIT(16) #define UTMIP_FORCE_PDZI_POWERDOWN BIT(18) #define UTMIP_XCVR_LSBIAS_SEL BIT(21) #define UTMIP_XCVR_HSSLEW(x) (((x) & 0x3) << 4) #define UTMIP_XCVR_HSSLEW_MSB(x) ((((x) & 0x1fc) >> 2) << 25) #define UTMIP_BIAS_CFG0 0x80c #define UTMIP_OTGPD BIT(11) #define UTMIP_BIASPD BIT(10) #define UTMIP_HSSQUELCH_LEVEL(x) (((x) & 0x3) << 0) #define UTMIP_HSDISCON_LEVEL(x) (((x) & 0x3) << 2) #define UTMIP_HSDISCON_LEVEL_MSB(x) ((((x) & 0x4) >> 2) << 24) #define UTMIP_HSRX_CFG0 0x810 #define UTMIP_ELASTIC_LIMIT(x) (((x) & 0x1f) << 10) #define UTMIP_IDLE_WAIT(x) (((x) & 0x1f) << 15) #define UTMIP_HSRX_CFG1 0x814 #define UTMIP_HS_SYNC_START_DLY(x) (((x) & 0x1f) << 1) #define UTMIP_TX_CFG0 0x820 #define UTMIP_FS_PREABMLE_J BIT(19) #define UTMIP_HS_DISCON_DISABLE BIT(8) #define UTMIP_MISC_CFG0 0x824 #define UTMIP_DPDM_OBSERVE BIT(26) #define UTMIP_DPDM_OBSERVE_SEL(x) (((x) & 0xf) << 27) #define UTMIP_DPDM_OBSERVE_SEL_FS_J UTMIP_DPDM_OBSERVE_SEL(0xf) #define UTMIP_DPDM_OBSERVE_SEL_FS_K UTMIP_DPDM_OBSERVE_SEL(0xe) #define UTMIP_DPDM_OBSERVE_SEL_FS_SE1 UTMIP_DPDM_OBSERVE_SEL(0xd) #define UTMIP_DPDM_OBSERVE_SEL_FS_SE0 UTMIP_DPDM_OBSERVE_SEL(0xc) #define UTMIP_SUSPEND_EXIT_ON_EDGE BIT(22) #define UTMIP_MISC_CFG1 0x828 #define UTMIP_PLL_ACTIVE_DLY_COUNT(x) (((x) & 0x1f) << 18) #define UTMIP_PLLU_STABLE_COUNT(x) (((x) & 0xfff) << 6) #define UTMIP_DEBOUNCE_CFG0 0x82c #define UTMIP_BIAS_DEBOUNCE_A(x) (((x) & 0xffff) << 0) #define UTMIP_BAT_CHRG_CFG0 0x830 #define UTMIP_PD_CHRG BIT(0) #define UTMIP_SPARE_CFG0 0x834 #define FUSE_SETUP_SEL BIT(3) #define UTMIP_XCVR_CFG1 0x838 #define UTMIP_FORCE_PDDISC_POWERDOWN BIT(0) #define UTMIP_FORCE_PDCHRP_POWERDOWN BIT(2) #define UTMIP_FORCE_PDDR_POWERDOWN BIT(4) #define UTMIP_XCVR_TERM_RANGE_ADJ(x) (((x) & 0xf) << 18) #define UTMIP_BIAS_CFG1 0x83c #define UTMIP_BIAS_PDTRK_COUNT(x) (((x) & 0x1f) << 3) /* For Tegra30 and above only, the address is different in Tegra20 */ #define USB_USBMODE 0x1f8 #define USB_USBMODE_MASK (3 << 0) #define USB_USBMODE_HOST (3 << 0) #define USB_USBMODE_DEVICE (2 << 0) static DEFINE_SPINLOCK(utmip_pad_lock); static unsigned int utmip_pad_count; struct tegra_xtal_freq { unsigned int freq; u8 enable_delay; u8 stable_count; u8 active_delay; u8 xtal_freq_count; u16 debounce; }; static const struct tegra_xtal_freq tegra_freq_table[] = { { .freq = 12000000, .enable_delay = 0x02, .stable_count = 0x2F, .active_delay = 0x04, .xtal_freq_count = 0x76, .debounce = 0x7530, }, { .freq = 13000000, .enable_delay = 0x02, .stable_count = 0x33, .active_delay = 0x05, .xtal_freq_count = 0x7F, .debounce = 0x7EF4, }, { .freq = 19200000, .enable_delay = 0x03, .stable_count = 0x4B, .active_delay = 0x06, .xtal_freq_count = 0xBB, .debounce = 0xBB80, }, { .freq = 26000000, .enable_delay = 0x04, .stable_count = 0x66, .active_delay = 0x09, .xtal_freq_count = 0xFE, .debounce = 0xFDE8, }, }; static inline struct tegra_usb_phy *to_tegra_usb_phy(struct usb_phy *u_phy) { return container_of(u_phy, struct tegra_usb_phy, u_phy); } static void set_pts(struct tegra_usb_phy *phy, u8 pts_val) { void __iomem *base = phy->regs; u32 val; if (phy->soc_config->has_hostpc) { val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC); val &= ~TEGRA_USB_HOSTPC1_DEVLC_PTS(~0); val |= TEGRA_USB_HOSTPC1_DEVLC_PTS(pts_val); writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC); } else { val = readl_relaxed(base + TEGRA_USB_PORTSC1); val &= ~TEGRA_PORTSC1_RWC_BITS; val &= ~TEGRA_USB_PORTSC1_PTS(~0); val |= TEGRA_USB_PORTSC1_PTS(pts_val); writel_relaxed(val, base + TEGRA_USB_PORTSC1); } } static void set_phcd(struct tegra_usb_phy *phy, bool enable) { void __iomem *base = phy->regs; u32 val; if (phy->soc_config->has_hostpc) { val = readl_relaxed(base + TEGRA_USB_HOSTPC1_DEVLC); if (enable) val |= TEGRA_USB_HOSTPC1_DEVLC_PHCD; else val &= ~TEGRA_USB_HOSTPC1_DEVLC_PHCD; writel_relaxed(val, base + TEGRA_USB_HOSTPC1_DEVLC); } else { val = readl_relaxed(base + TEGRA_USB_PORTSC1) & ~PORT_RWC_BITS; if (enable) val |= TEGRA_USB_PORTSC1_PHCD; else val &= ~TEGRA_USB_PORTSC1_PHCD; writel_relaxed(val, base + TEGRA_USB_PORTSC1); } } static int utmip_pad_open(struct tegra_usb_phy *phy) { int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) { dev_err(phy->u_phy.dev, "Failed to enable UTMI-pads clock: %d\n", ret); return ret; } spin_lock(&utmip_pad_lock); ret = reset_control_deassert(phy->pad_rst); if (ret) { dev_err(phy->u_phy.dev, "Failed to initialize UTMI-pads reset: %d\n", ret); goto unlock; } ret = reset_control_assert(phy->pad_rst); if (ret) { dev_err(phy->u_phy.dev, "Failed to assert UTMI-pads reset: %d\n", ret); goto unlock; } udelay(1); ret = reset_control_deassert(phy->pad_rst); if (ret) dev_err(phy->u_phy.dev, "Failed to deassert UTMI-pads reset: %d\n", ret); unlock: spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmip_pad_close(struct tegra_usb_phy *phy) { int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) { dev_err(phy->u_phy.dev, "Failed to enable UTMI-pads clock: %d\n", ret); return ret; } ret = reset_control_assert(phy->pad_rst); if (ret) dev_err(phy->u_phy.dev, "Failed to assert UTMI-pads reset: %d\n", ret); udelay(1); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmip_pad_power_on(struct tegra_usb_phy *phy) { struct tegra_utmip_config *config = phy->config; void __iomem *base = phy->pad_regs; u32 val; int err; err = clk_prepare_enable(phy->pad_clk); if (err) return err; spin_lock(&utmip_pad_lock); if (utmip_pad_count++ == 0) { val = readl_relaxed(base + UTMIP_BIAS_CFG0); val &= ~(UTMIP_OTGPD | UTMIP_BIASPD); if (phy->soc_config->requires_extra_tuning_parameters) { val &= ~(UTMIP_HSSQUELCH_LEVEL(~0) | UTMIP_HSDISCON_LEVEL(~0) | UTMIP_HSDISCON_LEVEL_MSB(~0)); val |= UTMIP_HSSQUELCH_LEVEL(config->hssquelch_level); val |= UTMIP_HSDISCON_LEVEL(config->hsdiscon_level); val |= UTMIP_HSDISCON_LEVEL_MSB(config->hsdiscon_level); } writel_relaxed(val, base + UTMIP_BIAS_CFG0); } if (phy->pad_wakeup) { phy->pad_wakeup = false; utmip_pad_count--; } spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return 0; } static int utmip_pad_power_off(struct tegra_usb_phy *phy) { void __iomem *base = phy->pad_regs; u32 val; int ret; ret = clk_prepare_enable(phy->pad_clk); if (ret) return ret; spin_lock(&utmip_pad_lock); if (!utmip_pad_count) { dev_err(phy->u_phy.dev, "UTMIP pad already powered off\n"); ret = -EINVAL; goto ulock; } /* * In accordance to TRM, OTG and Bias pad circuits could be turned off * to save power if wake is enabled, but the VBUS-change detection * method is board-specific and these circuits may need to be enabled * to generate wakeup event, hence we will just keep them both enabled. */ if (phy->wakeup_enabled) { phy->pad_wakeup = true; utmip_pad_count++; } if (--utmip_pad_count == 0) { val = readl_relaxed(base + UTMIP_BIAS_CFG0); val |= UTMIP_OTGPD | UTMIP_BIASPD; writel_relaxed(val, base + UTMIP_BIAS_CFG0); } ulock: spin_unlock(&utmip_pad_lock); clk_disable_unprepare(phy->pad_clk); return ret; } static int utmi_wait_register(void __iomem *reg, u32 mask, u32 result) { u32 tmp; return readl_relaxed_poll_timeout(reg, tmp, (tmp & mask) == result, 2000, 6000); } static void utmi_phy_clk_disable(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * The USB driver may have already initiated the phy clock * disable so wait to see if the clock turns off and if not * then proceed with gating the clock. */ if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0) == 0) return; if (phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(10, 100); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); } else { set_phcd(phy, true); } if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, 0)) dev_err(phy->u_phy.dev, "Timeout waiting for PHY to stabilize on disable\n"); } static void utmi_phy_clk_enable(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * The USB driver may have already initiated the phy clock * enable so wait to see if the clock turns on and if not * then proceed with ungating the clock. */ if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, USB_PHY_CLK_VALID) == 0) return; if (phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(10, 100); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); } else { set_phcd(phy, false); } if (utmi_wait_register(base + USB_SUSP_CTRL, USB_PHY_CLK_VALID, USB_PHY_CLK_VALID)) dev_err(phy->u_phy.dev, "Timeout waiting for PHY to stabilize on enable\n"); } static int utmi_phy_power_on(struct tegra_usb_phy *phy) { struct tegra_utmip_config *config = phy->config; void __iomem *base = phy->regs; u32 val; int err; val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->is_legacy_phy) { val = readl_relaxed(base + USB1_LEGACY_CTRL); val |= USB1_NO_LEGACY_MODE; writel_relaxed(val, base + USB1_LEGACY_CTRL); } val = readl_relaxed(base + UTMIP_TX_CFG0); val |= UTMIP_FS_PREABMLE_J; writel_relaxed(val, base + UTMIP_TX_CFG0); val = readl_relaxed(base + UTMIP_HSRX_CFG0); val &= ~(UTMIP_IDLE_WAIT(~0) | UTMIP_ELASTIC_LIMIT(~0)); val |= UTMIP_IDLE_WAIT(config->idle_wait_delay); val |= UTMIP_ELASTIC_LIMIT(config->elastic_limit); writel_relaxed(val, base + UTMIP_HSRX_CFG0); val = readl_relaxed(base + UTMIP_HSRX_CFG1); val &= ~UTMIP_HS_SYNC_START_DLY(~0); val |= UTMIP_HS_SYNC_START_DLY(config->hssync_start_delay); writel_relaxed(val, base + UTMIP_HSRX_CFG1); val = readl_relaxed(base + UTMIP_DEBOUNCE_CFG0); val &= ~UTMIP_BIAS_DEBOUNCE_A(~0); val |= UTMIP_BIAS_DEBOUNCE_A(phy->freq->debounce); writel_relaxed(val, base + UTMIP_DEBOUNCE_CFG0); val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_SUSPEND_EXIT_ON_EDGE; writel_relaxed(val, base + UTMIP_MISC_CFG0); if (!phy->soc_config->utmi_pll_config_in_car_module) { val = readl_relaxed(base + UTMIP_MISC_CFG1); val &= ~(UTMIP_PLL_ACTIVE_DLY_COUNT(~0) | UTMIP_PLLU_STABLE_COUNT(~0)); val |= UTMIP_PLL_ACTIVE_DLY_COUNT(phy->freq->active_delay) | UTMIP_PLLU_STABLE_COUNT(phy->freq->stable_count); writel_relaxed(val, base + UTMIP_MISC_CFG1); val = readl_relaxed(base + UTMIP_PLL_CFG1); val &= ~(UTMIP_XTAL_FREQ_COUNT(~0) | UTMIP_PLLU_ENABLE_DLY_COUNT(~0)); val |= UTMIP_XTAL_FREQ_COUNT(phy->freq->xtal_freq_count) | UTMIP_PLLU_ENABLE_DLY_COUNT(phy->freq->enable_delay); writel_relaxed(val, base + UTMIP_PLL_CFG1); } val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_WAKE_ON_RESUME_EN; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->mode == USB_DR_MODE_PERIPHERAL) { val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~(USB_WAKE_ON_CNNT_EN_DEV | USB_WAKE_ON_DISCON_EN_DEV); writel_relaxed(val, base + USB_SUSP_CTRL); val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val &= ~VBUS_WAKEUP_WAKEUP_EN; writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); val = readl_relaxed(base + USB_PHY_VBUS_SENSORS); val &= ~(A_VBUS_VLD_WAKEUP_EN | A_SESS_VLD_WAKEUP_EN); val &= ~(B_SESS_VLD_WAKEUP_EN); writel_relaxed(val, base + USB_PHY_VBUS_SENSORS); val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val &= ~UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); } else { val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val |= UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); } err = utmip_pad_power_on(phy); if (err) return err; val = readl_relaxed(base + UTMIP_XCVR_CFG0); val &= ~(UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN | UTMIP_FORCE_PDZI_POWERDOWN | UTMIP_XCVR_LSBIAS_SEL | UTMIP_XCVR_SETUP(~0) | UTMIP_XCVR_SETUP_MSB(~0) | UTMIP_XCVR_LSFSLEW(~0) | UTMIP_XCVR_LSRSLEW(~0)); if (!config->xcvr_setup_use_fuses) { val |= UTMIP_XCVR_SETUP(config->xcvr_setup); val |= UTMIP_XCVR_SETUP_MSB(config->xcvr_setup); } val |= UTMIP_XCVR_LSFSLEW(config->xcvr_lsfslew); val |= UTMIP_XCVR_LSRSLEW(config->xcvr_lsrslew); if (phy->soc_config->requires_extra_tuning_parameters) { val &= ~(UTMIP_XCVR_HSSLEW(~0) | UTMIP_XCVR_HSSLEW_MSB(~0)); val |= UTMIP_XCVR_HSSLEW(config->xcvr_hsslew); val |= UTMIP_XCVR_HSSLEW_MSB(config->xcvr_hsslew); } writel_relaxed(val, base + UTMIP_XCVR_CFG0); val = readl_relaxed(base + UTMIP_XCVR_CFG1); val &= ~(UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN | UTMIP_FORCE_PDDR_POWERDOWN | UTMIP_XCVR_TERM_RANGE_ADJ(~0)); val |= UTMIP_XCVR_TERM_RANGE_ADJ(config->term_range_adj); writel_relaxed(val, base + UTMIP_XCVR_CFG1); val = readl_relaxed(base + UTMIP_BIAS_CFG1); val &= ~UTMIP_BIAS_PDTRK_COUNT(~0); val |= UTMIP_BIAS_PDTRK_COUNT(0x5); writel_relaxed(val, base + UTMIP_BIAS_CFG1); val = readl_relaxed(base + UTMIP_SPARE_CFG0); if (config->xcvr_setup_use_fuses) val |= FUSE_SETUP_SEL; else val &= ~FUSE_SETUP_SEL; writel_relaxed(val, base + UTMIP_SPARE_CFG0); if (!phy->is_legacy_phy) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_PHY_ENABLE; writel_relaxed(val, base + USB_SUSP_CTRL); } val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); if (phy->is_legacy_phy) { val = readl_relaxed(base + USB1_LEGACY_CTRL); val &= ~USB1_VBUS_SENSE_CTL_MASK; val |= USB1_VBUS_SENSE_CTL_A_SESS_VLD; writel_relaxed(val, base + USB1_LEGACY_CTRL); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_SET; writel_relaxed(val, base + USB_SUSP_CTRL); } utmi_phy_clk_enable(phy); if (phy->soc_config->requires_usbmode_setup) { val = readl_relaxed(base + USB_USBMODE); val &= ~USB_USBMODE_MASK; if (phy->mode == USB_DR_MODE_HOST) val |= USB_USBMODE_HOST; else val |= USB_USBMODE_DEVICE; writel_relaxed(val, base + USB_USBMODE); } if (!phy->is_legacy_phy) set_pts(phy, 0); return 0; } static int utmi_phy_power_off(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; /* * Give hardware time to settle down after VBUS disconnection, * otherwise PHY will immediately wake up from suspend. */ if (phy->wakeup_enabled && phy->mode != USB_DR_MODE_HOST) readl_relaxed_poll_timeout(base + USB_PHY_VBUS_WAKEUP_ID, val, !(val & VBUS_WAKEUP_STS), 5000, 100000); utmi_phy_clk_disable(phy); /* PHY won't resume if reset is asserted */ if (!phy->wakeup_enabled) { val = readl_relaxed(base + USB_SUSP_CTRL); val |= UTMIP_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); } val = readl_relaxed(base + UTMIP_BAT_CHRG_CFG0); val |= UTMIP_PD_CHRG; writel_relaxed(val, base + UTMIP_BAT_CHRG_CFG0); if (!phy->wakeup_enabled) { val = readl_relaxed(base + UTMIP_XCVR_CFG0); val |= UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN | UTMIP_FORCE_PDZI_POWERDOWN; writel_relaxed(val, base + UTMIP_XCVR_CFG0); } val = readl_relaxed(base + UTMIP_XCVR_CFG1); val |= UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN | UTMIP_FORCE_PDDR_POWERDOWN; writel_relaxed(val, base + UTMIP_XCVR_CFG1); if (phy->wakeup_enabled) { val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_WAKEUP_DEBOUNCE_COUNT(~0); val |= USB_WAKEUP_DEBOUNCE_COUNT(5); val |= USB_WAKE_ON_RESUME_EN; writel_relaxed(val, base + USB_SUSP_CTRL); /* * Ask VBUS sensor to generate wake event once cable is * connected. */ if (phy->mode == USB_DR_MODE_PERIPHERAL) { val = readl_relaxed(base + USB_PHY_VBUS_WAKEUP_ID); val |= VBUS_WAKEUP_WAKEUP_EN; writel_relaxed(val, base + USB_PHY_VBUS_WAKEUP_ID); val = readl_relaxed(base + USB_PHY_VBUS_SENSORS); val |= A_VBUS_VLD_WAKEUP_EN; writel_relaxed(val, base + USB_PHY_VBUS_SENSORS); } } return utmip_pad_power_off(phy); } static void utmi_phy_preresume(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_TX_CFG0); val |= UTMIP_HS_DISCON_DISABLE; writel_relaxed(val, base + UTMIP_TX_CFG0); } static void utmi_phy_postresume(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_TX_CFG0); val &= ~UTMIP_HS_DISCON_DISABLE; writel_relaxed(val, base + UTMIP_TX_CFG0); } static void utmi_phy_restore_start(struct tegra_usb_phy *phy, enum tegra_usb_phy_port_speed port_speed) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_DPDM_OBSERVE_SEL(~0); if (port_speed == TEGRA_USB_PHY_PORT_SPEED_LOW) val |= UTMIP_DPDM_OBSERVE_SEL_FS_K; else val |= UTMIP_DPDM_OBSERVE_SEL_FS_J; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(1, 10); val = readl_relaxed(base + UTMIP_MISC_CFG0); val |= UTMIP_DPDM_OBSERVE; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(10, 100); } static void utmi_phy_restore_end(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; val = readl_relaxed(base + UTMIP_MISC_CFG0); val &= ~UTMIP_DPDM_OBSERVE; writel_relaxed(val, base + UTMIP_MISC_CFG0); usleep_range(10, 100); } static int ulpi_phy_power_on(struct tegra_usb_phy *phy) { void __iomem *base = phy->regs; u32 val; int err; gpiod_set_value_cansleep(phy->reset_gpio, 1); err = clk_prepare_enable(phy->clk); if (err) return err; usleep_range(5000, 6000); gpiod_set_value_cansleep(phy->reset_gpio, 0); usleep_range(1000, 2000); val = readl_relaxed(base + USB_SUSP_CTRL); val |= UHSIC_RESET; writel_relaxed(val, base + USB_SUSP_CTRL); val = readl_relaxed(base + ULPI_TIMING_CTRL_0); val |= ULPI_OUTPUT_PINMUX_BYP | ULPI_CLKOUT_PINMUX_BYP; writel_relaxed(val, base + ULPI_TIMING_CTRL_0); val = readl_relaxed(base + USB_SUSP_CTRL); val |= ULPI_PHY_ENABLE; writel_relaxed(val, base + USB_SUSP_CTRL); val = 0; writel_relaxed(val, base + ULPI_TIMING_CTRL_1); val |= ULPI_DATA_TRIMMER_SEL(4); val |= ULPI_STPDIRNXT_TRIMMER_SEL(4); val |= ULPI_DIR_TRIMMER_SEL(4); writel_relaxed(val, base + ULPI_TIMING_CTRL_1); usleep_range(10, 100); val |= ULPI_DATA_TRIMMER_LOAD; val |= ULPI_STPDIRNXT_TRIMMER_LOAD; val |= ULPI_DIR_TRIMMER_LOAD; writel_relaxed(val, base + ULPI_TIMING_CTRL_1); /* Fix VbusInvalid due to floating VBUS */ err = usb_phy_io_write(phy->ulpi, 0x40, 0x08); if (err) { dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err); goto disable_clk; } err = usb_phy_io_write(phy->ulpi, 0x80, 0x0B); if (err) { dev_err(phy->u_phy.dev, "ULPI write failed: %d\n", err); goto disable_clk; } val = readl_relaxed(base + USB_SUSP_CTRL); val |= USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); usleep_range(100, 1000); val = readl_relaxed(base + USB_SUSP_CTRL); val &= ~USB_SUSP_CLR; writel_relaxed(val, base + USB_SUSP_CTRL); return 0; disable_clk: clk_disable_unprepare(phy->clk); return err; } static int ulpi_phy_power_off(struct tegra_usb_phy *phy) { gpiod_set_value_cansleep(phy->reset_gpio, 1); usleep_range(5000, 6000); clk_disable_unprepare(phy->clk); /* * Wakeup currently unimplemented for ULPI, thus PHY needs to be * force-resumed. */ if (WARN_ON_ONCE(phy->wakeup_enabled)) { ulpi_phy_power_on(phy); return -EOPNOTSUPP; } return 0; } static int tegra_usb_phy_power_on(struct tegra_usb_phy *phy) { int err; if (phy->powered_on) return 0; if (phy->is_ulpi_phy) err = ulpi_phy_power_on(phy); else err = utmi_phy_power_on(phy); if (err) return err; phy->powered_on = true; /* Let PHY settle down */ usleep_range(2000, 2500); return 0; } static int tegra_usb_phy_power_off(struct tegra_usb_phy *phy) { int err; if (!phy->powered_on) return 0; if (phy->is_ulpi_phy) err = ulpi_phy_power_off(phy); else err = utmi_phy_power_off(phy); if (err) return err; phy->powered_on = false; return 0; } static void tegra_usb_phy_shutdown(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (WARN_ON(!phy->freq)) return; tegra_usb_phy_power_off(phy); if (!phy->is_ulpi_phy) utmip_pad_close(phy); regulator_disable(phy->vbus); clk_disable_unprepare(phy->pll_u); phy->freq = NULL; } static int tegra_usb_phy_set_wakeup(struct usb_phy *u_phy, bool enable) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); phy->wakeup_enabled = enable; return 0; } static int tegra_usb_phy_set_suspend(struct usb_phy *u_phy, int suspend) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (WARN_ON(!phy->freq)) return -EINVAL; if (suspend) return tegra_usb_phy_power_off(phy); else return tegra_usb_phy_power_on(phy); } static int tegra_usb_phy_init(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); unsigned long parent_rate; unsigned int i; int err; if (WARN_ON(phy->freq)) return 0; err = clk_prepare_enable(phy->pll_u); if (err) return err; parent_rate = clk_get_rate(clk_get_parent(phy->pll_u)); for (i = 0; i < ARRAY_SIZE(tegra_freq_table); i++) { if (tegra_freq_table[i].freq == parent_rate) { phy->freq = &tegra_freq_table[i]; break; } } if (!phy->freq) { dev_err(phy->u_phy.dev, "Invalid pll_u parent rate %ld\n", parent_rate); err = -EINVAL; goto disable_clk; } err = regulator_enable(phy->vbus); if (err) { dev_err(phy->u_phy.dev, "Failed to enable USB VBUS regulator: %d\n", err); goto disable_clk; } if (!phy->is_ulpi_phy) { err = utmip_pad_open(phy); if (err) goto disable_vbus; } err = tegra_usb_phy_power_on(phy); if (err) goto close_phy; return 0; close_phy: if (!phy->is_ulpi_phy) utmip_pad_close(phy); disable_vbus: regulator_disable(phy->vbus); disable_clk: clk_disable_unprepare(phy->pll_u); phy->freq = NULL; return err; } void tegra_usb_phy_preresume(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_preresume(phy); } EXPORT_SYMBOL_GPL(tegra_usb_phy_preresume); void tegra_usb_phy_postresume(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_postresume(phy); } EXPORT_SYMBOL_GPL(tegra_usb_phy_postresume); void tegra_ehci_phy_restore_start(struct usb_phy *u_phy, enum tegra_usb_phy_port_speed port_speed) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_restore_start(phy, port_speed); } EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_start); void tegra_ehci_phy_restore_end(struct usb_phy *u_phy) { struct tegra_usb_phy *phy = to_tegra_usb_phy(u_phy); if (!phy->is_ulpi_phy) utmi_phy_restore_end(phy); } EXPORT_SYMBOL_GPL(tegra_ehci_phy_restore_end); static int read_utmi_param(struct platform_device *pdev, const char *param, u8 *dest) { u32 value; int err; err = of_property_read_u32(pdev->dev.of_node, param, &value); if (err) dev_err(&pdev->dev, "Failed to read USB UTMI parameter %s: %d\n", param, err); else *dest = value; return err; } static int utmi_phy_probe(struct tegra_usb_phy *tegra_phy, struct platform_device *pdev) { struct tegra_utmip_config *config; struct resource *res; int err; tegra_phy->is_ulpi_phy = false; res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) { dev_err(&pdev->dev, "Failed to get UTMI pad regs\n"); return -ENXIO; } /* * Note that UTMI pad registers are shared by all PHYs, therefore * devm_platform_ioremap_resource() can't be used here. */ tegra_phy->pad_regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!tegra_phy->pad_regs) { dev_err(&pdev->dev, "Failed to remap UTMI pad regs\n"); return -ENOMEM; } tegra_phy->config = devm_kzalloc(&pdev->dev, sizeof(*config), GFP_KERNEL); if (!tegra_phy->config) return -ENOMEM; config = tegra_phy->config; err = read_utmi_param(pdev, "nvidia,hssync-start-delay", &config->hssync_start_delay); if (err) return err; err = read_utmi_param(pdev, "nvidia,elastic-limit", &config->elastic_limit); if (err) return err; err = read_utmi_param(pdev, "nvidia,idle-wait-delay", &config->idle_wait_delay); if (err) return err; err = read_utmi_param(pdev, "nvidia,term-range-adj", &config->term_range_adj); if (err) return err; err = read_utmi_param(pdev, "nvidia,xcvr-lsfslew", &config->xcvr_lsfslew); if (err) return err; err = read_utmi_param(pdev, "nvidia,xcvr-lsrslew", &config->xcvr_lsrslew); if (err) return err; if (tegra_phy->soc_config->requires_extra_tuning_parameters) { err = read_utmi_param(pdev, "nvidia,xcvr-hsslew", &config->xcvr_hsslew); if (err) return err; err = read_utmi_param(pdev, "nvidia,hssquelch-level", &config->hssquelch_level); if (err) return err; err = read_utmi_param(pdev, "nvidia,hsdiscon-level", &config->hsdiscon_level); if (err) return err; } config->xcvr_setup_use_fuses = of_property_read_bool( pdev->dev.of_node, "nvidia,xcvr-setup-use-fuses"); if (!config->xcvr_setup_use_fuses) { err = read_utmi_param(pdev, "nvidia,xcvr-setup", &config->xcvr_setup); if (err) return err; } return 0; } static const struct tegra_phy_soc_config tegra20_soc_config = { .utmi_pll_config_in_car_module = false, .has_hostpc = false, .requires_usbmode_setup = false, .requires_extra_tuning_parameters = false, }; static const struct tegra_phy_soc_config tegra30_soc_config = { .utmi_pll_config_in_car_module = true, .has_hostpc = true, .requires_usbmode_setup = true, .requires_extra_tuning_parameters = true, }; static const struct of_device_id tegra_usb_phy_id_table[] = { { .compatible = "nvidia,tegra30-usb-phy", .data = &tegra30_soc_config }, { .compatible = "nvidia,tegra20-usb-phy", .data = &tegra20_soc_config }, { }, }; MODULE_DEVICE_TABLE(of, tegra_usb_phy_id_table); static int tegra_usb_phy_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct tegra_usb_phy *tegra_phy; enum usb_phy_interface phy_type; struct reset_control *reset; struct gpio_desc *gpiod; struct resource *res; struct usb_phy *phy; int err; tegra_phy = devm_kzalloc(&pdev->dev, sizeof(*tegra_phy), GFP_KERNEL); if (!tegra_phy) return -ENOMEM; tegra_phy->soc_config = of_device_get_match_data(&pdev->dev); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "Failed to get I/O memory\n"); return -ENXIO; } /* * Note that PHY and USB controller are using shared registers, * therefore devm_platform_ioremap_resource() can't be used here. */ tegra_phy->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!tegra_phy->regs) { dev_err(&pdev->dev, "Failed to remap I/O memory\n"); return -ENOMEM; } tegra_phy->is_legacy_phy = of_property_read_bool(np, "nvidia,has-legacy-mode"); if (of_find_property(np, "dr_mode", NULL)) tegra_phy->mode = usb_get_dr_mode(&pdev->dev); else tegra_phy->mode = USB_DR_MODE_HOST; if (tegra_phy->mode == USB_DR_MODE_UNKNOWN) { dev_err(&pdev->dev, "dr_mode is invalid\n"); return -EINVAL; } /* On some boards, the VBUS regulator doesn't need to be controlled */ tegra_phy->vbus = devm_regulator_get(&pdev->dev, "vbus"); if (IS_ERR(tegra_phy->vbus)) return PTR_ERR(tegra_phy->vbus); tegra_phy->pll_u = devm_clk_get(&pdev->dev, "pll_u"); err = PTR_ERR_OR_ZERO(tegra_phy->pll_u); if (err) { dev_err(&pdev->dev, "Failed to get pll_u clock: %d\n", err); return err; } phy_type = of_usb_get_phy_mode(np); switch (phy_type) { case USBPHY_INTERFACE_MODE_UTMI: err = utmi_phy_probe(tegra_phy, pdev); if (err) return err; tegra_phy->pad_clk = devm_clk_get(&pdev->dev, "utmi-pads"); err = PTR_ERR_OR_ZERO(tegra_phy->pad_clk); if (err) { dev_err(&pdev->dev, "Failed to get UTMIP pad clock: %d\n", err); return err; } reset = devm_reset_control_get_optional_shared(&pdev->dev, "utmi-pads"); err = PTR_ERR_OR_ZERO(reset); if (err) { dev_err(&pdev->dev, "Failed to get UTMI-pads reset: %d\n", err); return err; } tegra_phy->pad_rst = reset; break; case USBPHY_INTERFACE_MODE_ULPI: tegra_phy->is_ulpi_phy = true; tegra_phy->clk = devm_clk_get(&pdev->dev, "ulpi-link"); err = PTR_ERR_OR_ZERO(tegra_phy->clk); if (err) { dev_err(&pdev->dev, "Failed to get ULPI clock: %d\n", err); return err; } gpiod = devm_gpiod_get_from_of_node(&pdev->dev, np, "nvidia,phy-reset-gpio", 0, GPIOD_OUT_HIGH, "ulpi_phy_reset_b"); err = PTR_ERR_OR_ZERO(gpiod); if (err) { dev_err(&pdev->dev, "Request failed for reset GPIO: %d\n", err); return err; } tegra_phy->reset_gpio = gpiod; phy = devm_otg_ulpi_create(&pdev->dev, &ulpi_viewport_access_ops, 0); if (!phy) { dev_err(&pdev->dev, "Failed to create ULPI OTG\n"); return -ENOMEM; } tegra_phy->ulpi = phy; tegra_phy->ulpi->io_priv = tegra_phy->regs + ULPI_VIEWPORT; break; default: dev_err(&pdev->dev, "phy_type %u is invalid or unsupported\n", phy_type); return -EINVAL; } tegra_phy->u_phy.dev = &pdev->dev; tegra_phy->u_phy.init = tegra_usb_phy_init; tegra_phy->u_phy.shutdown = tegra_usb_phy_shutdown; tegra_phy->u_phy.set_wakeup = tegra_usb_phy_set_wakeup; tegra_phy->u_phy.set_suspend = tegra_usb_phy_set_suspend; platform_set_drvdata(pdev, tegra_phy); return usb_add_phy_dev(&tegra_phy->u_phy); } static int tegra_usb_phy_remove(struct platform_device *pdev) { struct tegra_usb_phy *tegra_phy = platform_get_drvdata(pdev); usb_remove_phy(&tegra_phy->u_phy); return 0; } static struct platform_driver tegra_usb_phy_driver = { .probe = tegra_usb_phy_probe, .remove = tegra_usb_phy_remove, .driver = { .name = "tegra-phy", .of_match_table = tegra_usb_phy_id_table, }, }; module_platform_driver(tegra_usb_phy_driver); MODULE_DESCRIPTION("Tegra USB PHY driver"); MODULE_LICENSE("GPL v2");