// SPDX-License-Identifier: GPL-2.0+ /* * NVIDIA Tegra XUSB device mode controller * * Copyright (c) 2013-2019, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2015, Google Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XUSB_DEV registers */ #define SPARAM 0x000 #define SPARAM_ERSTMAX_MASK GENMASK(20, 16) #define SPARAM_ERSTMAX(x) (((x) << 16) & SPARAM_ERSTMAX_MASK) #define DB 0x004 #define DB_TARGET_MASK GENMASK(15, 8) #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK) #define DB_STREAMID_MASK GENMASK(31, 16) #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK) #define ERSTSZ 0x008 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16) #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0) #define ERSTXBALO(x) (0x010 + 8 * (x)) #define ERSTXBAHI(x) (0x014 + 8 * (x)) #define ERDPLO 0x020 #define ERDPLO_EHB BIT(3) #define ERDPHI 0x024 #define EREPLO 0x028 #define EREPLO_ECS BIT(0) #define EREPLO_SEGI BIT(1) #define EREPHI 0x02c #define CTRL 0x030 #define CTRL_RUN BIT(0) #define CTRL_LSE BIT(1) #define CTRL_IE BIT(4) #define CTRL_SMI_EVT BIT(5) #define CTRL_SMI_DSE BIT(6) #define CTRL_EWE BIT(7) #define CTRL_DEVADDR_MASK GENMASK(30, 24) #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK) #define CTRL_ENABLE BIT(31) #define ST 0x034 #define ST_RC BIT(0) #define ST_IP BIT(4) #define RT_IMOD 0x038 #define RT_IMOD_IMODI_MASK GENMASK(15, 0) #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK) #define RT_IMOD_IMODC_MASK GENMASK(31, 16) #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK) #define PORTSC 0x03c #define PORTSC_CCS BIT(0) #define PORTSC_PED BIT(1) #define PORTSC_PR BIT(4) #define PORTSC_PLS_SHIFT 5 #define PORTSC_PLS_MASK GENMASK(8, 5) #define PORTSC_PLS_U0 0x0 #define PORTSC_PLS_U2 0x2 #define PORTSC_PLS_U3 0x3 #define PORTSC_PLS_DISABLED 0x4 #define PORTSC_PLS_RXDETECT 0x5 #define PORTSC_PLS_INACTIVE 0x6 #define PORTSC_PLS_RESUME 0xf #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK) #define PORTSC_PS_SHIFT 10 #define PORTSC_PS_MASK GENMASK(13, 10) #define PORTSC_PS_UNDEFINED 0x0 #define PORTSC_PS_FS 0x1 #define PORTSC_PS_LS 0x2 #define PORTSC_PS_HS 0x3 #define PORTSC_PS_SS 0x4 #define PORTSC_LWS BIT(16) #define PORTSC_CSC BIT(17) #define PORTSC_WRC BIT(19) #define PORTSC_PRC BIT(21) #define PORTSC_PLC BIT(22) #define PORTSC_CEC BIT(23) #define PORTSC_WPR BIT(30) #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \ PORTSC_PLC | PORTSC_CEC) #define ECPLO 0x040 #define ECPHI 0x044 #define MFINDEX 0x048 #define MFINDEX_FRAME_SHIFT 3 #define MFINDEX_FRAME_MASK GENMASK(13, 3) #define PORTPM 0x04c #define PORTPM_L1S_MASK GENMASK(1, 0) #define PORTPM_L1S_DROP 0x0 #define PORTPM_L1S_ACCEPT 0x1 #define PORTPM_L1S_NYET 0x2 #define PORTPM_L1S_STALL 0x3 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK) #define PORTPM_RWE BIT(3) #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8) #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16) #define PORTPM_FLA BIT(24) #define PORTPM_VBA BIT(25) #define PORTPM_WOC BIT(26) #define PORTPM_WOD BIT(27) #define PORTPM_U1E BIT(28) #define PORTPM_U2E BIT(29) #define PORTPM_FRWE BIT(30) #define PORTPM_PNG_CYA BIT(31) #define EP_HALT 0x050 #define EP_PAUSE 0x054 #define EP_RELOAD 0x058 #define EP_STCHG 0x05c #define DEVNOTIF_LO 0x064 #define DEVNOTIF_LO_TRIG BIT(0) #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4) #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK) #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1 #define DEVNOTIF_HI 0x068 #define PORTHALT 0x06c #define PORTHALT_HALT_LTSSM BIT(0) #define PORTHALT_HALT_REJECT BIT(1) #define PORTHALT_STCHG_REQ BIT(20) #define PORTHALT_STCHG_INTR_EN BIT(24) #define PORT_TM 0x070 #define EP_THREAD_ACTIVE 0x074 #define EP_STOPPED 0x078 #define HSFSPI_COUNT0 0x100 #define HSFSPI_COUNT13 0x134 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0) #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \ HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK) #define BLCG 0x840 #define SSPX_CORE_CNT0 0x610 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0) #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK) #define SSPX_CORE_CNT30 0x688 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0) #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \ SSPX_CORE_CNT30_LMPITP_TIMER_MASK) #define SSPX_CORE_CNT32 0x690 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0) #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \ SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK) #define SSPX_CORE_CNT56 0x6fc #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0) #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \ SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK) #define SSPX_CORE_CNT57 0x700 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0) #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \ SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK) #define SSPX_CORE_CNT65 0x720 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0) #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \ SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK) #define SSPX_CORE_CNT66 0x724 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0) #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \ SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK) #define SSPX_CORE_CNT67 0x728 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0) #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \ SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK) #define SSPX_CORE_CNT72 0x73c #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0) #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \ SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK) #define SSPX_CORE_PADCTL4 0x750 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0) #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \ SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK) #define BLCG_DFPCI BIT(0) #define BLCG_UFPCI BIT(1) #define BLCG_FE BIT(2) #define BLCG_COREPLL_PWRDN BIT(8) #define BLCG_IOPLL_0_PWRDN BIT(9) #define BLCG_IOPLL_1_PWRDN BIT(10) #define BLCG_IOPLL_2_PWRDN BIT(11) #define BLCG_ALL 0x1ff #define CFG_DEV_SSPI_XFER 0x858 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0) #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \ CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK) #define CFG_DEV_FE 0x85c #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0) #define CFG_DEV_FE_PORTREGSEL_SS_PI 1 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK) #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29) /* FPCI registers */ #define XUSB_DEV_CFG_1 0x004 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0) #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1) #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2) #define XUSB_DEV_CFG_4 0x010 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15) #define XUSB_DEV_CFG_5 0x014 /* IPFS registers */ #define XUSB_DEV_CONFIGURATION_0 0x180 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0) #define XUSB_DEV_INTR_MASK_0 0x188 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16) struct tegra_xudc_ep_context { __le32 info0; __le32 info1; __le32 deq_lo; __le32 deq_hi; __le32 tx_info; __le32 rsvd[11]; }; #define EP_STATE_DISABLED 0 #define EP_STATE_RUNNING 1 #define EP_STATE_HALTED 2 #define EP_STATE_STOPPED 3 #define EP_STATE_ERROR 4 #define EP_TYPE_INVALID 0 #define EP_TYPE_ISOCH_OUT 1 #define EP_TYPE_BULK_OUT 2 #define EP_TYPE_INTERRUPT_OUT 3 #define EP_TYPE_CONTROL 4 #define EP_TYPE_ISCOH_IN 5 #define EP_TYPE_BULK_IN 6 #define EP_TYPE_INTERRUPT_IN 7 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \ static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \ { \ return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \ } \ static inline void \ ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \ { \ u32 tmp; \ \ tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \ tmp |= (val & (mask)) << (shift); \ ctx->member = cpu_to_le32(tmp); \ } BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7) BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3) BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f) BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1) BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff) BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3) BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7) BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1) BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff) BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff) BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1) BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff) BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff) BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff) BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff) BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff) BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 24, 0xff) BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1) BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3) BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff) BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f) BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f) static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx) { return ((u64)ep_ctx_read_deq_hi(ctx) << 32) | (ep_ctx_read_deq_lo(ctx) << 4); } static inline void ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr) { ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4); ep_ctx_write_deq_hi(ctx, upper_32_bits(addr)); } struct tegra_xudc_trb { __le32 data_lo; __le32 data_hi; __le32 status; __le32 control; }; #define TRB_TYPE_RSVD 0 #define TRB_TYPE_NORMAL 1 #define TRB_TYPE_SETUP_STAGE 2 #define TRB_TYPE_DATA_STAGE 3 #define TRB_TYPE_STATUS_STAGE 4 #define TRB_TYPE_ISOCH 5 #define TRB_TYPE_LINK 6 #define TRB_TYPE_TRANSFER_EVENT 32 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34 #define TRB_TYPE_STREAM 48 #define TRB_TYPE_SETUP_PACKET_EVENT 63 #define TRB_CMPL_CODE_INVALID 0 #define TRB_CMPL_CODE_SUCCESS 1 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3 #define TRB_CMPL_CODE_USB_TRANS_ERR 4 #define TRB_CMPL_CODE_TRB_ERR 5 #define TRB_CMPL_CODE_STALL 6 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10 #define TRB_CMPL_CODE_SHORT_PACKET 13 #define TRB_CMPL_CODE_RING_UNDERRUN 14 #define TRB_CMPL_CODE_RING_OVERRUN 15 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21 #define TRB_CMPL_CODE_STOPPED 26 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220 #define TRB_CMPL_CODE_HOST_REJECTED 221 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223 #define BUILD_TRB_RW(name, member, shift, mask) \ static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \ { \ return (le32_to_cpu(trb->member) >> (shift)) & (mask); \ } \ static inline void \ trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \ { \ u32 tmp; \ \ tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \ tmp |= (val & (mask)) << (shift); \ trb->member = cpu_to_le32(tmp); \ } BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff) BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff) BUILD_TRB_RW(seq_num, status, 0, 0xffff) BUILD_TRB_RW(transfer_len, status, 0, 0xffffff) BUILD_TRB_RW(td_size, status, 17, 0x1f) BUILD_TRB_RW(cmpl_code, status, 24, 0xff) BUILD_TRB_RW(cycle, control, 0, 0x1) BUILD_TRB_RW(toggle_cycle, control, 1, 0x1) BUILD_TRB_RW(isp, control, 2, 0x1) BUILD_TRB_RW(chain, control, 4, 0x1) BUILD_TRB_RW(ioc, control, 5, 0x1) BUILD_TRB_RW(type, control, 10, 0x3f) BUILD_TRB_RW(stream_id, control, 16, 0xffff) BUILD_TRB_RW(endpoint_id, control, 16, 0x1f) BUILD_TRB_RW(tlbpc, control, 16, 0xf) BUILD_TRB_RW(data_stage_dir, control, 16, 0x1) BUILD_TRB_RW(frame_id, control, 20, 0x7ff) BUILD_TRB_RW(sia, control, 31, 0x1) static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb) { return ((u64)trb_read_data_hi(trb) << 32) | trb_read_data_lo(trb); } static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr) { trb_write_data_lo(trb, lower_32_bits(addr)); trb_write_data_hi(trb, upper_32_bits(addr)); } struct tegra_xudc_request { struct usb_request usb_req; size_t buf_queued; unsigned int trbs_queued; unsigned int trbs_needed; bool need_zlp; struct tegra_xudc_trb *first_trb; struct tegra_xudc_trb *last_trb; struct list_head list; }; struct tegra_xudc_ep { struct tegra_xudc *xudc; struct usb_ep usb_ep; unsigned int index; char name[8]; struct tegra_xudc_ep_context *context; #define XUDC_TRANSFER_RING_SIZE 64 struct tegra_xudc_trb *transfer_ring; dma_addr_t transfer_ring_phys; unsigned int enq_ptr; unsigned int deq_ptr; bool pcs; bool ring_full; bool stream_rejected; struct list_head queue; const struct usb_endpoint_descriptor *desc; const struct usb_ss_ep_comp_descriptor *comp_desc; }; struct tegra_xudc_sel_timing { __u8 u1sel; __u8 u1pel; __le16 u2sel; __le16 u2pel; }; enum tegra_xudc_setup_state { WAIT_FOR_SETUP, DATA_STAGE_XFER, DATA_STAGE_RECV, STATUS_STAGE_XFER, STATUS_STAGE_RECV, }; struct tegra_xudc_setup_packet { struct usb_ctrlrequest ctrl_req; unsigned int seq_num; }; struct tegra_xudc_save_regs { u32 ctrl; u32 portpm; }; struct tegra_xudc { struct device *dev; const struct tegra_xudc_soc *soc; struct tegra_xusb_padctl *padctl; spinlock_t lock; struct usb_gadget gadget; struct usb_gadget_driver *driver; #define XUDC_NR_EVENT_RINGS 2 #define XUDC_EVENT_RING_SIZE 4096 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS]; dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS]; unsigned int event_ring_index; unsigned int event_ring_deq_ptr; bool ccs; #define XUDC_NR_EPS 32 struct tegra_xudc_ep ep[XUDC_NR_EPS]; struct tegra_xudc_ep_context *ep_context; dma_addr_t ep_context_phys; struct device *genpd_dev_device; struct device *genpd_dev_ss; struct device_link *genpd_dl_device; struct device_link *genpd_dl_ss; struct dma_pool *transfer_ring_pool; bool queued_setup_packet; struct tegra_xudc_setup_packet setup_packet; enum tegra_xudc_setup_state setup_state; u16 setup_seq_num; u16 dev_addr; u16 isoch_delay; struct tegra_xudc_sel_timing sel_timing; u8 test_mode_pattern; u16 status_buf; struct tegra_xudc_request *ep0_req; bool pullup; unsigned int nr_enabled_eps; unsigned int nr_isoch_eps; unsigned int device_state; unsigned int resume_state; int irq; void __iomem *base; resource_size_t phys_base; void __iomem *ipfs; void __iomem *fpci; struct regulator_bulk_data *supplies; struct clk_bulk_data *clks; bool device_mode; struct work_struct usb_role_sw_work; struct phy **usb3_phy; struct phy *curr_usb3_phy; struct phy **utmi_phy; struct phy *curr_utmi_phy; struct tegra_xudc_save_regs saved_regs; bool suspended; bool powergated; struct usb_phy **usbphy; struct usb_phy *curr_usbphy; struct notifier_block vbus_nb; struct completion disconnect_complete; bool selfpowered; #define TOGGLE_VBUS_WAIT_MS 100 struct delayed_work plc_reset_work; bool wait_csc; struct delayed_work port_reset_war_work; bool wait_for_sec_prc; }; #define XUDC_TRB_MAX_BUFFER_SIZE 65536 #define XUDC_MAX_ISOCH_EPS 4 #define XUDC_INTERRUPT_MODERATION_US 0 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(64), }; struct tegra_xudc_soc { const char * const *supply_names; unsigned int num_supplies; const char * const *clock_names; unsigned int num_clks; unsigned int num_phys; bool u1_enable; bool u2_enable; bool lpm_enable; bool invalid_seq_num; bool pls_quirk; bool port_reset_quirk; bool port_speed_quirk; bool has_ipfs; }; static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset) { return readl(xudc->fpci + offset); } static inline void fpci_writel(struct tegra_xudc *xudc, u32 val, unsigned int offset) { writel(val, xudc->fpci + offset); } static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset) { return readl(xudc->ipfs + offset); } static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val, unsigned int offset) { writel(val, xudc->ipfs + offset); } static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset) { return readl(xudc->base + offset); } static inline void xudc_writel(struct tegra_xudc *xudc, u32 val, unsigned int offset) { writel(val, xudc->base + offset); } static inline int xudc_readl_poll(struct tegra_xudc *xudc, unsigned int offset, u32 mask, u32 val) { u32 regval; return readl_poll_timeout_atomic(xudc->base + offset, regval, (regval & mask) == val, 1, 100); } static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget) { return container_of(gadget, struct tegra_xudc, gadget); } static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep) { return container_of(ep, struct tegra_xudc_ep, usb_ep); } static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req) { return container_of(req, struct tegra_xudc_request, usb_req); } static inline void dump_trb(struct tegra_xudc *xudc, const char *type, struct tegra_xudc_trb *trb) { dev_dbg(xudc->dev, "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n", type, trb, trb->data_lo, trb->data_hi, trb->status, trb->control); } static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc) { u32 val; /* limit port speed to gen 1 */ val = xudc_readl(xudc, SSPX_CORE_CNT56); val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260); xudc_writel(xudc, val, SSPX_CORE_CNT56); val = xudc_readl(xudc, SSPX_CORE_CNT57); val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6); xudc_writel(xudc, val, SSPX_CORE_CNT57); val = xudc_readl(xudc, SSPX_CORE_CNT65); val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0); xudc_writel(xudc, val, SSPX_CORE_CNT66); val = xudc_readl(xudc, SSPX_CORE_CNT66); val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0); xudc_writel(xudc, val, SSPX_CORE_CNT66); val = xudc_readl(xudc, SSPX_CORE_CNT67); val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0); xudc_writel(xudc, val, SSPX_CORE_CNT67); val = xudc_readl(xudc, SSPX_CORE_CNT72); val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10); xudc_writel(xudc, val, SSPX_CORE_CNT72); } static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc) { u32 val; /* restore port speed to gen2 */ val = xudc_readl(xudc, SSPX_CORE_CNT56); val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK); val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438); xudc_writel(xudc, val, SSPX_CORE_CNT56); val = xudc_readl(xudc, SSPX_CORE_CNT57); val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK); val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528); xudc_writel(xudc, val, SSPX_CORE_CNT57); val = xudc_readl(xudc, SSPX_CORE_CNT65); val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK); val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10); xudc_writel(xudc, val, SSPX_CORE_CNT66); val = xudc_readl(xudc, SSPX_CORE_CNT66); val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK); val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348); xudc_writel(xudc, val, SSPX_CORE_CNT66); val = xudc_readl(xudc, SSPX_CORE_CNT67); val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK); val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0); xudc_writel(xudc, val, SSPX_CORE_CNT67); val = xudc_readl(xudc, SSPX_CORE_CNT72); val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK); val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21); xudc_writel(xudc, val, SSPX_CORE_CNT72); } static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc) { int err; pm_runtime_get_sync(xudc->dev); err = phy_power_on(xudc->curr_utmi_phy); if (err < 0) dev_err(xudc->dev, "UTMI power on failed: %d\n", err); err = phy_power_on(xudc->curr_usb3_phy); if (err < 0) dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err); dev_dbg(xudc->dev, "device mode on\n"); phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_DEVICE); } static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc) { bool connected = false; u32 pls, val; int err; dev_dbg(xudc->dev, "device mode off\n"); connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS); reinit_completion(&xudc->disconnect_complete); if (xudc->soc->port_speed_quirk) tegra_xudc_restore_port_speed(xudc); phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; /* Direct link to U0 if disconnected in RESUME or U2. */ if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER && (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) { val = xudc_readl(xudc, PORTPM); val |= PORTPM_FRWE; xudc_writel(xudc, val, PORTPM); val = xudc_readl(xudc, PORTSC); val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); xudc_writel(xudc, val, PORTSC); } /* Wait for disconnect event. */ if (connected) wait_for_completion(&xudc->disconnect_complete); /* Make sure interrupt handler has completed before powergating. */ synchronize_irq(xudc->irq); err = phy_power_off(xudc->curr_utmi_phy); if (err < 0) dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err); err = phy_power_off(xudc->curr_usb3_phy); if (err < 0) dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err); pm_runtime_put(xudc->dev); } static void tegra_xudc_usb_role_sw_work(struct work_struct *work) { struct tegra_xudc *xudc = container_of(work, struct tegra_xudc, usb_role_sw_work); if (xudc->device_mode) tegra_xudc_device_mode_on(xudc); else tegra_xudc_device_mode_off(xudc); } static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc, struct usb_phy *usbphy) { unsigned int i; for (i = 0; i < xudc->soc->num_phys; i++) { if (xudc->usbphy[i] && usbphy == xudc->usbphy[i]) return i; } dev_info(xudc->dev, "phy index could not be found for shared USB PHY"); return -1; } static int tegra_xudc_vbus_notify(struct notifier_block *nb, unsigned long action, void *data) { struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc, vbus_nb); struct usb_phy *usbphy = (struct usb_phy *)data; int phy_index; dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event); if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) || (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) { dev_dbg(xudc->dev, "Same role(%d) received. Ignore", xudc->device_mode); return NOTIFY_OK; } xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true : false; phy_index = tegra_xudc_get_phy_index(xudc, usbphy); dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__, phy_index); if (!xudc->suspended && phy_index != -1) { xudc->curr_utmi_phy = xudc->utmi_phy[phy_index]; xudc->curr_usb3_phy = xudc->usb3_phy[phy_index]; xudc->curr_usbphy = usbphy; schedule_work(&xudc->usb_role_sw_work); } return NOTIFY_OK; } static void tegra_xudc_plc_reset_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, plc_reset_work); unsigned long flags; spin_lock_irqsave(&xudc->lock, flags); if (xudc->wait_csc) { u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; if (pls == PORTSC_PLS_INACTIVE) { dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n"); phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE); phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_DEVICE); xudc->wait_csc = false; } } spin_unlock_irqrestore(&xudc->lock, flags); } static void tegra_xudc_port_reset_war_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc, port_reset_war_work); unsigned long flags; u32 pls; int ret; spin_lock_irqsave(&xudc->lock, flags); if (xudc->device_mode && xudc->wait_for_sec_prc) { pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; dev_dbg(xudc->dev, "pls = %x\n", pls); if (pls == PORTSC_PLS_DISABLED) { dev_dbg(xudc->dev, "toggle vbus\n"); /* PRC doesn't complete in 100ms, toggle the vbus */ ret = tegra_phy_xusb_utmi_port_reset( xudc->curr_utmi_phy); if (ret == 1) xudc->wait_for_sec_prc = 0; } } spin_unlock_irqrestore(&xudc->lock, flags); } static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) { unsigned int index; index = trb - ep->transfer_ring; if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) return 0; return (ep->transfer_ring_phys + index * sizeof(*trb)); } static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep, dma_addr_t addr) { struct tegra_xudc_trb *trb; unsigned int index; index = (addr - ep->transfer_ring_phys) / sizeof(*trb); if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE)) return NULL; trb = &ep->transfer_ring[index]; return trb; } static void ep_reload(struct tegra_xudc *xudc, unsigned int ep) { xudc_writel(xudc, BIT(ep), EP_RELOAD); xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0); } static void ep_pause(struct tegra_xudc *xudc, unsigned int ep) { u32 val; val = xudc_readl(xudc, EP_PAUSE); if (val & BIT(ep)) return; val |= BIT(ep); xudc_writel(xudc, val, EP_PAUSE); xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); xudc_writel(xudc, BIT(ep), EP_STCHG); } static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep) { u32 val; val = xudc_readl(xudc, EP_PAUSE); if (!(val & BIT(ep))) return; val &= ~BIT(ep); xudc_writel(xudc, val, EP_PAUSE); xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); xudc_writel(xudc, BIT(ep), EP_STCHG); } static void ep_unpause_all(struct tegra_xudc *xudc) { u32 val; val = xudc_readl(xudc, EP_PAUSE); xudc_writel(xudc, 0, EP_PAUSE); xudc_readl_poll(xudc, EP_STCHG, val, val); xudc_writel(xudc, val, EP_STCHG); } static void ep_halt(struct tegra_xudc *xudc, unsigned int ep) { u32 val; val = xudc_readl(xudc, EP_HALT); if (val & BIT(ep)) return; val |= BIT(ep); xudc_writel(xudc, val, EP_HALT); xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); xudc_writel(xudc, BIT(ep), EP_STCHG); } static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep) { u32 val; val = xudc_readl(xudc, EP_HALT); if (!(val & BIT(ep))) return; val &= ~BIT(ep); xudc_writel(xudc, val, EP_HALT); xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep)); xudc_writel(xudc, BIT(ep), EP_STCHG); } static void ep_unhalt_all(struct tegra_xudc *xudc) { u32 val; val = xudc_readl(xudc, EP_HALT); if (!val) return; xudc_writel(xudc, 0, EP_HALT); xudc_readl_poll(xudc, EP_STCHG, val, val); xudc_writel(xudc, val, EP_STCHG); } static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep) { xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep)); xudc_writel(xudc, BIT(ep), EP_STOPPED); } static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep) { xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0); } static void tegra_xudc_req_done(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req, int status) { struct tegra_xudc *xudc = ep->xudc; dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n", req, ep->index, status); if (likely(req->usb_req.status == -EINPROGRESS)) req->usb_req.status = status; list_del_init(&req->list); if (usb_endpoint_xfer_control(ep->desc)) { usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, (xudc->setup_state == DATA_STAGE_XFER)); } else { usb_gadget_unmap_request(&xudc->gadget, &req->usb_req, usb_endpoint_dir_in(ep->desc)); } spin_unlock(&xudc->lock); usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req); spin_lock(&xudc->lock); } static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status) { struct tegra_xudc_request *req; while (!list_empty(&ep->queue)) { req = list_first_entry(&ep->queue, struct tegra_xudc_request, list); tegra_xudc_req_done(ep, req, status); } } static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep) { if (ep->ring_full) return 0; if (ep->deq_ptr > ep->enq_ptr) return ep->deq_ptr - ep->enq_ptr - 1; return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2; } static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req, struct tegra_xudc_trb *trb, bool ioc) { struct tegra_xudc *xudc = ep->xudc; dma_addr_t buf_addr; size_t len; len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length - req->buf_queued); if (len > 0) buf_addr = req->usb_req.dma + req->buf_queued; else buf_addr = 0; trb_write_data_ptr(trb, buf_addr); trb_write_transfer_len(trb, len); trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1); if (req->trbs_queued == req->trbs_needed - 1 || (req->need_zlp && req->trbs_queued == req->trbs_needed - 2)) trb_write_chain(trb, 0); else trb_write_chain(trb, 1); trb_write_ioc(trb, ioc); if (usb_endpoint_dir_out(ep->desc) || (usb_endpoint_xfer_control(ep->desc) && (xudc->setup_state == DATA_STAGE_RECV))) trb_write_isp(trb, 1); else trb_write_isp(trb, 0); if (usb_endpoint_xfer_control(ep->desc)) { if (xudc->setup_state == DATA_STAGE_XFER || xudc->setup_state == DATA_STAGE_RECV) trb_write_type(trb, TRB_TYPE_DATA_STAGE); else trb_write_type(trb, TRB_TYPE_STATUS_STAGE); if (xudc->setup_state == DATA_STAGE_XFER || xudc->setup_state == STATUS_STAGE_XFER) trb_write_data_stage_dir(trb, 1); else trb_write_data_stage_dir(trb, 0); } else if (usb_endpoint_xfer_isoc(ep->desc)) { trb_write_type(trb, TRB_TYPE_ISOCH); trb_write_sia(trb, 1); trb_write_frame_id(trb, 0); trb_write_tlbpc(trb, 0); } else if (usb_ss_max_streams(ep->comp_desc)) { trb_write_type(trb, TRB_TYPE_STREAM); trb_write_stream_id(trb, req->usb_req.stream_id); } else { trb_write_type(trb, TRB_TYPE_NORMAL); trb_write_stream_id(trb, 0); } trb_write_cycle(trb, ep->pcs); req->trbs_queued++; req->buf_queued += len; dump_trb(xudc, "TRANSFER", trb); } static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) { unsigned int i, count, available; bool wait_td = false; available = ep_available_trbs(ep); count = req->trbs_needed - req->trbs_queued; if (available < count) { count = available; ep->ring_full = true; } /* * To generate zero-length packet on USB bus, SW needs schedule a * standalone zero-length TD. According to HW's behavior, SW needs * to schedule TDs in different ways for different endpoint types. * * For control endpoint: * - Data stage TD (IOC = 1, CH = 0) * - Ring doorbell and wait transfer event * - Data stage TD for ZLP (IOC = 1, CH = 0) * - Ring doorbell * * For bulk and interrupt endpoints: * - Normal transfer TD (IOC = 0, CH = 0) * - Normal transfer TD for ZLP (IOC = 1, CH = 0) * - Ring doorbell */ if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1) wait_td = true; if (!req->first_trb) req->first_trb = &ep->transfer_ring[ep->enq_ptr]; for (i = 0; i < count; i++) { struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr]; bool ioc = false; if ((i == count - 1) || (wait_td && i == count - 2)) ioc = true; tegra_xudc_queue_one_trb(ep, req, trb, ioc); req->last_trb = trb; ep->enq_ptr++; if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) { trb = &ep->transfer_ring[ep->enq_ptr]; trb_write_cycle(trb, ep->pcs); ep->pcs = !ep->pcs; ep->enq_ptr = 0; } if (ioc) break; } return count; } static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep) { struct tegra_xudc *xudc = ep->xudc; u32 val; if (list_empty(&ep->queue)) return; val = DB_TARGET(ep->index); if (usb_endpoint_xfer_control(ep->desc)) { val |= DB_STREAMID(xudc->setup_seq_num); } else if (usb_ss_max_streams(ep->comp_desc) > 0) { struct tegra_xudc_request *req; /* Don't ring doorbell if the stream has been rejected. */ if (ep->stream_rejected) return; req = list_first_entry(&ep->queue, struct tegra_xudc_request, list); val |= DB_STREAMID(req->usb_req.stream_id); } dev_dbg(xudc->dev, "ring doorbell: %#x\n", val); xudc_writel(xudc, val, DB); } static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep) { struct tegra_xudc_request *req; bool trbs_queued = false; list_for_each_entry(req, &ep->queue, list) { if (ep->ring_full) break; if (tegra_xudc_queue_trbs(ep, req) > 0) trbs_queued = true; } if (trbs_queued) tegra_xudc_ep_ring_doorbell(ep); } static int __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) { struct tegra_xudc *xudc = ep->xudc; int err; if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) { dev_err(xudc->dev, "control EP has pending transfers\n"); return -EINVAL; } if (usb_endpoint_xfer_control(ep->desc)) { err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, (xudc->setup_state == DATA_STAGE_XFER)); } else { err = usb_gadget_map_request(&xudc->gadget, &req->usb_req, usb_endpoint_dir_in(ep->desc)); } if (err < 0) { dev_err(xudc->dev, "failed to map request: %d\n", err); return err; } req->first_trb = NULL; req->last_trb = NULL; req->buf_queued = 0; req->trbs_queued = 0; req->need_zlp = false; req->trbs_needed = DIV_ROUND_UP(req->usb_req.length, XUDC_TRB_MAX_BUFFER_SIZE); if (req->usb_req.length == 0) req->trbs_needed++; if (!usb_endpoint_xfer_isoc(ep->desc) && req->usb_req.zero && req->usb_req.length && ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) { req->trbs_needed++; req->need_zlp = true; } req->usb_req.status = -EINPROGRESS; req->usb_req.actual = 0; list_add_tail(&req->list, &ep->queue); tegra_xudc_ep_kick_queue(ep); return 0; } static int tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req, gfp_t gfp) { struct tegra_xudc_request *req; struct tegra_xudc_ep *ep; struct tegra_xudc *xudc; unsigned long flags; int ret; if (!usb_ep || !usb_req) return -EINVAL; ep = to_xudc_ep(usb_ep); req = to_xudc_req(usb_req); xudc = ep->xudc; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated || !ep->desc) { ret = -ESHUTDOWN; goto unlock; } ret = __tegra_xudc_ep_queue(ep, req); unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static void squeeze_transfer_ring(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) { struct tegra_xudc_trb *trb = req->first_trb; bool pcs_enq = trb_read_cycle(trb); bool pcs; /* * Clear out all the TRBs part of or after the cancelled request, * and must correct trb cycle bit to the last un-enqueued state. */ while (trb != &ep->transfer_ring[ep->enq_ptr]) { pcs = trb_read_cycle(trb); memset(trb, 0, sizeof(*trb)); trb_write_cycle(trb, !pcs); trb++; if (trb_read_type(trb) == TRB_TYPE_LINK) trb = ep->transfer_ring; } /* Requests will be re-queued at the start of the cancelled request. */ ep->enq_ptr = req->first_trb - ep->transfer_ring; /* * Retrieve the correct cycle bit state from the first trb of * the cancelled request. */ ep->pcs = pcs_enq; ep->ring_full = false; list_for_each_entry_continue(req, &ep->queue, list) { req->usb_req.status = -EINPROGRESS; req->usb_req.actual = 0; req->first_trb = NULL; req->last_trb = NULL; req->buf_queued = 0; req->trbs_queued = 0; } } /* * Determine if the given TRB is in the range [first trb, last trb] for the * given request. */ static bool trb_in_request(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req, struct tegra_xudc_trb *trb) { dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__, req->first_trb, req->last_trb, trb); if (trb >= req->first_trb && (trb <= req->last_trb || req->last_trb < req->first_trb)) return true; if (trb < req->first_trb && trb <= req->last_trb && req->last_trb < req->first_trb) return true; return false; } /* * Determine if the given TRB is in the range [EP enqueue pointer, first TRB) * for the given endpoint and request. */ static bool trb_before_request(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req, struct tegra_xudc_trb *trb) { struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr]; dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n", __func__, req->first_trb, req->last_trb, enq_trb, trb); if (trb < req->first_trb && (enq_trb <= trb || req->first_trb < enq_trb)) return true; if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb) return true; return false; } static int __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req) { struct tegra_xudc *xudc = ep->xudc; struct tegra_xudc_request *r; struct tegra_xudc_trb *deq_trb; bool busy, kick_queue = false; int ret = 0; /* Make sure the request is actually queued to this endpoint. */ list_for_each_entry(r, &ep->queue, list) { if (r == req) break; } if (r != req) return -EINVAL; /* Request hasn't been queued in the transfer ring yet. */ if (!req->trbs_queued) { tegra_xudc_req_done(ep, req, -ECONNRESET); return 0; } /* Halt DMA for this endpiont. */ if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) { ep_pause(xudc, ep->index); ep_wait_for_inactive(xudc, ep->index); } deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context)); /* Is the hardware processing the TRB at the dequeue pointer? */ busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context)); if (trb_in_request(ep, req, deq_trb) && busy) { /* * Request has been partially completed or it hasn't * started processing yet. */ dma_addr_t deq_ptr; squeeze_transfer_ring(ep, req); req->usb_req.actual = ep_ctx_read_edtla(ep->context); tegra_xudc_req_done(ep, req, -ECONNRESET); kick_queue = true; /* EDTLA is > 0: request has been partially completed */ if (req->usb_req.actual > 0) { /* * Abort the pending transfer and update the dequeue * pointer */ ep_ctx_write_edtla(ep->context, 0); ep_ctx_write_partial_td(ep->context, 0); ep_ctx_write_data_offset(ep->context, 0); deq_ptr = trb_virt_to_phys(ep, &ep->transfer_ring[ep->enq_ptr]); if (dma_mapping_error(xudc->dev, deq_ptr)) { ret = -EINVAL; } else { ep_ctx_write_deq_ptr(ep->context, deq_ptr); ep_ctx_write_dcs(ep->context, ep->pcs); ep_reload(xudc, ep->index); } } } else if (trb_before_request(ep, req, deq_trb) && busy) { /* Request hasn't started processing yet. */ squeeze_transfer_ring(ep, req); tegra_xudc_req_done(ep, req, -ECONNRESET); kick_queue = true; } else { /* * Request has completed, but we haven't processed the * completion event yet. */ tegra_xudc_req_done(ep, req, -ECONNRESET); ret = -EINVAL; } /* Resume the endpoint. */ ep_unpause(xudc, ep->index); if (kick_queue) tegra_xudc_ep_kick_queue(ep); return ret; } static int tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req) { struct tegra_xudc_request *req; struct tegra_xudc_ep *ep; struct tegra_xudc *xudc; unsigned long flags; int ret; if (!usb_ep || !usb_req) return -EINVAL; ep = to_xudc_ep(usb_ep); req = to_xudc_req(usb_req); xudc = ep->xudc; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated || !ep->desc) { ret = -ESHUTDOWN; goto unlock; } ret = __tegra_xudc_ep_dequeue(ep, req); unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt) { struct tegra_xudc *xudc = ep->xudc; if (!ep->desc) return -EINVAL; if (usb_endpoint_xfer_isoc(ep->desc)) { dev_err(xudc->dev, "can't halt isochronous EP\n"); return -ENOTSUPP; } if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) { dev_dbg(xudc->dev, "EP %u already %s\n", ep->index, halt ? "halted" : "not halted"); return 0; } if (halt) { ep_halt(xudc, ep->index); } else { ep_ctx_write_state(ep->context, EP_STATE_DISABLED); ep_reload(xudc, ep->index); ep_ctx_write_state(ep->context, EP_STATE_RUNNING); ep_ctx_write_seq_num(ep->context, 0); ep_reload(xudc, ep->index); ep_unpause(xudc, ep->index); ep_unhalt(xudc, ep->index); tegra_xudc_ep_ring_doorbell(ep); } return 0; } static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value) { struct tegra_xudc_ep *ep; struct tegra_xudc *xudc; unsigned long flags; int ret; if (!usb_ep) return -EINVAL; ep = to_xudc_ep(usb_ep); xudc = ep->xudc; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated) { ret = -ESHUTDOWN; goto unlock; } if (value && usb_endpoint_dir_in(ep->desc) && !list_empty(&ep->queue)) { dev_err(xudc->dev, "can't halt EP with requests pending\n"); ret = -EAGAIN; goto unlock; } ret = __tegra_xudc_ep_set_halt(ep, value); unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep) { const struct usb_endpoint_descriptor *desc = ep->desc; const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc; struct tegra_xudc *xudc = ep->xudc; u16 maxpacket, maxburst = 0, esit = 0; u32 val; maxpacket = usb_endpoint_maxp(desc) & 0x7ff; if (xudc->gadget.speed == USB_SPEED_SUPER) { if (!usb_endpoint_xfer_control(desc)) maxburst = comp_desc->bMaxBurst; if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) esit = le16_to_cpu(comp_desc->wBytesPerInterval); } else if ((xudc->gadget.speed < USB_SPEED_SUPER) && (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))) { if (xudc->gadget.speed == USB_SPEED_HIGH) { maxburst = (usb_endpoint_maxp(desc) >> 11) & 0x3; if (maxburst == 0x3) { dev_warn(xudc->dev, "invalid endpoint maxburst\n"); maxburst = 0x2; } } esit = maxpacket * (maxburst + 1); } memset(ep->context, 0, sizeof(*ep->context)); ep_ctx_write_state(ep->context, EP_STATE_RUNNING); ep_ctx_write_interval(ep->context, desc->bInterval); if (xudc->gadget.speed == USB_SPEED_SUPER) { if (usb_endpoint_xfer_isoc(desc)) { ep_ctx_write_mult(ep->context, comp_desc->bmAttributes & 0x3); } if (usb_endpoint_xfer_bulk(desc)) { ep_ctx_write_max_pstreams(ep->context, comp_desc->bmAttributes & 0x1f); ep_ctx_write_lsa(ep->context, 1); } } if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc)) val = usb_endpoint_type(desc); else val = usb_endpoint_type(desc) + EP_TYPE_CONTROL; ep_ctx_write_type(ep->context, val); ep_ctx_write_cerr(ep->context, 0x3); ep_ctx_write_max_packet_size(ep->context, maxpacket); ep_ctx_write_max_burst_size(ep->context, maxburst); ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys); ep_ctx_write_dcs(ep->context, ep->pcs); /* Select a reasonable average TRB length based on endpoint type. */ switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: val = 8; break; case USB_ENDPOINT_XFER_INT: val = 1024; break; case USB_ENDPOINT_XFER_BULK: case USB_ENDPOINT_XFER_ISOC: default: val = 3072; break; } ep_ctx_write_avg_trb_len(ep->context, val); ep_ctx_write_max_esit_payload(ep->context, esit); ep_ctx_write_cerrcnt(ep->context, 0x3); } static void setup_link_trb(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) { trb_write_data_ptr(trb, ep->transfer_ring_phys); trb_write_type(trb, TRB_TYPE_LINK); trb_write_toggle_cycle(trb, 1); } static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep) { struct tegra_xudc *xudc = ep->xudc; if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { dev_err(xudc->dev, "endpoint %u already disabled\n", ep->index); return -EINVAL; } ep_ctx_write_state(ep->context, EP_STATE_DISABLED); ep_reload(xudc, ep->index); tegra_xudc_ep_nuke(ep, -ESHUTDOWN); xudc->nr_enabled_eps--; if (usb_endpoint_xfer_isoc(ep->desc)) xudc->nr_isoch_eps--; ep->desc = NULL; ep->comp_desc = NULL; memset(ep->context, 0, sizeof(*ep->context)); ep_unpause(xudc, ep->index); ep_unhalt(xudc, ep->index); if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index)) xudc_writel(xudc, BIT(ep->index), EP_STOPPED); /* * If this is the last endpoint disabled in a de-configure request, * switch back to address state. */ if ((xudc->device_state == USB_STATE_CONFIGURED) && (xudc->nr_enabled_eps == 1)) { u32 val; xudc->device_state = USB_STATE_ADDRESS; usb_gadget_set_state(&xudc->gadget, xudc->device_state); val = xudc_readl(xudc, CTRL); val &= ~CTRL_RUN; xudc_writel(xudc, val, CTRL); } dev_info(xudc->dev, "ep %u disabled\n", ep->index); return 0; } static int tegra_xudc_ep_disable(struct usb_ep *usb_ep) { struct tegra_xudc_ep *ep; struct tegra_xudc *xudc; unsigned long flags; int ret; if (!usb_ep) return -EINVAL; ep = to_xudc_ep(usb_ep); xudc = ep->xudc; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated) { ret = -ESHUTDOWN; goto unlock; } ret = __tegra_xudc_ep_disable(ep); unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep, const struct usb_endpoint_descriptor *desc) { struct tegra_xudc *xudc = ep->xudc; unsigned int i; u32 val; if (xudc->gadget.speed == USB_SPEED_SUPER && !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc) return -EINVAL; /* Disable the EP if it is not disabled */ if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED) __tegra_xudc_ep_disable(ep); ep->desc = desc; ep->comp_desc = ep->usb_ep.comp_desc; if (usb_endpoint_xfer_isoc(desc)) { if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) { dev_err(xudc->dev, "too many isochronous endpoints\n"); return -EBUSY; } xudc->nr_isoch_eps++; } memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE * sizeof(*ep->transfer_ring)); setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]); ep->enq_ptr = 0; ep->deq_ptr = 0; ep->pcs = true; ep->ring_full = false; xudc->nr_enabled_eps++; tegra_xudc_ep_context_setup(ep); /* * No need to reload and un-halt EP0. This will be done automatically * once a valid SETUP packet is received. */ if (usb_endpoint_xfer_control(desc)) goto out; /* * Transition to configured state once the first non-control * endpoint is enabled. */ if (xudc->device_state == USB_STATE_ADDRESS) { val = xudc_readl(xudc, CTRL); val |= CTRL_RUN; xudc_writel(xudc, val, CTRL); xudc->device_state = USB_STATE_CONFIGURED; usb_gadget_set_state(&xudc->gadget, xudc->device_state); } if (usb_endpoint_xfer_isoc(desc)) { /* * Pause all bulk endpoints when enabling an isoch endpoint * to ensure the isoch endpoint is allocated enough bandwidth. */ for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { if (xudc->ep[i].desc && usb_endpoint_xfer_bulk(xudc->ep[i].desc)) ep_pause(xudc, i); } } ep_reload(xudc, ep->index); ep_unpause(xudc, ep->index); ep_unhalt(xudc, ep->index); if (usb_endpoint_xfer_isoc(desc)) { for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { if (xudc->ep[i].desc && usb_endpoint_xfer_bulk(xudc->ep[i].desc)) ep_unpause(xudc, i); } } out: dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index, usb_ep_type_string(usb_endpoint_type(ep->desc)), usb_endpoint_dir_in(ep->desc) ? "in" : "out"); return 0; } static int tegra_xudc_ep_enable(struct usb_ep *usb_ep, const struct usb_endpoint_descriptor *desc) { struct tegra_xudc_ep *ep; struct tegra_xudc *xudc; unsigned long flags; int ret; if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT)) return -EINVAL; ep = to_xudc_ep(usb_ep); xudc = ep->xudc; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated) { ret = -ESHUTDOWN; goto unlock; } ret = __tegra_xudc_ep_enable(ep, desc); unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static struct usb_request * tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp) { struct tegra_xudc_request *req; req = kzalloc(sizeof(*req), gfp); if (!req) return NULL; INIT_LIST_HEAD(&req->list); return &req->usb_req; } static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep, struct usb_request *usb_req) { struct tegra_xudc_request *req = to_xudc_req(usb_req); kfree(req); } static const struct usb_ep_ops tegra_xudc_ep_ops = { .enable = tegra_xudc_ep_enable, .disable = tegra_xudc_ep_disable, .alloc_request = tegra_xudc_ep_alloc_request, .free_request = tegra_xudc_ep_free_request, .queue = tegra_xudc_ep_queue, .dequeue = tegra_xudc_ep_dequeue, .set_halt = tegra_xudc_ep_set_halt, }; static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep, const struct usb_endpoint_descriptor *desc) { return -EBUSY; } static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep) { return -EBUSY; } static const struct usb_ep_ops tegra_xudc_ep0_ops = { .enable = tegra_xudc_ep0_enable, .disable = tegra_xudc_ep0_disable, .alloc_request = tegra_xudc_ep_alloc_request, .free_request = tegra_xudc_ep_free_request, .queue = tegra_xudc_ep_queue, .dequeue = tegra_xudc_ep_dequeue, .set_halt = tegra_xudc_ep_set_halt, }; static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget) { struct tegra_xudc *xudc = to_xudc(gadget); unsigned long flags; int ret; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated) { ret = -ESHUTDOWN; goto unlock; } ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >> MFINDEX_FRAME_SHIFT; unlock: spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc) { unsigned int i; u32 val; ep_unpause_all(xudc); /* Direct link to U0. */ val = xudc_readl(xudc, PORTSC); if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) { val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0); xudc_writel(xudc, val, PORTSC); } if (xudc->device_state == USB_STATE_SUSPENDED) { xudc->device_state = xudc->resume_state; usb_gadget_set_state(&xudc->gadget, xudc->device_state); xudc->resume_state = 0; } /* * Doorbells may be dropped if they are sent too soon (< ~200ns) * after unpausing the endpoint. Wait for 500ns just to be safe. */ ndelay(500); for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) tegra_xudc_ep_ring_doorbell(&xudc->ep[i]); } static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget) { struct tegra_xudc *xudc = to_xudc(gadget); unsigned long flags; int ret = 0; u32 val; spin_lock_irqsave(&xudc->lock, flags); if (xudc->powergated) { ret = -ESHUTDOWN; goto unlock; } val = xudc_readl(xudc, PORTPM); dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__, val, gadget->speed); if (((xudc->gadget.speed <= USB_SPEED_HIGH) && (val & PORTPM_RWE)) || ((xudc->gadget.speed == USB_SPEED_SUPER) && (val & PORTPM_FRWE))) { tegra_xudc_resume_device_state(xudc); /* Send Device Notification packet. */ if (xudc->gadget.speed == USB_SPEED_SUPER) { val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE) | DEVNOTIF_LO_TRIG; xudc_writel(xudc, 0, DEVNOTIF_HI); xudc_writel(xudc, val, DEVNOTIF_LO); } } unlock: dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); spin_unlock_irqrestore(&xudc->lock, flags); return ret; } static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct tegra_xudc *xudc = to_xudc(gadget); unsigned long flags; u32 val; pm_runtime_get_sync(xudc->dev); spin_lock_irqsave(&xudc->lock, flags); if (is_on != xudc->pullup) { val = xudc_readl(xudc, CTRL); if (is_on) val |= CTRL_ENABLE; else val &= ~CTRL_ENABLE; xudc_writel(xudc, val, CTRL); } xudc->pullup = is_on; dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on); spin_unlock_irqrestore(&xudc->lock, flags); pm_runtime_put(xudc->dev); return 0; } static int tegra_xudc_gadget_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct tegra_xudc *xudc = to_xudc(gadget); unsigned long flags; u32 val; int ret; unsigned int i; if (!driver) return -EINVAL; pm_runtime_get_sync(xudc->dev); spin_lock_irqsave(&xudc->lock, flags); if (xudc->driver) { ret = -EBUSY; goto unlock; } xudc->setup_state = WAIT_FOR_SETUP; xudc->device_state = USB_STATE_DEFAULT; usb_gadget_set_state(&xudc->gadget, xudc->device_state); ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc); if (ret < 0) goto unlock; val = xudc_readl(xudc, CTRL); val |= CTRL_IE | CTRL_LSE; xudc_writel(xudc, val, CTRL); val = xudc_readl(xudc, PORTHALT); val |= PORTHALT_STCHG_INTR_EN; xudc_writel(xudc, val, PORTHALT); if (xudc->pullup) { val = xudc_readl(xudc, CTRL); val |= CTRL_ENABLE; xudc_writel(xudc, val, CTRL); } for (i = 0; i < xudc->soc->num_phys; i++) if (xudc->usbphy[i]) otg_set_peripheral(xudc->usbphy[i]->otg, gadget); xudc->driver = driver; unlock: dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret); spin_unlock_irqrestore(&xudc->lock, flags); pm_runtime_put(xudc->dev); return ret; } static int tegra_xudc_gadget_stop(struct usb_gadget *gadget) { struct tegra_xudc *xudc = to_xudc(gadget); unsigned long flags; u32 val; unsigned int i; pm_runtime_get_sync(xudc->dev); spin_lock_irqsave(&xudc->lock, flags); for (i = 0; i < xudc->soc->num_phys; i++) if (xudc->usbphy[i]) otg_set_peripheral(xudc->usbphy[i]->otg, NULL); val = xudc_readl(xudc, CTRL); val &= ~(CTRL_IE | CTRL_ENABLE); xudc_writel(xudc, val, CTRL); __tegra_xudc_ep_disable(&xudc->ep[0]); xudc->driver = NULL; dev_dbg(xudc->dev, "Gadget stopped"); spin_unlock_irqrestore(&xudc->lock, flags); pm_runtime_put(xudc->dev); return 0; } static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget, unsigned int m_a) { int ret = 0; struct tegra_xudc *xudc = to_xudc(gadget); dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a); if (xudc->curr_usbphy->chg_type == SDP_TYPE) ret = usb_phy_set_power(xudc->curr_usbphy, m_a); return ret; } static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on) { struct tegra_xudc *xudc = to_xudc(gadget); dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on); xudc->selfpowered = !!is_on; return 0; } static const struct usb_gadget_ops tegra_xudc_gadget_ops = { .get_frame = tegra_xudc_gadget_get_frame, .wakeup = tegra_xudc_gadget_wakeup, .pullup = tegra_xudc_gadget_pullup, .udc_start = tegra_xudc_gadget_start, .udc_stop = tegra_xudc_gadget_stop, .vbus_draw = tegra_xudc_gadget_vbus_draw, .set_selfpowered = tegra_xudc_set_selfpowered, }; static void no_op_complete(struct usb_ep *ep, struct usb_request *req) { } static int tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc, void (*cmpl)(struct usb_ep *, struct usb_request *)) { xudc->ep0_req->usb_req.buf = NULL; xudc->ep0_req->usb_req.dma = 0; xudc->ep0_req->usb_req.length = 0; xudc->ep0_req->usb_req.complete = cmpl; xudc->ep0_req->usb_req.context = xudc; return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); } static int tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len, void (*cmpl)(struct usb_ep *, struct usb_request *)) { xudc->ep0_req->usb_req.buf = buf; xudc->ep0_req->usb_req.length = len; xudc->ep0_req->usb_req.complete = cmpl; xudc->ep0_req->usb_req.context = xudc; return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req); } static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc) { switch (xudc->setup_state) { case DATA_STAGE_XFER: xudc->setup_state = STATUS_STAGE_RECV; tegra_xudc_ep0_queue_status(xudc, no_op_complete); break; case DATA_STAGE_RECV: xudc->setup_state = STATUS_STAGE_XFER; tegra_xudc_ep0_queue_status(xudc, no_op_complete); break; default: xudc->setup_state = WAIT_FOR_SETUP; break; } } static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { int ret; spin_unlock(&xudc->lock); ret = xudc->driver->setup(&xudc->gadget, ctrl); spin_lock(&xudc->lock); return ret; } static void set_feature_complete(struct usb_ep *ep, struct usb_request *req) { struct tegra_xudc *xudc = req->context; if (xudc->test_mode_pattern) { xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM); xudc->test_mode_pattern = 0; } } static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); u32 feature = le16_to_cpu(ctrl->wValue); u32 index = le16_to_cpu(ctrl->wIndex); u32 val, ep; int ret; if (le16_to_cpu(ctrl->wLength) != 0) return -EINVAL; switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: switch (feature) { case USB_DEVICE_REMOTE_WAKEUP: if ((xudc->gadget.speed == USB_SPEED_SUPER) || (xudc->device_state == USB_STATE_DEFAULT)) return -EINVAL; val = xudc_readl(xudc, PORTPM); if (set) val |= PORTPM_RWE; else val &= ~PORTPM_RWE; xudc_writel(xudc, val, PORTPM); break; case USB_DEVICE_U1_ENABLE: case USB_DEVICE_U2_ENABLE: if ((xudc->device_state != USB_STATE_CONFIGURED) || (xudc->gadget.speed != USB_SPEED_SUPER)) return -EINVAL; val = xudc_readl(xudc, PORTPM); if ((feature == USB_DEVICE_U1_ENABLE) && xudc->soc->u1_enable) { if (set) val |= PORTPM_U1E; else val &= ~PORTPM_U1E; } if ((feature == USB_DEVICE_U2_ENABLE) && xudc->soc->u2_enable) { if (set) val |= PORTPM_U2E; else val &= ~PORTPM_U2E; } xudc_writel(xudc, val, PORTPM); break; case USB_DEVICE_TEST_MODE: if (xudc->gadget.speed != USB_SPEED_HIGH) return -EINVAL; if (!set) return -EINVAL; xudc->test_mode_pattern = index >> 8; break; default: return -EINVAL; } break; case USB_RECIP_INTERFACE: if (xudc->device_state != USB_STATE_CONFIGURED) return -EINVAL; switch (feature) { case USB_INTRF_FUNC_SUSPEND: if (set) { val = xudc_readl(xudc, PORTPM); if (index & USB_INTRF_FUNC_SUSPEND_RW) val |= PORTPM_FRWE; else val &= ~PORTPM_FRWE; xudc_writel(xudc, val, PORTPM); } return tegra_xudc_ep0_delegate_req(xudc, ctrl); default: return -EINVAL; } break; case USB_RECIP_ENDPOINT: ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + ((index & USB_DIR_IN) ? 1 : 0); if ((xudc->device_state == USB_STATE_DEFAULT) || ((xudc->device_state == USB_STATE_ADDRESS) && (index != 0))) return -EINVAL; ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set); if (ret < 0) return ret; break; default: return -EINVAL; } return tegra_xudc_ep0_queue_status(xudc, set_feature_complete); } static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { struct tegra_xudc_ep_context *ep_ctx; u32 val, ep, index = le16_to_cpu(ctrl->wIndex); u16 status = 0; if (!(ctrl->bRequestType & USB_DIR_IN)) return -EINVAL; if ((le16_to_cpu(ctrl->wValue) != 0) || (le16_to_cpu(ctrl->wLength) != 2)) return -EINVAL; switch (ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: val = xudc_readl(xudc, PORTPM); if (xudc->selfpowered) status |= BIT(USB_DEVICE_SELF_POWERED); if ((xudc->gadget.speed < USB_SPEED_SUPER) && (val & PORTPM_RWE)) status |= BIT(USB_DEVICE_REMOTE_WAKEUP); if (xudc->gadget.speed == USB_SPEED_SUPER) { if (val & PORTPM_U1E) status |= BIT(USB_DEV_STAT_U1_ENABLED); if (val & PORTPM_U2E) status |= BIT(USB_DEV_STAT_U2_ENABLED); } break; case USB_RECIP_INTERFACE: if (xudc->gadget.speed == USB_SPEED_SUPER) { status |= USB_INTRF_STAT_FUNC_RW_CAP; val = xudc_readl(xudc, PORTPM); if (val & PORTPM_FRWE) status |= USB_INTRF_STAT_FUNC_RW; } break; case USB_RECIP_ENDPOINT: ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 + ((index & USB_DIR_IN) ? 1 : 0); ep_ctx = &xudc->ep_context[ep]; if ((xudc->device_state != USB_STATE_CONFIGURED) && ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0))) return -EINVAL; if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED) return -EINVAL; if (xudc_readl(xudc, EP_HALT) & BIT(ep)) status |= BIT(USB_ENDPOINT_HALT); break; default: return -EINVAL; } xudc->status_buf = cpu_to_le16(status); return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf, sizeof(xudc->status_buf), no_op_complete); } static void set_sel_complete(struct usb_ep *ep, struct usb_request *req) { /* Nothing to do with SEL values */ } static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | USB_TYPE_STANDARD)) return -EINVAL; if (xudc->device_state == USB_STATE_DEFAULT) return -EINVAL; if ((le16_to_cpu(ctrl->wIndex) != 0) || (le16_to_cpu(ctrl->wValue) != 0) || (le16_to_cpu(ctrl->wLength) != 6)) return -EINVAL; return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing, sizeof(xudc->sel_timing), set_sel_complete); } static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req) { /* Nothing to do with isoch delay */ } static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { u32 delay = le16_to_cpu(ctrl->wValue); if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | USB_TYPE_STANDARD)) return -EINVAL; if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) || (le16_to_cpu(ctrl->wLength) != 0)) return -EINVAL; xudc->isoch_delay = delay; return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete); } static void set_address_complete(struct usb_ep *ep, struct usb_request *req) { struct tegra_xudc *xudc = req->context; if ((xudc->device_state == USB_STATE_DEFAULT) && (xudc->dev_addr != 0)) { xudc->device_state = USB_STATE_ADDRESS; usb_gadget_set_state(&xudc->gadget, xudc->device_state); } else if ((xudc->device_state == USB_STATE_ADDRESS) && (xudc->dev_addr == 0)) { xudc->device_state = USB_STATE_DEFAULT; usb_gadget_set_state(&xudc->gadget, xudc->device_state); } } static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { struct tegra_xudc_ep *ep0 = &xudc->ep[0]; u32 val, addr = le16_to_cpu(ctrl->wValue); if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE | USB_TYPE_STANDARD)) return -EINVAL; if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) || (le16_to_cpu(ctrl->wLength) != 0)) return -EINVAL; if (xudc->device_state == USB_STATE_CONFIGURED) return -EINVAL; dev_dbg(xudc->dev, "set address: %u\n", addr); xudc->dev_addr = addr; val = xudc_readl(xudc, CTRL); val &= ~(CTRL_DEVADDR_MASK); val |= CTRL_DEVADDR(addr); xudc_writel(xudc, val, CTRL); ep_ctx_write_devaddr(ep0->context, addr); return tegra_xudc_ep0_queue_status(xudc, set_address_complete); } static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl) { int ret; switch (ctrl->bRequest) { case USB_REQ_GET_STATUS: dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n"); ret = tegra_xudc_ep0_get_status(xudc, ctrl); break; case USB_REQ_SET_ADDRESS: dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n"); ret = tegra_xudc_ep0_set_address(xudc, ctrl); break; case USB_REQ_SET_SEL: dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n"); ret = tegra_xudc_ep0_set_sel(xudc, ctrl); break; case USB_REQ_SET_ISOCH_DELAY: dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n"); ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl); break; case USB_REQ_CLEAR_FEATURE: case USB_REQ_SET_FEATURE: dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n"); ret = tegra_xudc_ep0_set_feature(xudc, ctrl); break; case USB_REQ_SET_CONFIGURATION: dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n"); /* * In theory we need to clear RUN bit before status stage of * deconfig request sent, but this seems to be causing problems. * Clear RUN once all endpoints are disabled instead. */ fallthrough; default: ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); break; } return ret; } static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc, struct usb_ctrlrequest *ctrl, u16 seq_num) { int ret; xudc->setup_seq_num = seq_num; /* Ensure EP0 is unhalted. */ ep_unhalt(xudc, 0); /* * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff * are invalid. Halt EP0 until we get a valid packet. */ if (xudc->soc->invalid_seq_num && (seq_num == 0xfffe || seq_num == 0xffff)) { dev_warn(xudc->dev, "invalid sequence number detected\n"); ep_halt(xudc, 0); return; } if (ctrl->wLength) xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ? DATA_STAGE_XFER : DATA_STAGE_RECV; else xudc->setup_state = STATUS_STAGE_XFER; if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) ret = tegra_xudc_ep0_standard_req(xudc, ctrl); else ret = tegra_xudc_ep0_delegate_req(xudc, ctrl); if (ret < 0) { dev_warn(xudc->dev, "setup request failed: %d\n", ret); xudc->setup_state = WAIT_FOR_SETUP; ep_halt(xudc, 0); } } static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc, struct tegra_xudc_trb *event) { struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event; u16 seq_num = trb_read_seq_num(event); if (xudc->setup_state != WAIT_FOR_SETUP) { /* * The controller is in the process of handling another * setup request. Queue subsequent requests and handle * the last one once the controller reports a sequence * number error. */ memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl)); xudc->setup_packet.seq_num = seq_num; xudc->queued_setup_packet = true; } else { tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num); } } static struct tegra_xudc_request * trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb) { struct tegra_xudc_request *req; list_for_each_entry(req, &ep->queue, list) { if (!req->trbs_queued) break; if (trb_in_request(ep, req, trb)) return req; } return NULL; } static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc, struct tegra_xudc_ep *ep, struct tegra_xudc_trb *event) { struct tegra_xudc_request *req; struct tegra_xudc_trb *trb; bool short_packet; short_packet = (trb_read_cmpl_code(event) == TRB_CMPL_CODE_SHORT_PACKET); trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); req = trb_to_request(ep, trb); /* * TDs are complete on short packet or when the completed TRB is the * last TRB in the TD (the CHAIN bit is unset). */ if (req && (short_packet || (!trb_read_chain(trb) && (req->trbs_needed == req->trbs_queued)))) { struct tegra_xudc_trb *last = req->last_trb; unsigned int residual; residual = trb_read_transfer_len(event); req->usb_req.actual = req->usb_req.length - residual; dev_dbg(xudc->dev, "bytes transferred %u / %u\n", req->usb_req.actual, req->usb_req.length); tegra_xudc_req_done(ep, req, 0); if (ep->desc && usb_endpoint_xfer_control(ep->desc)) tegra_xudc_ep0_req_done(xudc); /* * Advance the dequeue pointer past the end of the current TD * on short packet completion. */ if (short_packet) { ep->deq_ptr = (last - ep->transfer_ring) + 1; if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) ep->deq_ptr = 0; } } else if (!req) { dev_warn(xudc->dev, "transfer event on dequeued request\n"); } if (ep->desc) tegra_xudc_ep_kick_queue(ep); } static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc, struct tegra_xudc_trb *event) { unsigned int ep_index = trb_read_endpoint_id(event); struct tegra_xudc_ep *ep = &xudc->ep[ep_index]; struct tegra_xudc_trb *trb; u16 comp_code; if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) { dev_warn(xudc->dev, "transfer event on disabled EP %u\n", ep_index); return; } /* Update transfer ring dequeue pointer. */ trb = trb_phys_to_virt(ep, trb_read_data_ptr(event)); comp_code = trb_read_cmpl_code(event); if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) { ep->deq_ptr = (trb - ep->transfer_ring) + 1; if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1) ep->deq_ptr = 0; ep->ring_full = false; } switch (comp_code) { case TRB_CMPL_CODE_SUCCESS: case TRB_CMPL_CODE_SHORT_PACKET: tegra_xudc_handle_transfer_completion(xudc, ep, event); break; case TRB_CMPL_CODE_HOST_REJECTED: dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index); ep->stream_rejected = true; break; case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED: dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index); if (ep->stream_rejected) { ep->stream_rejected = false; /* * An EP is stopped when a stream is rejected. Wait * for the EP to report that it is stopped and then * un-stop it. */ ep_wait_for_stopped(xudc, ep_index); } tegra_xudc_ep_ring_doorbell(ep); break; case TRB_CMPL_CODE_BABBLE_DETECTED_ERR: /* * Wait for the EP to be stopped so the controller stops * processing doorbells. */ ep_wait_for_stopped(xudc, ep_index); ep->enq_ptr = ep->deq_ptr; tegra_xudc_ep_nuke(ep, -EIO); fallthrough; case TRB_CMPL_CODE_STREAM_NUMP_ERROR: case TRB_CMPL_CODE_CTRL_DIR_ERR: case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR: case TRB_CMPL_CODE_RING_UNDERRUN: case TRB_CMPL_CODE_RING_OVERRUN: case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN: case TRB_CMPL_CODE_USB_TRANS_ERR: case TRB_CMPL_CODE_TRB_ERR: dev_err(xudc->dev, "completion error %#x on EP %u\n", comp_code, ep_index); ep_halt(xudc, ep_index); break; case TRB_CMPL_CODE_CTRL_SEQNUM_ERR: dev_info(xudc->dev, "sequence number error\n"); /* * Kill any queued control request and skip to the last * setup packet we received. */ tegra_xudc_ep_nuke(ep, -EINVAL); xudc->setup_state = WAIT_FOR_SETUP; if (!xudc->queued_setup_packet) break; tegra_xudc_handle_ep0_setup_packet(xudc, &xudc->setup_packet.ctrl_req, xudc->setup_packet.seq_num); xudc->queued_setup_packet = false; break; case TRB_CMPL_CODE_STOPPED: dev_dbg(xudc->dev, "stop completion code on EP %u\n", ep_index); /* Disconnected. */ tegra_xudc_ep_nuke(ep, -ECONNREFUSED); break; default: dev_dbg(xudc->dev, "completion event %#x on EP %u\n", comp_code, ep_index); break; } } static void tegra_xudc_reset(struct tegra_xudc *xudc) { struct tegra_xudc_ep *ep0 = &xudc->ep[0]; dma_addr_t deq_ptr; unsigned int i; xudc->setup_state = WAIT_FOR_SETUP; xudc->device_state = USB_STATE_DEFAULT; usb_gadget_set_state(&xudc->gadget, xudc->device_state); ep_unpause_all(xudc); for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN); /* * Reset sequence number and dequeue pointer to flush the transfer * ring. */ ep0->deq_ptr = ep0->enq_ptr; ep0->ring_full = false; xudc->setup_seq_num = 0; xudc->queued_setup_packet = false; ep_ctx_write_seq_num(ep0->context, xudc->setup_seq_num); deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]); if (!dma_mapping_error(xudc->dev, deq_ptr)) { ep_ctx_write_deq_ptr(ep0->context, deq_ptr); ep_ctx_write_dcs(ep0->context, ep0->pcs); } ep_unhalt_all(xudc); ep_reload(xudc, 0); ep_unpause(xudc, 0); } static void tegra_xudc_port_connect(struct tegra_xudc *xudc) { struct tegra_xudc_ep *ep0 = &xudc->ep[0]; u16 maxpacket; u32 val; val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT; switch (val) { case PORTSC_PS_LS: xudc->gadget.speed = USB_SPEED_LOW; break; case PORTSC_PS_FS: xudc->gadget.speed = USB_SPEED_FULL; break; case PORTSC_PS_HS: xudc->gadget.speed = USB_SPEED_HIGH; break; case PORTSC_PS_SS: xudc->gadget.speed = USB_SPEED_SUPER; break; default: xudc->gadget.speed = USB_SPEED_UNKNOWN; break; } xudc->device_state = USB_STATE_DEFAULT; usb_gadget_set_state(&xudc->gadget, xudc->device_state); xudc->setup_state = WAIT_FOR_SETUP; if (xudc->gadget.speed == USB_SPEED_SUPER) maxpacket = 512; else maxpacket = 64; ep_ctx_write_max_packet_size(ep0->context, maxpacket); tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket); usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket); if (!xudc->soc->u1_enable) { val = xudc_readl(xudc, PORTPM); val &= ~(PORTPM_U1TIMEOUT_MASK); xudc_writel(xudc, val, PORTPM); } if (!xudc->soc->u2_enable) { val = xudc_readl(xudc, PORTPM); val &= ~(PORTPM_U2TIMEOUT_MASK); xudc_writel(xudc, val, PORTPM); } if (xudc->gadget.speed <= USB_SPEED_HIGH) { val = xudc_readl(xudc, PORTPM); val &= ~(PORTPM_L1S_MASK); if (xudc->soc->lpm_enable) val |= PORTPM_L1S(PORTPM_L1S_ACCEPT); else val |= PORTPM_L1S(PORTPM_L1S_NYET); xudc_writel(xudc, val, PORTPM); } val = xudc_readl(xudc, ST); if (val & ST_RC) xudc_writel(xudc, ST_RC, ST); } static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc) { tegra_xudc_reset(xudc); if (xudc->driver && xudc->driver->disconnect) { spin_unlock(&xudc->lock); xudc->driver->disconnect(&xudc->gadget); spin_lock(&xudc->lock); } xudc->device_state = USB_STATE_NOTATTACHED; usb_gadget_set_state(&xudc->gadget, xudc->device_state); complete(&xudc->disconnect_complete); } static void tegra_xudc_port_reset(struct tegra_xudc *xudc) { tegra_xudc_reset(xudc); if (xudc->driver) { spin_unlock(&xudc->lock); usb_gadget_udc_reset(&xudc->gadget, xudc->driver); spin_lock(&xudc->lock); } tegra_xudc_port_connect(xudc); } static void tegra_xudc_port_suspend(struct tegra_xudc *xudc) { dev_dbg(xudc->dev, "port suspend\n"); xudc->resume_state = xudc->device_state; xudc->device_state = USB_STATE_SUSPENDED; usb_gadget_set_state(&xudc->gadget, xudc->device_state); if (xudc->driver->suspend) { spin_unlock(&xudc->lock); xudc->driver->suspend(&xudc->gadget); spin_lock(&xudc->lock); } } static void tegra_xudc_port_resume(struct tegra_xudc *xudc) { dev_dbg(xudc->dev, "port resume\n"); tegra_xudc_resume_device_state(xudc); if (xudc->driver->resume) { spin_unlock(&xudc->lock); xudc->driver->resume(&xudc->gadget); spin_lock(&xudc->lock); } } static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag) { u32 val; val = xudc_readl(xudc, PORTSC); val &= ~PORTSC_CHANGE_MASK; val |= flag; xudc_writel(xudc, val, PORTSC); } static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc) { u32 portsc, porthalt; porthalt = xudc_readl(xudc, PORTHALT); if ((porthalt & PORTHALT_STCHG_REQ) && (porthalt & PORTHALT_HALT_LTSSM)) { dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt); porthalt &= ~PORTHALT_HALT_LTSSM; xudc_writel(xudc, porthalt, PORTHALT); } portsc = xudc_readl(xudc, PORTSC); if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) { dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); #define TOGGLE_VBUS_WAIT_MS 100 if (xudc->soc->port_reset_quirk) { schedule_delayed_work(&xudc->port_reset_war_work, msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); xudc->wait_for_sec_prc = 1; } } if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) { dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_PRC | PORTSC_PED); tegra_xudc_port_reset(xudc); cancel_delayed_work(&xudc->port_reset_war_work); xudc->wait_for_sec_prc = 0; } portsc = xudc_readl(xudc, PORTSC); if (portsc & PORTSC_WRC) { dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_WRC | PORTSC_PED); if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR)) tegra_xudc_port_reset(xudc); } portsc = xudc_readl(xudc, PORTSC); if (portsc & PORTSC_CSC) { dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_CSC); if (portsc & PORTSC_CCS) tegra_xudc_port_connect(xudc); else tegra_xudc_port_disconnect(xudc); if (xudc->wait_csc) { cancel_delayed_work(&xudc->plc_reset_work); xudc->wait_csc = false; } } portsc = xudc_readl(xudc, PORTSC); if (portsc & PORTSC_PLC) { u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT; dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_PLC); switch (pls) { case PORTSC_PLS_U3: tegra_xudc_port_suspend(xudc); break; case PORTSC_PLS_U0: if (xudc->gadget.speed < USB_SPEED_SUPER) tegra_xudc_port_resume(xudc); break; case PORTSC_PLS_RESUME: if (xudc->gadget.speed == USB_SPEED_SUPER) tegra_xudc_port_resume(xudc); break; case PORTSC_PLS_INACTIVE: schedule_delayed_work(&xudc->plc_reset_work, msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS)); xudc->wait_csc = true; break; default: break; } } if (portsc & PORTSC_CEC) { dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc); clear_port_change(xudc, PORTSC_CEC); } dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC)); } static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc) { while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) || (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ)) __tegra_xudc_handle_port_status(xudc); } static void tegra_xudc_handle_event(struct tegra_xudc *xudc, struct tegra_xudc_trb *event) { u32 type = trb_read_type(event); dump_trb(xudc, "EVENT", event); switch (type) { case TRB_TYPE_PORT_STATUS_CHANGE_EVENT: tegra_xudc_handle_port_status(xudc); break; case TRB_TYPE_TRANSFER_EVENT: tegra_xudc_handle_transfer_event(xudc, event); break; case TRB_TYPE_SETUP_PACKET_EVENT: tegra_xudc_handle_ep0_event(xudc, event); break; default: dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type); break; } } static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc) { struct tegra_xudc_trb *event; dma_addr_t erdp; while (true) { event = xudc->event_ring[xudc->event_ring_index] + xudc->event_ring_deq_ptr; if (trb_read_cycle(event) != xudc->ccs) break; tegra_xudc_handle_event(xudc, event); xudc->event_ring_deq_ptr++; if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) { xudc->event_ring_deq_ptr = 0; xudc->event_ring_index++; } if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) { xudc->event_ring_index = 0; xudc->ccs = !xudc->ccs; } } erdp = xudc->event_ring_phys[xudc->event_ring_index] + xudc->event_ring_deq_ptr * sizeof(*event); xudc_writel(xudc, upper_32_bits(erdp), ERDPHI); xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO); } static irqreturn_t tegra_xudc_irq(int irq, void *data) { struct tegra_xudc *xudc = data; unsigned long flags; u32 val; val = xudc_readl(xudc, ST); if (!(val & ST_IP)) return IRQ_NONE; xudc_writel(xudc, ST_IP, ST); spin_lock_irqsave(&xudc->lock, flags); tegra_xudc_process_event_ring(xudc); spin_unlock_irqrestore(&xudc->lock, flags); return IRQ_HANDLED; } static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index) { struct tegra_xudc_ep *ep = &xudc->ep[index]; ep->xudc = xudc; ep->index = index; ep->context = &xudc->ep_context[index]; INIT_LIST_HEAD(&ep->queue); /* * EP1 would be the input endpoint corresponding to EP0, but since * EP0 is bi-directional, EP1 is unused. */ if (index == 1) return 0; ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool, GFP_KERNEL, &ep->transfer_ring_phys); if (!ep->transfer_ring) return -ENOMEM; if (index) { snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2, (index % 2 == 0) ? "out" : "in"); ep->usb_ep.name = ep->name; usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024); ep->usb_ep.max_streams = 16; ep->usb_ep.ops = &tegra_xudc_ep_ops; ep->usb_ep.caps.type_bulk = true; ep->usb_ep.caps.type_int = true; if (index & 1) ep->usb_ep.caps.dir_in = true; else ep->usb_ep.caps.dir_out = true; list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list); } else { strscpy(ep->name, "ep0", 3); ep->usb_ep.name = ep->name; usb_ep_set_maxpacket_limit(&ep->usb_ep, 512); ep->usb_ep.ops = &tegra_xudc_ep0_ops; ep->usb_ep.caps.type_control = true; ep->usb_ep.caps.dir_in = true; ep->usb_ep.caps.dir_out = true; } return 0; } static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index) { struct tegra_xudc_ep *ep = &xudc->ep[index]; /* * EP1 would be the input endpoint corresponding to EP0, but since * EP0 is bi-directional, EP1 is unused. */ if (index == 1) return; dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring, ep->transfer_ring_phys); } static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc) { struct usb_request *req; unsigned int i; int err; xudc->ep_context = dma_alloc_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), &xudc->ep_context_phys, GFP_KERNEL); if (!xudc->ep_context) return -ENOMEM; xudc->transfer_ring_pool = dmam_pool_create(dev_name(xudc->dev), xudc->dev, XUDC_TRANSFER_RING_SIZE * sizeof(struct tegra_xudc_trb), sizeof(struct tegra_xudc_trb), 0); if (!xudc->transfer_ring_pool) { err = -ENOMEM; goto free_ep_context; } INIT_LIST_HEAD(&xudc->gadget.ep_list); for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) { err = tegra_xudc_alloc_ep(xudc, i); if (err < 0) goto free_eps; } req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL); if (!req) { err = -ENOMEM; goto free_eps; } xudc->ep0_req = to_xudc_req(req); return 0; free_eps: for (; i > 0; i--) tegra_xudc_free_ep(xudc, i - 1); free_ep_context: dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), xudc->ep_context, xudc->ep_context_phys); return err; } static void tegra_xudc_init_eps(struct tegra_xudc *xudc) { xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO); xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI); } static void tegra_xudc_free_eps(struct tegra_xudc *xudc) { unsigned int i; tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep, &xudc->ep0_req->usb_req); for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) tegra_xudc_free_ep(xudc, i); dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context), xudc->ep_context, xudc->ep_context_phys); } static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { xudc->event_ring[i] = dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * sizeof(*xudc->event_ring[i]), &xudc->event_ring_phys[i], GFP_KERNEL); if (!xudc->event_ring[i]) goto free_dma; } return 0; free_dma: for (; i > 0; i--) { dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * sizeof(*xudc->event_ring[i - 1]), xudc->event_ring[i - 1], xudc->event_ring_phys[i - 1]); } return -ENOMEM; } static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc) { unsigned int i; u32 val; val = xudc_readl(xudc, SPARAM); val &= ~(SPARAM_ERSTMAX_MASK); val |= SPARAM_ERSTMAX(XUDC_NR_EVENT_RINGS); xudc_writel(xudc, val, SPARAM); for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE * sizeof(*xudc->event_ring[i])); val = xudc_readl(xudc, ERSTSZ); val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i)); val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i); xudc_writel(xudc, val, ERSTSZ); xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]), ERSTXBALO(i)); xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]), ERSTXBAHI(i)); } val = lower_32_bits(xudc->event_ring_phys[0]); xudc_writel(xudc, val, ERDPLO); val |= EREPLO_ECS; xudc_writel(xudc, val, EREPLO); val = upper_32_bits(xudc->event_ring_phys[0]); xudc_writel(xudc, val, ERDPHI); xudc_writel(xudc, val, EREPHI); xudc->ccs = true; xudc->event_ring_index = 0; xudc->event_ring_deq_ptr = 0; } static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc) { unsigned int i; for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) { dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE * sizeof(*xudc->event_ring[i]), xudc->event_ring[i], xudc->event_ring_phys[i]); } } static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc) { u32 val; if (xudc->soc->has_ipfs) { val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0); val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI; ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0); usleep_range(10, 15); } /* Enable bus master */ val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN | XUSB_DEV_CFG_1_BUS_MASTER_EN; fpci_writel(xudc, val, XUSB_DEV_CFG_1); /* Program BAR0 space */ val = fpci_readl(xudc, XUSB_DEV_CFG_4); val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK); val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK); fpci_writel(xudc, val, XUSB_DEV_CFG_4); fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5); usleep_range(100, 200); if (xudc->soc->has_ipfs) { /* Enable interrupt assertion */ val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0); val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK; ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0); } } static void tegra_xudc_device_params_init(struct tegra_xudc *xudc) { u32 val, imod; if (xudc->soc->has_ipfs) { val = xudc_readl(xudc, BLCG); val |= BLCG_ALL; val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE | BLCG_COREPLL_PWRDN); val |= BLCG_IOPLL_0_PWRDN; val |= BLCG_IOPLL_1_PWRDN; val |= BLCG_IOPLL_2_PWRDN; xudc_writel(xudc, val, BLCG); } if (xudc->soc->port_speed_quirk) tegra_xudc_limit_port_speed(xudc); /* Set a reasonable U3 exit timer value. */ val = xudc_readl(xudc, SSPX_CORE_PADCTL4); val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK); val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0); xudc_writel(xudc, val, SSPX_CORE_PADCTL4); /* Default ping LFPS tBurst is too large. */ val = xudc_readl(xudc, SSPX_CORE_CNT0); val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK); val |= SSPX_CORE_CNT0_PING_TBURST(0xa); xudc_writel(xudc, val, SSPX_CORE_CNT0); /* Default tPortConfiguration timeout is too small. */ val = xudc_readl(xudc, SSPX_CORE_CNT30); val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK); val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978); xudc_writel(xudc, val, SSPX_CORE_CNT30); if (xudc->soc->lpm_enable) { /* Set L1 resume duration to 95 us. */ val = xudc_readl(xudc, HSFSPI_COUNT13); val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK); val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88); xudc_writel(xudc, val, HSFSPI_COUNT13); } /* * Compliacne suite appears to be violating polling LFPS tBurst max * of 1.4us. Send 1.45us instead. */ val = xudc_readl(xudc, SSPX_CORE_CNT32); val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK); val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0); xudc_writel(xudc, val, SSPX_CORE_CNT32); /* Direct HS/FS port instance to RxDetect. */ val = xudc_readl(xudc, CFG_DEV_FE); val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI); xudc_writel(xudc, val, CFG_DEV_FE); val = xudc_readl(xudc, PORTSC); val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); xudc_writel(xudc, val, PORTSC); /* Direct SS port instance to RxDetect. */ val = xudc_readl(xudc, CFG_DEV_FE); val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK; xudc_writel(xudc, val, CFG_DEV_FE); val = xudc_readl(xudc, PORTSC); val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK); val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT); xudc_writel(xudc, val, PORTSC); /* Restore port instance. */ val = xudc_readl(xudc, CFG_DEV_FE); val &= ~(CFG_DEV_FE_PORTREGSEL_MASK); xudc_writel(xudc, val, CFG_DEV_FE); /* * Enable INFINITE_SS_RETRY to prevent device from entering * Disabled.Error when attached to buggy SuperSpeed hubs. */ val = xudc_readl(xudc, CFG_DEV_FE); val |= CFG_DEV_FE_INFINITE_SS_RETRY; xudc_writel(xudc, val, CFG_DEV_FE); /* Set interrupt moderation. */ imod = XUDC_INTERRUPT_MODERATION_US * 4; val = xudc_readl(xudc, RT_IMOD); val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK)); val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod)); xudc_writel(xudc, val, RT_IMOD); /* increase SSPI transaction timeout from 32us to 512us */ val = xudc_readl(xudc, CFG_DEV_SSPI_XFER); val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK); val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000); xudc_writel(xudc, val, CFG_DEV_SSPI_XFER); } static int tegra_xudc_phy_get(struct tegra_xudc *xudc) { int err = 0, usb3; unsigned int i; xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, sizeof(*xudc->utmi_phy), GFP_KERNEL); if (!xudc->utmi_phy) return -ENOMEM; xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, sizeof(*xudc->usb3_phy), GFP_KERNEL); if (!xudc->usb3_phy) return -ENOMEM; xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys, sizeof(*xudc->usbphy), GFP_KERNEL); if (!xudc->usbphy) return -ENOMEM; xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify; for (i = 0; i < xudc->soc->num_phys; i++) { char phy_name[] = "usb.-."; /* Get USB2 phy */ snprintf(phy_name, sizeof(phy_name), "usb2-%d", i); xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); if (IS_ERR(xudc->utmi_phy[i])) { err = PTR_ERR(xudc->utmi_phy[i]); dev_err_probe(xudc->dev, err, "failed to get usb2-%d PHY\n", i); goto clean_up; } else if (xudc->utmi_phy[i]) { /* Get usb-phy, if utmi phy is available */ xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev, xudc->utmi_phy[i]->dev.of_node, &xudc->vbus_nb); if (IS_ERR(xudc->usbphy[i])) { err = PTR_ERR(xudc->usbphy[i]); dev_err_probe(xudc->dev, err, "failed to get usbphy-%d\n", i); goto clean_up; } } else if (!xudc->utmi_phy[i]) { /* if utmi phy is not available, ignore USB3 phy get */ continue; } /* Get USB3 phy */ usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i); if (usb3 < 0) continue; snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3); xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name); if (IS_ERR(xudc->usb3_phy[i])) { err = PTR_ERR(xudc->usb3_phy[i]); dev_err_probe(xudc->dev, err, "failed to get usb3-%d PHY\n", usb3); goto clean_up; } else if (xudc->usb3_phy[i]) dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3); } return err; clean_up: for (i = 0; i < xudc->soc->num_phys; i++) { xudc->usb3_phy[i] = NULL; xudc->utmi_phy[i] = NULL; xudc->usbphy[i] = NULL; } return err; } static void tegra_xudc_phy_exit(struct tegra_xudc *xudc) { unsigned int i; for (i = 0; i < xudc->soc->num_phys; i++) { phy_exit(xudc->usb3_phy[i]); phy_exit(xudc->utmi_phy[i]); } } static int tegra_xudc_phy_init(struct tegra_xudc *xudc) { int err; unsigned int i; for (i = 0; i < xudc->soc->num_phys; i++) { err = phy_init(xudc->utmi_phy[i]); if (err < 0) { dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err); goto exit_phy; } err = phy_init(xudc->usb3_phy[i]); if (err < 0) { dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err); goto exit_phy; } } return 0; exit_phy: tegra_xudc_phy_exit(xudc); return err; } static const char * const tegra210_xudc_supply_names[] = { "hvdd-usb", "avddio-usb", }; static const char * const tegra210_xudc_clock_names[] = { "dev", "ss", "ss_src", "hs_src", "fs_src", }; static const char * const tegra186_xudc_clock_names[] = { "dev", "ss", "ss_src", "fs_src", }; static struct tegra_xudc_soc tegra210_xudc_soc_data = { .supply_names = tegra210_xudc_supply_names, .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names), .clock_names = tegra210_xudc_clock_names, .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names), .num_phys = 4, .u1_enable = false, .u2_enable = true, .lpm_enable = false, .invalid_seq_num = true, .pls_quirk = true, .port_reset_quirk = true, .port_speed_quirk = false, .has_ipfs = true, }; static struct tegra_xudc_soc tegra186_xudc_soc_data = { .clock_names = tegra186_xudc_clock_names, .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), .num_phys = 4, .u1_enable = true, .u2_enable = true, .lpm_enable = false, .invalid_seq_num = false, .pls_quirk = false, .port_reset_quirk = false, .port_speed_quirk = false, .has_ipfs = false, }; static struct tegra_xudc_soc tegra194_xudc_soc_data = { .clock_names = tegra186_xudc_clock_names, .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names), .num_phys = 4, .u1_enable = true, .u2_enable = true, .lpm_enable = true, .invalid_seq_num = false, .pls_quirk = false, .port_reset_quirk = false, .port_speed_quirk = true, .has_ipfs = false, }; static const struct of_device_id tegra_xudc_of_match[] = { { .compatible = "nvidia,tegra210-xudc", .data = &tegra210_xudc_soc_data }, { .compatible = "nvidia,tegra186-xudc", .data = &tegra186_xudc_soc_data }, { .compatible = "nvidia,tegra194-xudc", .data = &tegra194_xudc_soc_data }, { } }; MODULE_DEVICE_TABLE(of, tegra_xudc_of_match); static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc) { if (xudc->genpd_dl_ss) device_link_del(xudc->genpd_dl_ss); if (xudc->genpd_dl_device) device_link_del(xudc->genpd_dl_device); if (xudc->genpd_dev_ss) dev_pm_domain_detach(xudc->genpd_dev_ss, true); if (xudc->genpd_dev_device) dev_pm_domain_detach(xudc->genpd_dev_device, true); } static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc) { struct device *dev = xudc->dev; int err; xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev"); if (IS_ERR(xudc->genpd_dev_device)) { err = PTR_ERR(xudc->genpd_dev_device); dev_err(dev, "failed to get device power domain: %d\n", err); return err; } xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss"); if (IS_ERR(xudc->genpd_dev_ss)) { err = PTR_ERR(xudc->genpd_dev_ss); dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err); return err; } xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device, DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); if (!xudc->genpd_dl_device) { dev_err(dev, "failed to add USB device link\n"); return -ENODEV; } xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss, DL_FLAG_PM_RUNTIME | DL_FLAG_STATELESS); if (!xudc->genpd_dl_ss) { dev_err(dev, "failed to add SuperSpeed device link\n"); return -ENODEV; } return 0; } static int tegra_xudc_probe(struct platform_device *pdev) { struct tegra_xudc *xudc; struct resource *res; unsigned int i; int err; xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL); if (!xudc) return -ENOMEM; xudc->dev = &pdev->dev; platform_set_drvdata(pdev, xudc); xudc->soc = of_device_get_match_data(&pdev->dev); if (!xudc->soc) return -ENODEV; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); xudc->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(xudc->base)) return PTR_ERR(xudc->base); xudc->phys_base = res->start; xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci"); if (IS_ERR(xudc->fpci)) return PTR_ERR(xudc->fpci); if (xudc->soc->has_ipfs) { xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs"); if (IS_ERR(xudc->ipfs)) return PTR_ERR(xudc->ipfs); } xudc->irq = platform_get_irq(pdev, 0); if (xudc->irq < 0) return xudc->irq; err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0, dev_name(&pdev->dev), xudc); if (err < 0) { dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq, err); return err; } xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks), GFP_KERNEL); if (!xudc->clks) return -ENOMEM; for (i = 0; i < xudc->soc->num_clks; i++) xudc->clks[i].id = xudc->soc->clock_names[i]; err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks); if (err) { dev_err_probe(xudc->dev, err, "failed to request clocks\n"); return err; } xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies, sizeof(*xudc->supplies), GFP_KERNEL); if (!xudc->supplies) return -ENOMEM; for (i = 0; i < xudc->soc->num_supplies; i++) xudc->supplies[i].supply = xudc->soc->supply_names[i]; err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies, xudc->supplies); if (err) { dev_err_probe(xudc->dev, err, "failed to request regulators\n"); return err; } xudc->padctl = tegra_xusb_padctl_get(&pdev->dev); if (IS_ERR(xudc->padctl)) return PTR_ERR(xudc->padctl); err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); if (err) { dev_err(xudc->dev, "failed to enable regulators: %d\n", err); goto put_padctl; } err = tegra_xudc_phy_get(xudc); if (err) goto disable_regulator; err = tegra_xudc_powerdomain_init(xudc); if (err) goto put_powerdomains; err = tegra_xudc_phy_init(xudc); if (err) goto put_powerdomains; err = tegra_xudc_alloc_event_ring(xudc); if (err) goto disable_phy; err = tegra_xudc_alloc_eps(xudc); if (err) goto free_event_ring; spin_lock_init(&xudc->lock); init_completion(&xudc->disconnect_complete); INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work); INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work); INIT_DELAYED_WORK(&xudc->port_reset_war_work, tegra_xudc_port_reset_war_work); pm_runtime_enable(&pdev->dev); xudc->gadget.ops = &tegra_xudc_gadget_ops; xudc->gadget.ep0 = &xudc->ep[0].usb_ep; xudc->gadget.name = "tegra-xudc"; xudc->gadget.max_speed = USB_SPEED_SUPER; err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget); if (err) { dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err); goto free_eps; } return 0; free_eps: tegra_xudc_free_eps(xudc); free_event_ring: tegra_xudc_free_event_ring(xudc); disable_phy: tegra_xudc_phy_exit(xudc); put_powerdomains: tegra_xudc_powerdomain_remove(xudc); disable_regulator: regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); put_padctl: tegra_xusb_padctl_put(xudc->padctl); return err; } static int tegra_xudc_remove(struct platform_device *pdev) { struct tegra_xudc *xudc = platform_get_drvdata(pdev); unsigned int i; pm_runtime_get_sync(xudc->dev); cancel_delayed_work_sync(&xudc->plc_reset_work); cancel_work_sync(&xudc->usb_role_sw_work); usb_del_gadget_udc(&xudc->gadget); tegra_xudc_free_eps(xudc); tegra_xudc_free_event_ring(xudc); tegra_xudc_powerdomain_remove(xudc); regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); for (i = 0; i < xudc->soc->num_phys; i++) { phy_power_off(xudc->utmi_phy[i]); phy_power_off(xudc->usb3_phy[i]); } tegra_xudc_phy_exit(xudc); pm_runtime_disable(xudc->dev); pm_runtime_put(xudc->dev); tegra_xusb_padctl_put(xudc->padctl); return 0; } static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc) { unsigned long flags; dev_dbg(xudc->dev, "entering ELPG\n"); spin_lock_irqsave(&xudc->lock, flags); xudc->powergated = true; xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL); xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM); xudc_writel(xudc, 0, CTRL); spin_unlock_irqrestore(&xudc->lock, flags); clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks); regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies); dev_dbg(xudc->dev, "entering ELPG done\n"); return 0; } static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc) { unsigned long flags; int err; dev_dbg(xudc->dev, "exiting ELPG\n"); err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies); if (err < 0) return err; err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks); if (err < 0) return err; tegra_xudc_fpci_ipfs_init(xudc); tegra_xudc_device_params_init(xudc); tegra_xudc_init_event_ring(xudc); tegra_xudc_init_eps(xudc); xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM); xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL); spin_lock_irqsave(&xudc->lock, flags); xudc->powergated = false; spin_unlock_irqrestore(&xudc->lock, flags); dev_dbg(xudc->dev, "exiting ELPG done\n"); return 0; } static int __maybe_unused tegra_xudc_suspend(struct device *dev) { struct tegra_xudc *xudc = dev_get_drvdata(dev); unsigned long flags; spin_lock_irqsave(&xudc->lock, flags); xudc->suspended = true; spin_unlock_irqrestore(&xudc->lock, flags); flush_work(&xudc->usb_role_sw_work); if (!pm_runtime_status_suspended(dev)) { /* Forcibly disconnect before powergating. */ tegra_xudc_device_mode_off(xudc); tegra_xudc_powergate(xudc); } pm_runtime_disable(dev); return 0; } static int __maybe_unused tegra_xudc_resume(struct device *dev) { struct tegra_xudc *xudc = dev_get_drvdata(dev); unsigned long flags; int err; err = tegra_xudc_unpowergate(xudc); if (err < 0) return err; spin_lock_irqsave(&xudc->lock, flags); xudc->suspended = false; spin_unlock_irqrestore(&xudc->lock, flags); schedule_work(&xudc->usb_role_sw_work); pm_runtime_enable(dev); return 0; } static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev) { struct tegra_xudc *xudc = dev_get_drvdata(dev); return tegra_xudc_powergate(xudc); } static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev) { struct tegra_xudc *xudc = dev_get_drvdata(dev); return tegra_xudc_unpowergate(xudc); } static const struct dev_pm_ops tegra_xudc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume) SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend, tegra_xudc_runtime_resume, NULL) }; static struct platform_driver tegra_xudc_driver = { .probe = tegra_xudc_probe, .remove = tegra_xudc_remove, .driver = { .name = "tegra-xudc", .pm = &tegra_xudc_pm_ops, .of_match_table = tegra_xudc_of_match, }, }; module_platform_driver(tegra_xudc_driver); MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller"); MODULE_AUTHOR("Andrew Bresticker "); MODULE_AUTHOR("Hui Fu "); MODULE_AUTHOR("Nagarjuna Kristam "); MODULE_LICENSE("GPL v2");