// SPDX-License-Identifier: GPL-2.0-or-later /* * Universal Flash Storage Host controller driver Core * Copyright (C) 2011-2013 Samsung India Software Operations * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. * * Authors: * Santosh Yaraganavi * Vinayak Holikatti */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ufshcd-priv.h" #include #include #include "ufs-sysfs.h" #include "ufs-debugfs.h" #include "ufs-fault-injection.h" #include "ufs_bsg.h" #include "ufshcd-crypto.h" #include #define CREATE_TRACE_POINTS #include #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ UTP_TASK_REQ_COMPL |\ UFSHCD_ERROR_MASK) #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ UFSHCD_ERROR_MASK |\ MCQ_CQ_EVENT_STATUS) /* UIC command timeout, unit: ms */ #define UIC_CMD_TIMEOUT 500 /* NOP OUT retries waiting for NOP IN response */ #define NOP_OUT_RETRIES 10 /* Timeout after 50 msecs if NOP OUT hangs without response */ #define NOP_OUT_TIMEOUT 50 /* msecs */ /* Query request retries */ #define QUERY_REQ_RETRIES 3 /* Query request timeout */ #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ /* Advanced RPMB request timeout */ #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ /* Task management command timeout */ #define TM_CMD_TIMEOUT 100 /* msecs */ /* maximum number of retries for a general UIC command */ #define UFS_UIC_COMMAND_RETRIES 3 /* maximum number of link-startup retries */ #define DME_LINKSTARTUP_RETRIES 3 /* maximum number of reset retries before giving up */ #define MAX_HOST_RESET_RETRIES 5 /* Maximum number of error handler retries before giving up */ #define MAX_ERR_HANDLER_RETRIES 5 /* Expose the flag value from utp_upiu_query.value */ #define MASK_QUERY_UPIU_FLAG_LOC 0xFF /* Interrupt aggregation default timeout, unit: 40us */ #define INT_AGGR_DEF_TO 0x02 /* default delay of autosuspend: 2000 ms */ #define RPM_AUTOSUSPEND_DELAY_MS 2000 /* Default delay of RPM device flush delayed work */ #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 /* Default value of wait time before gating device ref clock */ #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ /* Polling time to wait for fDeviceInit */ #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ /* UFSHC 4.0 compliant HC support this mode. */ static bool use_mcq_mode = true; static bool is_mcq_supported(struct ufs_hba *hba) { return hba->mcq_sup && use_mcq_mode; } module_param(use_mcq_mode, bool, 0644); MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ ({ \ int _ret; \ if (_on) \ _ret = ufshcd_enable_vreg(_dev, _vreg); \ else \ _ret = ufshcd_disable_vreg(_dev, _vreg); \ _ret; \ }) #define ufshcd_hex_dump(prefix_str, buf, len) do { \ size_t __len = (len); \ print_hex_dump(KERN_ERR, prefix_str, \ __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 16, 4, buf, __len, false); \ } while (0) int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, const char *prefix) { u32 *regs; size_t pos; if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ return -EINVAL; regs = kzalloc(len, GFP_ATOMIC); if (!regs) return -ENOMEM; for (pos = 0; pos < len; pos += 4) { if (offset == 0 && pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && pos <= REG_UIC_ERROR_CODE_DME) continue; regs[pos / 4] = ufshcd_readl(hba, offset + pos); } ufshcd_hex_dump(prefix, regs, len); kfree(regs); return 0; } EXPORT_SYMBOL_GPL(ufshcd_dump_regs); enum { UFSHCD_MAX_CHANNEL = 0, UFSHCD_MAX_ID = 1, UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, }; static const char *const ufshcd_state_name[] = { [UFSHCD_STATE_RESET] = "reset", [UFSHCD_STATE_OPERATIONAL] = "operational", [UFSHCD_STATE_ERROR] = "error", [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", }; /* UFSHCD error handling flags */ enum { UFSHCD_EH_IN_PROGRESS = (1 << 0), }; /* UFSHCD UIC layer error flags */ enum { UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ }; #define ufshcd_set_eh_in_progress(h) \ ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) #define ufshcd_eh_in_progress(h) \ ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) #define ufshcd_clear_eh_in_progress(h) \ ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, /* * For DeepSleep, the link is first put in hibern8 and then off. * Leaving the link in hibern8 is not supported. */ [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, }; static inline enum ufs_dev_pwr_mode ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) { return ufs_pm_lvl_states[lvl].dev_state; } static inline enum uic_link_state ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) { return ufs_pm_lvl_states[lvl].link_state; } static inline enum ufs_pm_level ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, enum uic_link_state link_state) { enum ufs_pm_level lvl; for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && (ufs_pm_lvl_states[lvl].link_state == link_state)) return lvl; } /* if no match found, return the level 0 */ return UFS_PM_LVL_0; } static const struct ufs_dev_quirk ufs_fixups[] = { /* UFS cards deviations table */ { .wmanufacturerid = UFS_VENDOR_MICRON, .model = UFS_ANY_MODEL, .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, { .wmanufacturerid = UFS_VENDOR_SAMSUNG, .model = UFS_ANY_MODEL, .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, { .wmanufacturerid = UFS_VENDOR_SKHYNIX, .model = UFS_ANY_MODEL, .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, { .wmanufacturerid = UFS_VENDOR_SKHYNIX, .model = "hB8aL1" /*H28U62301AMR*/, .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, { .wmanufacturerid = UFS_VENDOR_TOSHIBA, .model = UFS_ANY_MODEL, .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, { .wmanufacturerid = UFS_VENDOR_TOSHIBA, .model = "THGLF2G9C8KBADG", .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, { .wmanufacturerid = UFS_VENDOR_TOSHIBA, .model = "THGLF2G9D8KBADG", .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, {} }; static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); static void ufshcd_async_scan(void *data, async_cookie_t cookie); static int ufshcd_reset_and_restore(struct ufs_hba *hba); static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); static void ufshcd_hba_exit(struct ufs_hba *hba); static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); static void ufshcd_resume_clkscaling(struct ufs_hba *hba); static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); static irqreturn_t ufshcd_intr(int irq, void *__hba); static int ufshcd_change_power_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_mode); static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, struct ufs_vreg *vreg); static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, bool enable); static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); static inline void ufshcd_enable_irq(struct ufs_hba *hba) { if (!hba->is_irq_enabled) { enable_irq(hba->irq); hba->is_irq_enabled = true; } } static inline void ufshcd_disable_irq(struct ufs_hba *hba) { if (hba->is_irq_enabled) { disable_irq(hba->irq); hba->is_irq_enabled = false; } } static void ufshcd_configure_wb(struct ufs_hba *hba) { if (!ufshcd_is_wb_allowed(hba)) return; ufshcd_wb_toggle(hba, true); ufshcd_wb_toggle_buf_flush_during_h8(hba, true); if (ufshcd_is_wb_buf_flush_allowed(hba)) ufshcd_wb_toggle_buf_flush(hba, true); } static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) { if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) scsi_unblock_requests(hba->host); } static void ufshcd_scsi_block_requests(struct ufs_hba *hba) { if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) scsi_block_requests(hba->host); } static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, enum ufs_trace_str_t str_t) { struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; struct utp_upiu_header *header; if (!trace_ufshcd_upiu_enabled()) return; if (str_t == UFS_CMD_SEND) header = &rq->header; else header = &hba->lrb[tag].ucd_rsp_ptr->header; trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, UFS_TSF_CDB); } static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, enum ufs_trace_str_t str_t, struct utp_upiu_req *rq_rsp) { if (!trace_ufshcd_upiu_enabled()) return; trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, &rq_rsp->qr, UFS_TSF_OSF); } static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, enum ufs_trace_str_t str_t) { struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; if (!trace_ufshcd_upiu_enabled()) return; if (str_t == UFS_TM_SEND) trace_ufshcd_upiu(dev_name(hba->dev), str_t, &descp->upiu_req.req_header, &descp->upiu_req.input_param1, UFS_TSF_TM_INPUT); else trace_ufshcd_upiu(dev_name(hba->dev), str_t, &descp->upiu_rsp.rsp_header, &descp->upiu_rsp.output_param1, UFS_TSF_TM_OUTPUT); } static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, const struct uic_command *ucmd, enum ufs_trace_str_t str_t) { u32 cmd; if (!trace_ufshcd_uic_command_enabled()) return; if (str_t == UFS_CMD_SEND) cmd = ucmd->command; else cmd = ufshcd_readl(hba, REG_UIC_COMMAND); trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); } static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, enum ufs_trace_str_t str_t) { u64 lba = 0; u8 opcode = 0, group_id = 0; u32 doorbell = 0; u32 intr; int hwq_id = -1; struct ufshcd_lrb *lrbp = &hba->lrb[tag]; struct scsi_cmnd *cmd = lrbp->cmd; struct request *rq = scsi_cmd_to_rq(cmd); int transfer_len = -1; if (!cmd) return; /* trace UPIU also */ ufshcd_add_cmd_upiu_trace(hba, tag, str_t); if (!trace_ufshcd_command_enabled()) return; opcode = cmd->cmnd[0]; if (opcode == READ_10 || opcode == WRITE_10) { /* * Currently we only fully trace read(10) and write(10) commands */ transfer_len = be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); lba = scsi_get_lba(cmd); if (opcode == WRITE_10) group_id = lrbp->cmd->cmnd[6]; } else if (opcode == UNMAP) { /* * The number of Bytes to be unmapped beginning with the lba. */ transfer_len = blk_rq_bytes(rq); lba = scsi_get_lba(cmd); } intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); if (is_mcq_enabled(hba)) { struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); hwq_id = hwq->id; } else { doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); } trace_ufshcd_command(dev_name(hba->dev), str_t, tag, doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); } static void ufshcd_print_clk_freqs(struct ufs_hba *hba) { struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (list_empty(head)) return; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && clki->max_freq) dev_err(hba->dev, "clk: %s, rate: %u\n", clki->name, clki->curr_freq); } } static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, const char *err_name) { int i; bool found = false; const struct ufs_event_hist *e; if (id >= UFS_EVT_CNT) return; e = &hba->ufs_stats.event[id]; for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; if (e->tstamp[p] == 0) continue; dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, e->val[p], div_u64(e->tstamp[p], 1000)); found = true; } if (!found) dev_err(hba->dev, "No record of %s\n", err_name); else dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); } static void ufshcd_print_evt_hist(struct ufs_hba *hba) { ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, "auto_hibern8_err"); ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, "link_startup_fail"); ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, "suspend_fail"); ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, "wlun suspend_fail"); ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); ufshcd_vops_dbg_register_dump(hba); } static void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) { const struct ufshcd_lrb *lrbp; int prdt_length; lrbp = &hba->lrb[tag]; dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); dev_err(hba->dev, "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", tag, (u64)lrbp->utrd_dma_addr); ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, sizeof(struct utp_transfer_req_desc)); dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, (u64)lrbp->ucd_req_dma_addr); ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, sizeof(struct utp_upiu_req)); dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, (u64)lrbp->ucd_rsp_dma_addr); ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, sizeof(struct utp_upiu_rsp)); prdt_length = le16_to_cpu( lrbp->utr_descriptor_ptr->prd_table_length); if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) prdt_length /= ufshcd_sg_entry_size(hba); dev_err(hba->dev, "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", tag, prdt_length, (u64)lrbp->ucd_prdt_dma_addr); if (pr_prdt) ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, ufshcd_sg_entry_size(hba) * prdt_length); } static bool ufshcd_print_tr_iter(struct request *req, void *priv) { struct scsi_device *sdev = req->q->queuedata; struct Scsi_Host *shost = sdev->host; struct ufs_hba *hba = shost_priv(shost); ufshcd_print_tr(hba, req->tag, *(bool *)priv); return true; } /** * ufshcd_print_trs_all - print trs for all started requests. * @hba: per-adapter instance. * @pr_prdt: need to print prdt or not. */ static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) { blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); } static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) { int tag; for_each_set_bit(tag, &bitmap, hba->nutmrs) { struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); } } static void ufshcd_print_host_state(struct ufs_hba *hba) { const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", hba->outstanding_reqs, hba->outstanding_tasks); dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", hba->saved_err, hba->saved_uic_err); dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", hba->curr_dev_pwr_mode, hba->uic_link_state); dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", hba->pm_op_in_progress, hba->is_sys_suspended); dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", hba->auto_bkops_enabled, hba->host->host_self_blocked); dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); dev_err(hba->dev, "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), hba->ufs_stats.hibern8_exit_cnt); dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", div_u64(hba->ufs_stats.last_intr_ts, 1000), hba->ufs_stats.last_intr_status); dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", hba->eh_flags, hba->req_abort_count); dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", hba->ufs_version, hba->capabilities, hba->caps); dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, hba->dev_quirks); if (sdev_ufs) dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); ufshcd_print_clk_freqs(hba); } /** * ufshcd_print_pwr_info - print power params as saved in hba * power info * @hba: per-adapter instance */ static void ufshcd_print_pwr_info(struct ufs_hba *hba) { static const char * const names[] = { "INVALID MODE", "FAST MODE", "SLOW_MODE", "INVALID MODE", "FASTAUTO_MODE", "SLOWAUTO_MODE", "INVALID MODE", }; /* * Using dev_dbg to avoid messages during runtime PM to avoid * never-ending cycles of messages written back to storage by user space * causing runtime resume, causing more messages and so on. */ dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", __func__, hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, names[hba->pwr_info.pwr_rx], names[hba->pwr_info.pwr_tx], hba->pwr_info.hs_rate); } static void ufshcd_device_reset(struct ufs_hba *hba) { int err; err = ufshcd_vops_device_reset(hba); if (!err) { ufshcd_set_ufs_dev_active(hba); if (ufshcd_is_wb_allowed(hba)) { hba->dev_info.wb_enabled = false; hba->dev_info.wb_buf_flush_enabled = false; } } if (err != -EOPNOTSUPP) ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); } void ufshcd_delay_us(unsigned long us, unsigned long tolerance) { if (!us) return; if (us < 10) udelay(us); else usleep_range(us, us + tolerance); } EXPORT_SYMBOL_GPL(ufshcd_delay_us); /** * ufshcd_wait_for_register - wait for register value to change * @hba: per-adapter interface * @reg: mmio register offset * @mask: mask to apply to the read register value * @val: value to wait for * @interval_us: polling interval in microseconds * @timeout_ms: timeout in milliseconds * * Return: -ETIMEDOUT on error, zero on success. */ static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, u32 val, unsigned long interval_us, unsigned long timeout_ms) { int err = 0; unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); /* ignore bits that we don't intend to wait on */ val = val & mask; while ((ufshcd_readl(hba, reg) & mask) != val) { usleep_range(interval_us, interval_us + 50); if (time_after(jiffies, timeout)) { if ((ufshcd_readl(hba, reg) & mask) != val) err = -ETIMEDOUT; break; } } return err; } /** * ufshcd_get_intr_mask - Get the interrupt bit mask * @hba: Pointer to adapter instance * * Return: interrupt bit mask per version */ static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) { if (hba->ufs_version == ufshci_version(1, 0)) return INTERRUPT_MASK_ALL_VER_10; if (hba->ufs_version <= ufshci_version(2, 0)) return INTERRUPT_MASK_ALL_VER_11; return INTERRUPT_MASK_ALL_VER_21; } /** * ufshcd_get_ufs_version - Get the UFS version supported by the HBA * @hba: Pointer to adapter instance * * Return: UFSHCI version supported by the controller */ static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) { u32 ufshci_ver; if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); else ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); /* * UFSHCI v1.x uses a different version scheme, in order * to allow the use of comparisons with the ufshci_version * function, we convert it to the same scheme as ufs 2.0+. */ if (ufshci_ver & 0x00010000) return ufshci_version(1, ufshci_ver & 0x00000100); return ufshci_ver; } /** * ufshcd_is_device_present - Check if any device connected to * the host controller * @hba: pointer to adapter instance * * Return: true if device present, false if no device detected */ static inline bool ufshcd_is_device_present(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; } /** * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status * @lrbp: pointer to local command reference block * @cqe: pointer to the completion queue entry * * This function is used to get the OCS field from UTRD * * Return: the OCS field in the UTRD. */ static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, struct cq_entry *cqe) { if (cqe) return le32_to_cpu(cqe->status) & MASK_OCS; return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; } /** * ufshcd_utrl_clear() - Clear requests from the controller request list. * @hba: per adapter instance * @mask: mask with one bit set for each request to be cleared */ static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) { if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) mask = ~mask; /* * From the UFSHCI specification: "UTP Transfer Request List CLear * Register (UTRLCLR): This field is bit significant. Each bit * corresponds to a slot in the UTP Transfer Request List, where bit 0 * corresponds to request slot 0. A bit in this field is set to ‘0’ * by host software to indicate to the host controller that a transfer * request slot is cleared. The host controller * shall free up any resources associated to the request slot * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The * host software indicates no change to request slots by setting the * associated bits in this field to ‘1’. Bits in this field shall only * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." */ ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); } /** * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register * @hba: per adapter instance * @pos: position of the bit to be cleared */ static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) { if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); else ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); } /** * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY * @reg: Register value of host controller status * * Return: 0 on success; a positive value if failed. */ static inline int ufshcd_get_lists_status(u32 reg) { return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); } /** * ufshcd_get_uic_cmd_result - Get the UIC command result * @hba: Pointer to adapter instance * * This function gets the result of UIC command completion * * Return: 0 on success; non-zero value on error. */ static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & MASK_UIC_COMMAND_RESULT; } /** * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command * @hba: Pointer to adapter instance * * This function gets UIC command argument3 * * Return: 0 on success; non-zero value on error. */ static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); } /** * ufshcd_get_req_rsp - returns the TR response transaction type * @ucd_rsp_ptr: pointer to response UPIU * * Return: UPIU type. */ static inline enum upiu_response_transaction ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) { return ucd_rsp_ptr->header.transaction_code; } /** * ufshcd_is_exception_event - Check if the device raised an exception event * @ucd_rsp_ptr: pointer to response UPIU * * The function checks if the device raised an exception event indicated in * the Device Information field of response UPIU. * * Return: true if exception is raised, false otherwise. */ static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) { return ucd_rsp_ptr->header.device_information & 1; } /** * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. * @hba: per adapter instance */ static inline void ufshcd_reset_intr_aggr(struct ufs_hba *hba) { ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_COUNTER_AND_TIMER_RESET, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_config_intr_aggr - Configure interrupt aggregation values. * @hba: per adapter instance * @cnt: Interrupt aggregation counter threshold * @tmout: Interrupt aggregation timeout value */ static inline void ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) { ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | INT_AGGR_COUNTER_THLD_VAL(cnt) | INT_AGGR_TIMEOUT_VAL(tmout), REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_disable_intr_aggr - Disables interrupt aggregation. * @hba: per adapter instance */ static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) { ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_enable_run_stop_reg - Enable run-stop registers, * When run-stop registers are set to 1, it indicates the * host controller that it can process the requests * @hba: per adapter instance */ static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) { ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, REG_UTP_TASK_REQ_LIST_RUN_STOP); ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); } /** * ufshcd_hba_start - Start controller initialization sequence * @hba: per adapter instance */ static inline void ufshcd_hba_start(struct ufs_hba *hba) { u32 val = CONTROLLER_ENABLE; if (ufshcd_crypto_enable(hba)) val |= CRYPTO_GENERAL_ENABLE; ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); } /** * ufshcd_is_hba_active - Get controller state * @hba: per adapter instance * * Return: true if and only if the controller is active. */ bool ufshcd_is_hba_active(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; } EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) { /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ if (hba->ufs_version <= ufshci_version(1, 1)) return UFS_UNIPRO_VER_1_41; else return UFS_UNIPRO_VER_1_6; } EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) { /* * If both host and device support UniPro ver1.6 or later, PA layer * parameters tuning happens during link startup itself. * * We can manually tune PA layer parameters if either host or device * doesn't support UniPro ver 1.6 or later. But to keep manual tuning * logic simple, we will only do manual tuning if local unipro version * doesn't support ver1.6 or later. */ return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; } /** * ufshcd_set_clk_freq - set UFS controller clock frequencies * @hba: per adapter instance * @scale_up: If True, set max possible frequency othewise set low frequency * * Return: 0 if successful; < 0 upon failure. */ static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) { int ret = 0; struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { if (scale_up && clki->max_freq) { if (clki->curr_freq == clki->max_freq) continue; ret = clk_set_rate(clki->clk, clki->max_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->max_freq, ret); break; } trace_ufshcd_clk_scaling(dev_name(hba->dev), "scaled up", clki->name, clki->curr_freq, clki->max_freq); clki->curr_freq = clki->max_freq; } else if (!scale_up && clki->min_freq) { if (clki->curr_freq == clki->min_freq) continue; ret = clk_set_rate(clki->clk, clki->min_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->min_freq, ret); break; } trace_ufshcd_clk_scaling(dev_name(hba->dev), "scaled down", clki->name, clki->curr_freq, clki->min_freq); clki->curr_freq = clki->min_freq; } } dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, clki->name, clk_get_rate(clki->clk)); } out: return ret; } /** * ufshcd_scale_clks - scale up or scale down UFS controller clocks * @hba: per adapter instance * @scale_up: True if scaling up and false if scaling down * * Return: 0 if successful; < 0 upon failure. */ static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) { int ret = 0; ktime_t start = ktime_get(); ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); if (ret) goto out; ret = ufshcd_set_clk_freq(hba, scale_up); if (ret) goto out; ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); if (ret) ufshcd_set_clk_freq(hba, !scale_up); out: trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), (scale_up ? "up" : "down"), ktime_to_us(ktime_sub(ktime_get(), start)), ret); return ret; } /** * ufshcd_is_devfreq_scaling_required - check if scaling is required or not * @hba: per adapter instance * @scale_up: True if scaling up and false if scaling down * * Return: true if scaling is required, false otherwise. */ static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, bool scale_up) { struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (list_empty(head)) return false; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { if (scale_up && clki->max_freq) { if (clki->curr_freq == clki->max_freq) continue; return true; } else if (!scale_up && clki->min_freq) { if (clki->curr_freq == clki->min_freq) continue; return true; } } } return false; } /* * Determine the number of pending commands by counting the bits in the SCSI * device budget maps. This approach has been selected because a bit is set in * the budget map before scsi_host_queue_ready() checks the host_self_blocked * flag. The host_self_blocked flag can be modified by calling * scsi_block_requests() or scsi_unblock_requests(). */ static u32 ufshcd_pending_cmds(struct ufs_hba *hba) { const struct scsi_device *sdev; u32 pending = 0; lockdep_assert_held(hba->host->host_lock); __shost_for_each_device(sdev, hba->host) pending += sbitmap_weight(&sdev->budget_map); return pending; } /* * Wait until all pending SCSI commands and TMFs have finished or the timeout * has expired. * * Return: 0 upon success; -EBUSY upon timeout. */ static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, u64 wait_timeout_us) { unsigned long flags; int ret = 0; u32 tm_doorbell; u32 tr_pending; bool timeout = false, do_last_check = false; ktime_t start; ufshcd_hold(hba); spin_lock_irqsave(hba->host->host_lock, flags); /* * Wait for all the outstanding tasks/transfer requests. * Verify by checking the doorbell registers are clear. */ start = ktime_get(); do { if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { ret = -EBUSY; goto out; } tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); tr_pending = ufshcd_pending_cmds(hba); if (!tm_doorbell && !tr_pending) { timeout = false; break; } else if (do_last_check) { break; } spin_unlock_irqrestore(hba->host->host_lock, flags); io_schedule_timeout(msecs_to_jiffies(20)); if (ktime_to_us(ktime_sub(ktime_get(), start)) > wait_timeout_us) { timeout = true; /* * We might have scheduled out for long time so make * sure to check if doorbells are cleared by this time * or not. */ do_last_check = true; } spin_lock_irqsave(hba->host->host_lock, flags); } while (tm_doorbell || tr_pending); if (timeout) { dev_err(hba->dev, "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", __func__, tm_doorbell, tr_pending); ret = -EBUSY; } out: spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_release(hba); return ret; } /** * ufshcd_scale_gear - scale up/down UFS gear * @hba: per adapter instance * @scale_up: True for scaling up gear and false for scaling down * * Return: 0 for success; -EBUSY if scaling can't happen at this time; * non-zero for any other errors. */ static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) { int ret = 0; struct ufs_pa_layer_attr new_pwr_info; if (scale_up) { memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, sizeof(struct ufs_pa_layer_attr)); } else { memcpy(&new_pwr_info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { /* save the current power mode */ memcpy(&hba->clk_scaling.saved_pwr_info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); /* scale down gear */ new_pwr_info.gear_tx = hba->clk_scaling.min_gear; new_pwr_info.gear_rx = hba->clk_scaling.min_gear; } } /* check if the power mode needs to be changed or not? */ ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); if (ret) dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", __func__, ret, hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, new_pwr_info.gear_tx, new_pwr_info.gear_rx); return ret; } /* * Wait until all pending SCSI commands and TMFs have finished or the timeout * has expired. * * Return: 0 upon success; -EBUSY upon timeout. */ static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) { int ret = 0; /* * make sure that there are no outstanding requests when * clock scaling is in progress */ blk_mq_quiesce_tagset(&hba->host->tag_set); mutex_lock(&hba->wb_mutex); down_write(&hba->clk_scaling_lock); if (!hba->clk_scaling.is_allowed || ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { ret = -EBUSY; up_write(&hba->clk_scaling_lock); mutex_unlock(&hba->wb_mutex); blk_mq_unquiesce_tagset(&hba->host->tag_set); goto out; } /* let's not get into low power until clock scaling is completed */ ufshcd_hold(hba); out: return ret; } static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) { up_write(&hba->clk_scaling_lock); /* Enable Write Booster if we have scaled up else disable it */ if (ufshcd_enable_wb_if_scaling_up(hba) && !err) ufshcd_wb_toggle(hba, scale_up); mutex_unlock(&hba->wb_mutex); blk_mq_unquiesce_tagset(&hba->host->tag_set); ufshcd_release(hba); } /** * ufshcd_devfreq_scale - scale up/down UFS clocks and gear * @hba: per adapter instance * @scale_up: True for scaling up and false for scalin down * * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero * for any other errors. */ static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) { int ret = 0; ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); if (ret) return ret; /* scale down the gear before scaling down clocks */ if (!scale_up) { ret = ufshcd_scale_gear(hba, false); if (ret) goto out_unprepare; } ret = ufshcd_scale_clks(hba, scale_up); if (ret) { if (!scale_up) ufshcd_scale_gear(hba, true); goto out_unprepare; } /* scale up the gear after scaling up clocks */ if (scale_up) { ret = ufshcd_scale_gear(hba, true); if (ret) { ufshcd_scale_clks(hba, false); goto out_unprepare; } } out_unprepare: ufshcd_clock_scaling_unprepare(hba, ret, scale_up); return ret; } static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_scaling.suspend_work); unsigned long irq_flags; spin_lock_irqsave(hba->host->host_lock, irq_flags); if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return; } hba->clk_scaling.is_suspended = true; spin_unlock_irqrestore(hba->host->host_lock, irq_flags); __ufshcd_suspend_clkscaling(hba); } static void ufshcd_clk_scaling_resume_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_scaling.resume_work); unsigned long irq_flags; spin_lock_irqsave(hba->host->host_lock, irq_flags); if (!hba->clk_scaling.is_suspended) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return; } hba->clk_scaling.is_suspended = false; spin_unlock_irqrestore(hba->host->host_lock, irq_flags); devfreq_resume_device(hba->devfreq); } static int ufshcd_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { int ret = 0; struct ufs_hba *hba = dev_get_drvdata(dev); ktime_t start; bool scale_up, sched_clk_scaling_suspend_work = false; struct list_head *clk_list = &hba->clk_list_head; struct ufs_clk_info *clki; unsigned long irq_flags; if (!ufshcd_is_clkscaling_supported(hba)) return -EINVAL; clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); /* Override with the closest supported frequency */ *freq = (unsigned long) clk_round_rate(clki->clk, *freq); spin_lock_irqsave(hba->host->host_lock, irq_flags); if (ufshcd_eh_in_progress(hba)) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return 0; } if (!hba->clk_scaling.active_reqs) sched_clk_scaling_suspend_work = true; if (list_empty(clk_list)) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); goto out; } /* Decide based on the rounded-off frequency and update */ scale_up = *freq == clki->max_freq; if (!scale_up) *freq = clki->min_freq; /* Update the frequency */ if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); ret = 0; goto out; /* no state change required */ } spin_unlock_irqrestore(hba->host->host_lock, irq_flags); start = ktime_get(); ret = ufshcd_devfreq_scale(hba, scale_up); trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), (scale_up ? "up" : "down"), ktime_to_us(ktime_sub(ktime_get(), start)), ret); out: if (sched_clk_scaling_suspend_work) queue_work(hba->clk_scaling.workq, &hba->clk_scaling.suspend_work); return ret; } static int ufshcd_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_clk_scaling *scaling = &hba->clk_scaling; unsigned long flags; struct list_head *clk_list = &hba->clk_list_head; struct ufs_clk_info *clki; ktime_t curr_t; if (!ufshcd_is_clkscaling_supported(hba)) return -EINVAL; memset(stat, 0, sizeof(*stat)); spin_lock_irqsave(hba->host->host_lock, flags); curr_t = ktime_get(); if (!scaling->window_start_t) goto start_window; clki = list_first_entry(clk_list, struct ufs_clk_info, list); /* * If current frequency is 0, then the ondemand governor considers * there's no initial frequency set. And it always requests to set * to max. frequency. */ stat->current_frequency = clki->curr_freq; if (scaling->is_busy_started) scaling->tot_busy_t += ktime_us_delta(curr_t, scaling->busy_start_t); stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); stat->busy_time = scaling->tot_busy_t; start_window: scaling->window_start_t = curr_t; scaling->tot_busy_t = 0; if (scaling->active_reqs) { scaling->busy_start_t = curr_t; scaling->is_busy_started = true; } else { scaling->busy_start_t = 0; scaling->is_busy_started = false; } spin_unlock_irqrestore(hba->host->host_lock, flags); return 0; } static int ufshcd_devfreq_init(struct ufs_hba *hba) { struct list_head *clk_list = &hba->clk_list_head; struct ufs_clk_info *clki; struct devfreq *devfreq; int ret; /* Skip devfreq if we don't have any clocks in the list */ if (list_empty(clk_list)) return 0; clki = list_first_entry(clk_list, struct ufs_clk_info, list); dev_pm_opp_add(hba->dev, clki->min_freq, 0); dev_pm_opp_add(hba->dev, clki->max_freq, 0); ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, &hba->vps->ondemand_data); devfreq = devfreq_add_device(hba->dev, &hba->vps->devfreq_profile, DEVFREQ_GOV_SIMPLE_ONDEMAND, &hba->vps->ondemand_data); if (IS_ERR(devfreq)) { ret = PTR_ERR(devfreq); dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); dev_pm_opp_remove(hba->dev, clki->min_freq); dev_pm_opp_remove(hba->dev, clki->max_freq); return ret; } hba->devfreq = devfreq; return 0; } static void ufshcd_devfreq_remove(struct ufs_hba *hba) { struct list_head *clk_list = &hba->clk_list_head; struct ufs_clk_info *clki; if (!hba->devfreq) return; devfreq_remove_device(hba->devfreq); hba->devfreq = NULL; clki = list_first_entry(clk_list, struct ufs_clk_info, list); dev_pm_opp_remove(hba->dev, clki->min_freq); dev_pm_opp_remove(hba->dev, clki->max_freq); } static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) { unsigned long flags; devfreq_suspend_device(hba->devfreq); spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_scaling.window_start_t = 0; spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) { unsigned long flags; bool suspend = false; cancel_work_sync(&hba->clk_scaling.suspend_work); cancel_work_sync(&hba->clk_scaling.resume_work); spin_lock_irqsave(hba->host->host_lock, flags); if (!hba->clk_scaling.is_suspended) { suspend = true; hba->clk_scaling.is_suspended = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (suspend) __ufshcd_suspend_clkscaling(hba); } static void ufshcd_resume_clkscaling(struct ufs_hba *hba) { unsigned long flags; bool resume = false; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_scaling.is_suspended) { resume = true; hba->clk_scaling.is_suspended = false; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (resume) devfreq_resume_device(hba->devfreq); } static ssize_t ufshcd_clkscale_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); } static ssize_t ufshcd_clkscale_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); u32 value; int err = 0; if (kstrtou32(buf, 0, &value)) return -EINVAL; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { err = -EBUSY; goto out; } value = !!value; if (value == hba->clk_scaling.is_enabled) goto out; ufshcd_rpm_get_sync(hba); ufshcd_hold(hba); hba->clk_scaling.is_enabled = value; if (value) { ufshcd_resume_clkscaling(hba); } else { ufshcd_suspend_clkscaling(hba); err = ufshcd_devfreq_scale(hba, true); if (err) dev_err(hba->dev, "%s: failed to scale clocks up %d\n", __func__, err); } ufshcd_release(hba); ufshcd_rpm_put_sync(hba); out: up(&hba->host_sem); return err ? err : count; } static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) { hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; hba->clk_scaling.enable_attr.attr.mode = 0644; if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); } static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) { if (hba->clk_scaling.enable_attr.attr.name) device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); } static void ufshcd_init_clk_scaling(struct ufs_hba *hba) { char wq_name[sizeof("ufs_clkscaling_00")]; if (!ufshcd_is_clkscaling_supported(hba)) return; if (!hba->clk_scaling.min_gear) hba->clk_scaling.min_gear = UFS_HS_G1; INIT_WORK(&hba->clk_scaling.suspend_work, ufshcd_clk_scaling_suspend_work); INIT_WORK(&hba->clk_scaling.resume_work, ufshcd_clk_scaling_resume_work); snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", hba->host->host_no); hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); hba->clk_scaling.is_initialized = true; } static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) { if (!hba->clk_scaling.is_initialized) return; ufshcd_remove_clk_scaling_sysfs(hba); destroy_workqueue(hba->clk_scaling.workq); ufshcd_devfreq_remove(hba); hba->clk_scaling.is_initialized = false; } static void ufshcd_ungate_work(struct work_struct *work) { int ret; unsigned long flags; struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_gating.ungate_work); cancel_delayed_work_sync(&hba->clk_gating.gate_work); spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_gating.state == CLKS_ON) { spin_unlock_irqrestore(hba->host->host_lock, flags); return; } spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_hba_vreg_set_hpm(hba); ufshcd_setup_clocks(hba, true); ufshcd_enable_irq(hba); /* Exit from hibern8 */ if (ufshcd_can_hibern8_during_gating(hba)) { /* Prevent gating in this path */ hba->clk_gating.is_suspended = true; if (ufshcd_is_link_hibern8(hba)) { ret = ufshcd_uic_hibern8_exit(hba); if (ret) dev_err(hba->dev, "%s: hibern8 exit failed %d\n", __func__, ret); else ufshcd_set_link_active(hba); } hba->clk_gating.is_suspended = false; } } /** * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. * Also, exit from hibern8 mode and set the link as active. * @hba: per adapter instance */ void ufshcd_hold(struct ufs_hba *hba) { bool flush_result; unsigned long flags; if (!ufshcd_is_clkgating_allowed(hba) || !hba->clk_gating.is_initialized) return; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.active_reqs++; start: switch (hba->clk_gating.state) { case CLKS_ON: /* * Wait for the ungate work to complete if in progress. * Though the clocks may be in ON state, the link could * still be in hibner8 state if hibern8 is allowed * during clock gating. * Make sure we exit hibern8 state also in addition to * clocks being ON. */ if (ufshcd_can_hibern8_during_gating(hba) && ufshcd_is_link_hibern8(hba)) { spin_unlock_irqrestore(hba->host->host_lock, flags); flush_result = flush_work(&hba->clk_gating.ungate_work); if (hba->clk_gating.is_suspended && !flush_result) return; spin_lock_irqsave(hba->host->host_lock, flags); goto start; } break; case REQ_CLKS_OFF: if (cancel_delayed_work(&hba->clk_gating.gate_work)) { hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); break; } /* * If we are here, it means gating work is either done or * currently running. Hence, fall through to cancel gating * work and to enable clocks. */ fallthrough; case CLKS_OFF: hba->clk_gating.state = REQ_CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); queue_work(hba->clk_gating.clk_gating_workq, &hba->clk_gating.ungate_work); /* * fall through to check if we should wait for this * work to be done or not. */ fallthrough; case REQ_CLKS_ON: spin_unlock_irqrestore(hba->host->host_lock, flags); flush_work(&hba->clk_gating.ungate_work); /* Make sure state is CLKS_ON before returning */ spin_lock_irqsave(hba->host->host_lock, flags); goto start; default: dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", __func__, hba->clk_gating.state); break; } spin_unlock_irqrestore(hba->host->host_lock, flags); } EXPORT_SYMBOL_GPL(ufshcd_hold); static void ufshcd_gate_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_gating.gate_work.work); unsigned long flags; int ret; spin_lock_irqsave(hba->host->host_lock, flags); /* * In case you are here to cancel this work the gating state * would be marked as REQ_CLKS_ON. In this case save time by * skipping the gating work and exit after changing the clock * state to CLKS_ON. */ if (hba->clk_gating.is_suspended || (hba->clk_gating.state != REQ_CLKS_OFF)) { hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); goto rel_lock; } if (hba->clk_gating.active_reqs || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->outstanding_reqs || hba->outstanding_tasks || hba->active_uic_cmd || hba->uic_async_done) goto rel_lock; spin_unlock_irqrestore(hba->host->host_lock, flags); /* put the link into hibern8 mode before turning off clocks */ if (ufshcd_can_hibern8_during_gating(hba)) { ret = ufshcd_uic_hibern8_enter(hba); if (ret) { hba->clk_gating.state = CLKS_ON; dev_err(hba->dev, "%s: hibern8 enter failed %d\n", __func__, ret); trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); goto out; } ufshcd_set_link_hibern8(hba); } ufshcd_disable_irq(hba); ufshcd_setup_clocks(hba, false); /* Put the host controller in low power mode if possible */ ufshcd_hba_vreg_set_lpm(hba); /* * In case you are here to cancel this work the gating state * would be marked as REQ_CLKS_ON. In this case keep the state * as REQ_CLKS_ON which would anyway imply that clocks are off * and a request to turn them on is pending. By doing this way, * we keep the state machine in tact and this would ultimately * prevent from doing cancel work multiple times when there are * new requests arriving before the current cancel work is done. */ spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_gating.state == REQ_CLKS_OFF) { hba->clk_gating.state = CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); } rel_lock: spin_unlock_irqrestore(hba->host->host_lock, flags); out: return; } /* host lock must be held before calling this variant */ static void __ufshcd_release(struct ufs_hba *hba) { if (!ufshcd_is_clkgating_allowed(hba)) return; hba->clk_gating.active_reqs--; if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->outstanding_tasks || !hba->clk_gating.is_initialized || hba->active_uic_cmd || hba->uic_async_done || hba->clk_gating.state == CLKS_OFF) return; hba->clk_gating.state = REQ_CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); queue_delayed_work(hba->clk_gating.clk_gating_workq, &hba->clk_gating.gate_work, msecs_to_jiffies(hba->clk_gating.delay_ms)); } void ufshcd_release(struct ufs_hba *hba) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); __ufshcd_release(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); } EXPORT_SYMBOL_GPL(ufshcd_release); static ssize_t ufshcd_clkgate_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); } void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.delay_ms = value; spin_unlock_irqrestore(hba->host->host_lock, flags); } EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); static ssize_t ufshcd_clkgate_delay_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long value; if (kstrtoul(buf, 0, &value)) return -EINVAL; ufshcd_clkgate_delay_set(dev, value); return count; } static ssize_t ufshcd_clkgate_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); } static ssize_t ufshcd_clkgate_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags; u32 value; if (kstrtou32(buf, 0, &value)) return -EINVAL; value = !!value; spin_lock_irqsave(hba->host->host_lock, flags); if (value == hba->clk_gating.is_enabled) goto out; if (value) __ufshcd_release(hba); else hba->clk_gating.active_reqs++; hba->clk_gating.is_enabled = value; out: spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) { hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; sysfs_attr_init(&hba->clk_gating.delay_attr.attr); hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; hba->clk_gating.delay_attr.attr.mode = 0644; if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; sysfs_attr_init(&hba->clk_gating.enable_attr.attr); hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; hba->clk_gating.enable_attr.attr.mode = 0644; if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); } static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) { if (hba->clk_gating.delay_attr.attr.name) device_remove_file(hba->dev, &hba->clk_gating.delay_attr); if (hba->clk_gating.enable_attr.attr.name) device_remove_file(hba->dev, &hba->clk_gating.enable_attr); } static void ufshcd_init_clk_gating(struct ufs_hba *hba) { char wq_name[sizeof("ufs_clk_gating_00")]; if (!ufshcd_is_clkgating_allowed(hba)) return; hba->clk_gating.state = CLKS_ON; hba->clk_gating.delay_ms = 150; INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", hba->host->host_no); hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, WQ_MEM_RECLAIM | WQ_HIGHPRI); ufshcd_init_clk_gating_sysfs(hba); hba->clk_gating.is_enabled = true; hba->clk_gating.is_initialized = true; } static void ufshcd_exit_clk_gating(struct ufs_hba *hba) { if (!hba->clk_gating.is_initialized) return; ufshcd_remove_clk_gating_sysfs(hba); /* Ungate the clock if necessary. */ ufshcd_hold(hba); hba->clk_gating.is_initialized = false; ufshcd_release(hba); destroy_workqueue(hba->clk_gating.clk_gating_workq); } static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) { bool queue_resume_work = false; ktime_t curr_t = ktime_get(); unsigned long flags; if (!ufshcd_is_clkscaling_supported(hba)) return; spin_lock_irqsave(hba->host->host_lock, flags); if (!hba->clk_scaling.active_reqs++) queue_resume_work = true; if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { spin_unlock_irqrestore(hba->host->host_lock, flags); return; } if (queue_resume_work) queue_work(hba->clk_scaling.workq, &hba->clk_scaling.resume_work); if (!hba->clk_scaling.window_start_t) { hba->clk_scaling.window_start_t = curr_t; hba->clk_scaling.tot_busy_t = 0; hba->clk_scaling.is_busy_started = false; } if (!hba->clk_scaling.is_busy_started) { hba->clk_scaling.busy_start_t = curr_t; hba->clk_scaling.is_busy_started = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) { struct ufs_clk_scaling *scaling = &hba->clk_scaling; unsigned long flags; if (!ufshcd_is_clkscaling_supported(hba)) return; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_scaling.active_reqs--; if (!scaling->active_reqs && scaling->is_busy_started) { scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), scaling->busy_start_t)); scaling->busy_start_t = 0; scaling->is_busy_started = false; } spin_unlock_irqrestore(hba->host->host_lock, flags); } static inline int ufshcd_monitor_opcode2dir(u8 opcode) { if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) return READ; else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) return WRITE; else return -EINVAL; } static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { const struct ufs_hba_monitor *m = &hba->monitor; return (m->enabled && lrbp && lrbp->cmd && (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); } static void ufshcd_start_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) { int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) hba->monitor.busy_start_ts[dir] = ktime_get(); spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) { int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { const struct request *req = scsi_cmd_to_rq(lrbp->cmd); struct ufs_hba_monitor *m = &hba->monitor; ktime_t now, inc, lat; now = lrbp->compl_time_stamp; inc = ktime_sub(now, m->busy_start_ts[dir]); m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); m->nr_sec_rw[dir] += blk_rq_sectors(req); /* Update latencies */ m->nr_req[dir]++; lat = ktime_sub(now, lrbp->issue_time_stamp); m->lat_sum[dir] += lat; if (m->lat_max[dir] < lat || !m->lat_max[dir]) m->lat_max[dir] = lat; if (m->lat_min[dir] > lat || !m->lat_min[dir]) m->lat_min[dir] = lat; m->nr_queued[dir]--; /* Push forward the busy start of monitor */ m->busy_start_ts[dir] = now; } spin_unlock_irqrestore(hba->host->host_lock, flags); } /** * ufshcd_send_command - Send SCSI or device management commands * @hba: per adapter instance * @task_tag: Task tag of the command * @hwq: pointer to hardware queue instance */ static inline void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, struct ufs_hw_queue *hwq) { struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; unsigned long flags; lrbp->issue_time_stamp = ktime_get(); lrbp->issue_time_stamp_local_clock = local_clock(); lrbp->compl_time_stamp = ktime_set(0, 0); lrbp->compl_time_stamp_local_clock = 0; ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); ufshcd_clk_scaling_start_busy(hba); if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) ufshcd_start_monitor(hba, lrbp); if (is_mcq_enabled(hba)) { int utrd_size = sizeof(struct utp_transfer_req_desc); struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; struct utp_transfer_req_desc *dest; spin_lock(&hwq->sq_lock); dest = hwq->sqe_base_addr + hwq->sq_tail_slot; memcpy(dest, src, utrd_size); ufshcd_inc_sq_tail(hwq); spin_unlock(&hwq->sq_lock); } else { spin_lock_irqsave(&hba->outstanding_lock, flags); if (hba->vops && hba->vops->setup_xfer_req) hba->vops->setup_xfer_req(hba, lrbp->task_tag, !!lrbp->cmd); __set_bit(lrbp->task_tag, &hba->outstanding_reqs); ufshcd_writel(hba, 1 << lrbp->task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); spin_unlock_irqrestore(&hba->outstanding_lock, flags); } } /** * ufshcd_copy_sense_data - Copy sense data in case of check condition * @lrbp: pointer to local reference block */ static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) { u8 *const sense_buffer = lrbp->cmd->sense_buffer; u16 resp_len; int len; resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); if (sense_buffer && resp_len) { int len_to_copy; len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); len_to_copy = min_t(int, UFS_SENSE_SIZE, len); memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, len_to_copy); } } /** * ufshcd_copy_query_response() - Copy the Query Response and the data * descriptor * @hba: per adapter instance * @lrbp: pointer to local reference block * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct ufs_query_res *query_res = &hba->dev_cmd.query.response; memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); /* Get the descriptor */ if (hba->dev_cmd.query.descriptor && lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + GENERAL_UPIU_REQUEST_SIZE; u16 resp_len; u16 buf_len; /* data segment length */ resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header .data_segment_length); buf_len = be16_to_cpu( hba->dev_cmd.query.request.upiu_req.length); if (likely(buf_len >= resp_len)) { memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); } else { dev_warn(hba->dev, "%s: rsp size %d is bigger than buffer size %d", __func__, resp_len, buf_len); return -EINVAL; } } return 0; } /** * ufshcd_hba_capabilities - Read controller capabilities * @hba: per adapter instance * * Return: 0 on success, negative on error. */ static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) { int err; hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; /* nutrs and nutmrs are 0 based values */ hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; hba->nutmrs = ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; hba->reserved_slot = hba->nutrs - 1; /* Read crypto capabilities */ err = ufshcd_hba_init_crypto_capabilities(hba); if (err) { dev_err(hba->dev, "crypto setup failed\n"); return err; } hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); if (!hba->mcq_sup) return 0; hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, hba->mcq_capabilities); return 0; } /** * ufshcd_ready_for_uic_cmd - Check if controller is ready * to accept UIC commands * @hba: per adapter instance * * Return: true on success, else false. */ static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) { u32 val; int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 500, UIC_CMD_TIMEOUT * 1000, false, hba, REG_CONTROLLER_STATUS); return ret == 0 ? true : false; } /** * ufshcd_get_upmcrs - Get the power mode change request status * @hba: Pointer to adapter instance * * This function gets the UPMCRS field of HCS register * * Return: value of UPMCRS field. */ static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; } /** * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer * @hba: per adapter instance * @uic_cmd: UIC command */ static inline void ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { lockdep_assert_held(&hba->uic_cmd_mutex); WARN_ON(hba->active_uic_cmd); hba->active_uic_cmd = uic_cmd; /* Write Args */ ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); /* Write UIC Cmd */ ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, REG_UIC_COMMAND); } /** * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command * @hba: per adapter instance * @uic_cmd: UIC command * * Return: 0 only if success. */ static int ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { int ret; unsigned long flags; lockdep_assert_held(&hba->uic_cmd_mutex); if (wait_for_completion_timeout(&uic_cmd->done, msecs_to_jiffies(UIC_CMD_TIMEOUT))) { ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; } else { ret = -ETIMEDOUT; dev_err(hba->dev, "uic cmd 0x%x with arg3 0x%x completion timeout\n", uic_cmd->command, uic_cmd->argument3); if (!uic_cmd->cmd_active) { dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", __func__); ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; } } spin_lock_irqsave(hba->host->host_lock, flags); hba->active_uic_cmd = NULL; spin_unlock_irqrestore(hba->host->host_lock, flags); return ret; } /** * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result * @hba: per adapter instance * @uic_cmd: UIC command * @completion: initialize the completion only if this is set to true * * Return: 0 only if success. */ static int __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, bool completion) { lockdep_assert_held(&hba->uic_cmd_mutex); if (!ufshcd_ready_for_uic_cmd(hba)) { dev_err(hba->dev, "Controller not ready to accept UIC commands\n"); return -EIO; } if (completion) init_completion(&uic_cmd->done); uic_cmd->cmd_active = 1; ufshcd_dispatch_uic_cmd(hba, uic_cmd); return 0; } /** * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result * @hba: per adapter instance * @uic_cmd: UIC command * * Return: 0 only if success. */ int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { int ret; if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) return 0; ufshcd_hold(hba); mutex_lock(&hba->uic_cmd_mutex); ufshcd_add_delay_before_dme_cmd(hba); ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); if (!ret) ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); mutex_unlock(&hba->uic_cmd_mutex); ufshcd_release(hba); return ret; } /** * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) * @hba: per-adapter instance * @lrbp: pointer to local reference block * @sg_entries: The number of sg lists actually used * @sg_list: Pointer to SG list */ static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, struct scatterlist *sg_list) { struct ufshcd_sg_entry *prd; struct scatterlist *sg; int i; if (sg_entries) { if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); else lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); prd = lrbp->ucd_prdt_ptr; for_each_sg(sg_list, sg, sg_entries, i) { const unsigned int len = sg_dma_len(sg); /* * From the UFSHCI spec: "Data Byte Count (DBC): A '0' * based value that indicates the length, in bytes, of * the data block. A maximum of length of 256KB may * exist for any entry. Bits 1:0 of this field shall be * 11b to indicate Dword granularity. A value of '3' * indicates 4 bytes, '7' indicates 8 bytes, etc." */ WARN_ONCE(len > SZ_256K, "len = %#x\n", len); prd->size = cpu_to_le32(len - 1); prd->addr = cpu_to_le64(sg->dma_address); prd->reserved = 0; prd = (void *)prd + ufshcd_sg_entry_size(hba); } } else { lrbp->utr_descriptor_ptr->prd_table_length = 0; } } /** * ufshcd_map_sg - Map scatter-gather list to prdt * @hba: per adapter instance * @lrbp: pointer to local reference block * * Return: 0 in case of success, non-zero value in case of failure. */ static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct scsi_cmnd *cmd = lrbp->cmd; int sg_segments = scsi_dma_map(cmd); if (sg_segments < 0) return sg_segments; ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); return 0; } /** * ufshcd_enable_intr - enable interrupts * @hba: per adapter instance * @intrs: interrupt bits */ static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) { u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); if (hba->ufs_version == ufshci_version(1, 0)) { u32 rw; rw = set & INTERRUPT_MASK_RW_VER_10; set = rw | ((set ^ intrs) & intrs); } else { set |= intrs; } ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); } /** * ufshcd_disable_intr - disable interrupts * @hba: per adapter instance * @intrs: interrupt bits */ static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) { u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); if (hba->ufs_version == ufshci_version(1, 0)) { u32 rw; rw = (set & INTERRUPT_MASK_RW_VER_10) & ~(intrs & INTERRUPT_MASK_RW_VER_10); set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); } else { set &= ~intrs; } ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); } /** * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request * descriptor according to request * @lrbp: pointer to local reference block * @upiu_flags: flags required in the header * @cmd_dir: requests data direction * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) */ static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, enum dma_data_direction cmd_dir, int ehs_length) { struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; struct request_desc_header *h = &req_desc->header; enum utp_data_direction data_direction; *h = (typeof(*h)){ }; if (cmd_dir == DMA_FROM_DEVICE) { data_direction = UTP_DEVICE_TO_HOST; *upiu_flags = UPIU_CMD_FLAGS_READ; } else if (cmd_dir == DMA_TO_DEVICE) { data_direction = UTP_HOST_TO_DEVICE; *upiu_flags = UPIU_CMD_FLAGS_WRITE; } else { data_direction = UTP_NO_DATA_TRANSFER; *upiu_flags = UPIU_CMD_FLAGS_NONE; } h->command_type = lrbp->command_type; h->data_direction = data_direction; h->ehs_length = ehs_length; if (lrbp->intr_cmd) h->interrupt = 1; /* Prepare crypto related dwords */ ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); /* * assigning invalid value for command status. Controller * updates OCS on command completion, with the command * status */ h->ocs = OCS_INVALID_COMMAND_STATUS; req_desc->prd_table_length = 0; } /** * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, * for scsi commands * @lrbp: local reference block pointer * @upiu_flags: flags */ static void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) { struct scsi_cmnd *cmd = lrbp->cmd; struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; unsigned short cdb_len; ucd_req_ptr->header = (struct utp_upiu_header){ .transaction_code = UPIU_TRANSACTION_COMMAND, .flags = upiu_flags, .lun = lrbp->lun, .task_tag = lrbp->task_tag, .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, }; ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } /** * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request * @hba: UFS hba * @lrbp: local reference block pointer * @upiu_flags: flags */ static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u8 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; struct ufs_query *query = &hba->dev_cmd.query; u16 len = be16_to_cpu(query->request.upiu_req.length); /* Query request header */ ucd_req_ptr->header = (struct utp_upiu_header){ .transaction_code = UPIU_TRANSACTION_QUERY_REQ, .flags = upiu_flags, .lun = lrbp->lun, .task_tag = lrbp->task_tag, .query_function = query->request.query_func, /* Data segment length only need for WRITE_DESC */ .data_segment_length = query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC ? cpu_to_be16(len) : 0, }; /* Copy the Query Request buffer as is */ memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, QUERY_OSF_SIZE); /* Copy the Descriptor */ if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) memcpy(ucd_req_ptr + 1, query->descriptor, len); memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); ucd_req_ptr->header = (struct utp_upiu_header){ .transaction_code = UPIU_TRANSACTION_NOP_OUT, .task_tag = lrbp->task_tag, }; memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } /** * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) * for Device Management Purposes * @hba: per adapter instance * @lrbp: pointer to local reference block * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { u8 upiu_flags; int ret = 0; if (hba->ufs_version <= ufshci_version(1, 1)) lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; else lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) ufshcd_prepare_utp_nop_upiu(lrbp); else ret = -EINVAL; return ret; } /** * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) * for SCSI Purposes * @hba: per adapter instance * @lrbp: pointer to local reference block * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { u8 upiu_flags; int ret = 0; if (hba->ufs_version <= ufshci_version(1, 1)) lrbp->command_type = UTP_CMD_TYPE_SCSI; else lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; if (likely(lrbp->cmd)) { ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); } else { ret = -EINVAL; } return ret; } /** * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID * @upiu_wlun_id: UPIU W-LUN id * * Return: SCSI W-LUN id. */ static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) { return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; } static inline bool is_device_wlun(struct scsi_device *sdev) { return sdev->lun == ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); } /* * Associate the UFS controller queue with the default and poll HCTX types. * Initialize the mq_map[] arrays. */ static void ufshcd_map_queues(struct Scsi_Host *shost) { struct ufs_hba *hba = shost_priv(shost); int i, queue_offset = 0; if (!is_mcq_supported(hba)) { hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; hba->nr_queues[HCTX_TYPE_READ] = 0; hba->nr_queues[HCTX_TYPE_POLL] = 1; hba->nr_hw_queues = 1; } for (i = 0; i < shost->nr_maps; i++) { struct blk_mq_queue_map *map = &shost->tag_set.map[i]; map->nr_queues = hba->nr_queues[i]; if (!map->nr_queues) continue; map->queue_offset = queue_offset; if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) map->queue_offset = 0; blk_mq_map_queues(map); queue_offset += map->nr_queues; } } static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) { struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + i * ufshcd_get_ucd_size(hba); struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + i * ufshcd_get_ucd_size(hba); u16 response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu); u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); lrb->utr_descriptor_ptr = utrdlp + i; lrb->utrd_dma_addr = hba->utrdl_dma_addr + i * sizeof(struct utp_transfer_req_desc); lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; lrb->ucd_req_dma_addr = cmd_desc_element_addr; lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; } /** * ufshcd_queuecommand - main entry point for SCSI requests * @host: SCSI host pointer * @cmd: command from SCSI Midlayer * * Return: 0 for success, non-zero in case of failure. */ static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) { struct ufs_hba *hba = shost_priv(host); int tag = scsi_cmd_to_rq(cmd)->tag; struct ufshcd_lrb *lrbp; int err = 0; struct ufs_hw_queue *hwq = NULL; WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); switch (hba->ufshcd_state) { case UFSHCD_STATE_OPERATIONAL: break; case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: /* * SCSI error handler can call ->queuecommand() while UFS error * handler is in progress. Error interrupts could change the * state from UFSHCD_STATE_RESET to * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests * being issued in that case. */ if (ufshcd_eh_in_progress(hba)) { err = SCSI_MLQUEUE_HOST_BUSY; goto out; } break; case UFSHCD_STATE_EH_SCHEDULED_FATAL: /* * pm_runtime_get_sync() is used at error handling preparation * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's * PM ops, it can never be finished if we let SCSI layer keep * retrying it, which gets err handler stuck forever. Neither * can we let the scsi cmd pass through, because UFS is in bad * state, the scsi cmd may eventually time out, which will get * err handler blocked for too long. So, just fail the scsi cmd * sent from PM ops, err handler can recover PM error anyways. */ if (hba->pm_op_in_progress) { hba->force_reset = true; set_host_byte(cmd, DID_BAD_TARGET); scsi_done(cmd); goto out; } fallthrough; case UFSHCD_STATE_RESET: err = SCSI_MLQUEUE_HOST_BUSY; goto out; case UFSHCD_STATE_ERROR: set_host_byte(cmd, DID_ERROR); scsi_done(cmd); goto out; } hba->req_abort_count = 0; ufshcd_hold(hba); lrbp = &hba->lrb[tag]; lrbp->cmd = cmd; lrbp->task_tag = tag; lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); lrbp->req_abort_skip = false; ufshcd_comp_scsi_upiu(hba, lrbp); err = ufshcd_map_sg(hba, lrbp); if (err) { ufshcd_release(hba); goto out; } if (is_mcq_enabled(hba)) hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); ufshcd_send_command(hba, tag, hwq); out: if (ufs_trigger_eh()) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_schedule_eh_work(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); } return err; } static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) { lrbp->cmd = NULL; lrbp->task_tag = tag; lrbp->lun = 0; /* device management cmd is not specific to any LUN */ lrbp->intr_cmd = true; /* No interrupt aggregation */ ufshcd_prepare_lrbp_crypto(NULL, lrbp); hba->dev_cmd.type = cmd_type; return ufshcd_compose_devman_upiu(hba, lrbp); } /* * Check with the block layer if the command is inflight * @cmd: command to check. * * Return: true if command is inflight; false if not. */ bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) { struct request *rq; if (!cmd) return false; rq = scsi_cmd_to_rq(cmd); if (!blk_mq_request_started(rq)) return false; return true; } /* * Clear the pending command in the controller and wait until * the controller confirms that the command has been cleared. * @hba: per adapter instance * @task_tag: The tag number of the command to be cleared. */ static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) { u32 mask; unsigned long flags; int err; if (is_mcq_enabled(hba)) { /* * MCQ mode. Clean up the MCQ resources similar to * what the ufshcd_utrl_clear() does for SDB mode. */ err = ufshcd_mcq_sq_cleanup(hba, task_tag); if (err) { dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", __func__, task_tag, err); return err; } return 0; } mask = 1U << task_tag; /* clear outstanding transaction before retry */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_utrl_clear(hba, mask); spin_unlock_irqrestore(hba->host->host_lock, flags); /* * wait for h/w to clear corresponding bit in door-bell. * max. wait is 1 sec. */ return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, mask, ~mask, 1000, 1000); } /** * ufshcd_dev_cmd_completion() - handles device management command responses * @hba: per adapter instance * @lrbp: pointer to local reference block * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { enum upiu_response_transaction resp; int err = 0; hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); switch (resp) { case UPIU_TRANSACTION_NOP_IN: if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { err = -EINVAL; dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); } break; case UPIU_TRANSACTION_QUERY_RSP: { u8 response = lrbp->ucd_rsp_ptr->header.response; if (response == 0) err = ufshcd_copy_query_response(hba, lrbp); break; } case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ err = -EPERM; dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", __func__); break; case UPIU_TRANSACTION_RESPONSE: if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { err = -EINVAL; dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); } break; default: err = -EINVAL; dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", __func__, resp); break; } return err; } static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int max_timeout) { unsigned long time_left = msecs_to_jiffies(max_timeout); unsigned long flags; bool pending; int err; retry: time_left = wait_for_completion_timeout(hba->dev_cmd.complete, time_left); if (likely(time_left)) { /* * The completion handler called complete() and the caller of * this function still owns the @lrbp tag so the code below does * not trigger any race conditions. */ hba->dev_cmd.complete = NULL; err = ufshcd_get_tr_ocs(lrbp, NULL); if (!err) err = ufshcd_dev_cmd_completion(hba, lrbp); } else { err = -ETIMEDOUT; dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", __func__, lrbp->task_tag); /* MCQ mode */ if (is_mcq_enabled(hba)) { /* successfully cleared the command, retry if needed */ if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) err = -EAGAIN; hba->dev_cmd.complete = NULL; return err; } /* SDB mode */ if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { /* successfully cleared the command, retry if needed */ err = -EAGAIN; /* * Since clearing the command succeeded we also need to * clear the task tag bit from the outstanding_reqs * variable. */ spin_lock_irqsave(&hba->outstanding_lock, flags); pending = test_bit(lrbp->task_tag, &hba->outstanding_reqs); if (pending) { hba->dev_cmd.complete = NULL; __clear_bit(lrbp->task_tag, &hba->outstanding_reqs); } spin_unlock_irqrestore(&hba->outstanding_lock, flags); if (!pending) { /* * The completion handler ran while we tried to * clear the command. */ time_left = 1; goto retry; } } else { dev_err(hba->dev, "%s: failed to clear tag %d\n", __func__, lrbp->task_tag); spin_lock_irqsave(&hba->outstanding_lock, flags); pending = test_bit(lrbp->task_tag, &hba->outstanding_reqs); if (pending) hba->dev_cmd.complete = NULL; spin_unlock_irqrestore(&hba->outstanding_lock, flags); if (!pending) { /* * The completion handler ran while we tried to * clear the command. */ time_left = 1; goto retry; } } } return err; } /** * ufshcd_exec_dev_cmd - API for sending device management requests * @hba: UFS hba * @cmd_type: specifies the type (NOP, Query...) * @timeout: timeout in milliseconds * * Return: 0 upon success; < 0 upon failure. * * NOTE: Since there is only one available tag for device management commands, * it is expected you hold the hba->dev_cmd.lock mutex. */ static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, enum dev_cmd_type cmd_type, int timeout) { DECLARE_COMPLETION_ONSTACK(wait); const u32 tag = hba->reserved_slot; struct ufshcd_lrb *lrbp; int err; /* Protects use of hba->reserved_slot. */ lockdep_assert_held(&hba->dev_cmd.lock); down_read(&hba->clk_scaling_lock); lrbp = &hba->lrb[tag]; lrbp->cmd = NULL; err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); if (unlikely(err)) goto out; hba->dev_cmd.complete = &wait; ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); ufshcd_send_command(hba, tag, hba->dev_cmd_queue); err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); out: up_read(&hba->clk_scaling_lock); return err; } /** * ufshcd_init_query() - init the query response and request parameters * @hba: per-adapter instance * @request: address of the request pointer to be initialized * @response: address of the response pointer to be initialized * @opcode: operation to perform * @idn: flag idn to access * @index: LU number to access * @selector: query/flag/descriptor further identification */ static inline void ufshcd_init_query(struct ufs_hba *hba, struct ufs_query_req **request, struct ufs_query_res **response, enum query_opcode opcode, u8 idn, u8 index, u8 selector) { *request = &hba->dev_cmd.query.request; *response = &hba->dev_cmd.query.response; memset(*request, 0, sizeof(struct ufs_query_req)); memset(*response, 0, sizeof(struct ufs_query_res)); (*request)->upiu_req.opcode = opcode; (*request)->upiu_req.idn = idn; (*request)->upiu_req.index = index; (*request)->upiu_req.selector = selector; } static int ufshcd_query_flag_retry(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) { int ret; int retries; for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); if (ret) dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", __func__, ret, retries); else break; } if (ret) dev_err(hba->dev, "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", __func__, opcode, idn, ret, retries); return ret; } /** * ufshcd_query_flag() - API function for sending flag query requests * @hba: per-adapter instance * @opcode: flag query to perform * @idn: flag idn to access * @index: flag index to access * @flag_res: the flag value after the query request completes * * Return: 0 for success, non-zero in case of failure. */ int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err, selector = 0; int timeout = QUERY_REQ_TIMEOUT; BUG_ON(!hba); ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); switch (opcode) { case UPIU_QUERY_OPCODE_SET_FLAG: case UPIU_QUERY_OPCODE_CLEAR_FLAG: case UPIU_QUERY_OPCODE_TOGGLE_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; if (!flag_res) { /* No dummy reads */ dev_err(hba->dev, "%s: Invalid argument for read request\n", __func__); err = -EINVAL; goto out_unlock; } break; default: dev_err(hba->dev, "%s: Expected query flag opcode but got = %d\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); if (err) { dev_err(hba->dev, "%s: Sending flag query for idn %d failed, err = %d\n", __func__, idn, err); goto out_unlock; } if (flag_res) *flag_res = (be32_to_cpu(response->upiu_res.value) & MASK_QUERY_UPIU_FLAG_LOC) & 0x1; out_unlock: mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); return err; } /** * ufshcd_query_attr - API function for sending attribute requests * @hba: per-adapter instance * @opcode: attribute opcode * @idn: attribute idn to access * @index: index field * @selector: selector field * @attr_val: the attribute value after the query request completes * * Return: 0 for success, non-zero in case of failure. */ int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err; BUG_ON(!hba); if (!attr_val) { dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", __func__, opcode); return -EINVAL; } ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); switch (opcode) { case UPIU_QUERY_OPCODE_WRITE_ATTR: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; request->upiu_req.value = cpu_to_be32(*attr_val); break; case UPIU_QUERY_OPCODE_READ_ATTR: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; break; default: dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) { dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", __func__, opcode, idn, index, err); goto out_unlock; } *attr_val = be32_to_cpu(response->upiu_res.value); out_unlock: mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); return err; } /** * ufshcd_query_attr_retry() - API function for sending query * attribute with retries * @hba: per-adapter instance * @opcode: attribute opcode * @idn: attribute idn to access * @index: index field * @selector: selector field * @attr_val: the attribute value after the query request * completes * * Return: 0 for success, non-zero in case of failure. */ int ufshcd_query_attr_retry(struct ufs_hba *hba, enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) { int ret = 0; u32 retries; for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { ret = ufshcd_query_attr(hba, opcode, idn, index, selector, attr_val); if (ret) dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", __func__, ret, retries); else break; } if (ret) dev_err(hba->dev, "%s: query attribute, idn %d, failed with error %d after %d retries\n", __func__, idn, ret, QUERY_REQ_RETRIES); return ret; } static int __ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err; BUG_ON(!hba); if (!desc_buf) { dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", __func__, opcode); return -EINVAL; } if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", __func__, *buf_len); return -EINVAL; } ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); hba->dev_cmd.query.descriptor = desc_buf; request->upiu_req.length = cpu_to_be16(*buf_len); switch (opcode) { case UPIU_QUERY_OPCODE_WRITE_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; break; default: dev_err(hba->dev, "%s: Expected query descriptor opcode but got = 0x%.2x\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) { dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", __func__, opcode, idn, index, err); goto out_unlock; } *buf_len = be16_to_cpu(response->upiu_res.length); out_unlock: hba->dev_cmd.query.descriptor = NULL; mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); return err; } /** * ufshcd_query_descriptor_retry - API function for sending descriptor requests * @hba: per-adapter instance * @opcode: attribute opcode * @idn: attribute idn to access * @index: index field * @selector: selector field * @desc_buf: the buffer that contains the descriptor * @buf_len: length parameter passed to the device * * The buf_len parameter will contain, on return, the length parameter * received on the response. * * Return: 0 for success, non-zero in case of failure. */ int ufshcd_query_descriptor_retry(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { int err; int retries; for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { err = __ufshcd_query_descriptor(hba, opcode, idn, index, selector, desc_buf, buf_len); if (!err || err == -EINVAL) break; } return err; } /** * ufshcd_read_desc_param - read the specified descriptor parameter * @hba: Pointer to adapter instance * @desc_id: descriptor idn value * @desc_index: descriptor index * @param_offset: offset of the parameter to read * @param_read_buf: pointer to buffer where parameter would be read * @param_size: sizeof(param_read_buf) * * Return: 0 in case of success, non-zero otherwise. */ int ufshcd_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, u8 param_offset, u8 *param_read_buf, u8 param_size) { int ret; u8 *desc_buf; int buff_len = QUERY_DESC_MAX_SIZE; bool is_kmalloc = true; /* Safety check */ if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) return -EINVAL; /* Check whether we need temp memory */ if (param_offset != 0 || param_size < buff_len) { desc_buf = kzalloc(buff_len, GFP_KERNEL); if (!desc_buf) return -ENOMEM; } else { desc_buf = param_read_buf; is_kmalloc = false; } /* Request for full descriptor */ ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, desc_id, desc_index, 0, desc_buf, &buff_len); if (ret) { dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", __func__, desc_id, desc_index, param_offset, ret); goto out; } /* Update descriptor length */ buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; if (param_offset >= buff_len) { dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", __func__, param_offset, desc_id, buff_len); ret = -EINVAL; goto out; } /* Sanity check */ if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); ret = -EINVAL; goto out; } if (is_kmalloc) { /* Make sure we don't copy more data than available */ if (param_offset >= buff_len) ret = -EINVAL; else memcpy(param_read_buf, &desc_buf[param_offset], min_t(u32, param_size, buff_len - param_offset)); } out: if (is_kmalloc) kfree(desc_buf); return ret; } /** * struct uc_string_id - unicode string * * @len: size of this descriptor inclusive * @type: descriptor type * @uc: unicode string character */ struct uc_string_id { u8 len; u8 type; wchar_t uc[]; } __packed; /* replace non-printable or non-ASCII characters with spaces */ static inline char ufshcd_remove_non_printable(u8 ch) { return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; } /** * ufshcd_read_string_desc - read string descriptor * @hba: pointer to adapter instance * @desc_index: descriptor index * @buf: pointer to buffer where descriptor would be read, * the caller should free the memory. * @ascii: if true convert from unicode to ascii characters * null terminated string. * * Return: * * string size on success. * * -ENOMEM: on allocation failure * * -EINVAL: on a wrong parameter */ int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, u8 **buf, bool ascii) { struct uc_string_id *uc_str; u8 *str; int ret; if (!buf) return -EINVAL; uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); if (!uc_str) return -ENOMEM; ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, (u8 *)uc_str, QUERY_DESC_MAX_SIZE); if (ret < 0) { dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", QUERY_REQ_RETRIES, ret); str = NULL; goto out; } if (uc_str->len <= QUERY_DESC_HDR_SIZE) { dev_dbg(hba->dev, "String Desc is of zero length\n"); str = NULL; ret = 0; goto out; } if (ascii) { ssize_t ascii_len; int i; /* remove header and divide by 2 to move from UTF16 to UTF8 */ ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; str = kzalloc(ascii_len, GFP_KERNEL); if (!str) { ret = -ENOMEM; goto out; } /* * the descriptor contains string in UTF16 format * we need to convert to utf-8 so it can be displayed */ ret = utf16s_to_utf8s(uc_str->uc, uc_str->len - QUERY_DESC_HDR_SIZE, UTF16_BIG_ENDIAN, str, ascii_len - 1); /* replace non-printable or non-ASCII characters with spaces */ for (i = 0; i < ret; i++) str[i] = ufshcd_remove_non_printable(str[i]); str[ret++] = '\0'; } else { str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); if (!str) { ret = -ENOMEM; goto out; } ret = uc_str->len; } out: *buf = str; kfree(uc_str); return ret; } /** * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter * @hba: Pointer to adapter instance * @lun: lun id * @param_offset: offset of the parameter to read * @param_read_buf: pointer to buffer where parameter would be read * @param_size: sizeof(param_read_buf) * * Return: 0 in case of success, non-zero otherwise. */ static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, int lun, enum unit_desc_param param_offset, u8 *param_read_buf, u32 param_size) { /* * Unit descriptors are only available for general purpose LUs (LUN id * from 0 to 7) and RPMB Well known LU. */ if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) return -EOPNOTSUPP; return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, param_offset, param_read_buf, param_size); } static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) { int err = 0; u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; if (hba->dev_info.wspecversion >= 0x300) { err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, &gating_wait); if (err) dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", err, gating_wait); if (gating_wait == 0) { gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", gating_wait); } hba->dev_info.clk_gating_wait_us = gating_wait; } return err; } /** * ufshcd_memory_alloc - allocate memory for host memory space data structures * @hba: per adapter instance * * 1. Allocate DMA memory for Command Descriptor array * Each command descriptor consist of Command UPIU, Response UPIU and PRDT * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). * 3. Allocate DMA memory for UTP Task Management Request Descriptor List * (UTMRDL) * 4. Allocate memory for local reference block(lrb). * * Return: 0 for success, non-zero in case of failure. */ static int ufshcd_memory_alloc(struct ufs_hba *hba) { size_t utmrdl_size, utrdl_size, ucdl_size; /* Allocate memory for UTP command descriptors */ ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, ucdl_size, &hba->ucdl_dma_addr, GFP_KERNEL); /* * UFSHCI requires UTP command descriptor to be 128 byte aligned. */ if (!hba->ucdl_base_addr || WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { dev_err(hba->dev, "Command Descriptor Memory allocation failed\n"); goto out; } /* * Allocate memory for UTP Transfer descriptors * UFSHCI requires 1KB alignment of UTRD */ utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size, &hba->utrdl_dma_addr, GFP_KERNEL); if (!hba->utrdl_base_addr || WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { dev_err(hba->dev, "Transfer Descriptor Memory allocation failed\n"); goto out; } /* * Skip utmrdl allocation; it may have been * allocated during first pass and not released during * MCQ memory allocation. * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() */ if (hba->utmrdl_base_addr) goto skip_utmrdl; /* * Allocate memory for UTP Task Management descriptors * UFSHCI requires 1KB alignment of UTMRD */ utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, utmrdl_size, &hba->utmrdl_dma_addr, GFP_KERNEL); if (!hba->utmrdl_base_addr || WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { dev_err(hba->dev, "Task Management Descriptor Memory allocation failed\n"); goto out; } skip_utmrdl: /* Allocate memory for local reference block */ hba->lrb = devm_kcalloc(hba->dev, hba->nutrs, sizeof(struct ufshcd_lrb), GFP_KERNEL); if (!hba->lrb) { dev_err(hba->dev, "LRB Memory allocation failed\n"); goto out; } return 0; out: return -ENOMEM; } /** * ufshcd_host_memory_configure - configure local reference block with * memory offsets * @hba: per adapter instance * * Configure Host memory space * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA * address. * 2. Update each UTRD with Response UPIU offset, Response UPIU length * and PRDT offset. * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT * into local reference block. */ static void ufshcd_host_memory_configure(struct ufs_hba *hba) { struct utp_transfer_req_desc *utrdlp; dma_addr_t cmd_desc_dma_addr; dma_addr_t cmd_desc_element_addr; u16 response_offset; u16 prdt_offset; int cmd_desc_size; int i; utrdlp = hba->utrdl_base_addr; response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu); prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); cmd_desc_size = ufshcd_get_ucd_size(hba); cmd_desc_dma_addr = hba->ucdl_dma_addr; for (i = 0; i < hba->nutrs; i++) { /* Configure UTRD with command descriptor base address */ cmd_desc_element_addr = (cmd_desc_dma_addr + (cmd_desc_size * i)); utrdlp[i].command_desc_base_addr = cpu_to_le64(cmd_desc_element_addr); /* Response upiu and prdt offset should be in double words */ if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { utrdlp[i].response_upiu_offset = cpu_to_le16(response_offset); utrdlp[i].prd_table_offset = cpu_to_le16(prdt_offset); utrdlp[i].response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE); } else { utrdlp[i].response_upiu_offset = cpu_to_le16(response_offset >> 2); utrdlp[i].prd_table_offset = cpu_to_le16(prdt_offset >> 2); utrdlp[i].response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); } ufshcd_init_lrb(hba, &hba->lrb[i], i); } } /** * ufshcd_dme_link_startup - Notify Unipro to perform link startup * @hba: per adapter instance * * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, * in order to initialize the Unipro link startup procedure. * Once the Unipro links are up, the device connected to the controller * is detected. * * Return: 0 on success, non-zero value on failure. */ static int ufshcd_dme_link_startup(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "dme-link-startup: error code %d\n", ret); return ret; } /** * ufshcd_dme_reset - UIC command for DME_RESET * @hba: per adapter instance * * DME_RESET command is issued in order to reset UniPro stack. * This function now deals with cold reset. * * Return: 0 on success, non-zero value on failure. */ static int ufshcd_dme_reset(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_RESET; ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_err(hba->dev, "dme-reset: error code %d\n", ret); return ret; } int ufshcd_dme_configure_adapt(struct ufs_hba *hba, int agreed_gear, int adapt_val) { int ret; if (agreed_gear < UFS_HS_G4) adapt_val = PA_NO_ADAPT; ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXHSADAPTTYPE), adapt_val); return ret; } EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); /** * ufshcd_dme_enable - UIC command for DME_ENABLE * @hba: per adapter instance * * DME_ENABLE command is issued in order to enable UniPro stack. * * Return: 0 on success, non-zero value on failure. */ static int ufshcd_dme_enable(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_ENABLE; ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_err(hba->dev, "dme-enable: error code %d\n", ret); return ret; } static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) { #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 unsigned long min_sleep_time_us; if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) return; /* * last_dme_cmd_tstamp will be 0 only for 1st call to * this function */ if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; } else { unsigned long delta = (unsigned long) ktime_to_us( ktime_sub(ktime_get(), hba->last_dme_cmd_tstamp)); if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US - delta; else return; /* no more delay required */ } /* allow sleep for extra 50us if needed */ usleep_range(min_sleep_time_us, min_sleep_time_us + 50); } /** * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET * @hba: per adapter instance * @attr_sel: uic command argument1 * @attr_set: attribute set type as uic command argument2 * @mib_val: setting value as uic command argument3 * @peer: indicate whether peer or local * * Return: 0 on success, non-zero value on failure. */ int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set, u32 mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-set", "dme-peer-set" }; const char *set = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; uic_cmd.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; uic_cmd.argument1 = attr_sel; uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); uic_cmd.argument3 = mib_val; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, UFS_UIC_COMMAND_RETRIES - retries); return ret; } EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); /** * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET * @hba: per adapter instance * @attr_sel: uic command argument1 * @mib_val: the value of the attribute as returned by the UIC command * @peer: indicate whether peer or local * * Return: 0 on success, non-zero value on failure. */ int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-get", "dme-peer-get" }; const char *get = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; struct ufs_pa_layer_attr orig_pwr_info; struct ufs_pa_layer_attr temp_pwr_info; bool pwr_mode_change = false; if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { orig_pwr_info = hba->pwr_info; temp_pwr_info = orig_pwr_info; if (orig_pwr_info.pwr_tx == FAST_MODE || orig_pwr_info.pwr_rx == FAST_MODE) { temp_pwr_info.pwr_tx = FASTAUTO_MODE; temp_pwr_info.pwr_rx = FASTAUTO_MODE; pwr_mode_change = true; } else if (orig_pwr_info.pwr_tx == SLOW_MODE || orig_pwr_info.pwr_rx == SLOW_MODE) { temp_pwr_info.pwr_tx = SLOWAUTO_MODE; temp_pwr_info.pwr_rx = SLOWAUTO_MODE; pwr_mode_change = true; } if (pwr_mode_change) { ret = ufshcd_change_power_mode(hba, &temp_pwr_info); if (ret) goto out; } } uic_cmd.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; uic_cmd.argument1 = attr_sel; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", get, UIC_GET_ATTR_ID(attr_sel), ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", get, UIC_GET_ATTR_ID(attr_sel), UFS_UIC_COMMAND_RETRIES - retries); if (mib_val && !ret) *mib_val = uic_cmd.argument3; if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) && pwr_mode_change) ufshcd_change_power_mode(hba, &orig_pwr_info); out: return ret; } EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); /** * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power * state) and waits for it to take effect. * * @hba: per adapter instance * @cmd: UIC command to execute * * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & * DME_HIBERNATE_EXIT commands take some time to take its effect on both host * and device UniPro link and hence it's final completion would be indicated by * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in * addition to normal UIC command completion Status (UCCS). This function only * returns after the relevant status bits indicate the completion. * * Return: 0 on success, non-zero value on failure. */ static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) { DECLARE_COMPLETION_ONSTACK(uic_async_done); unsigned long flags; u8 status; int ret; bool reenable_intr = false; mutex_lock(&hba->uic_cmd_mutex); ufshcd_add_delay_before_dme_cmd(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (ufshcd_is_link_broken(hba)) { ret = -ENOLINK; goto out_unlock; } hba->uic_async_done = &uic_async_done; if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); /* * Make sure UIC command completion interrupt is disabled before * issuing UIC command. */ ufshcd_readl(hba, REG_INTERRUPT_ENABLE); reenable_intr = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); ret = __ufshcd_send_uic_cmd(hba, cmd, false); if (ret) { dev_err(hba->dev, "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", cmd->command, cmd->argument3, ret); goto out; } if (!wait_for_completion_timeout(hba->uic_async_done, msecs_to_jiffies(UIC_CMD_TIMEOUT))) { dev_err(hba->dev, "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", cmd->command, cmd->argument3); if (!cmd->cmd_active) { dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", __func__); goto check_upmcrs; } ret = -ETIMEDOUT; goto out; } check_upmcrs: status = ufshcd_get_upmcrs(hba); if (status != PWR_LOCAL) { dev_err(hba->dev, "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", cmd->command, status); ret = (status != PWR_OK) ? status : -1; } out: if (ret) { ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_evt_hist(hba); } spin_lock_irqsave(hba->host->host_lock, flags); hba->active_uic_cmd = NULL; hba->uic_async_done = NULL; if (reenable_intr) ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); if (ret) { ufshcd_set_link_broken(hba); ufshcd_schedule_eh_work(hba); } out_unlock: spin_unlock_irqrestore(hba->host->host_lock, flags); mutex_unlock(&hba->uic_cmd_mutex); return ret; } /** * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage * using DME_SET primitives. * @hba: per adapter instance * @mode: powr mode value * * Return: 0 on success, non-zero value on failure. */ int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) { struct uic_command uic_cmd = {0}; int ret; if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); if (ret) { dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", __func__, ret); goto out; } } uic_cmd.command = UIC_CMD_DME_SET; uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); uic_cmd.argument3 = mode; ufshcd_hold(hba); ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); ufshcd_release(hba); out: return ret; } EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); int ufshcd_link_recovery(struct ufs_hba *hba) { int ret; unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); hba->ufshcd_state = UFSHCD_STATE_RESET; ufshcd_set_eh_in_progress(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); /* Reset the attached device */ ufshcd_device_reset(hba); ret = ufshcd_host_reset_and_restore(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (ret) hba->ufshcd_state = UFSHCD_STATE_ERROR; ufshcd_clear_eh_in_progress(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) dev_err(hba->dev, "%s: link recovery failed, err %d", __func__, ret); return ret; } EXPORT_SYMBOL_GPL(ufshcd_link_recovery); int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) { int ret; struct uic_command uic_cmd = {0}; ktime_t start = ktime_get(); ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", ktime_to_us(ktime_sub(ktime_get(), start)), ret); if (ret) dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", __func__, ret); else ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, POST_CHANGE); return ret; } EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; ktime_t start = ktime_get(); ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", ktime_to_us(ktime_sub(ktime_get(), start)), ret); if (ret) { dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", __func__, ret); } else { ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, POST_CHANGE); hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); hba->ufs_stats.hibern8_exit_cnt++; } return ret; } EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) { unsigned long flags; bool update = false; if (!ufshcd_is_auto_hibern8_supported(hba)) return; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->ahit != ahit) { hba->ahit = ahit; update = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (update && !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { ufshcd_rpm_get_sync(hba); ufshcd_hold(hba); ufshcd_auto_hibern8_enable(hba); ufshcd_release(hba); ufshcd_rpm_put_sync(hba); } } EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) { if (!ufshcd_is_auto_hibern8_supported(hba)) return; ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); } /** * ufshcd_init_pwr_info - setting the POR (power on reset) * values in hba power info * @hba: per-adapter instance */ static void ufshcd_init_pwr_info(struct ufs_hba *hba) { hba->pwr_info.gear_rx = UFS_PWM_G1; hba->pwr_info.gear_tx = UFS_PWM_G1; hba->pwr_info.lane_rx = UFS_LANE_1; hba->pwr_info.lane_tx = UFS_LANE_1; hba->pwr_info.pwr_rx = SLOWAUTO_MODE; hba->pwr_info.pwr_tx = SLOWAUTO_MODE; hba->pwr_info.hs_rate = 0; } /** * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device * @hba: per-adapter instance * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) { struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; if (hba->max_pwr_info.is_valid) return 0; if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { pwr_info->pwr_tx = FASTAUTO_MODE; pwr_info->pwr_rx = FASTAUTO_MODE; } else { pwr_info->pwr_tx = FAST_MODE; pwr_info->pwr_rx = FAST_MODE; } pwr_info->hs_rate = PA_HS_MODE_B; /* Get the connected lane count */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), &pwr_info->lane_rx); ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &pwr_info->lane_tx); if (!pwr_info->lane_rx || !pwr_info->lane_tx) { dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", __func__, pwr_info->lane_rx, pwr_info->lane_tx); return -EINVAL; } /* * First, get the maximum gears of HS speed. * If a zero value, it means there is no HSGEAR capability. * Then, get the maximum gears of PWM speed. */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", __func__, pwr_info->gear_rx); return -EINVAL; } pwr_info->pwr_rx = SLOW_MODE; } ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", __func__, pwr_info->gear_tx); return -EINVAL; } pwr_info->pwr_tx = SLOW_MODE; } hba->max_pwr_info.is_valid = true; return 0; } static int ufshcd_change_power_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_mode) { int ret; /* if already configured to the requested pwr_mode */ if (!hba->force_pmc && pwr_mode->gear_rx == hba->pwr_info.gear_rx && pwr_mode->gear_tx == hba->pwr_info.gear_tx && pwr_mode->lane_rx == hba->pwr_info.lane_rx && pwr_mode->lane_tx == hba->pwr_info.lane_tx && pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && pwr_mode->hs_rate == hba->pwr_info.hs_rate) { dev_dbg(hba->dev, "%s: power already configured\n", __func__); return 0; } /* * Configure attributes for power mode change with below. * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, * - PA_HSSERIES */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), pwr_mode->lane_rx); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), pwr_mode->lane_tx); if (pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), pwr_mode->hs_rate); if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), DL_FC0ProtectionTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), DL_TC0ReplayTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), DL_AFC0ReqTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), DL_FC1ProtectionTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), DL_TC1ReplayTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), DL_AFC1ReqTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), DL_FC0ProtectionTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), DL_TC0ReplayTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), DL_AFC0ReqTimeOutVal_Default); } ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 | pwr_mode->pwr_tx); if (ret) { dev_err(hba->dev, "%s: power mode change failed %d\n", __func__, ret); } else { ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, pwr_mode); memcpy(&hba->pwr_info, pwr_mode, sizeof(struct ufs_pa_layer_attr)); } return ret; } /** * ufshcd_config_pwr_mode - configure a new power mode * @hba: per-adapter instance * @desired_pwr_mode: desired power configuration * * Return: 0 upon success; < 0 upon failure. */ int ufshcd_config_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *desired_pwr_mode) { struct ufs_pa_layer_attr final_params = { 0 }; int ret; ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, desired_pwr_mode, &final_params); if (ret) memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); ret = ufshcd_change_power_mode(hba, &final_params); return ret; } EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); /** * ufshcd_complete_dev_init() - checks device readiness * @hba: per-adapter instance * * Set fDeviceInit flag and poll until device toggles it. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_complete_dev_init(struct ufs_hba *hba) { int err; bool flag_res = true; ktime_t timeout; err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); if (err) { dev_err(hba->dev, "%s: setting fDeviceInit flag failed with error %d\n", __func__, err); goto out; } /* Poll fDeviceInit flag to be cleared */ timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); do { err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); if (!flag_res) break; usleep_range(500, 1000); } while (ktime_before(ktime_get(), timeout)); if (err) { dev_err(hba->dev, "%s: reading fDeviceInit flag failed with error %d\n", __func__, err); } else if (flag_res) { dev_err(hba->dev, "%s: fDeviceInit was not cleared by the device\n", __func__); err = -EBUSY; } out: return err; } /** * ufshcd_make_hba_operational - Make UFS controller operational * @hba: per adapter instance * * To bring UFS host controller to operational state, * 1. Enable required interrupts * 2. Configure interrupt aggregation * 3. Program UTRL and UTMRL base address * 4. Configure run-stop-registers * * Return: 0 on success, non-zero value on failure. */ int ufshcd_make_hba_operational(struct ufs_hba *hba) { int err = 0; u32 reg; /* Enable required interrupts */ ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); /* Configure interrupt aggregation */ if (ufshcd_is_intr_aggr_allowed(hba)) ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); else ufshcd_disable_intr_aggr(hba); /* Configure UTRL and UTMRL base address registers */ ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_H); ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_H); /* * Make sure base address and interrupt setup are updated before * enabling the run/stop registers below. */ wmb(); /* * UCRDY, UTMRLDY and UTRLRDY bits must be 1 */ reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); if (!(ufshcd_get_lists_status(reg))) { ufshcd_enable_run_stop_reg(hba); } else { dev_err(hba->dev, "Host controller not ready to process requests"); err = -EIO; } return err; } EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); /** * ufshcd_hba_stop - Send controller to reset state * @hba: per adapter instance */ void ufshcd_hba_stop(struct ufs_hba *hba) { unsigned long flags; int err; /* * Obtain the host lock to prevent that the controller is disabled * while the UFS interrupt handler is active on another CPU. */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); spin_unlock_irqrestore(hba->host->host_lock, flags); err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, CONTROLLER_DISABLE, 10, 1); if (err) dev_err(hba->dev, "%s: Controller disable failed\n", __func__); } EXPORT_SYMBOL_GPL(ufshcd_hba_stop); /** * ufshcd_hba_execute_hce - initialize the controller * @hba: per adapter instance * * The controller resets itself and controller firmware initialization * sequence kicks off. When controller is ready it will set * the Host Controller Enable bit to 1. * * Return: 0 on success, non-zero value on failure. */ static int ufshcd_hba_execute_hce(struct ufs_hba *hba) { int retry_outer = 3; int retry_inner; start: if (ufshcd_is_hba_active(hba)) /* change controller state to "reset state" */ ufshcd_hba_stop(hba); /* UniPro link is disabled at this point */ ufshcd_set_link_off(hba); ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); /* start controller initialization sequence */ ufshcd_hba_start(hba); /* * To initialize a UFS host controller HCE bit must be set to 1. * During initialization the HCE bit value changes from 1->0->1. * When the host controller completes initialization sequence * it sets the value of HCE bit to 1. The same HCE bit is read back * to check if the controller has completed initialization sequence. * So without this delay the value HCE = 1, set in the previous * instruction might be read back. * This delay can be changed based on the controller. */ ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); /* wait for the host controller to complete initialization */ retry_inner = 50; while (!ufshcd_is_hba_active(hba)) { if (retry_inner) { retry_inner--; } else { dev_err(hba->dev, "Controller enable failed\n"); if (retry_outer) { retry_outer--; goto start; } return -EIO; } usleep_range(1000, 1100); } /* enable UIC related interrupts */ ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); return 0; } int ufshcd_hba_enable(struct ufs_hba *hba) { int ret; if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { ufshcd_set_link_off(hba); ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); /* enable UIC related interrupts */ ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); ret = ufshcd_dme_reset(hba); if (ret) { dev_err(hba->dev, "DME_RESET failed\n"); return ret; } ret = ufshcd_dme_enable(hba); if (ret) { dev_err(hba->dev, "Enabling DME failed\n"); return ret; } ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); } else { ret = ufshcd_hba_execute_hce(hba); } return ret; } EXPORT_SYMBOL_GPL(ufshcd_hba_enable); static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) { int tx_lanes = 0, i, err = 0; if (!peer) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); else ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); for (i = 0; i < tx_lanes; i++) { if (!peer) err = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); else err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); if (err) { dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", __func__, peer, i, err); break; } } return err; } static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) { return ufshcd_disable_tx_lcc(hba, true); } void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) { struct ufs_event_hist *e; if (id >= UFS_EVT_CNT) return; e = &hba->ufs_stats.event[id]; e->val[e->pos] = val; e->tstamp[e->pos] = local_clock(); e->cnt += 1; e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; ufshcd_vops_event_notify(hba, id, &val); } EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); /** * ufshcd_link_startup - Initialize unipro link startup * @hba: per adapter instance * * Return: 0 for success, non-zero in case of failure. */ static int ufshcd_link_startup(struct ufs_hba *hba) { int ret; int retries = DME_LINKSTARTUP_RETRIES; bool link_startup_again = false; /* * If UFS device isn't active then we will have to issue link startup * 2 times to make sure the device state move to active. */ if (!ufshcd_is_ufs_dev_active(hba)) link_startup_again = true; link_startup: do { ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); ret = ufshcd_dme_link_startup(hba); /* check if device is detected by inter-connect layer */ if (!ret && !ufshcd_is_device_present(hba)) { ufshcd_update_evt_hist(hba, UFS_EVT_LINK_STARTUP_FAIL, 0); dev_err(hba->dev, "%s: Device not present\n", __func__); ret = -ENXIO; goto out; } /* * DME link lost indication is only received when link is up, * but we can't be sure if the link is up until link startup * succeeds. So reset the local Uni-Pro and try again. */ if (ret && retries && ufshcd_hba_enable(hba)) { ufshcd_update_evt_hist(hba, UFS_EVT_LINK_STARTUP_FAIL, (u32)ret); goto out; } } while (ret && retries--); if (ret) { /* failed to get the link up... retire */ ufshcd_update_evt_hist(hba, UFS_EVT_LINK_STARTUP_FAIL, (u32)ret); goto out; } if (link_startup_again) { link_startup_again = false; retries = DME_LINKSTARTUP_RETRIES; goto link_startup; } /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ ufshcd_init_pwr_info(hba); ufshcd_print_pwr_info(hba); if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { ret = ufshcd_disable_device_tx_lcc(hba); if (ret) goto out; } /* Include any host controller configuration via UIC commands */ ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); if (ret) goto out; /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); ret = ufshcd_make_hba_operational(hba); out: if (ret) { dev_err(hba->dev, "link startup failed %d\n", ret); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_evt_hist(hba); } return ret; } /** * ufshcd_verify_dev_init() - Verify device initialization * @hba: per-adapter instance * * Send NOP OUT UPIU and wait for NOP IN response to check whether the * device Transport Protocol (UTP) layer is ready after a reset. * If the UTP layer at the device side is not initialized, it may * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_verify_dev_init(struct ufs_hba *hba) { int err = 0; int retries; ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, hba->nop_out_timeout); if (!err || err == -ETIMEDOUT) break; dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); } mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); if (err) dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); return err; } /** * ufshcd_setup_links - associate link b/w device wlun and other luns * @sdev: pointer to SCSI device * @hba: pointer to ufs hba */ static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) { struct device_link *link; /* * Device wlun is the supplier & rest of the luns are consumers. * This ensures that device wlun suspends after all other luns. */ if (hba->ufs_device_wlun) { link = device_link_add(&sdev->sdev_gendev, &hba->ufs_device_wlun->sdev_gendev, DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (!link) { dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", dev_name(&hba->ufs_device_wlun->sdev_gendev)); return; } hba->luns_avail--; /* Ignore REPORT_LUN wlun probing */ if (hba->luns_avail == 1) { ufshcd_rpm_put(hba); return; } } else { /* * Device wlun is probed. The assumption is that WLUNs are * scanned before other LUNs. */ hba->luns_avail--; } } /** * ufshcd_lu_init - Initialize the relevant parameters of the LU * @hba: per-adapter instance * @sdev: pointer to SCSI device */ static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) { int len = QUERY_DESC_MAX_SIZE; u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); u8 lun_qdepth = hba->nutrs; u8 *desc_buf; int ret; desc_buf = kzalloc(len, GFP_KERNEL); if (!desc_buf) goto set_qdepth; ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); if (ret < 0) { if (ret == -EOPNOTSUPP) /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ lun_qdepth = 1; kfree(desc_buf); goto set_qdepth; } if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { /* * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth */ lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); } /* * According to UFS device specification, the write protection mode is only supported by * normal LU, not supported by WLUN. */ if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && !hba->dev_info.is_lu_power_on_wp && desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) hba->dev_info.is_lu_power_on_wp = true; /* In case of RPMB LU, check if advanced RPMB mode is enabled */ if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) hba->dev_info.b_advanced_rpmb_en = true; kfree(desc_buf); set_qdepth: /* * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. */ dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); scsi_change_queue_depth(sdev, lun_qdepth); } /** * ufshcd_slave_alloc - handle initial SCSI device configurations * @sdev: pointer to SCSI device * * Return: success. */ static int ufshcd_slave_alloc(struct scsi_device *sdev) { struct ufs_hba *hba; hba = shost_priv(sdev->host); /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ sdev->use_10_for_ms = 1; /* DBD field should be set to 1 in mode sense(10) */ sdev->set_dbd_for_ms = 1; /* allow SCSI layer to restart the device in case of errors */ sdev->allow_restart = 1; /* REPORT SUPPORTED OPERATION CODES is not supported */ sdev->no_report_opcodes = 1; /* WRITE_SAME command is not supported */ sdev->no_write_same = 1; ufshcd_lu_init(hba, sdev); ufshcd_setup_links(hba, sdev); return 0; } /** * ufshcd_change_queue_depth - change queue depth * @sdev: pointer to SCSI device * @depth: required depth to set * * Change queue depth and make sure the max. limits are not crossed. * * Return: new queue depth. */ static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) { return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); } /** * ufshcd_slave_configure - adjust SCSI device configurations * @sdev: pointer to SCSI device * * Return: 0 (success). */ static int ufshcd_slave_configure(struct scsi_device *sdev) { struct ufs_hba *hba = shost_priv(sdev->host); struct request_queue *q = sdev->request_queue; blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) blk_queue_update_dma_alignment(q, SZ_4K - 1); /* * Block runtime-pm until all consumers are added. * Refer ufshcd_setup_links(). */ if (is_device_wlun(sdev)) pm_runtime_get_noresume(&sdev->sdev_gendev); else if (ufshcd_is_rpm_autosuspend_allowed(hba)) sdev->rpm_autosuspend = 1; /* * Do not print messages during runtime PM to avoid never-ending cycles * of messages written back to storage by user space causing runtime * resume, causing more messages and so on. */ sdev->silence_suspend = 1; ufshcd_crypto_register(hba, q); return 0; } /** * ufshcd_slave_destroy - remove SCSI device configurations * @sdev: pointer to SCSI device */ static void ufshcd_slave_destroy(struct scsi_device *sdev) { struct ufs_hba *hba; unsigned long flags; hba = shost_priv(sdev->host); /* Drop the reference as it won't be needed anymore */ if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { spin_lock_irqsave(hba->host->host_lock, flags); hba->ufs_device_wlun = NULL; spin_unlock_irqrestore(hba->host->host_lock, flags); } else if (hba->ufs_device_wlun) { struct device *supplier = NULL; /* Ensure UFS Device WLUN exists and does not disappear */ spin_lock_irqsave(hba->host->host_lock, flags); if (hba->ufs_device_wlun) { supplier = &hba->ufs_device_wlun->sdev_gendev; get_device(supplier); } spin_unlock_irqrestore(hba->host->host_lock, flags); if (supplier) { /* * If a LUN fails to probe (e.g. absent BOOT WLUN), the * device will not have been registered but can still * have a device link holding a reference to the device. */ device_link_remove(&sdev->sdev_gendev, supplier); put_device(supplier); } } } /** * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status * @lrbp: pointer to local reference block of completed command * @scsi_status: SCSI command status * * Return: value base on SCSI command status. */ static inline int ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) { int result = 0; switch (scsi_status) { case SAM_STAT_CHECK_CONDITION: ufshcd_copy_sense_data(lrbp); fallthrough; case SAM_STAT_GOOD: result |= DID_OK << 16 | scsi_status; break; case SAM_STAT_TASK_SET_FULL: case SAM_STAT_BUSY: case SAM_STAT_TASK_ABORTED: ufshcd_copy_sense_data(lrbp); result |= scsi_status; break; default: result |= DID_ERROR << 16; break; } /* end of switch */ return result; } /** * ufshcd_transfer_rsp_status - Get overall status of the response * @hba: per adapter instance * @lrbp: pointer to local reference block of completed command * @cqe: pointer to the completion queue entry * * Return: result of the command to notify SCSI midlayer. */ static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, struct cq_entry *cqe) { int result = 0; int scsi_status; enum utp_ocs ocs; u8 upiu_flags; u32 resid; upiu_flags = lrbp->ucd_rsp_ptr->header.flags; resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); /* * Test !overflow instead of underflow to support UFS devices that do * not set either flag. */ if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) scsi_set_resid(lrbp->cmd, resid); /* overall command status of utrd */ ocs = ufshcd_get_tr_ocs(lrbp, cqe); if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { if (lrbp->ucd_rsp_ptr->header.response || lrbp->ucd_rsp_ptr->header.status) ocs = OCS_SUCCESS; } switch (ocs) { case OCS_SUCCESS: hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { case UPIU_TRANSACTION_RESPONSE: /* * get the result based on SCSI status response * to notify the SCSI midlayer of the command status */ scsi_status = lrbp->ucd_rsp_ptr->header.status; result = ufshcd_scsi_cmd_status(lrbp, scsi_status); /* * Currently we are only supporting BKOPs exception * events hence we can ignore BKOPs exception event * during power management callbacks. BKOPs exception * event is not expected to be raised in runtime suspend * callback as it allows the urgent bkops. * During system suspend, we are anyway forcefully * disabling the bkops and if urgent bkops is needed * it will be enabled on system resume. Long term * solution could be to abort the system suspend if * UFS device needs urgent BKOPs. */ if (!hba->pm_op_in_progress && !ufshcd_eh_in_progress(hba) && ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) /* Flushed in suspend */ schedule_work(&hba->eeh_work); break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ result = DID_ERROR << 16; dev_err(hba->dev, "Reject UPIU not fully implemented\n"); break; default: dev_err(hba->dev, "Unexpected request response code = %x\n", result); result = DID_ERROR << 16; break; } break; case OCS_ABORTED: result |= DID_ABORT << 16; break; case OCS_INVALID_COMMAND_STATUS: result |= DID_REQUEUE << 16; break; case OCS_INVALID_CMD_TABLE_ATTR: case OCS_INVALID_PRDT_ATTR: case OCS_MISMATCH_DATA_BUF_SIZE: case OCS_MISMATCH_RESP_UPIU_SIZE: case OCS_PEER_COMM_FAILURE: case OCS_FATAL_ERROR: case OCS_DEVICE_FATAL_ERROR: case OCS_INVALID_CRYPTO_CONFIG: case OCS_GENERAL_CRYPTO_ERROR: default: result |= DID_ERROR << 16; dev_err(hba->dev, "OCS error from controller = %x for tag %d\n", ocs, lrbp->task_tag); ufshcd_print_evt_hist(hba); ufshcd_print_host_state(hba); break; } /* end of switch */ if ((host_byte(result) != DID_OK) && (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) ufshcd_print_tr(hba, lrbp->task_tag, true); return result; } static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, u32 intr_mask) { if (!ufshcd_is_auto_hibern8_supported(hba) || !ufshcd_is_auto_hibern8_enabled(hba)) return false; if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) return false; if (hba->active_uic_cmd && (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) return false; return true; } /** * ufshcd_uic_cmd_compl - handle completion of uic command * @hba: per adapter instance * @intr_status: interrupt status generated by the controller * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) { irqreturn_t retval = IRQ_NONE; spin_lock(hba->host->host_lock); if (ufshcd_is_auto_hibern8_error(hba, intr_status)) hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { hba->active_uic_cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); hba->active_uic_cmd->argument3 = ufshcd_get_dme_attr_val(hba); if (!hba->uic_async_done) hba->active_uic_cmd->cmd_active = 0; complete(&hba->active_uic_cmd->done); retval = IRQ_HANDLED; } if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { hba->active_uic_cmd->cmd_active = 0; complete(hba->uic_async_done); retval = IRQ_HANDLED; } if (retval == IRQ_HANDLED) ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, UFS_CMD_COMP); spin_unlock(hba->host->host_lock); return retval; } /* Release the resources allocated for processing a SCSI command. */ void ufshcd_release_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct scsi_cmnd *cmd = lrbp->cmd; scsi_dma_unmap(cmd); ufshcd_release(hba); ufshcd_clk_scaling_update_busy(hba); } /** * ufshcd_compl_one_cqe - handle a completion queue entry * @hba: per adapter instance * @task_tag: the task tag of the request to be completed * @cqe: pointer to the completion queue entry */ void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, struct cq_entry *cqe) { struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; enum utp_ocs ocs; lrbp = &hba->lrb[task_tag]; lrbp->compl_time_stamp = ktime_get(); cmd = lrbp->cmd; if (cmd) { if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) ufshcd_update_monitor(hba, lrbp); ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); ufshcd_release_scsi_cmd(hba, lrbp); /* Do not touch lrbp after scsi done */ scsi_done(cmd); } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { if (hba->dev_cmd.complete) { if (cqe) { ocs = le32_to_cpu(cqe->status) & MASK_OCS; lrbp->utr_descriptor_ptr->header.ocs = ocs; } complete(hba->dev_cmd.complete); ufshcd_clk_scaling_update_busy(hba); } } } /** * __ufshcd_transfer_req_compl - handle SCSI and query command completion * @hba: per adapter instance * @completed_reqs: bitmask that indicates which requests to complete */ static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, unsigned long completed_reqs) { int tag; for_each_set_bit(tag, &completed_reqs, hba->nutrs) ufshcd_compl_one_cqe(hba, tag, NULL); } /* Any value that is not an existing queue number is fine for this constant. */ enum { UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 }; static void ufshcd_clear_polled(struct ufs_hba *hba, unsigned long *completed_reqs) { int tag; for_each_set_bit(tag, completed_reqs, hba->nutrs) { struct scsi_cmnd *cmd = hba->lrb[tag].cmd; if (!cmd) continue; if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) __clear_bit(tag, completed_reqs); } } /* * Return: > 0 if one or more commands have been completed or 0 if no * requests have been completed. */ static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) { struct ufs_hba *hba = shost_priv(shost); unsigned long completed_reqs, flags; u32 tr_doorbell; struct ufs_hw_queue *hwq; if (is_mcq_enabled(hba)) { hwq = &hba->uhq[queue_num]; return ufshcd_mcq_poll_cqe_lock(hba, hwq); } spin_lock_irqsave(&hba->outstanding_lock, flags); tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); completed_reqs = ~tr_doorbell & hba->outstanding_reqs; WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, "completed: %#lx; outstanding: %#lx\n", completed_reqs, hba->outstanding_reqs); if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { /* Do not complete polled requests from interrupt context. */ ufshcd_clear_polled(hba, &completed_reqs); } hba->outstanding_reqs &= ~completed_reqs; spin_unlock_irqrestore(&hba->outstanding_lock, flags); if (completed_reqs) __ufshcd_transfer_req_compl(hba, completed_reqs); return completed_reqs != 0; } /** * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is * invoked from the error handler context or ufshcd_host_reset_and_restore() * to complete the pending transfers and free the resources associated with * the scsi command. * * @hba: per adapter instance * @force_compl: This flag is set to true when invoked * from ufshcd_host_reset_and_restore() in which case it requires special * handling because the host controller has been reset by ufshcd_hba_stop(). */ static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, bool force_compl) { struct ufs_hw_queue *hwq; struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; unsigned long flags; u32 hwq_num, utag; int tag; for (tag = 0; tag < hba->nutrs; tag++) { lrbp = &hba->lrb[tag]; cmd = lrbp->cmd; if (!ufshcd_cmd_inflight(cmd) || test_bit(SCMD_STATE_COMPLETE, &cmd->state)) continue; utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); hwq_num = blk_mq_unique_tag_to_hwq(utag); hwq = &hba->uhq[hwq_num]; if (force_compl) { ufshcd_mcq_compl_all_cqes_lock(hba, hwq); /* * For those cmds of which the cqes are not present * in the cq, complete them explicitly. */ if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { spin_lock_irqsave(&hwq->cq_lock, flags); set_host_byte(cmd, DID_REQUEUE); ufshcd_release_scsi_cmd(hba, lrbp); scsi_done(cmd); spin_unlock_irqrestore(&hwq->cq_lock, flags); } } else { ufshcd_mcq_poll_cqe_lock(hba, hwq); } } } /** * ufshcd_transfer_req_compl - handle SCSI and query command completion * @hba: per adapter instance * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) { /* Resetting interrupt aggregation counters first and reading the * DOOR_BELL afterward allows us to handle all the completed requests. * In order to prevent other interrupts starvation the DB is read once * after reset. The down side of this solution is the possibility of * false interrupt if device completes another request after resetting * aggregation and before reading the DB. */ if (ufshcd_is_intr_aggr_allowed(hba) && !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) ufshcd_reset_intr_aggr(hba); if (ufs_fail_completion()) return IRQ_HANDLED; /* * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we * do not want polling to trigger spurious interrupt complaints. */ ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); return IRQ_HANDLED; } int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) { return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &ee_ctrl_mask); } int ufshcd_write_ee_control(struct ufs_hba *hba) { int err; mutex_lock(&hba->ee_ctrl_mutex); err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); mutex_unlock(&hba->ee_ctrl_mutex); if (err) dev_err(hba->dev, "%s: failed to write ee control %d\n", __func__, err); return err; } int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, const u16 *other_mask, u16 set, u16 clr) { u16 new_mask, ee_ctrl_mask; int err = 0; mutex_lock(&hba->ee_ctrl_mutex); new_mask = (*mask & ~clr) | set; ee_ctrl_mask = new_mask | *other_mask; if (ee_ctrl_mask != hba->ee_ctrl_mask) err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ if (!err) { hba->ee_ctrl_mask = ee_ctrl_mask; *mask = new_mask; } mutex_unlock(&hba->ee_ctrl_mutex); return err; } /** * ufshcd_disable_ee - disable exception event * @hba: per-adapter instance * @mask: exception event to disable * * Disables exception event in the device so that the EVENT_ALERT * bit is not set. * * Return: zero on success, non-zero error value on failure. */ static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) { return ufshcd_update_ee_drv_mask(hba, 0, mask); } /** * ufshcd_enable_ee - enable exception event * @hba: per-adapter instance * @mask: exception event to enable * * Enable corresponding exception event in the device to allow * device to alert host in critical scenarios. * * Return: zero on success, non-zero error value on failure. */ static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) { return ufshcd_update_ee_drv_mask(hba, mask, 0); } /** * ufshcd_enable_auto_bkops - Allow device managed BKOPS * @hba: per-adapter instance * * Allow device to manage background operations on its own. Enabling * this might lead to inconsistent latencies during normal data transfers * as the device is allowed to manage its own way of handling background * operations. * * Return: zero on success, non-zero on failure. */ static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) { int err = 0; if (hba->auto_bkops_enabled) goto out; err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); if (err) { dev_err(hba->dev, "%s: failed to enable bkops %d\n", __func__, err); goto out; } hba->auto_bkops_enabled = true; trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); /* No need of URGENT_BKOPS exception from the device */ err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); if (err) dev_err(hba->dev, "%s: failed to disable exception event %d\n", __func__, err); out: return err; } /** * ufshcd_disable_auto_bkops - block device in doing background operations * @hba: per-adapter instance * * Disabling background operations improves command response latency but * has drawback of device moving into critical state where the device is * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the * host is idle so that BKOPS are managed effectively without any negative * impacts. * * Return: zero on success, non-zero on failure. */ static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) { int err = 0; if (!hba->auto_bkops_enabled) goto out; /* * If host assisted BKOPs is to be enabled, make sure * urgent bkops exception is allowed. */ err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); if (err) { dev_err(hba->dev, "%s: failed to enable exception event %d\n", __func__, err); goto out; } err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); if (err) { dev_err(hba->dev, "%s: failed to disable bkops %d\n", __func__, err); ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); goto out; } hba->auto_bkops_enabled = false; trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); hba->is_urgent_bkops_lvl_checked = false; out: return err; } /** * ufshcd_force_reset_auto_bkops - force reset auto bkops state * @hba: per adapter instance * * After a device reset the device may toggle the BKOPS_EN flag * to default value. The s/w tracking variables should be updated * as well. This function would change the auto-bkops state based on * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. */ static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) { if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { hba->auto_bkops_enabled = false; hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; ufshcd_enable_auto_bkops(hba); } else { hba->auto_bkops_enabled = true; hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; ufshcd_disable_auto_bkops(hba); } hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; hba->is_urgent_bkops_lvl_checked = false; } static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) { return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); } /** * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status * @hba: per-adapter instance * @status: bkops_status value * * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn * flag in the device to permit background operations if the device * bkops_status is greater than or equal to "status" argument passed to * this function, disable otherwise. * * Return: 0 for success, non-zero in case of failure. * * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag * to know whether auto bkops is enabled or disabled after this function * returns control to it. */ static int ufshcd_bkops_ctrl(struct ufs_hba *hba, enum bkops_status status) { int err; u32 curr_status = 0; err = ufshcd_get_bkops_status(hba, &curr_status); if (err) { dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", __func__, err); goto out; } else if (curr_status > BKOPS_STATUS_MAX) { dev_err(hba->dev, "%s: invalid BKOPS status %d\n", __func__, curr_status); err = -EINVAL; goto out; } if (curr_status >= status) err = ufshcd_enable_auto_bkops(hba); else err = ufshcd_disable_auto_bkops(hba); out: return err; } /** * ufshcd_urgent_bkops - handle urgent bkops exception event * @hba: per-adapter instance * * Enable fBackgroundOpsEn flag in the device to permit background * operations. * * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled * and negative error value for any other failure. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_urgent_bkops(struct ufs_hba *hba) { return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); } static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) { return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); } static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) { int err; u32 curr_status = 0; if (hba->is_urgent_bkops_lvl_checked) goto enable_auto_bkops; err = ufshcd_get_bkops_status(hba, &curr_status); if (err) { dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", __func__, err); goto out; } /* * We are seeing that some devices are raising the urgent bkops * exception events even when BKOPS status doesn't indicate performace * impacted or critical. Handle these device by determining their urgent * bkops status at runtime. */ if (curr_status < BKOPS_STATUS_PERF_IMPACT) { dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", __func__, curr_status); /* update the current status as the urgent bkops level */ hba->urgent_bkops_lvl = curr_status; hba->is_urgent_bkops_lvl_checked = true; } enable_auto_bkops: err = ufshcd_enable_auto_bkops(hba); out: if (err < 0) dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", __func__, err); } static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) { u32 value; if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) return; dev_info(hba->dev, "exception Tcase %d\n", value - 80); ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); /* * A placeholder for the platform vendors to add whatever additional * steps required */ } static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) { u8 index; enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : UPIU_QUERY_OPCODE_CLEAR_FLAG; index = ufshcd_wb_get_query_index(hba); return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); } int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) { int ret; if (!ufshcd_is_wb_allowed(hba) || hba->dev_info.wb_enabled == enable) return 0; ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); if (ret) { dev_err(hba->dev, "%s: Write Booster %s failed %d\n", __func__, enable ? "enabling" : "disabling", ret); return ret; } hba->dev_info.wb_enabled = enable; dev_dbg(hba->dev, "%s: Write Booster %s\n", __func__, enable ? "enabled" : "disabled"); return ret; } static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, bool enable) { int ret; ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); if (ret) { dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", __func__, enable ? "enabling" : "disabling", ret); return; } dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", __func__, enable ? "enabled" : "disabled"); } int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) { int ret; if (!ufshcd_is_wb_allowed(hba) || hba->dev_info.wb_buf_flush_enabled == enable) return 0; ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); if (ret) { dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", __func__, enable ? "enabling" : "disabling", ret); return ret; } hba->dev_info.wb_buf_flush_enabled = enable; dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", __func__, enable ? "enabled" : "disabled"); return ret; } static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, u32 avail_buf) { u32 cur_buf; int ret; u8 index; index = ufshcd_wb_get_query_index(hba); ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, index, 0, &cur_buf); if (ret) { dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", __func__, ret); return false; } if (!cur_buf) { dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", cur_buf); return false; } /* Let it continue to flush when available buffer exceeds threshold */ return avail_buf < hba->vps->wb_flush_threshold; } static void ufshcd_wb_force_disable(struct ufs_hba *hba) { if (ufshcd_is_wb_buf_flush_allowed(hba)) ufshcd_wb_toggle_buf_flush(hba, false); ufshcd_wb_toggle_buf_flush_during_h8(hba, false); ufshcd_wb_toggle(hba, false); hba->caps &= ~UFSHCD_CAP_WB_EN; dev_info(hba->dev, "%s: WB force disabled\n", __func__); } static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) { u32 lifetime; int ret; u8 index; index = ufshcd_wb_get_query_index(hba); ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, index, 0, &lifetime); if (ret) { dev_err(hba->dev, "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", __func__, ret); return false; } if (lifetime == UFS_WB_EXCEED_LIFETIME) { dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", __func__, lifetime); return false; } dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", __func__, lifetime); return true; } static bool ufshcd_wb_need_flush(struct ufs_hba *hba) { int ret; u32 avail_buf; u8 index; if (!ufshcd_is_wb_allowed(hba)) return false; if (!ufshcd_is_wb_buf_lifetime_available(hba)) { ufshcd_wb_force_disable(hba); return false; } /* * The ufs device needs the vcc to be ON to flush. * With user-space reduction enabled, it's enough to enable flush * by checking only the available buffer. The threshold * defined here is > 90% full. * With user-space preserved enabled, the current-buffer * should be checked too because the wb buffer size can reduce * when disk tends to be full. This info is provided by current * buffer (dCurrentWriteBoosterBufferSize). There's no point in * keeping vcc on when current buffer is empty. */ index = ufshcd_wb_get_query_index(hba); ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, index, 0, &avail_buf); if (ret) { dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", __func__, ret); return false; } if (!hba->dev_info.b_presrv_uspc_en) return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); } static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) { struct ufs_hba *hba = container_of(to_delayed_work(work), struct ufs_hba, rpm_dev_flush_recheck_work); /* * To prevent unnecessary VCC power drain after device finishes * WriteBooster buffer flush or Auto BKOPs, force runtime resume * after a certain delay to recheck the threshold by next runtime * suspend. */ ufshcd_rpm_get_sync(hba); ufshcd_rpm_put_sync(hba); } /** * ufshcd_exception_event_handler - handle exceptions raised by device * @work: pointer to work data * * Read bExceptionEventStatus attribute from the device and handle the * exception event accordingly. */ static void ufshcd_exception_event_handler(struct work_struct *work) { struct ufs_hba *hba; int err; u32 status = 0; hba = container_of(work, struct ufs_hba, eeh_work); ufshcd_scsi_block_requests(hba); err = ufshcd_get_ee_status(hba, &status); if (err) { dev_err(hba->dev, "%s: failed to get exception status %d\n", __func__, err); goto out; } trace_ufshcd_exception_event(dev_name(hba->dev), status); if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) ufshcd_bkops_exception_event_handler(hba); if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) ufshcd_temp_exception_event_handler(hba, status); ufs_debugfs_exception_event(hba, status); out: ufshcd_scsi_unblock_requests(hba); } /* Complete requests that have door-bell cleared */ static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) { if (is_mcq_enabled(hba)) ufshcd_mcq_compl_pending_transfer(hba, force_compl); else ufshcd_transfer_req_compl(hba); ufshcd_tmc_handler(hba); } /** * ufshcd_quirk_dl_nac_errors - This function checks if error handling is * to recover from the DL NAC errors or not. * @hba: per-adapter instance * * Return: true if error handling is required, false otherwise. */ static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) { unsigned long flags; bool err_handling = true; spin_lock_irqsave(hba->host->host_lock, flags); /* * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the * device fatal error and/or DL NAC & REPLAY timeout errors. */ if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) goto out; if ((hba->saved_err & DEVICE_FATAL_ERROR) || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) goto out; if ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { int err; /* * wait for 50ms to see if we can get any other errors or not. */ spin_unlock_irqrestore(hba->host->host_lock, flags); msleep(50); spin_lock_irqsave(hba->host->host_lock, flags); /* * now check if we have got any other severe errors other than * DL NAC error? */ if ((hba->saved_err & INT_FATAL_ERRORS) || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) goto out; /* * As DL NAC is the only error received so far, send out NOP * command to confirm if link is still active or not. * - If we don't get any response then do error recovery. * - If we get response then clear the DL NAC error bit. */ spin_unlock_irqrestore(hba->host->host_lock, flags); err = ufshcd_verify_dev_init(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (err) goto out; /* Link seems to be alive hence ignore the DL NAC errors */ if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) hba->saved_err &= ~UIC_ERROR; /* clear NAC error */ hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; if (!hba->saved_uic_err) err_handling = false; } out: spin_unlock_irqrestore(hba->host->host_lock, flags); return err_handling; } /* host lock must be held before calling this func */ static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) { return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); } void ufshcd_schedule_eh_work(struct ufs_hba *hba) { lockdep_assert_held(hba->host->host_lock); /* handle fatal errors only when link is not in error state */ if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { if (hba->force_reset || ufshcd_is_link_broken(hba) || ufshcd_is_saved_err_fatal(hba)) hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; else hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; queue_work(hba->eh_wq, &hba->eh_work); } } static void ufshcd_force_error_recovery(struct ufs_hba *hba) { spin_lock_irq(hba->host->host_lock); hba->force_reset = true; ufshcd_schedule_eh_work(hba); spin_unlock_irq(hba->host->host_lock); } static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) { mutex_lock(&hba->wb_mutex); down_write(&hba->clk_scaling_lock); hba->clk_scaling.is_allowed = allow; up_write(&hba->clk_scaling_lock); mutex_unlock(&hba->wb_mutex); } static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) { if (suspend) { if (hba->clk_scaling.is_enabled) ufshcd_suspend_clkscaling(hba); ufshcd_clk_scaling_allow(hba, false); } else { ufshcd_clk_scaling_allow(hba, true); if (hba->clk_scaling.is_enabled) ufshcd_resume_clkscaling(hba); } } static void ufshcd_err_handling_prepare(struct ufs_hba *hba) { ufshcd_rpm_get_sync(hba); if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || hba->is_sys_suspended) { enum ufs_pm_op pm_op; /* * Don't assume anything of resume, if * resume fails, irq and clocks can be OFF, and powers * can be OFF or in LPM. */ ufshcd_setup_hba_vreg(hba, true); ufshcd_enable_irq(hba); ufshcd_setup_vreg(hba, true); ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); ufshcd_hold(hba); if (!ufshcd_is_clkgating_allowed(hba)) ufshcd_setup_clocks(hba, true); pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; ufshcd_vops_resume(hba, pm_op); } else { ufshcd_hold(hba); if (ufshcd_is_clkscaling_supported(hba) && hba->clk_scaling.is_enabled) ufshcd_suspend_clkscaling(hba); ufshcd_clk_scaling_allow(hba, false); } ufshcd_scsi_block_requests(hba); /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ blk_mq_wait_quiesce_done(&hba->host->tag_set); cancel_work_sync(&hba->eeh_work); } static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) { ufshcd_scsi_unblock_requests(hba); ufshcd_release(hba); if (ufshcd_is_clkscaling_supported(hba)) ufshcd_clk_scaling_suspend(hba, false); ufshcd_rpm_put(hba); } static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) { return (!hba->is_powered || hba->shutting_down || !hba->ufs_device_wlun || hba->ufshcd_state == UFSHCD_STATE_ERROR || (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || ufshcd_is_link_broken(hba)))); } #ifdef CONFIG_PM static void ufshcd_recover_pm_error(struct ufs_hba *hba) { struct Scsi_Host *shost = hba->host; struct scsi_device *sdev; struct request_queue *q; int ret; hba->is_sys_suspended = false; /* * Set RPM status of wlun device to RPM_ACTIVE, * this also clears its runtime error. */ ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); /* hba device might have a runtime error otherwise */ if (ret) ret = pm_runtime_set_active(hba->dev); /* * If wlun device had runtime error, we also need to resume those * consumer scsi devices in case any of them has failed to be * resumed due to supplier runtime resume failure. This is to unblock * blk_queue_enter in case there are bios waiting inside it. */ if (!ret) { shost_for_each_device(sdev, shost) { q = sdev->request_queue; if (q->dev && (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING)) pm_request_resume(q->dev); } } } #else static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) { } #endif static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) { struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; u32 mode; ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) return true; if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) return true; return false; } static bool ufshcd_abort_one(struct request *rq, void *priv) { int *ret = priv; u32 tag = rq->tag; struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); struct scsi_device *sdev = cmd->device; struct Scsi_Host *shost = sdev->host; struct ufs_hba *hba = shost_priv(shost); struct ufshcd_lrb *lrbp = &hba->lrb[tag]; struct ufs_hw_queue *hwq; unsigned long flags; *ret = ufshcd_try_to_abort_task(hba, tag); dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, *ret ? "failed" : "succeeded"); /* Release cmd in MCQ mode if abort succeeds */ if (is_mcq_enabled(hba) && (*ret == 0)) { hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); if (!hwq) return 0; spin_lock_irqsave(&hwq->cq_lock, flags); if (ufshcd_cmd_inflight(lrbp->cmd)) ufshcd_release_scsi_cmd(hba, lrbp); spin_unlock_irqrestore(&hwq->cq_lock, flags); } return *ret == 0; } /** * ufshcd_abort_all - Abort all pending commands. * @hba: Host bus adapter pointer. * * Return: true if and only if the host controller needs to be reset. */ static bool ufshcd_abort_all(struct ufs_hba *hba) { int tag, ret = 0; blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); if (ret) goto out; /* Clear pending task management requests */ for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { ret = ufshcd_clear_tm_cmd(hba, tag); if (ret) goto out; } out: /* Complete the requests that are cleared by s/w */ ufshcd_complete_requests(hba, false); return ret != 0; } /** * ufshcd_err_handler - handle UFS errors that require s/w attention * @work: pointer to work structure */ static void ufshcd_err_handler(struct work_struct *work) { int retries = MAX_ERR_HANDLER_RETRIES; struct ufs_hba *hba; unsigned long flags; bool needs_restore; bool needs_reset; int pmc_err; hba = container_of(work, struct ufs_hba, eh_work); dev_info(hba->dev, "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", __func__, ufshcd_state_name[hba->ufshcd_state], hba->is_powered, hba->shutting_down, hba->saved_err, hba->saved_uic_err, hba->force_reset, ufshcd_is_link_broken(hba) ? "; link is broken" : ""); down(&hba->host_sem); spin_lock_irqsave(hba->host->host_lock, flags); if (ufshcd_err_handling_should_stop(hba)) { if (hba->ufshcd_state != UFSHCD_STATE_ERROR) hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; spin_unlock_irqrestore(hba->host->host_lock, flags); up(&hba->host_sem); return; } ufshcd_set_eh_in_progress(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_err_handling_prepare(hba); /* Complete requests that have door-bell cleared by h/w */ ufshcd_complete_requests(hba, false); spin_lock_irqsave(hba->host->host_lock, flags); again: needs_restore = false; needs_reset = false; if (hba->ufshcd_state != UFSHCD_STATE_ERROR) hba->ufshcd_state = UFSHCD_STATE_RESET; /* * A full reset and restore might have happened after preparation * is finished, double check whether we should stop. */ if (ufshcd_err_handling_should_stop(hba)) goto skip_err_handling; if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { bool ret; spin_unlock_irqrestore(hba->host->host_lock, flags); /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ ret = ufshcd_quirk_dl_nac_errors(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (!ret && ufshcd_err_handling_should_stop(hba)) goto skip_err_handling; } if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || (hba->saved_uic_err && (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_evt_hist(hba); ufshcd_print_tmrs(hba, hba->outstanding_tasks); ufshcd_print_trs_all(hba, pr_prdt); spin_lock_irqsave(hba->host->host_lock, flags); } /* * if host reset is required then skip clearing the pending * transfers forcefully because they will get cleared during * host reset and restore */ if (hba->force_reset || ufshcd_is_link_broken(hba) || ufshcd_is_saved_err_fatal(hba) || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { needs_reset = true; goto do_reset; } /* * If LINERESET was caught, UFS might have been put to PWM mode, * check if power mode restore is needed. */ if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; if (!hba->saved_uic_err) hba->saved_err &= ~UIC_ERROR; spin_unlock_irqrestore(hba->host->host_lock, flags); if (ufshcd_is_pwr_mode_restore_needed(hba)) needs_restore = true; spin_lock_irqsave(hba->host->host_lock, flags); if (!hba->saved_err && !needs_restore) goto skip_err_handling; } hba->silence_err_logs = true; /* release lock as clear command might sleep */ spin_unlock_irqrestore(hba->host->host_lock, flags); needs_reset = ufshcd_abort_all(hba); spin_lock_irqsave(hba->host->host_lock, flags); hba->silence_err_logs = false; if (needs_reset) goto do_reset; /* * After all reqs and tasks are cleared from doorbell, * now it is safe to retore power mode. */ if (needs_restore) { spin_unlock_irqrestore(hba->host->host_lock, flags); /* * Hold the scaling lock just in case dev cmds * are sent via bsg and/or sysfs. */ down_write(&hba->clk_scaling_lock); hba->force_pmc = true; pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); if (pmc_err) { needs_reset = true; dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", __func__, pmc_err); } hba->force_pmc = false; ufshcd_print_pwr_info(hba); up_write(&hba->clk_scaling_lock); spin_lock_irqsave(hba->host->host_lock, flags); } do_reset: /* Fatal errors need reset */ if (needs_reset) { int err; hba->force_reset = false; spin_unlock_irqrestore(hba->host->host_lock, flags); err = ufshcd_reset_and_restore(hba); if (err) dev_err(hba->dev, "%s: reset and restore failed with err %d\n", __func__, err); else ufshcd_recover_pm_error(hba); spin_lock_irqsave(hba->host->host_lock, flags); } skip_err_handling: if (!needs_reset) { if (hba->ufshcd_state == UFSHCD_STATE_RESET) hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; if (hba->saved_err || hba->saved_uic_err) dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", __func__, hba->saved_err, hba->saved_uic_err); } /* Exit in an operational state or dead */ if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && hba->ufshcd_state != UFSHCD_STATE_ERROR) { if (--retries) goto again; hba->ufshcd_state = UFSHCD_STATE_ERROR; } ufshcd_clear_eh_in_progress(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_err_handling_unprepare(hba); up(&hba->host_sem); dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, ufshcd_state_name[hba->ufshcd_state]); } /** * ufshcd_update_uic_error - check and set fatal UIC error flags. * @hba: per-adapter instance * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) { u32 reg; irqreturn_t retval = IRQ_NONE; /* PHY layer error */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); /* * To know whether this error is fatal or not, DB timeout * must be checked but this error is handled separately. */ if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) dev_dbg(hba->dev, "%s: UIC Lane error reported\n", __func__); /* Got a LINERESET indication. */ if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { struct uic_command *cmd = NULL; hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; if (hba->uic_async_done && hba->active_uic_cmd) cmd = hba->active_uic_cmd; /* * Ignore the LINERESET during power mode change * operation via DME_SET command. */ if (cmd && (cmd->command == UIC_CMD_DME_SET)) hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; } retval |= IRQ_HANDLED; } /* PA_INIT_ERROR is fatal and needs UIC reset */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); if ((reg & UIC_DATA_LINK_LAYER_ERROR) && (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; else if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) hba->uic_error |= UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; } retval |= IRQ_HANDLED; } /* UIC NL/TL/DME errors needs software retry */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); if ((reg & UIC_NETWORK_LAYER_ERROR) && (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); hba->uic_error |= UFSHCD_UIC_NL_ERROR; retval |= IRQ_HANDLED; } reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); if ((reg & UIC_TRANSPORT_LAYER_ERROR) && (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); hba->uic_error |= UFSHCD_UIC_TL_ERROR; retval |= IRQ_HANDLED; } reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); if ((reg & UIC_DME_ERROR) && (reg & UIC_DME_ERROR_CODE_MASK)) { ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); hba->uic_error |= UFSHCD_UIC_DME_ERROR; retval |= IRQ_HANDLED; } dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", __func__, hba->uic_error); return retval; } /** * ufshcd_check_errors - Check for errors that need s/w attention * @hba: per-adapter instance * @intr_status: interrupt status generated by the controller * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) { bool queue_eh_work = false; irqreturn_t retval = IRQ_NONE; spin_lock(hba->host->host_lock); hba->errors |= UFSHCD_ERROR_MASK & intr_status; if (hba->errors & INT_FATAL_ERRORS) { ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, hba->errors); queue_eh_work = true; } if (hba->errors & UIC_ERROR) { hba->uic_error = 0; retval = ufshcd_update_uic_error(hba); if (hba->uic_error) queue_eh_work = true; } if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { dev_err(hba->dev, "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? "Enter" : "Exit", hba->errors, ufshcd_get_upmcrs(hba)); ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, hba->errors); ufshcd_set_link_broken(hba); queue_eh_work = true; } if (queue_eh_work) { /* * update the transfer error masks to sticky bits, let's do this * irrespective of current ufshcd_state. */ hba->saved_err |= hba->errors; hba->saved_uic_err |= hba->uic_error; /* dump controller state before resetting */ if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || (hba->saved_uic_err && (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", __func__, hba->saved_err, hba->saved_uic_err); ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); ufshcd_print_pwr_info(hba); } ufshcd_schedule_eh_work(hba); retval |= IRQ_HANDLED; } /* * if (!queue_eh_work) - * Other errors are either non-fatal where host recovers * itself without s/w intervention or errors that will be * handled by the SCSI core layer. */ hba->errors = 0; hba->uic_error = 0; spin_unlock(hba->host->host_lock); return retval; } /** * ufshcd_tmc_handler - handle task management function completion * @hba: per adapter instance * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) { unsigned long flags, pending, issued; irqreturn_t ret = IRQ_NONE; int tag; spin_lock_irqsave(hba->host->host_lock, flags); pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); issued = hba->outstanding_tasks & ~pending; for_each_set_bit(tag, &issued, hba->nutmrs) { struct request *req = hba->tmf_rqs[tag]; struct completion *c = req->end_io_data; complete(c); ret = IRQ_HANDLED; } spin_unlock_irqrestore(hba->host->host_lock, flags); return ret; } /** * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events * @hba: per adapter instance * * Return: IRQ_HANDLED if interrupt is handled. */ static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) { struct ufs_hw_queue *hwq; unsigned long outstanding_cqs; unsigned int nr_queues; int i, ret; u32 events; ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); if (ret) outstanding_cqs = (1U << hba->nr_hw_queues) - 1; /* Exclude the poll queues */ nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; for_each_set_bit(i, &outstanding_cqs, nr_queues) { hwq = &hba->uhq[i]; events = ufshcd_mcq_read_cqis(hba, i); if (events) ufshcd_mcq_write_cqis(hba, events, i); if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) ufshcd_mcq_poll_cqe_lock(hba, hwq); } return IRQ_HANDLED; } /** * ufshcd_sl_intr - Interrupt service routine * @hba: per adapter instance * @intr_status: contains interrupts generated by the controller * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) { irqreturn_t retval = IRQ_NONE; if (intr_status & UFSHCD_UIC_MASK) retval |= ufshcd_uic_cmd_compl(hba, intr_status); if (intr_status & UFSHCD_ERROR_MASK || hba->errors) retval |= ufshcd_check_errors(hba, intr_status); if (intr_status & UTP_TASK_REQ_COMPL) retval |= ufshcd_tmc_handler(hba); if (intr_status & UTP_TRANSFER_REQ_COMPL) retval |= ufshcd_transfer_req_compl(hba); if (intr_status & MCQ_CQ_EVENT_STATUS) retval |= ufshcd_handle_mcq_cq_events(hba); return retval; } /** * ufshcd_intr - Main interrupt service routine * @irq: irq number * @__hba: pointer to adapter instance * * Return: * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_intr(int irq, void *__hba) { u32 intr_status, enabled_intr_status = 0; irqreturn_t retval = IRQ_NONE; struct ufs_hba *hba = __hba; int retries = hba->nutrs; intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); hba->ufs_stats.last_intr_status = intr_status; hba->ufs_stats.last_intr_ts = local_clock(); /* * There could be max of hba->nutrs reqs in flight and in worst case * if the reqs get finished 1 by 1 after the interrupt status is * read, make sure we handle them by checking the interrupt status * again in a loop until we process all of the reqs before returning. */ while (intr_status && retries--) { enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); if (enabled_intr_status) retval |= ufshcd_sl_intr(hba, enabled_intr_status); intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); } if (enabled_intr_status && retval == IRQ_NONE && (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", __func__, intr_status, hba->ufs_stats.last_intr_status, enabled_intr_status); ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); } return retval; } static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) { int err = 0; u32 mask = 1 << tag; unsigned long flags; if (!test_bit(tag, &hba->outstanding_tasks)) goto out; spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_utmrl_clear(hba, tag); spin_unlock_irqrestore(hba->host->host_lock, flags); /* poll for max. 1 sec to clear door bell register by h/w */ err = ufshcd_wait_for_register(hba, REG_UTP_TASK_REQ_DOOR_BELL, mask, 0, 1000, 1000); dev_err(hba->dev, "Clearing task management function with tag %d %s\n", tag, err < 0 ? "failed" : "succeeded"); out: return err; } static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, struct utp_task_req_desc *treq, u8 tm_function) { struct request_queue *q = hba->tmf_queue; struct Scsi_Host *host = hba->host; DECLARE_COMPLETION_ONSTACK(wait); struct request *req; unsigned long flags; int task_tag, err; /* * blk_mq_alloc_request() is used here only to get a free tag. */ req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); if (IS_ERR(req)) return PTR_ERR(req); req->end_io_data = &wait; ufshcd_hold(hba); spin_lock_irqsave(host->host_lock, flags); task_tag = req->tag; WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", task_tag); hba->tmf_rqs[req->tag] = req; treq->upiu_req.req_header.task_tag = task_tag; memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); /* send command to the controller */ __set_bit(task_tag, &hba->outstanding_tasks); ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); /* Make sure that doorbell is committed immediately */ wmb(); spin_unlock_irqrestore(host->host_lock, flags); ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); /* wait until the task management command is completed */ err = wait_for_completion_io_timeout(&wait, msecs_to_jiffies(TM_CMD_TIMEOUT)); if (!err) { ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", __func__, tm_function); if (ufshcd_clear_tm_cmd(hba, task_tag)) dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", __func__, task_tag); err = -ETIMEDOUT; } else { err = 0; memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); } spin_lock_irqsave(hba->host->host_lock, flags); hba->tmf_rqs[req->tag] = NULL; __clear_bit(task_tag, &hba->outstanding_tasks); spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_release(hba); blk_mq_free_request(req); return err; } /** * ufshcd_issue_tm_cmd - issues task management commands to controller * @hba: per adapter instance * @lun_id: LUN ID to which TM command is sent * @task_id: task ID to which the TM command is applicable * @tm_function: task management function opcode * @tm_response: task management service response return value * * Return: non-zero value on error, zero on success. */ static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, u8 tm_function, u8 *tm_response) { struct utp_task_req_desc treq = { }; enum utp_ocs ocs_value; int err; /* Configure task request descriptor */ treq.header.interrupt = 1; treq.header.ocs = OCS_INVALID_COMMAND_STATUS; /* Configure task request UPIU */ treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; treq.upiu_req.req_header.lun = lun_id; treq.upiu_req.req_header.tm_function = tm_function; /* * The host shall provide the same value for LUN field in the basic * header and for Input Parameter. */ treq.upiu_req.input_param1 = cpu_to_be32(lun_id); treq.upiu_req.input_param2 = cpu_to_be32(task_id); err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); if (err == -ETIMEDOUT) return err; ocs_value = treq.header.ocs & MASK_OCS; if (ocs_value != OCS_SUCCESS) dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, ocs_value); else if (tm_response) *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & MASK_TM_SERVICE_RESP; return err; } /** * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests * @hba: per-adapter instance * @req_upiu: upiu request * @rsp_upiu: upiu reply * @desc_buff: pointer to descriptor buffer, NULL if NA * @buff_len: descriptor size, 0 if NA * @cmd_type: specifies the type (NOP, Query...) * @desc_op: descriptor operation * * Those type of requests uses UTP Transfer Request Descriptor - utrd. * Therefore, it "rides" the device management infrastructure: uses its tag and * tasks work queues. * * Since there is only one available tag for device management commands, * the caller is expected to hold the hba->dev_cmd.lock mutex. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, struct utp_upiu_req *rsp_upiu, u8 *desc_buff, int *buff_len, enum dev_cmd_type cmd_type, enum query_opcode desc_op) { DECLARE_COMPLETION_ONSTACK(wait); const u32 tag = hba->reserved_slot; struct ufshcd_lrb *lrbp; int err = 0; u8 upiu_flags; /* Protects use of hba->reserved_slot. */ lockdep_assert_held(&hba->dev_cmd.lock); down_read(&hba->clk_scaling_lock); lrbp = &hba->lrb[tag]; lrbp->cmd = NULL; lrbp->task_tag = tag; lrbp->lun = 0; lrbp->intr_cmd = true; ufshcd_prepare_lrbp_crypto(NULL, lrbp); hba->dev_cmd.type = cmd_type; if (hba->ufs_version <= ufshci_version(1, 1)) lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; else lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; /* update the task tag in the request upiu */ req_upiu->header.task_tag = tag; ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); /* just copy the upiu request as it is */ memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { /* The Data Segment Area is optional depending upon the query * function value. for WRITE DESCRIPTOR, the data segment * follows right after the tsf. */ memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); *buff_len = 0; } memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); hba->dev_cmd.complete = &wait; ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); ufshcd_send_command(hba, tag, hba->dev_cmd_queue); /* * ignore the returning value here - ufshcd_check_query_response is * bound to fail since dev_cmd.query and dev_cmd.type were left empty. * read the response directly ignoring all errors. */ ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); /* just copy the upiu response as it is */ memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header .data_segment_length); if (*buff_len >= resp_len) { memcpy(desc_buff, descp, resp_len); *buff_len = resp_len; } else { dev_warn(hba->dev, "%s: rsp size %d is bigger than buffer size %d", __func__, resp_len, *buff_len); *buff_len = 0; err = -EINVAL; } } ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); up_read(&hba->clk_scaling_lock); return err; } /** * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands * @hba: per-adapter instance * @req_upiu: upiu request * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target * @desc_buff: pointer to descriptor buffer, NULL if NA * @buff_len: descriptor size, 0 if NA * @desc_op: descriptor operation * * Supports UTP Transfer requests (nop and query), and UTP Task * Management requests. * It is up to the caller to fill the upiu conent properly, as it will * be copied without any further input validations. * * Return: 0 upon success; < 0 upon failure. */ int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, struct utp_upiu_req *rsp_upiu, enum upiu_request_transaction msgcode, u8 *desc_buff, int *buff_len, enum query_opcode desc_op) { int err; enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; struct utp_task_req_desc treq = { }; enum utp_ocs ocs_value; u8 tm_f = req_upiu->header.tm_function; switch (msgcode) { case UPIU_TRANSACTION_NOP_OUT: cmd_type = DEV_CMD_TYPE_NOP; fallthrough; case UPIU_TRANSACTION_QUERY_REQ: ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, desc_buff, buff_len, cmd_type, desc_op); mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); break; case UPIU_TRANSACTION_TASK_REQ: treq.header.interrupt = 1; treq.header.ocs = OCS_INVALID_COMMAND_STATUS; memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); if (err == -ETIMEDOUT) break; ocs_value = treq.header.ocs & MASK_OCS; if (ocs_value != OCS_SUCCESS) { dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, ocs_value); break; } memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); break; default: err = -EINVAL; break; } return err; } /** * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request * @hba: per adapter instance * @req_upiu: upiu request * @rsp_upiu: upiu reply * @req_ehs: EHS field which contains Advanced RPMB Request Message * @rsp_ehs: EHS field which returns Advanced RPMB Response Message * @sg_cnt: The number of sg lists actually used * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation * @dir: DMA direction * * Return: zero on success, non-zero on failure. */ int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, enum dma_data_direction dir) { DECLARE_COMPLETION_ONSTACK(wait); const u32 tag = hba->reserved_slot; struct ufshcd_lrb *lrbp; int err = 0; int result; u8 upiu_flags; u8 *ehs_data; u16 ehs_len; /* Protects use of hba->reserved_slot. */ ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); down_read(&hba->clk_scaling_lock); lrbp = &hba->lrb[tag]; lrbp->cmd = NULL; lrbp->task_tag = tag; lrbp->lun = UFS_UPIU_RPMB_WLUN; lrbp->intr_cmd = true; ufshcd_prepare_lrbp_crypto(NULL, lrbp); hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; /* * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, * HW controller takes EHS length from UTRD. */ if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); else ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); /* update the task tag */ req_upiu->header.task_tag = tag; /* copy the UPIU(contains CDB) request as it is */ memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); /* Copy EHS, starting with byte32, immediately after the CDB package */ memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); if (dir != DMA_NONE && sg_list) ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); hba->dev_cmd.complete = &wait; ufshcd_send_command(hba, tag, hba->dev_cmd_queue); err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); if (!err) { /* Just copy the upiu response as it is */ memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); /* Get the response UPIU result */ result = (lrbp->ucd_rsp_ptr->header.response << 8) | lrbp->ucd_rsp_ptr->header.status; ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; /* * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB * Message is 02h */ if (ehs_len == 2 && rsp_ehs) { /* * ucd_rsp_ptr points to a buffer with a length of 512 bytes * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 */ ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; memcpy(rsp_ehs, ehs_data, ehs_len * 32); } } up_read(&hba->clk_scaling_lock); mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); return err ? : result; } /** * ufshcd_eh_device_reset_handler() - Reset a single logical unit. * @cmd: SCSI command pointer * * Return: SUCCESS or FAILED. */ static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) { unsigned long flags, pending_reqs = 0, not_cleared = 0; struct Scsi_Host *host; struct ufs_hba *hba; struct ufs_hw_queue *hwq; struct ufshcd_lrb *lrbp; u32 pos, not_cleared_mask = 0; int err; u8 resp = 0xF, lun; host = cmd->device->host; hba = shost_priv(host); lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { if (!err) err = resp; goto out; } if (is_mcq_enabled(hba)) { for (pos = 0; pos < hba->nutrs; pos++) { lrbp = &hba->lrb[pos]; if (ufshcd_cmd_inflight(lrbp->cmd) && lrbp->lun == lun) { ufshcd_clear_cmd(hba, pos); hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); ufshcd_mcq_poll_cqe_lock(hba, hwq); } } err = 0; goto out; } /* clear the commands that were pending for corresponding LUN */ spin_lock_irqsave(&hba->outstanding_lock, flags); for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) if (hba->lrb[pos].lun == lun) __set_bit(pos, &pending_reqs); hba->outstanding_reqs &= ~pending_reqs; spin_unlock_irqrestore(&hba->outstanding_lock, flags); for_each_set_bit(pos, &pending_reqs, hba->nutrs) { if (ufshcd_clear_cmd(hba, pos) < 0) { spin_lock_irqsave(&hba->outstanding_lock, flags); not_cleared = 1U << pos & ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); hba->outstanding_reqs |= not_cleared; not_cleared_mask |= not_cleared; spin_unlock_irqrestore(&hba->outstanding_lock, flags); dev_err(hba->dev, "%s: failed to clear request %d\n", __func__, pos); } } __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); out: hba->req_abort_count = 0; ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); if (!err) { err = SUCCESS; } else { dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); err = FAILED; } return err; } static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) { struct ufshcd_lrb *lrbp; int tag; for_each_set_bit(tag, &bitmap, hba->nutrs) { lrbp = &hba->lrb[tag]; lrbp->req_abort_skip = true; } } /** * ufshcd_try_to_abort_task - abort a specific task * @hba: Pointer to adapter instance * @tag: Task tag/index to be aborted * * Abort the pending command in device by sending UFS_ABORT_TASK task management * command, and in host controller by clearing the door-bell register. There can * be race between controller sending the command to the device while abort is * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is * really issued and then try to abort it. * * Return: zero on success, non-zero on failure. */ int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) { struct ufshcd_lrb *lrbp = &hba->lrb[tag]; int err = 0; int poll_cnt; u8 resp = 0xF; u32 reg; for (poll_cnt = 100; poll_cnt; poll_cnt--) { err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, UFS_QUERY_TASK, &resp); if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { /* cmd pending in the device */ dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", __func__, tag); break; } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { /* * cmd not pending in the device, check if it is * in transition. */ dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", __func__, tag); if (is_mcq_enabled(hba)) { /* MCQ mode */ if (ufshcd_cmd_inflight(lrbp->cmd)) { /* sleep for max. 200us same delay as in SDB mode */ usleep_range(100, 200); continue; } /* command completed already */ dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", __func__, tag); goto out; } /* Single Doorbell Mode */ reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); if (reg & (1 << tag)) { /* sleep for max. 200us to stabilize */ usleep_range(100, 200); continue; } /* command completed already */ dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", __func__, tag); goto out; } else { dev_err(hba->dev, "%s: no response from device. tag = %d, err %d\n", __func__, tag, err); if (!err) err = resp; /* service response error */ goto out; } } if (!poll_cnt) { err = -EBUSY; goto out; } err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, UFS_ABORT_TASK, &resp); if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { if (!err) { err = resp; /* service response error */ dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", __func__, tag, err); } goto out; } err = ufshcd_clear_cmd(hba, tag); if (err) dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", __func__, tag, err); out: return err; } /** * ufshcd_abort - scsi host template eh_abort_handler callback * @cmd: SCSI command pointer * * Return: SUCCESS or FAILED. */ static int ufshcd_abort(struct scsi_cmnd *cmd) { struct Scsi_Host *host = cmd->device->host; struct ufs_hba *hba = shost_priv(host); int tag = scsi_cmd_to_rq(cmd)->tag; struct ufshcd_lrb *lrbp = &hba->lrb[tag]; unsigned long flags; int err = FAILED; bool outstanding; u32 reg; WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); ufshcd_hold(hba); if (!is_mcq_enabled(hba)) { reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); if (!test_bit(tag, &hba->outstanding_reqs)) { /* If command is already aborted/completed, return FAILED. */ dev_err(hba->dev, "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", __func__, tag, hba->outstanding_reqs, reg); goto release; } } /* Print Transfer Request of aborted task */ dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); /* * Print detailed info about aborted request. * As more than one request might get aborted at the same time, * print full information only for the first aborted request in order * to reduce repeated printouts. For other aborted requests only print * basic details. */ scsi_print_command(cmd); if (!hba->req_abort_count) { ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); ufshcd_print_evt_hist(hba); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_tr(hba, tag, true); } else { ufshcd_print_tr(hba, tag, false); } hba->req_abort_count++; if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { /* only execute this code in single doorbell mode */ dev_err(hba->dev, "%s: cmd was completed, but without a notifying intr, tag = %d", __func__, tag); __ufshcd_transfer_req_compl(hba, 1UL << tag); goto release; } /* * Task abort to the device W-LUN is illegal. When this command * will fail, due to spec violation, scsi err handling next step * will be to send LU reset which, again, is a spec violation. * To avoid these unnecessary/illegal steps, first we clean up * the lrb taken by this cmd and re-set it in outstanding_reqs, * then queue the eh_work and bail. */ if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); spin_lock_irqsave(host->host_lock, flags); hba->force_reset = true; ufshcd_schedule_eh_work(hba); spin_unlock_irqrestore(host->host_lock, flags); goto release; } if (is_mcq_enabled(hba)) { /* MCQ mode. Branch off to handle abort for mcq mode */ err = ufshcd_mcq_abort(cmd); goto release; } /* Skip task abort in case previous aborts failed and report failure */ if (lrbp->req_abort_skip) { dev_err(hba->dev, "%s: skipping abort\n", __func__); ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); goto release; } err = ufshcd_try_to_abort_task(hba, tag); if (err) { dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); err = FAILED; goto release; } /* * Clear the corresponding bit from outstanding_reqs since the command * has been aborted successfully. */ spin_lock_irqsave(&hba->outstanding_lock, flags); outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); spin_unlock_irqrestore(&hba->outstanding_lock, flags); if (outstanding) ufshcd_release_scsi_cmd(hba, lrbp); err = SUCCESS; release: /* Matches the ufshcd_hold() call at the start of this function. */ ufshcd_release(hba); return err; } /** * ufshcd_host_reset_and_restore - reset and restore host controller * @hba: per-adapter instance * * Note that host controller reset may issue DME_RESET to * local and remote (device) Uni-Pro stack and the attributes * are reset to default state. * * Return: zero on success, non-zero on failure. */ static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) { int err; /* * Stop the host controller and complete the requests * cleared by h/w */ ufshcd_hba_stop(hba); hba->silence_err_logs = true; ufshcd_complete_requests(hba, true); hba->silence_err_logs = false; /* scale up clocks to max frequency before full reinitialization */ ufshcd_scale_clks(hba, true); err = ufshcd_hba_enable(hba); /* Establish the link again and restore the device */ if (!err) err = ufshcd_probe_hba(hba, false); if (err) dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); return err; } /** * ufshcd_reset_and_restore - reset and re-initialize host/device * @hba: per-adapter instance * * Reset and recover device, host and re-establish link. This * is helpful to recover the communication in fatal error conditions. * * Return: zero on success, non-zero on failure. */ static int ufshcd_reset_and_restore(struct ufs_hba *hba) { u32 saved_err = 0; u32 saved_uic_err = 0; int err = 0; unsigned long flags; int retries = MAX_HOST_RESET_RETRIES; spin_lock_irqsave(hba->host->host_lock, flags); do { /* * This is a fresh start, cache and clear saved error first, * in case new error generated during reset and restore. */ saved_err |= hba->saved_err; saved_uic_err |= hba->saved_uic_err; hba->saved_err = 0; hba->saved_uic_err = 0; hba->force_reset = false; hba->ufshcd_state = UFSHCD_STATE_RESET; spin_unlock_irqrestore(hba->host->host_lock, flags); /* Reset the attached device */ ufshcd_device_reset(hba); err = ufshcd_host_reset_and_restore(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (err) continue; /* Do not exit unless operational or dead */ if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && hba->ufshcd_state != UFSHCD_STATE_ERROR && hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) err = -EAGAIN; } while (err && --retries); /* * Inform scsi mid-layer that we did reset and allow to handle * Unit Attention properly. */ scsi_report_bus_reset(hba->host, 0); if (err) { hba->ufshcd_state = UFSHCD_STATE_ERROR; hba->saved_err |= saved_err; hba->saved_uic_err |= saved_uic_err; } spin_unlock_irqrestore(hba->host->host_lock, flags); return err; } /** * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer * @cmd: SCSI command pointer * * Return: SUCCESS or FAILED. */ static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) { int err = SUCCESS; unsigned long flags; struct ufs_hba *hba; hba = shost_priv(cmd->device->host); spin_lock_irqsave(hba->host->host_lock, flags); hba->force_reset = true; ufshcd_schedule_eh_work(hba); dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); spin_unlock_irqrestore(hba->host->host_lock, flags); flush_work(&hba->eh_work); spin_lock_irqsave(hba->host->host_lock, flags); if (hba->ufshcd_state == UFSHCD_STATE_ERROR) err = FAILED; spin_unlock_irqrestore(hba->host->host_lock, flags); return err; } /** * ufshcd_get_max_icc_level - calculate the ICC level * @sup_curr_uA: max. current supported by the regulator * @start_scan: row at the desc table to start scan from * @buff: power descriptor buffer * * Return: calculated max ICC level for specific regulator. */ static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, const char *buff) { int i; int curr_uA; u16 data; u16 unit; for (i = start_scan; i >= 0; i--) { data = get_unaligned_be16(&buff[2 * i]); unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> ATTR_ICC_LVL_UNIT_OFFSET; curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; switch (unit) { case UFSHCD_NANO_AMP: curr_uA = curr_uA / 1000; break; case UFSHCD_MILI_AMP: curr_uA = curr_uA * 1000; break; case UFSHCD_AMP: curr_uA = curr_uA * 1000 * 1000; break; case UFSHCD_MICRO_AMP: default: break; } if (sup_curr_uA >= curr_uA) break; } if (i < 0) { i = 0; pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); } return (u32)i; } /** * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level * In case regulators are not initialized we'll return 0 * @hba: per-adapter instance * @desc_buf: power descriptor buffer to extract ICC levels from. * * Return: calculated ICC level. */ static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, const u8 *desc_buf) { u32 icc_level = 0; if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || !hba->vreg_info.vccq2) { /* * Using dev_dbg to avoid messages during runtime PM to avoid * never-ending cycles of messages written back to storage by * user space causing runtime resume, causing more messages and * so on. */ dev_dbg(hba->dev, "%s: Regulator capability was not set, actvIccLevel=%d", __func__, icc_level); goto out; } if (hba->vreg_info.vcc->max_uA) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vcc->max_uA, POWER_DESC_MAX_ACTV_ICC_LVLS - 1, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); if (hba->vreg_info.vccq->max_uA) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vccq->max_uA, icc_level, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); if (hba->vreg_info.vccq2->max_uA) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vccq2->max_uA, icc_level, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); out: return icc_level; } static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) { int ret; u8 *desc_buf; u32 icc_level; desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); if (!desc_buf) return; ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, desc_buf, QUERY_DESC_MAX_SIZE); if (ret) { dev_err(hba->dev, "%s: Failed reading power descriptor ret = %d", __func__, ret); goto out; } icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); if (ret) dev_err(hba->dev, "%s: Failed configuring bActiveICCLevel = %d ret = %d", __func__, icc_level, ret); out: kfree(desc_buf); } static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) { scsi_autopm_get_device(sdev); blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); if (sdev->rpm_autosuspend) pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, RPM_AUTOSUSPEND_DELAY_MS); scsi_autopm_put_device(sdev); } /** * ufshcd_scsi_add_wlus - Adds required W-LUs * @hba: per-adapter instance * * UFS device specification requires the UFS devices to support 4 well known * logical units: * "REPORT_LUNS" (address: 01h) * "UFS Device" (address: 50h) * "RPMB" (address: 44h) * "BOOT" (address: 30h) * UFS device's power management needs to be controlled by "POWER CONDITION" * field of SSU (START STOP UNIT) command. But this "power condition" field * will take effect only when its sent to "UFS device" well known logical unit * hence we require the scsi_device instance to represent this logical unit in * order for the UFS host driver to send the SSU command for power management. * * We also require the scsi_device instance for "RPMB" (Replay Protected Memory * Block) LU so user space process can control this LU. User space may also * want to have access to BOOT LU. * * This function adds scsi device instances for each of all well known LUs * (except "REPORT LUNS" LU). * * Return: zero on success (all required W-LUs are added successfully), * non-zero error value on failure (if failed to add any of the required W-LU). */ static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) { int ret = 0; struct scsi_device *sdev_boot, *sdev_rpmb; hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); if (IS_ERR(hba->ufs_device_wlun)) { ret = PTR_ERR(hba->ufs_device_wlun); hba->ufs_device_wlun = NULL; goto out; } scsi_device_put(hba->ufs_device_wlun); sdev_rpmb = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); if (IS_ERR(sdev_rpmb)) { ret = PTR_ERR(sdev_rpmb); goto remove_ufs_device_wlun; } ufshcd_blk_pm_runtime_init(sdev_rpmb); scsi_device_put(sdev_rpmb); sdev_boot = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); if (IS_ERR(sdev_boot)) { dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); } else { ufshcd_blk_pm_runtime_init(sdev_boot); scsi_device_put(sdev_boot); } goto out; remove_ufs_device_wlun: scsi_remove_device(hba->ufs_device_wlun); out: return ret; } static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) { struct ufs_dev_info *dev_info = &hba->dev_info; u8 lun; u32 d_lu_wb_buf_alloc; u32 ext_ufs_feature; if (!ufshcd_is_wb_allowed(hba)) return; /* * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES * enabled */ if (!(dev_info->wspecversion >= 0x310 || dev_info->wspecversion == 0x220 || (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) goto wb_disabled; ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) goto wb_disabled; /* * WB may be supported but not configured while provisioning. The spec * says, in dedicated wb buffer mode, a max of 1 lun would have wb * buffer configured. */ dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; dev_info->b_presrv_uspc_en = desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { if (!get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) goto wb_disabled; } else { for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { d_lu_wb_buf_alloc = 0; ufshcd_read_unit_desc_param(hba, lun, UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, (u8 *)&d_lu_wb_buf_alloc, sizeof(d_lu_wb_buf_alloc)); if (d_lu_wb_buf_alloc) { dev_info->wb_dedicated_lu = lun; break; } } if (!d_lu_wb_buf_alloc) goto wb_disabled; } if (!ufshcd_is_wb_buf_lifetime_available(hba)) goto wb_disabled; return; wb_disabled: hba->caps &= ~UFSHCD_CAP_WB_EN; } static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) { struct ufs_dev_info *dev_info = &hba->dev_info; u32 ext_ufs_feature; u8 mask = 0; if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) return; ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) mask |= MASK_EE_TOO_LOW_TEMP; if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) mask |= MASK_EE_TOO_HIGH_TEMP; if (mask) { ufshcd_enable_ee(hba, mask); ufs_hwmon_probe(hba, mask); } } static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) { struct ufs_dev_info *dev_info = &hba->dev_info; u32 ext_ufs_feature; u32 ext_iid_en = 0; int err; /* Only UFS-4.0 and above may support EXT_IID */ if (dev_info->wspecversion < 0x400) goto out; ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) goto out; err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); if (err) dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); out: dev_info->b_ext_iid_en = ext_iid_en; } void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, const struct ufs_dev_quirk *fixups) { const struct ufs_dev_quirk *f; struct ufs_dev_info *dev_info = &hba->dev_info; if (!fixups) return; for (f = fixups; f->quirk; f++) { if ((f->wmanufacturerid == dev_info->wmanufacturerid || f->wmanufacturerid == UFS_ANY_VENDOR) && ((dev_info->model && STR_PRFX_EQUAL(f->model, dev_info->model)) || !strcmp(f->model, UFS_ANY_MODEL))) hba->dev_quirks |= f->quirk; } } EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); static void ufs_fixup_device_setup(struct ufs_hba *hba) { /* fix by general quirk table */ ufshcd_fixup_dev_quirks(hba, ufs_fixups); /* allow vendors to fix quirks */ ufshcd_vops_fixup_dev_quirks(hba); } static int ufs_get_device_desc(struct ufs_hba *hba) { int err; u8 model_index; u8 *desc_buf; struct ufs_dev_info *dev_info = &hba->dev_info; desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); if (!desc_buf) { err = -ENOMEM; goto out; } err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, QUERY_DESC_MAX_SIZE); if (err) { dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", __func__, err); goto out; } /* * getting vendor (manufacturerID) and Bank Index in big endian * format */ dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; /* getting Specification Version in big endian format */ dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; err = ufshcd_read_string_desc(hba, model_index, &dev_info->model, SD_ASCII_STD); if (err < 0) { dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", __func__, err); goto out; } hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; ufs_fixup_device_setup(hba); ufshcd_wb_probe(hba, desc_buf); ufshcd_temp_notif_probe(hba, desc_buf); if (hba->ext_iid_sup) ufshcd_ext_iid_probe(hba, desc_buf); /* * ufshcd_read_string_desc returns size of the string * reset the error value */ err = 0; out: kfree(desc_buf); return err; } static void ufs_put_device_desc(struct ufs_hba *hba) { struct ufs_dev_info *dev_info = &hba->dev_info; kfree(dev_info->model); dev_info->model = NULL; } /** * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro * @hba: per-adapter instance * * PA_TActivate parameter can be tuned manually if UniPro version is less than * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce * the hibern8 exit latency. * * Return: zero on success, non-zero error value on failure. */ static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) { int ret = 0; u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB_SEL( RX_MIN_ACTIVATETIME_CAPABILITY, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), &peer_rx_min_activatetime); if (ret) goto out; /* make sure proper unit conversion is applied */ tuned_pa_tactivate = ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) / PA_TACTIVATE_TIME_UNIT_US); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), tuned_pa_tactivate); out: return ret; } /** * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro * @hba: per-adapter instance * * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. * This optimal value can help reduce the hibern8 exit latency. * * Return: zero on success, non-zero error value on failure. */ static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) { int ret = 0; u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; u32 max_hibern8_time, tuned_pa_hibern8time; ret = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &local_tx_hibern8_time_cap); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), &peer_rx_hibern8_time_cap); if (ret) goto out; max_hibern8_time = max(local_tx_hibern8_time_cap, peer_rx_hibern8_time_cap); /* make sure proper unit conversion is applied */ tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) / PA_HIBERN8_TIME_UNIT_US); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), tuned_pa_hibern8time); out: return ret; } /** * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is * less than device PA_TACTIVATE time. * @hba: per-adapter instance * * Some UFS devices require host PA_TACTIVATE to be lower than device * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk * for such devices. * * Return: zero on success, non-zero error value on failure. */ static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) { int ret = 0; u32 granularity, peer_granularity; u32 pa_tactivate, peer_pa_tactivate; u32 pa_tactivate_us, peer_pa_tactivate_us; static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &granularity); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &peer_granularity); if (ret) goto out; if ((granularity < PA_GRANULARITY_MIN_VAL) || (granularity > PA_GRANULARITY_MAX_VAL)) { dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", __func__, granularity); return -EINVAL; } if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || (peer_granularity > PA_GRANULARITY_MAX_VAL)) { dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", __func__, peer_granularity); return -EINVAL; } ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &peer_pa_tactivate); if (ret) goto out; pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; peer_pa_tactivate_us = peer_pa_tactivate * gran_to_us_table[peer_granularity - 1]; if (pa_tactivate_us >= peer_pa_tactivate_us) { u32 new_peer_pa_tactivate; new_peer_pa_tactivate = pa_tactivate_us / gran_to_us_table[peer_granularity - 1]; new_peer_pa_tactivate++; ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), new_peer_pa_tactivate); } out: return ret; } static void ufshcd_tune_unipro_params(struct ufs_hba *hba) { if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { ufshcd_tune_pa_tactivate(hba); ufshcd_tune_pa_hibern8time(hba); } ufshcd_vops_apply_dev_quirks(hba); if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) /* set 1ms timeout for PA_TACTIVATE */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) ufshcd_quirk_tune_host_pa_tactivate(hba); } static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) { hba->ufs_stats.hibern8_exit_cnt = 0; hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); hba->req_abort_count = 0; } static int ufshcd_device_geo_params_init(struct ufs_hba *hba) { int err; u8 *desc_buf; desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); if (!desc_buf) { err = -ENOMEM; goto out; } err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, desc_buf, QUERY_DESC_MAX_SIZE); if (err) { dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", __func__, err); goto out; } if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) hba->dev_info.max_lu_supported = 32; else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) hba->dev_info.max_lu_supported = 8; out: kfree(desc_buf); return err; } struct ufs_ref_clk { unsigned long freq_hz; enum ufs_ref_clk_freq val; }; static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { {19200000, REF_CLK_FREQ_19_2_MHZ}, {26000000, REF_CLK_FREQ_26_MHZ}, {38400000, REF_CLK_FREQ_38_4_MHZ}, {52000000, REF_CLK_FREQ_52_MHZ}, {0, REF_CLK_FREQ_INVAL}, }; static enum ufs_ref_clk_freq ufs_get_bref_clk_from_hz(unsigned long freq) { int i; for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) if (ufs_ref_clk_freqs[i].freq_hz == freq) return ufs_ref_clk_freqs[i].val; return REF_CLK_FREQ_INVAL; } void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) { unsigned long freq; freq = clk_get_rate(refclk); hba->dev_ref_clk_freq = ufs_get_bref_clk_from_hz(freq); if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) dev_err(hba->dev, "invalid ref_clk setting = %ld\n", freq); } static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) { int err; u32 ref_clk; u32 freq = hba->dev_ref_clk_freq; err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); if (err) { dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", err); goto out; } if (ref_clk == freq) goto out; /* nothing to update */ err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); if (err) { dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", ufs_ref_clk_freqs[freq].freq_hz); goto out; } dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", ufs_ref_clk_freqs[freq].freq_hz); out: return err; } static int ufshcd_device_params_init(struct ufs_hba *hba) { bool flag; int ret; /* Init UFS geometry descriptor related parameters */ ret = ufshcd_device_geo_params_init(hba); if (ret) goto out; /* Check and apply UFS device quirks */ ret = ufs_get_device_desc(hba); if (ret) { dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", __func__, ret); goto out; } ufshcd_get_ref_clk_gating_wait(hba); if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) hba->dev_info.f_power_on_wp_en = flag; /* Probe maximum power mode co-supported by both UFS host and device */ if (ufshcd_get_max_pwr_mode(hba)) dev_err(hba->dev, "%s: Failed getting max supported power mode\n", __func__); out: return ret; } static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) { int err; struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; struct ufs_dev_info *dev_info = &hba->dev_info; struct utp_upiu_query_v4_0 *upiu_data; if (dev_info->wspecversion < 0x400) return; ufshcd_hold(hba); mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_TIMESTAMP, 0, 0); request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) dev_err(hba->dev, "%s: failed to set timestamp %d\n", __func__, err); mutex_unlock(&hba->dev_cmd.lock); ufshcd_release(hba); } /** * ufshcd_add_lus - probe and add UFS logical units * @hba: per-adapter instance * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_add_lus(struct ufs_hba *hba) { int ret; /* Add required well known logical units to scsi mid layer */ ret = ufshcd_scsi_add_wlus(hba); if (ret) goto out; /* Initialize devfreq after UFS device is detected */ if (ufshcd_is_clkscaling_supported(hba)) { memcpy(&hba->clk_scaling.saved_pwr_info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); hba->clk_scaling.is_allowed = true; ret = ufshcd_devfreq_init(hba); if (ret) goto out; hba->clk_scaling.is_enabled = true; ufshcd_init_clk_scaling_sysfs(hba); } ufs_bsg_probe(hba); scsi_scan_host(hba->host); out: return ret; } /* SDB - Single Doorbell */ static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) { size_t ucdl_size, utrdl_size; ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, hba->ucdl_dma_addr); utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, hba->utrdl_dma_addr); devm_kfree(hba->dev, hba->lrb); } static int ufshcd_alloc_mcq(struct ufs_hba *hba) { int ret; int old_nutrs = hba->nutrs; ret = ufshcd_mcq_decide_queue_depth(hba); if (ret < 0) return ret; hba->nutrs = ret; ret = ufshcd_mcq_init(hba); if (ret) goto err; /* * Previously allocated memory for nutrs may not be enough in MCQ mode. * Number of supported tags in MCQ mode may be larger than SDB mode. */ if (hba->nutrs != old_nutrs) { ufshcd_release_sdb_queue(hba, old_nutrs); ret = ufshcd_memory_alloc(hba); if (ret) goto err; ufshcd_host_memory_configure(hba); } ret = ufshcd_mcq_memory_alloc(hba); if (ret) goto err; return 0; err: hba->nutrs = old_nutrs; return ret; } static void ufshcd_config_mcq(struct ufs_hba *hba) { int ret; u32 intrs; ret = ufshcd_mcq_vops_config_esi(hba); dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); intrs = UFSHCD_ENABLE_MCQ_INTRS; if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) intrs &= ~MCQ_CQ_EVENT_STATUS; ufshcd_enable_intr(hba, intrs); ufshcd_mcq_make_queues_operational(hba); ufshcd_mcq_config_mac(hba, hba->nutrs); hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; /* Select MCQ mode */ ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, REG_UFS_MEM_CFG); hba->mcq_enabled = true; dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], hba->nutrs); } static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) { int ret; struct Scsi_Host *host = hba->host; hba->ufshcd_state = UFSHCD_STATE_RESET; ret = ufshcd_link_startup(hba); if (ret) return ret; if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) return ret; /* Debug counters initialization */ ufshcd_clear_dbg_ufs_stats(hba); /* UniPro link is active now */ ufshcd_set_link_active(hba); /* Reconfigure MCQ upon reset */ if (is_mcq_enabled(hba) && !init_dev_params) ufshcd_config_mcq(hba); /* Verify device initialization by sending NOP OUT UPIU */ ret = ufshcd_verify_dev_init(hba); if (ret) return ret; /* Initiate UFS initialization, and waiting until completion */ ret = ufshcd_complete_dev_init(hba); if (ret) return ret; /* * Initialize UFS device parameters used by driver, these * parameters are associated with UFS descriptors. */ if (init_dev_params) { ret = ufshcd_device_params_init(hba); if (ret) return ret; if (is_mcq_supported(hba) && !hba->scsi_host_added) { ret = ufshcd_alloc_mcq(hba); if (!ret) { ufshcd_config_mcq(hba); } else { /* Continue with SDB mode */ use_mcq_mode = false; dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", ret); } ret = scsi_add_host(host, hba->dev); if (ret) { dev_err(hba->dev, "scsi_add_host failed\n"); return ret; } hba->scsi_host_added = true; } else if (is_mcq_supported(hba)) { /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ ufshcd_config_mcq(hba); } } ufshcd_tune_unipro_params(hba); /* UFS device is also active now */ ufshcd_set_ufs_dev_active(hba); ufshcd_force_reset_auto_bkops(hba); ufshcd_set_timestamp_attr(hba); /* Gear up to HS gear if supported */ if (hba->max_pwr_info.is_valid) { /* * Set the right value to bRefClkFreq before attempting to * switch to HS gears. */ if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) ufshcd_set_dev_ref_clk(hba); ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); if (ret) { dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", __func__, ret); return ret; } } return 0; } /** * ufshcd_probe_hba - probe hba to detect device and initialize it * @hba: per-adapter instance * @init_dev_params: whether or not to call ufshcd_device_params_init(). * * Execute link-startup and verify device initialization * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) { ktime_t start = ktime_get(); unsigned long flags; int ret; ret = ufshcd_device_init(hba, init_dev_params); if (ret) goto out; if (!hba->pm_op_in_progress && (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { /* Reset the device and controller before doing reinit */ ufshcd_device_reset(hba); ufs_put_device_desc(hba); ufshcd_hba_stop(hba); ufshcd_vops_reinit_notify(hba); ret = ufshcd_hba_enable(hba); if (ret) { dev_err(hba->dev, "Host controller enable failed\n"); ufshcd_print_evt_hist(hba); ufshcd_print_host_state(hba); goto out; } /* Reinit the device */ ret = ufshcd_device_init(hba, init_dev_params); if (ret) goto out; } ufshcd_print_pwr_info(hba); /* * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) * and for removable UFS card as well, hence always set the parameter. * Note: Error handler may issue the device reset hence resetting * bActiveICCLevel as well so it is always safe to set this here. */ ufshcd_set_active_icc_lvl(hba); /* Enable UFS Write Booster if supported */ ufshcd_configure_wb(hba); if (hba->ee_usr_mask) ufshcd_write_ee_control(hba); /* Enable Auto-Hibernate if configured */ ufshcd_auto_hibern8_enable(hba); out: spin_lock_irqsave(hba->host->host_lock, flags); if (ret) hba->ufshcd_state = UFSHCD_STATE_ERROR; else if (hba->ufshcd_state == UFSHCD_STATE_RESET) hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; spin_unlock_irqrestore(hba->host->host_lock, flags); trace_ufshcd_init(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } /** * ufshcd_async_scan - asynchronous execution for probing hba * @data: data pointer to pass to this function * @cookie: cookie data */ static void ufshcd_async_scan(void *data, async_cookie_t cookie) { struct ufs_hba *hba = (struct ufs_hba *)data; int ret; down(&hba->host_sem); /* Initialize hba, detect and initialize UFS device */ ret = ufshcd_probe_hba(hba, true); up(&hba->host_sem); if (ret) goto out; /* Probe and add UFS logical units */ ret = ufshcd_add_lus(hba); out: pm_runtime_put_sync(hba->dev); if (ret) dev_err(hba->dev, "%s failed: %d\n", __func__, ret); } static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) { struct ufs_hba *hba = shost_priv(scmd->device->host); if (!hba->system_suspending) { /* Activate the error handler in the SCSI core. */ return SCSI_EH_NOT_HANDLED; } /* * If we get here we know that no TMFs are outstanding and also that * the only pending command is a START STOP UNIT command. Handle the * timeout of that command directly to prevent a deadlock between * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). */ ufshcd_link_recovery(hba); dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", __func__, hba->outstanding_tasks); return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; } static const struct attribute_group *ufshcd_driver_groups[] = { &ufs_sysfs_unit_descriptor_group, &ufs_sysfs_lun_attributes_group, NULL, }; static struct ufs_hba_variant_params ufs_hba_vps = { .hba_enable_delay_us = 1000, .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), .devfreq_profile.polling_ms = 100, .devfreq_profile.target = ufshcd_devfreq_target, .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, .ondemand_data.upthreshold = 70, .ondemand_data.downdifferential = 5, }; static const struct scsi_host_template ufshcd_driver_template = { .module = THIS_MODULE, .name = UFSHCD, .proc_name = UFSHCD, .map_queues = ufshcd_map_queues, .queuecommand = ufshcd_queuecommand, .mq_poll = ufshcd_poll, .slave_alloc = ufshcd_slave_alloc, .slave_configure = ufshcd_slave_configure, .slave_destroy = ufshcd_slave_destroy, .change_queue_depth = ufshcd_change_queue_depth, .eh_abort_handler = ufshcd_abort, .eh_device_reset_handler = ufshcd_eh_device_reset_handler, .eh_host_reset_handler = ufshcd_eh_host_reset_handler, .eh_timed_out = ufshcd_eh_timed_out, .this_id = -1, .sg_tablesize = SG_ALL, .cmd_per_lun = UFSHCD_CMD_PER_LUN, .can_queue = UFSHCD_CAN_QUEUE, .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, .max_sectors = SZ_1M / SECTOR_SIZE, .max_host_blocked = 1, .track_queue_depth = 1, .skip_settle_delay = 1, .sdev_groups = ufshcd_driver_groups, .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, }; static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, int ua) { int ret; if (!vreg) return 0; /* * "set_load" operation shall be required on those regulators * which specifically configured current limitation. Otherwise * zero max_uA may cause unexpected behavior when regulator is * enabled or set as high power mode. */ if (!vreg->max_uA) return 0; ret = regulator_set_load(vreg->reg, ua); if (ret < 0) { dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", __func__, vreg->name, ua, ret); } return ret; } static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, struct ufs_vreg *vreg) { return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); } static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, struct ufs_vreg *vreg) { if (!vreg) return 0; return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); } static int ufshcd_config_vreg(struct device *dev, struct ufs_vreg *vreg, bool on) { if (regulator_count_voltages(vreg->reg) <= 0) return 0; return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); } static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg || vreg->enabled) goto out; ret = ufshcd_config_vreg(dev, vreg, true); if (!ret) ret = regulator_enable(vreg->reg); if (!ret) vreg->enabled = true; else dev_err(dev, "%s: %s enable failed, err=%d\n", __func__, vreg->name, ret); out: return ret; } static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg || !vreg->enabled || vreg->always_on) goto out; ret = regulator_disable(vreg->reg); if (!ret) { /* ignore errors on applying disable config */ ufshcd_config_vreg(dev, vreg, false); vreg->enabled = false; } else { dev_err(dev, "%s: %s disable failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) { int ret = 0; struct device *dev = hba->dev; struct ufs_vreg_info *info = &hba->vreg_info; ret = ufshcd_toggle_vreg(dev, info->vcc, on); if (ret) goto out; ret = ufshcd_toggle_vreg(dev, info->vccq, on); if (ret) goto out; ret = ufshcd_toggle_vreg(dev, info->vccq2, on); out: if (ret) { ufshcd_toggle_vreg(dev, info->vccq2, false); ufshcd_toggle_vreg(dev, info->vccq, false); ufshcd_toggle_vreg(dev, info->vcc, false); } return ret; } static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) { struct ufs_vreg_info *info = &hba->vreg_info; return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); } int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg) goto out; vreg->reg = devm_regulator_get(dev, vreg->name); if (IS_ERR(vreg->reg)) { ret = PTR_ERR(vreg->reg); dev_err(dev, "%s: %s get failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } EXPORT_SYMBOL_GPL(ufshcd_get_vreg); static int ufshcd_init_vreg(struct ufs_hba *hba) { int ret = 0; struct device *dev = hba->dev; struct ufs_vreg_info *info = &hba->vreg_info; ret = ufshcd_get_vreg(dev, info->vcc); if (ret) goto out; ret = ufshcd_get_vreg(dev, info->vccq); if (!ret) ret = ufshcd_get_vreg(dev, info->vccq2); out: return ret; } static int ufshcd_init_hba_vreg(struct ufs_hba *hba) { struct ufs_vreg_info *info = &hba->vreg_info; return ufshcd_get_vreg(hba->dev, info->vdd_hba); } static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) { int ret = 0; struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; unsigned long flags; ktime_t start = ktime_get(); bool clk_state_changed = false; if (list_empty(head)) goto out; ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); if (ret) return ret; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { /* * Don't disable clocks which are needed * to keep the link active. */ if (ufshcd_is_link_active(hba) && clki->keep_link_active) continue; clk_state_changed = on ^ clki->enabled; if (on && !clki->enabled) { ret = clk_prepare_enable(clki->clk); if (ret) { dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", __func__, clki->name, ret); goto out; } } else if (!on && clki->enabled) { clk_disable_unprepare(clki->clk); } clki->enabled = on; dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, clki->name, on ? "en" : "dis"); } } ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); if (ret) return ret; out: if (ret) { list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) clk_disable_unprepare(clki->clk); } } else if (!ret && on) { spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); spin_unlock_irqrestore(hba->host->host_lock, flags); } if (clk_state_changed) trace_ufshcd_profile_clk_gating(dev_name(hba->dev), (on ? "on" : "off"), ktime_to_us(ktime_sub(ktime_get(), start)), ret); return ret; } static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) { u32 freq; int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); if (ret) { dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); return REF_CLK_FREQ_INVAL; } return ufs_get_bref_clk_from_hz(freq); } static int ufshcd_init_clocks(struct ufs_hba *hba) { int ret = 0; struct ufs_clk_info *clki; struct device *dev = hba->dev; struct list_head *head = &hba->clk_list_head; if (list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!clki->name) continue; clki->clk = devm_clk_get(dev, clki->name); if (IS_ERR(clki->clk)) { ret = PTR_ERR(clki->clk); dev_err(dev, "%s: %s clk get failed, %d\n", __func__, clki->name, ret); goto out; } /* * Parse device ref clk freq as per device tree "ref_clk". * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL * in ufshcd_alloc_host(). */ if (!strcmp(clki->name, "ref_clk")) ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); if (clki->max_freq) { ret = clk_set_rate(clki->clk, clki->max_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->max_freq, ret); goto out; } clki->curr_freq = clki->max_freq; } dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, clki->name, clk_get_rate(clki->clk)); } out: return ret; } static int ufshcd_variant_hba_init(struct ufs_hba *hba) { int err = 0; if (!hba->vops) goto out; err = ufshcd_vops_init(hba); if (err) dev_err_probe(hba->dev, err, "%s: variant %s init failed with err %d\n", __func__, ufshcd_get_var_name(hba), err); out: return err; } static void ufshcd_variant_hba_exit(struct ufs_hba *hba) { if (!hba->vops) return; ufshcd_vops_exit(hba); } static int ufshcd_hba_init(struct ufs_hba *hba) { int err; /* * Handle host controller power separately from the UFS device power * rails as it will help controlling the UFS host controller power * collapse easily which is different than UFS device power collapse. * Also, enable the host controller power before we go ahead with rest * of the initialization here. */ err = ufshcd_init_hba_vreg(hba); if (err) goto out; err = ufshcd_setup_hba_vreg(hba, true); if (err) goto out; err = ufshcd_init_clocks(hba); if (err) goto out_disable_hba_vreg; if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); err = ufshcd_setup_clocks(hba, true); if (err) goto out_disable_hba_vreg; err = ufshcd_init_vreg(hba); if (err) goto out_disable_clks; err = ufshcd_setup_vreg(hba, true); if (err) goto out_disable_clks; err = ufshcd_variant_hba_init(hba); if (err) goto out_disable_vreg; ufs_debugfs_hba_init(hba); hba->is_powered = true; goto out; out_disable_vreg: ufshcd_setup_vreg(hba, false); out_disable_clks: ufshcd_setup_clocks(hba, false); out_disable_hba_vreg: ufshcd_setup_hba_vreg(hba, false); out: return err; } static void ufshcd_hba_exit(struct ufs_hba *hba) { if (hba->is_powered) { ufshcd_exit_clk_scaling(hba); ufshcd_exit_clk_gating(hba); if (hba->eh_wq) destroy_workqueue(hba->eh_wq); ufs_debugfs_hba_exit(hba); ufshcd_variant_hba_exit(hba); ufshcd_setup_vreg(hba, false); ufshcd_setup_clocks(hba, false); ufshcd_setup_hba_vreg(hba, false); hba->is_powered = false; ufs_put_device_desc(hba); } } static int ufshcd_execute_start_stop(struct scsi_device *sdev, enum ufs_dev_pwr_mode pwr_mode, struct scsi_sense_hdr *sshdr) { const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; const struct scsi_exec_args args = { .sshdr = sshdr, .req_flags = BLK_MQ_REQ_PM, .scmd_flags = SCMD_FAIL_IF_RECOVERING, }; return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, &args); } /** * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device * power mode * @hba: per adapter instance * @pwr_mode: device power mode to set * * Return: 0 if requested power mode is set successfully; * < 0 if failed to set the requested power mode. */ static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, enum ufs_dev_pwr_mode pwr_mode) { struct scsi_sense_hdr sshdr; struct scsi_device *sdp; unsigned long flags; int ret, retries; spin_lock_irqsave(hba->host->host_lock, flags); sdp = hba->ufs_device_wlun; if (sdp && scsi_device_online(sdp)) ret = scsi_device_get(sdp); else ret = -ENODEV; spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) return ret; /* * If scsi commands fail, the scsi mid-layer schedules scsi error- * handling, which would wait for host to be resumed. Since we know * we are functional while we are here, skip host resume in error * handling context. */ hba->host->eh_noresume = 1; /* * Current function would be generally called from the power management * callbacks hence set the RQF_PM flag so that it doesn't resume the * already suspended childs. */ for (retries = 3; retries > 0; --retries) { ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); /* * scsi_execute() only returns a negative value if the request * queue is dying. */ if (ret <= 0) break; } if (ret) { sdev_printk(KERN_WARNING, sdp, "START_STOP failed for power mode: %d, result %x\n", pwr_mode, ret); if (ret > 0) { if (scsi_sense_valid(&sshdr)) scsi_print_sense_hdr(sdp, NULL, &sshdr); ret = -EIO; } } else { hba->curr_dev_pwr_mode = pwr_mode; } scsi_device_put(sdp); hba->host->eh_noresume = 0; return ret; } static int ufshcd_link_state_transition(struct ufs_hba *hba, enum uic_link_state req_link_state, bool check_for_bkops) { int ret = 0; if (req_link_state == hba->uic_link_state) return 0; if (req_link_state == UIC_LINK_HIBERN8_STATE) { ret = ufshcd_uic_hibern8_enter(hba); if (!ret) { ufshcd_set_link_hibern8(hba); } else { dev_err(hba->dev, "%s: hibern8 enter failed %d\n", __func__, ret); goto out; } } /* * If autobkops is enabled, link can't be turned off because * turning off the link would also turn off the device, except in the * case of DeepSleep where the device is expected to remain powered. */ else if ((req_link_state == UIC_LINK_OFF_STATE) && (!check_for_bkops || !hba->auto_bkops_enabled)) { /* * Let's make sure that link is in low power mode, we are doing * this currently by putting the link in Hibern8. Otherway to * put the link in low power mode is to send the DME end point * to device and then send the DME reset command to local * unipro. But putting the link in hibern8 is much faster. * * Note also that putting the link in Hibern8 is a requirement * for entering DeepSleep. */ ret = ufshcd_uic_hibern8_enter(hba); if (ret) { dev_err(hba->dev, "%s: hibern8 enter failed %d\n", __func__, ret); goto out; } /* * Change controller state to "reset state" which * should also put the link in off/reset state */ ufshcd_hba_stop(hba); /* * TODO: Check if we need any delay to make sure that * controller is reset */ ufshcd_set_link_off(hba); } out: return ret; } static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) { bool vcc_off = false; /* * It seems some UFS devices may keep drawing more than sleep current * (atleast for 500us) from UFS rails (especially from VCCQ rail). * To avoid this situation, add 2ms delay before putting these UFS * rails in LPM mode. */ if (!ufshcd_is_link_active(hba) && hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) usleep_range(2000, 2100); /* * If UFS device is either in UFS_Sleep turn off VCC rail to save some * power. * * If UFS device and link is in OFF state, all power supplies (VCC, * VCCQ, VCCQ2) can be turned off if power on write protect is not * required. If UFS link is inactive (Hibern8 or OFF state) and device * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. * * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway * in low power state which would save some power. * * If Write Booster is enabled and the device needs to flush the WB * buffer OR if bkops status is urgent for WB, keep Vcc on. */ if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && !hba->dev_info.is_lu_power_on_wp) { ufshcd_setup_vreg(hba, false); vcc_off = true; } else if (!ufshcd_is_ufs_dev_active(hba)) { ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); vcc_off = true; if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); } } /* * Some UFS devices require delay after VCC power rail is turned-off. */ if (vcc_off && hba->vreg_info.vcc && hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) usleep_range(5000, 5100); } #ifdef CONFIG_PM static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) { int ret = 0; if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && !hba->dev_info.is_lu_power_on_wp) { ret = ufshcd_setup_vreg(hba, true); } else if (!ufshcd_is_ufs_dev_active(hba)) { if (!ufshcd_is_link_active(hba)) { ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); if (ret) goto vcc_disable; ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); if (ret) goto vccq_lpm; } ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); } goto out; vccq_lpm: ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); vcc_disable: ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); out: return ret; } #endif /* CONFIG_PM */ static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) { if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) ufshcd_setup_hba_vreg(hba, false); } static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) { if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) ufshcd_setup_hba_vreg(hba, true); } static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int ret = 0; bool check_for_bkops; enum ufs_pm_level pm_lvl; enum ufs_dev_pwr_mode req_dev_pwr_mode; enum uic_link_state req_link_state; hba->pm_op_in_progress = true; if (pm_op != UFS_SHUTDOWN_PM) { pm_lvl = pm_op == UFS_RUNTIME_PM ? hba->rpm_lvl : hba->spm_lvl; req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); } else { req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; req_link_state = UIC_LINK_OFF_STATE; } /* * If we can't transition into any of the low power modes * just gate the clocks. */ ufshcd_hold(hba); hba->clk_gating.is_suspended = true; if (ufshcd_is_clkscaling_supported(hba)) ufshcd_clk_scaling_suspend(hba, true); if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && req_link_state == UIC_LINK_ACTIVE_STATE) { goto vops_suspend; } if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && (req_link_state == hba->uic_link_state)) goto enable_scaling; /* UFS device & link must be active before we enter in this function */ if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { /* Wait err handler finish or trigger err recovery */ if (!ufshcd_eh_in_progress(hba)) ufshcd_force_error_recovery(hba); ret = -EBUSY; goto enable_scaling; } if (pm_op == UFS_RUNTIME_PM) { if (ufshcd_can_autobkops_during_suspend(hba)) { /* * The device is idle with no requests in the queue, * allow background operations if bkops status shows * that performance might be impacted. */ ret = ufshcd_urgent_bkops(hba); if (ret) { /* * If return err in suspend flow, IO will hang. * Trigger error handler and break suspend for * error recovery. */ ufshcd_force_error_recovery(hba); ret = -EBUSY; goto enable_scaling; } } else { /* make sure that auto bkops is disabled */ ufshcd_disable_auto_bkops(hba); } /* * If device needs to do BKOP or WB buffer flush during * Hibern8, keep device power mode as "active power mode" * and VCC supply. */ hba->dev_info.b_rpm_dev_flush_capable = hba->auto_bkops_enabled || (((req_link_state == UIC_LINK_HIBERN8_STATE) || ((req_link_state == UIC_LINK_ACTIVE_STATE) && ufshcd_is_auto_hibern8_enabled(hba))) && ufshcd_wb_need_flush(hba)); } flush_work(&hba->eeh_work); ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); if (ret) goto enable_scaling; if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { if (pm_op != UFS_RUNTIME_PM) /* ensure that bkops is disabled */ ufshcd_disable_auto_bkops(hba); if (!hba->dev_info.b_rpm_dev_flush_capable) { ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); if (ret && pm_op != UFS_SHUTDOWN_PM) { /* * If return err in suspend flow, IO will hang. * Trigger error handler and break suspend for * error recovery. */ ufshcd_force_error_recovery(hba); ret = -EBUSY; } if (ret) goto enable_scaling; } } /* * In the case of DeepSleep, the device is expected to remain powered * with the link off, so do not check for bkops. */ check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); if (ret && pm_op != UFS_SHUTDOWN_PM) { /* * If return err in suspend flow, IO will hang. * Trigger error handler and break suspend for * error recovery. */ ufshcd_force_error_recovery(hba); ret = -EBUSY; } if (ret) goto set_dev_active; vops_suspend: /* * Call vendor specific suspend callback. As these callbacks may access * vendor specific host controller register space call them before the * host clocks are ON. */ ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); if (ret) goto set_link_active; goto out; set_link_active: /* * Device hardware reset is required to exit DeepSleep. Also, for * DeepSleep, the link is off so host reset and restore will be done * further below. */ if (ufshcd_is_ufs_dev_deepsleep(hba)) { ufshcd_device_reset(hba); WARN_ON(!ufshcd_is_link_off(hba)); } if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) ufshcd_set_link_active(hba); else if (ufshcd_is_link_off(hba)) ufshcd_host_reset_and_restore(hba); set_dev_active: /* Can also get here needing to exit DeepSleep */ if (ufshcd_is_ufs_dev_deepsleep(hba)) { ufshcd_device_reset(hba); ufshcd_host_reset_and_restore(hba); } if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) ufshcd_disable_auto_bkops(hba); enable_scaling: if (ufshcd_is_clkscaling_supported(hba)) ufshcd_clk_scaling_suspend(hba, false); hba->dev_info.b_rpm_dev_flush_capable = false; out: if (hba->dev_info.b_rpm_dev_flush_capable) { schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); } if (ret) { ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); hba->clk_gating.is_suspended = false; ufshcd_release(hba); } hba->pm_op_in_progress = false; return ret; } #ifdef CONFIG_PM static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int ret; enum uic_link_state old_link_state = hba->uic_link_state; hba->pm_op_in_progress = true; /* * Call vendor specific resume callback. As these callbacks may access * vendor specific host controller register space call them when the * host clocks are ON. */ ret = ufshcd_vops_resume(hba, pm_op); if (ret) goto out; /* For DeepSleep, the only supported option is to have the link off */ WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); if (ufshcd_is_link_hibern8(hba)) { ret = ufshcd_uic_hibern8_exit(hba); if (!ret) { ufshcd_set_link_active(hba); } else { dev_err(hba->dev, "%s: hibern8 exit failed %d\n", __func__, ret); goto vendor_suspend; } } else if (ufshcd_is_link_off(hba)) { /* * A full initialization of the host and the device is * required since the link was put to off during suspend. * Note, in the case of DeepSleep, the device will exit * DeepSleep due to device reset. */ ret = ufshcd_reset_and_restore(hba); /* * ufshcd_reset_and_restore() should have already * set the link state as active */ if (ret || !ufshcd_is_link_active(hba)) goto vendor_suspend; } if (!ufshcd_is_ufs_dev_active(hba)) { ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); if (ret) goto set_old_link_state; ufshcd_set_timestamp_attr(hba); } if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) ufshcd_enable_auto_bkops(hba); else /* * If BKOPs operations are urgently needed at this moment then * keep auto-bkops enabled or else disable it. */ ufshcd_urgent_bkops(hba); if (hba->ee_usr_mask) ufshcd_write_ee_control(hba); if (ufshcd_is_clkscaling_supported(hba)) ufshcd_clk_scaling_suspend(hba, false); if (hba->dev_info.b_rpm_dev_flush_capable) { hba->dev_info.b_rpm_dev_flush_capable = false; cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); } /* Enable Auto-Hibernate if configured */ ufshcd_auto_hibern8_enable(hba); goto out; set_old_link_state: ufshcd_link_state_transition(hba, old_link_state, 0); vendor_suspend: ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); out: if (ret) ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); hba->clk_gating.is_suspended = false; ufshcd_release(hba); hba->pm_op_in_progress = false; return ret; } static int ufshcd_wl_runtime_suspend(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba; int ret; ktime_t start = ktime_get(); hba = shost_priv(sdev->host); ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); if (ret) dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } static int ufshcd_wl_runtime_resume(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba; int ret = 0; ktime_t start = ktime_get(); hba = shost_priv(sdev->host); ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); if (ret) dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } #endif #ifdef CONFIG_PM_SLEEP static int ufshcd_wl_suspend(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba; int ret = 0; ktime_t start = ktime_get(); hba = shost_priv(sdev->host); down(&hba->host_sem); hba->system_suspending = true; if (pm_runtime_suspended(dev)) goto out; ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); if (ret) { dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); up(&hba->host_sem); } out: if (!ret) hba->is_sys_suspended = true; trace_ufshcd_wl_suspend(dev_name(dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } static int ufshcd_wl_resume(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba; int ret = 0; ktime_t start = ktime_get(); hba = shost_priv(sdev->host); if (pm_runtime_suspended(dev)) goto out; ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); if (ret) dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); out: trace_ufshcd_wl_resume(dev_name(dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); if (!ret) hba->is_sys_suspended = false; hba->system_suspending = false; up(&hba->host_sem); return ret; } #endif /** * ufshcd_suspend - helper function for suspend operations * @hba: per adapter instance * * This function will put disable irqs, turn off clocks * and set vreg and hba-vreg in lpm mode. * * Return: 0 upon success; < 0 upon failure. */ static int ufshcd_suspend(struct ufs_hba *hba) { int ret; if (!hba->is_powered) return 0; /* * Disable the host irq as host controller as there won't be any * host controller transaction expected till resume. */ ufshcd_disable_irq(hba); ret = ufshcd_setup_clocks(hba, false); if (ret) { ufshcd_enable_irq(hba); return ret; } if (ufshcd_is_clkgating_allowed(hba)) { hba->clk_gating.state = CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); } ufshcd_vreg_set_lpm(hba); /* Put the host controller in low power mode if possible */ ufshcd_hba_vreg_set_lpm(hba); return ret; } #ifdef CONFIG_PM /** * ufshcd_resume - helper function for resume operations * @hba: per adapter instance * * This function basically turns on the regulators, clocks and * irqs of the hba. * * Return: 0 for success and non-zero for failure. */ static int ufshcd_resume(struct ufs_hba *hba) { int ret; if (!hba->is_powered) return 0; ufshcd_hba_vreg_set_hpm(hba); ret = ufshcd_vreg_set_hpm(hba); if (ret) goto out; /* Make sure clocks are enabled before accessing controller */ ret = ufshcd_setup_clocks(hba, true); if (ret) goto disable_vreg; /* enable the host irq as host controller would be active soon */ ufshcd_enable_irq(hba); goto out; disable_vreg: ufshcd_vreg_set_lpm(hba); out: if (ret) ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); return ret; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP /** * ufshcd_system_suspend - system suspend callback * @dev: Device associated with the UFS controller. * * Executed before putting the system into a sleep state in which the contents * of main memory are preserved. * * Return: 0 for success and non-zero for failure. */ int ufshcd_system_suspend(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); int ret = 0; ktime_t start = ktime_get(); if (pm_runtime_suspended(hba->dev)) goto out; ret = ufshcd_suspend(hba); out: trace_ufshcd_system_suspend(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_system_suspend); /** * ufshcd_system_resume - system resume callback * @dev: Device associated with the UFS controller. * * Executed after waking the system up from a sleep state in which the contents * of main memory were preserved. * * Return: 0 for success and non-zero for failure. */ int ufshcd_system_resume(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); ktime_t start = ktime_get(); int ret = 0; if (pm_runtime_suspended(hba->dev)) goto out; ret = ufshcd_resume(hba); out: trace_ufshcd_system_resume(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_system_resume); #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM /** * ufshcd_runtime_suspend - runtime suspend callback * @dev: Device associated with the UFS controller. * * Check the description of ufshcd_suspend() function for more details. * * Return: 0 for success and non-zero for failure. */ int ufshcd_runtime_suspend(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); int ret; ktime_t start = ktime_get(); ret = ufshcd_suspend(hba); trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_runtime_suspend); /** * ufshcd_runtime_resume - runtime resume routine * @dev: Device associated with the UFS controller. * * This function basically brings controller * to active state. Following operations are done in this function: * * 1. Turn on all the controller related clocks * 2. Turn ON VCC rail * * Return: 0 upon success; < 0 upon failure. */ int ufshcd_runtime_resume(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); int ret; ktime_t start = ktime_get(); ret = ufshcd_resume(hba); trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_runtime_resume); #endif /* CONFIG_PM */ static void ufshcd_wl_shutdown(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba = shost_priv(sdev->host); down(&hba->host_sem); hba->shutting_down = true; up(&hba->host_sem); /* Turn on everything while shutting down */ ufshcd_rpm_get_sync(hba); scsi_device_quiesce(sdev); shost_for_each_device(sdev, hba->host) { if (sdev == hba->ufs_device_wlun) continue; scsi_device_quiesce(sdev); } __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); /* * Next, turn off the UFS controller and the UFS regulators. Disable * clocks. */ if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) ufshcd_suspend(hba); hba->is_powered = false; } /** * ufshcd_remove - de-allocate SCSI host and host memory space * data structure memory * @hba: per adapter instance */ void ufshcd_remove(struct ufs_hba *hba) { if (hba->ufs_device_wlun) ufshcd_rpm_get_sync(hba); ufs_hwmon_remove(hba); ufs_bsg_remove(hba); ufs_sysfs_remove_nodes(hba->dev); blk_mq_destroy_queue(hba->tmf_queue); blk_put_queue(hba->tmf_queue); blk_mq_free_tag_set(&hba->tmf_tag_set); scsi_remove_host(hba->host); /* disable interrupts */ ufshcd_disable_intr(hba, hba->intr_mask); ufshcd_hba_stop(hba); ufshcd_hba_exit(hba); } EXPORT_SYMBOL_GPL(ufshcd_remove); #ifdef CONFIG_PM_SLEEP int ufshcd_system_freeze(struct device *dev) { return ufshcd_system_suspend(dev); } EXPORT_SYMBOL_GPL(ufshcd_system_freeze); int ufshcd_system_restore(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); int ret; ret = ufshcd_system_resume(dev); if (ret) return ret; /* Configure UTRL and UTMRL base address registers */ ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_H); ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_H); /* * Make sure that UTRL and UTMRL base address registers * are updated with the latest queue addresses. Only after * updating these addresses, we can queue the new commands. */ ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); return 0; } EXPORT_SYMBOL_GPL(ufshcd_system_restore); int ufshcd_system_thaw(struct device *dev) { return ufshcd_system_resume(dev); } EXPORT_SYMBOL_GPL(ufshcd_system_thaw); #endif /* CONFIG_PM_SLEEP */ /** * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) * @hba: pointer to Host Bus Adapter (HBA) */ void ufshcd_dealloc_host(struct ufs_hba *hba) { scsi_host_put(hba->host); } EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); /** * ufshcd_set_dma_mask - Set dma mask based on the controller * addressing capability * @hba: per adapter instance * * Return: 0 for success, non-zero for failure. */ static int ufshcd_set_dma_mask(struct ufs_hba *hba) { if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) return 0; } return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); } /** * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) * @dev: pointer to device handle * @hba_handle: driver private handle * * Return: 0 on success, non-zero value on failure. */ int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) { struct Scsi_Host *host; struct ufs_hba *hba; int err = 0; if (!dev) { dev_err(dev, "Invalid memory reference for dev is NULL\n"); err = -ENODEV; goto out_error; } host = scsi_host_alloc(&ufshcd_driver_template, sizeof(struct ufs_hba)); if (!host) { dev_err(dev, "scsi_host_alloc failed\n"); err = -ENOMEM; goto out_error; } host->nr_maps = HCTX_TYPE_POLL + 1; hba = shost_priv(host); hba->host = host; hba->dev = dev; hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; hba->nop_out_timeout = NOP_OUT_TIMEOUT; ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); INIT_LIST_HEAD(&hba->clk_list_head); spin_lock_init(&hba->outstanding_lock); *hba_handle = hba; out_error: return err; } EXPORT_SYMBOL(ufshcd_alloc_host); /* This function exists because blk_mq_alloc_tag_set() requires this. */ static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd) { WARN_ON_ONCE(true); return BLK_STS_NOTSUPP; } static const struct blk_mq_ops ufshcd_tmf_ops = { .queue_rq = ufshcd_queue_tmf, }; /** * ufshcd_init - Driver initialization routine * @hba: per-adapter instance * @mmio_base: base register address * @irq: Interrupt line of device * * Return: 0 on success, non-zero value on failure. */ int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) { int err; struct Scsi_Host *host = hba->host; struct device *dev = hba->dev; char eh_wq_name[sizeof("ufs_eh_wq_00")]; /* * dev_set_drvdata() must be called before any callbacks are registered * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, * sysfs). */ dev_set_drvdata(dev, hba); if (!mmio_base) { dev_err(hba->dev, "Invalid memory reference for mmio_base is NULL\n"); err = -ENODEV; goto out_error; } hba->mmio_base = mmio_base; hba->irq = irq; hba->vps = &ufs_hba_vps; err = ufshcd_hba_init(hba); if (err) goto out_error; /* Read capabilities registers */ err = ufshcd_hba_capabilities(hba); if (err) goto out_disable; /* Get UFS version supported by the controller */ hba->ufs_version = ufshcd_get_ufs_version(hba); /* Get Interrupt bit mask per version */ hba->intr_mask = ufshcd_get_intr_mask(hba); err = ufshcd_set_dma_mask(hba); if (err) { dev_err(hba->dev, "set dma mask failed\n"); goto out_disable; } /* Allocate memory for host memory space */ err = ufshcd_memory_alloc(hba); if (err) { dev_err(hba->dev, "Memory allocation failed\n"); goto out_disable; } /* Configure LRB */ ufshcd_host_memory_configure(hba); host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; host->max_id = UFSHCD_MAX_ID; host->max_lun = UFS_MAX_LUNS; host->max_channel = UFSHCD_MAX_CHANNEL; host->unique_id = host->host_no; host->max_cmd_len = UFS_CDB_SIZE; host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); hba->max_pwr_info.is_valid = false; /* Initialize work queues */ snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", hba->host->host_no); hba->eh_wq = create_singlethread_workqueue(eh_wq_name); if (!hba->eh_wq) { dev_err(hba->dev, "%s: failed to create eh workqueue\n", __func__); err = -ENOMEM; goto out_disable; } INIT_WORK(&hba->eh_work, ufshcd_err_handler); INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); sema_init(&hba->host_sem, 1); /* Initialize UIC command mutex */ mutex_init(&hba->uic_cmd_mutex); /* Initialize mutex for device management commands */ mutex_init(&hba->dev_cmd.lock); /* Initialize mutex for exception event control */ mutex_init(&hba->ee_ctrl_mutex); mutex_init(&hba->wb_mutex); init_rwsem(&hba->clk_scaling_lock); ufshcd_init_clk_gating(hba); ufshcd_init_clk_scaling(hba); /* * In order to avoid any spurious interrupt immediately after * registering UFS controller interrupt handler, clear any pending UFS * interrupt status and disable all the UFS interrupts. */ ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), REG_INTERRUPT_STATUS); ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); /* * Make sure that UFS interrupts are disabled and any pending interrupt * status is cleared before registering UFS interrupt handler. */ ufshcd_readl(hba, REG_INTERRUPT_ENABLE); /* IRQ registration */ err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); if (err) { dev_err(hba->dev, "request irq failed\n"); goto out_disable; } else { hba->is_irq_enabled = true; } if (!is_mcq_supported(hba)) { err = scsi_add_host(host, hba->dev); if (err) { dev_err(hba->dev, "scsi_add_host failed\n"); goto out_disable; } } hba->tmf_tag_set = (struct blk_mq_tag_set) { .nr_hw_queues = 1, .queue_depth = hba->nutmrs, .ops = &ufshcd_tmf_ops, .flags = BLK_MQ_F_NO_SCHED, }; err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); if (err < 0) goto out_remove_scsi_host; hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); if (IS_ERR(hba->tmf_queue)) { err = PTR_ERR(hba->tmf_queue); goto free_tmf_tag_set; } hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, sizeof(*hba->tmf_rqs), GFP_KERNEL); if (!hba->tmf_rqs) { err = -ENOMEM; goto free_tmf_queue; } /* Reset the attached device */ ufshcd_device_reset(hba); ufshcd_init_crypto(hba); /* Host controller enable */ err = ufshcd_hba_enable(hba); if (err) { dev_err(hba->dev, "Host controller enable failed\n"); ufshcd_print_evt_hist(hba); ufshcd_print_host_state(hba); goto free_tmf_queue; } /* * Set the default power management level for runtime and system PM. * Default power saving mode is to keep UFS link in Hibern8 state * and UFS device in sleep state. */ hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work); /* Set the default auto-hiberate idle timer value to 150 ms */ if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); } /* Hold auto suspend until async scan completes */ pm_runtime_get_sync(dev); atomic_set(&hba->scsi_block_reqs_cnt, 0); /* * We are assuming that device wasn't put in sleep/power-down * state exclusively during the boot stage before kernel. * This assumption helps avoid doing link startup twice during * ufshcd_probe_hba(). */ ufshcd_set_ufs_dev_active(hba); async_schedule(ufshcd_async_scan, hba); ufs_sysfs_add_nodes(hba->dev); device_enable_async_suspend(dev); return 0; free_tmf_queue: blk_mq_destroy_queue(hba->tmf_queue); blk_put_queue(hba->tmf_queue); free_tmf_tag_set: blk_mq_free_tag_set(&hba->tmf_tag_set); out_remove_scsi_host: scsi_remove_host(hba->host); out_disable: hba->is_irq_enabled = false; ufshcd_hba_exit(hba); out_error: return err; } EXPORT_SYMBOL_GPL(ufshcd_init); void ufshcd_resume_complete(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); if (hba->complete_put) { ufshcd_rpm_put(hba); hba->complete_put = false; } } EXPORT_SYMBOL_GPL(ufshcd_resume_complete); static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) { struct device *dev = &hba->ufs_device_wlun->sdev_gendev; enum ufs_dev_pwr_mode dev_pwr_mode; enum uic_link_state link_state; unsigned long flags; bool res; spin_lock_irqsave(&dev->power.lock, flags); dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); res = pm_runtime_suspended(dev) && hba->curr_dev_pwr_mode == dev_pwr_mode && hba->uic_link_state == link_state && !hba->dev_info.b_rpm_dev_flush_capable; spin_unlock_irqrestore(&dev->power.lock, flags); return res; } int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) { struct ufs_hba *hba = dev_get_drvdata(dev); int ret; /* * SCSI assumes that runtime-pm and system-pm for scsi drivers * are same. And it doesn't wake up the device for system-suspend * if it's runtime suspended. But ufs doesn't follow that. * Refer ufshcd_resume_complete() */ if (hba->ufs_device_wlun) { /* Prevent runtime suspend */ ufshcd_rpm_get_noresume(hba); /* * Check if already runtime suspended in same state as system * suspend would be. */ if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { /* RPM state is not ok for SPM, so runtime resume */ ret = ufshcd_rpm_resume(hba); if (ret < 0 && ret != -EACCES) { ufshcd_rpm_put(hba); return ret; } } hba->complete_put = true; } return 0; } EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); int ufshcd_suspend_prepare(struct device *dev) { return __ufshcd_suspend_prepare(dev, true); } EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); #ifdef CONFIG_PM_SLEEP static int ufshcd_wl_poweroff(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba = shost_priv(sdev->host); __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); return 0; } #endif static int ufshcd_wl_probe(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); if (!is_device_wlun(sdev)) return -ENODEV; blk_pm_runtime_init(sdev->request_queue, dev); pm_runtime_set_autosuspend_delay(dev, 0); pm_runtime_allow(dev); return 0; } static int ufshcd_wl_remove(struct device *dev) { pm_runtime_forbid(dev); return 0; } static const struct dev_pm_ops ufshcd_wl_pm_ops = { #ifdef CONFIG_PM_SLEEP .suspend = ufshcd_wl_suspend, .resume = ufshcd_wl_resume, .freeze = ufshcd_wl_suspend, .thaw = ufshcd_wl_resume, .poweroff = ufshcd_wl_poweroff, .restore = ufshcd_wl_resume, #endif SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) }; static void ufshcd_check_header_layout(void) { /* * gcc compilers before version 10 cannot do constant-folding for * sub-byte bitfields. Hence skip the layout checks for gcc 9 and * before. */ if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) return; BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ .cci = 3})[0] != 3); BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ .ehs_length = 2})[1] != 2); BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ .enable_crypto = 1})[2] != 0x80); BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ .command_type = 5, .data_direction = 3, .interrupt = 1, })[3]) != ((5 << 4) | (3 << 1) | 1)); BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ .dunl = cpu_to_le32(0xdeadbeef)})[1] != cpu_to_le32(0xdeadbeef)); BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ .ocs = 4})[8] != 4); BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ .cds = 5})[9] != 5); BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ .dunu = cpu_to_le32(0xbadcafe)})[3] != cpu_to_le32(0xbadcafe)); BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ .iid = 0xf })[4] != 0xf0); BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ .command_set_type = 0xf })[4] != 0xf); } /* * ufs_dev_wlun_template - describes ufs device wlun * ufs-device wlun - used to send pm commands * All luns are consumers of ufs-device wlun. * * Currently, no sd driver is present for wluns. * Hence the no specific pm operations are performed. * With ufs design, SSU should be sent to ufs-device wlun. * Hence register a scsi driver for ufs wluns only. */ static struct scsi_driver ufs_dev_wlun_template = { .gendrv = { .name = "ufs_device_wlun", .owner = THIS_MODULE, .probe = ufshcd_wl_probe, .remove = ufshcd_wl_remove, .pm = &ufshcd_wl_pm_ops, .shutdown = ufshcd_wl_shutdown, }, }; static int __init ufshcd_core_init(void) { int ret; ufshcd_check_header_layout(); ufs_debugfs_init(); ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); if (ret) ufs_debugfs_exit(); return ret; } static void __exit ufshcd_core_exit(void) { ufs_debugfs_exit(); scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); } module_init(ufshcd_core_init); module_exit(ufshcd_core_exit); MODULE_AUTHOR("Santosh Yaragnavi "); MODULE_AUTHOR("Vinayak Holikatti "); MODULE_DESCRIPTION("Generic UFS host controller driver Core"); MODULE_SOFTDEP("pre: governor_simpleondemand"); MODULE_LICENSE("GPL");