/* * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Author: * Mikko Perttunen * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "soctherm.h" #define SENSOR_CONFIG0 0 #define SENSOR_CONFIG0_STOP BIT(0) #define SENSOR_CONFIG0_CPTR_OVER BIT(2) #define SENSOR_CONFIG0_OVER BIT(3) #define SENSOR_CONFIG0_TCALC_OVER BIT(4) #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) #define SENSOR_CONFIG0_TALL_SHIFT 8 #define SENSOR_CONFIG1 4 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) /* * SENSOR_CONFIG2 is defined in soctherm.h * because, it will be used by tegra_soctherm_fuse.c */ #define SENSOR_STATUS0 0xc #define SENSOR_STATUS0_VALID_MASK BIT(31) #define SENSOR_STATUS0_CAPTURE_MASK 0xffff #define SENSOR_STATUS1 0x10 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) #define SENSOR_STATUS1_TEMP_MASK 0xffff #define READBACK_VALUE_MASK 0xff00 #define READBACK_VALUE_SHIFT 8 #define READBACK_ADD_HALF BIT(7) #define READBACK_NEGATE BIT(0) /* get val from register(r) mask bits(m) */ #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) /* set val(v) to mask bits(m) of register(r) */ #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) static const int min_low_temp = -127000; static const int max_high_temp = 127000; struct tegra_thermctl_zone { void __iomem *reg; struct device *dev; struct thermal_zone_device *tz; const struct tegra_tsensor_group *sg; }; struct tegra_soctherm { struct reset_control *reset; struct clk *clock_tsensor; struct clk *clock_soctherm; void __iomem *regs; struct thermal_zone_device **thermctl_tzs; u32 *calib; struct tegra_soctherm_soc *soc; struct dentry *debugfs_dir; }; static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) { const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; void __iomem *base = tegra->regs + sensor->base; unsigned int val; val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; writel(val, base + SENSOR_CONFIG0); val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; val |= SENSOR_CONFIG1_TEMP_ENABLE; writel(val, base + SENSOR_CONFIG1); writel(tegra->calib[i], base + SENSOR_CONFIG2); } /* * Translate from soctherm readback format to millicelsius. * The soctherm readback format in bits is as follows: * TTTTTTTT H______N * where T's contain the temperature in Celsius, * H denotes an addition of 0.5 Celsius and N denotes negation * of the final value. */ static int translate_temp(u16 val) { int t; t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; if (val & READBACK_ADD_HALF) t += 500; if (val & READBACK_NEGATE) t *= -1; return t; } static int tegra_thermctl_get_temp(void *data, int *out_temp) { struct tegra_thermctl_zone *zone = data; u32 val; val = readl(zone->reg); val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); *out_temp = translate_temp(val); return 0; } static int thermtrip_program(struct device *dev, const struct tegra_tsensor_group *sg, int trip_temp); static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp) { struct tegra_thermctl_zone *zone = data; struct thermal_zone_device *tz = zone->tz; const struct tegra_tsensor_group *sg = zone->sg; struct device *dev = zone->dev; enum thermal_trip_type type; int ret; if (!tz) return -EINVAL; ret = tz->ops->get_trip_type(tz, trip, &type); if (ret) return ret; if (type != THERMAL_TRIP_CRITICAL) return 0; return thermtrip_program(dev, sg, temp); } static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = { .get_temp = tegra_thermctl_get_temp, .set_trip_temp = tegra_thermctl_set_trip_temp, }; /** * enforce_temp_range() - check and enforce temperature range [min, max] * @trip_temp: the trip temperature to check * * Checks and enforces the permitted temperature range that SOC_THERM * HW can support This is * done while taking care of precision. * * Return: The precision adjusted capped temperature in millicelsius. */ static int enforce_temp_range(struct device *dev, int trip_temp) { int temp; temp = clamp_val(trip_temp, min_low_temp, max_high_temp); if (temp != trip_temp) dev_info(dev, "soctherm: trip temperature %d forced to %d\n", trip_temp, temp); return temp; } /** * thermtrip_program() - Configures the hardware to shut down the * system if a given sensor group reaches a given temperature * @dev: ptr to the struct device for the SOC_THERM IP block * @sg: pointer to the sensor group to set the thermtrip temperature for * @trip_temp: the temperature in millicelsius to trigger the thermal trip at * * Sets the thermal trip threshold of the given sensor group to be the * @trip_temp. If this threshold is crossed, the hardware will shut * down. * * Note that, although @trip_temp is specified in millicelsius, the * hardware is programmed in degrees Celsius. * * Return: 0 upon success, or %-EINVAL upon failure. */ static int thermtrip_program(struct device *dev, const struct tegra_tsensor_group *sg, int trip_temp) { struct tegra_soctherm *ts = dev_get_drvdata(dev); int temp; u32 r; if (!dev || !sg) return -EINVAL; if (!sg->thermtrip_threshold_mask) return -EINVAL; temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); return 0; } /** * tegra_soctherm_set_hwtrips() - set HW trip point from DT data * @dev: struct device * of the SOC_THERM instance * * Configure the SOC_THERM HW trip points, setting "THERMTRIP" * trip points , using "critical" type trip_temp from thermal * zone. * After they have been configured, THERMTRIP will take action * when the configured SoC thermal sensor group reaches a * certain temperature. * * Return: 0 upon success, or a negative error code on failure. * "Success" does not mean that trips was enabled; it could also * mean that no node was found in DT. * THERMTRIP has been enabled successfully when a message similar to * this one appears on the serial console: * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" */ static int tegra_soctherm_set_hwtrips(struct device *dev, const struct tegra_tsensor_group *sg, struct thermal_zone_device *tz) { int temperature; int ret; ret = tz->ops->get_crit_temp(tz, &temperature); if (ret) { dev_warn(dev, "thermtrip: %s: missing critical temperature\n", sg->name); return ret; } ret = thermtrip_program(dev, sg, temperature); if (ret) { dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); return ret; } dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", sg->name, temperature); return 0; } #ifdef CONFIG_DEBUG_FS static int regs_show(struct seq_file *s, void *data) { struct platform_device *pdev = s->private; struct tegra_soctherm *ts = platform_get_drvdata(pdev); const struct tegra_tsensor *tsensors = ts->soc->tsensors; const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; u32 r, state; int i; seq_puts(s, "-----TSENSE (convert HW)-----\n"); for (i = 0; i < ts->soc->num_tsensors; i++) { r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); seq_printf(s, "%s: ", tsensors[i].name); seq_printf(s, "En(%d) ", state); if (!state) { seq_puts(s, "\n"); continue; } state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); seq_printf(s, "tiddq(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); seq_printf(s, "ten_count(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); seq_printf(s, "tsample(%d) ", state + 1); r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); seq_printf(s, "Temp(%d/", state); state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); seq_printf(s, "%d) ", translate_temp(state)); r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); seq_printf(s, "Capture(%d/", state); state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); seq_printf(s, "%d) ", state); r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); seq_printf(s, "Stop(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); seq_printf(s, "Tall(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); seq_printf(s, "Over(%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); seq_printf(s, "%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); seq_printf(s, "%d) ", state); r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); seq_printf(s, "Therm_A/B(%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); seq_printf(s, "%d)\n", (s16)state); } r = readl(ts->regs + SENSOR_PDIV); seq_printf(s, "PDIV: 0x%x\n", r); r = readl(ts->regs + SENSOR_HOTSPOT_OFF); seq_printf(s, "HOTSPOT: 0x%x\n", r); seq_puts(s, "\n"); seq_puts(s, "-----SOC_THERM-----\n"); r = readl(ts->regs + SENSOR_TEMP1); state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); seq_printf(s, " GPU(%d) ", translate_temp(state)); r = readl(ts->regs + SENSOR_TEMP2); state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); seq_printf(s, " PLLX(%d) ", translate_temp(state)); state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); seq_printf(s, " MEM(%d)\n", translate_temp(state)); r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); seq_printf(s, "Thermtrip Any En(%d)\n", state); for (i = 0; i < ts->soc->num_ttgs; i++) { state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); state *= ts->soc->thresh_grain; seq_printf(s, "Thresh(%d)\n", state); } return 0; } static int regs_open(struct inode *inode, struct file *file) { return single_open(file, regs_show, inode->i_private); } static const struct file_operations regs_fops = { .open = regs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void soctherm_debug_init(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); struct dentry *root, *file; root = debugfs_create_dir("soctherm", NULL); if (!root) { dev_err(&pdev->dev, "failed to create debugfs directory\n"); return; } tegra->debugfs_dir = root; file = debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); if (!file) { dev_err(&pdev->dev, "failed to create debugfs file\n"); debugfs_remove_recursive(tegra->debugfs_dir); tegra->debugfs_dir = NULL; } } #else static inline void soctherm_debug_init(struct platform_device *pdev) {} #endif static int soctherm_clk_enable(struct platform_device *pdev, bool enable) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); int err; if (!tegra->clock_soctherm || !tegra->clock_tsensor) return -EINVAL; reset_control_assert(tegra->reset); if (enable) { err = clk_prepare_enable(tegra->clock_soctherm); if (err) { reset_control_deassert(tegra->reset); return err; } err = clk_prepare_enable(tegra->clock_tsensor); if (err) { clk_disable_unprepare(tegra->clock_soctherm); reset_control_deassert(tegra->reset); return err; } } else { clk_disable_unprepare(tegra->clock_tsensor); clk_disable_unprepare(tegra->clock_soctherm); } reset_control_deassert(tegra->reset); return 0; } static void soctherm_init(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; int i; u32 pdiv, hotspot; /* Initialize raw sensors */ for (i = 0; i < tegra->soc->num_tsensors; ++i) enable_tsensor(tegra, i); /* program pdiv and hotspot offsets per THERM */ pdiv = readl(tegra->regs + SENSOR_PDIV); hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); for (i = 0; i < tegra->soc->num_ttgs; ++i) { pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, ttgs[i]->pdiv); /* hotspot offset from PLLX, doesn't need to configure PLLX */ if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) continue; hotspot = REG_SET_MASK(hotspot, ttgs[i]->pllx_hotspot_mask, ttgs[i]->pllx_hotspot_diff); } writel(pdiv, tegra->regs + SENSOR_PDIV); writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); } static const struct of_device_id tegra_soctherm_of_match[] = { #ifdef CONFIG_ARCH_TEGRA_124_SOC { .compatible = "nvidia,tegra124-soctherm", .data = &tegra124_soctherm, }, #endif #ifdef CONFIG_ARCH_TEGRA_210_SOC { .compatible = "nvidia,tegra210-soctherm", .data = &tegra210_soctherm, }, #endif { }, }; MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); static int tegra_soctherm_probe(struct platform_device *pdev) { const struct of_device_id *match; struct tegra_soctherm *tegra; struct thermal_zone_device *z; struct tsensor_shared_calib shared_calib; struct resource *res; struct tegra_soctherm_soc *soc; unsigned int i; int err; match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); if (!match) return -ENODEV; soc = (struct tegra_soctherm_soc *)match->data; if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) return -EINVAL; tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; dev_set_drvdata(&pdev->dev, tegra); tegra->soc = soc; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); tegra->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tegra->regs)) return PTR_ERR(tegra->regs); tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); if (IS_ERR(tegra->reset)) { dev_err(&pdev->dev, "can't get soctherm reset\n"); return PTR_ERR(tegra->reset); } tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); if (IS_ERR(tegra->clock_tsensor)) { dev_err(&pdev->dev, "can't get tsensor clock\n"); return PTR_ERR(tegra->clock_tsensor); } tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); if (IS_ERR(tegra->clock_soctherm)) { dev_err(&pdev->dev, "can't get soctherm clock\n"); return PTR_ERR(tegra->clock_soctherm); } tegra->calib = devm_kzalloc(&pdev->dev, sizeof(u32) * soc->num_tsensors, GFP_KERNEL); if (!tegra->calib) return -ENOMEM; /* calculate shared calibration data */ err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); if (err) return err; /* calculate tsensor calibaration data */ for (i = 0; i < soc->num_tsensors; ++i) { err = tegra_calc_tsensor_calib(&soc->tsensors[i], &shared_calib, &tegra->calib[i]); if (err) return err; } tegra->thermctl_tzs = devm_kzalloc(&pdev->dev, sizeof(*z) * soc->num_ttgs, GFP_KERNEL); if (!tegra->thermctl_tzs) return -ENOMEM; err = soctherm_clk_enable(pdev, true); if (err) return err; soctherm_init(pdev); for (i = 0; i < soc->num_ttgs; ++i) { struct tegra_thermctl_zone *zone = devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); if (!zone) { err = -ENOMEM; goto disable_clocks; } zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; zone->dev = &pdev->dev; zone->sg = soc->ttgs[i]; z = devm_thermal_zone_of_sensor_register(&pdev->dev, soc->ttgs[i]->id, zone, &tegra_of_thermal_ops); if (IS_ERR(z)) { err = PTR_ERR(z); dev_err(&pdev->dev, "failed to register sensor: %d\n", err); goto disable_clocks; } zone->tz = z; tegra->thermctl_tzs[soc->ttgs[i]->id] = z; /* Configure hw trip points */ tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); } soctherm_debug_init(pdev); return 0; disable_clocks: soctherm_clk_enable(pdev, false); return err; } static int tegra_soctherm_remove(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); debugfs_remove_recursive(tegra->debugfs_dir); soctherm_clk_enable(pdev, false); return 0; } static int soctherm_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); soctherm_clk_enable(pdev, false); return 0; } static int soctherm_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct tegra_soctherm *tegra = platform_get_drvdata(pdev); struct tegra_soctherm_soc *soc = tegra->soc; int err, i; err = soctherm_clk_enable(pdev, true); if (err) { dev_err(&pdev->dev, "Resume failed: enable clocks failed\n"); return err; } soctherm_init(pdev); for (i = 0; i < soc->num_ttgs; ++i) { struct thermal_zone_device *tz; tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); } return 0; } static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); static struct platform_driver tegra_soctherm_driver = { .probe = tegra_soctherm_probe, .remove = tegra_soctherm_remove, .driver = { .name = "tegra_soctherm", .pm = &tegra_soctherm_pm, .of_match_table = tegra_soctherm_of_match, }, }; module_platform_driver(tegra_soctherm_driver); MODULE_AUTHOR("Mikko Perttunen "); MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); MODULE_LICENSE("GPL v2");