// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2020 Spreadtrum Communications Inc. #include <linux/clk.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/thermal.h> #define SPRD_THM_CTL 0x0 #define SPRD_THM_INT_EN 0x4 #define SPRD_THM_INT_STS 0x8 #define SPRD_THM_INT_RAW_STS 0xc #define SPRD_THM_DET_PERIOD 0x10 #define SPRD_THM_INT_CLR 0x14 #define SPRD_THM_INT_CLR_ST 0x18 #define SPRD_THM_MON_PERIOD 0x4c #define SPRD_THM_MON_CTL 0x50 #define SPRD_THM_INTERNAL_STS1 0x54 #define SPRD_THM_RAW_READ_MSK 0x3ff #define SPRD_THM_OFFSET(id) ((id) * 0x4) #define SPRD_THM_TEMP(id) (SPRD_THM_OFFSET(id) + 0x5c) #define SPRD_THM_THRES(id) (SPRD_THM_OFFSET(id) + 0x2c) #define SPRD_THM_SEN(id) BIT((id) + 2) #define SPRD_THM_SEN_OVERHEAT_EN(id) BIT((id) + 8) #define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id) BIT((id) + 0) /* bits definitions for register THM_CTL */ #define SPRD_THM_SET_RDY_ST BIT(13) #define SPRD_THM_SET_RDY BIT(12) #define SPRD_THM_MON_EN BIT(1) #define SPRD_THM_EN BIT(0) /* bits definitions for register THM_INT_CTL */ #define SPRD_THM_BIT_INT_EN BIT(26) #define SPRD_THM_OVERHEAT_EN BIT(25) #define SPRD_THM_OTP_TRIP_SHIFT 10 /* bits definitions for register SPRD_THM_INTERNAL_STS1 */ #define SPRD_THM_TEMPER_RDY BIT(0) #define SPRD_THM_DET_PERIOD_DATA 0x800 #define SPRD_THM_DET_PERIOD_MASK GENMASK(19, 0) #define SPRD_THM_MON_MODE 0x7 #define SPRD_THM_MON_MODE_MASK GENMASK(3, 0) #define SPRD_THM_MON_PERIOD_DATA 0x10 #define SPRD_THM_MON_PERIOD_MASK GENMASK(15, 0) #define SPRD_THM_THRES_MASK GENMASK(19, 0) #define SPRD_THM_INT_CLR_MASK GENMASK(24, 0) /* thermal sensor calibration parameters */ #define SPRD_THM_TEMP_LOW -40000 #define SPRD_THM_TEMP_HIGH 120000 #define SPRD_THM_OTP_TEMP 120000 #define SPRD_THM_HOT_TEMP 75000 #define SPRD_THM_RAW_DATA_LOW 0 #define SPRD_THM_RAW_DATA_HIGH 1000 #define SPRD_THM_SEN_NUM 8 #define SPRD_THM_DT_OFFSET 24 #define SPRD_THM_RATION_OFFSET 17 #define SPRD_THM_RATION_SIGN 16 #define SPRD_THM_RDYST_POLLING_TIME 10 #define SPRD_THM_RDYST_TIMEOUT 700 #define SPRD_THM_TEMP_READY_POLL_TIME 10000 #define SPRD_THM_TEMP_READY_TIMEOUT 600000 #define SPRD_THM_MAX_SENSOR 8 struct sprd_thermal_sensor { struct thermal_zone_device *tzd; struct sprd_thermal_data *data; struct device *dev; int cal_slope; int cal_offset; int id; }; struct sprd_thermal_data { const struct sprd_thm_variant_data *var_data; struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR]; struct clk *clk; void __iomem *base; u32 ratio_off; int ratio_sign; int nr_sensors; }; /* * The conversion between ADC and temperature is based on linear relationship, * and use idea_k to specify the slope and ideal_b to specify the offset. * * Since different Spreadtrum SoCs have different ideal_k and ideal_b, * we should save ideal_k and ideal_b in the device data structure. */ struct sprd_thm_variant_data { u32 ideal_k; u32 ideal_b; }; static const struct sprd_thm_variant_data ums512_data = { .ideal_k = 262, .ideal_b = 66400, }; static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val) { u32 tmp, orig; orig = readl(reg); tmp = orig & ~mask; tmp |= val & mask; writel(tmp, reg); } static int sprd_thm_cal_read(struct device_node *np, const char *cell_id, u32 *val) { struct nvmem_cell *cell; void *buf; size_t len; cell = of_nvmem_cell_get(np, cell_id); if (IS_ERR(cell)) return PTR_ERR(cell); buf = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); if (len > sizeof(u32)) { kfree(buf); return -EINVAL; } memcpy(val, buf, len); kfree(buf); return 0; } static int sprd_thm_sensor_calibration(struct device_node *np, struct sprd_thermal_data *thm, struct sprd_thermal_sensor *sen) { int ret; /* * According to thermal datasheet, the default calibration offset is 64, * and the default ratio is 1000. */ int dt_offset = 64, ratio = 1000; ret = sprd_thm_cal_read(np, "sen_delta_cal", &dt_offset); if (ret) return ret; ratio += thm->ratio_sign * thm->ratio_off; /* * According to the ideal slope K and ideal offset B, combined with * calibration value of thermal from efuse, then calibrate the real * slope k and offset b: * k_cal = (k * ratio) / 1000. * b_cal = b + (dt_offset - 64) * 500. */ sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000; sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250; return 0; } static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen, u32 rawdata) { clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH); /* * According to the thermal datasheet, the formula of converting * adc value to the temperature value should be: * T_final = k_cal * x - b_cal. */ return sen->cal_slope * rawdata - sen->cal_offset; } static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen) { u32 val; clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH); /* * According to the thermal datasheet, the formula of converting * adc value to the temperature value should be: * T_final = k_cal * x - b_cal. */ val = (temp + sen->cal_offset) / sen->cal_slope; return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1)); } static int sprd_thm_read_temp(struct thermal_zone_device *tz, int *temp) { struct sprd_thermal_sensor *sen = tz->devdata; u32 data; data = readl(sen->data->base + SPRD_THM_TEMP(sen->id)) & SPRD_THM_RAW_READ_MSK; *temp = sprd_thm_rawdata_to_temp(sen, data); return 0; } static const struct thermal_zone_device_ops sprd_thm_ops = { .get_temp = sprd_thm_read_temp, }; static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm) { u32 val; int ret; /* * Wait for thermal ready status before configuring thermal parameters. */ ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val, !(val & SPRD_THM_SET_RDY_ST), SPRD_THM_RDYST_POLLING_TIME, SPRD_THM_RDYST_TIMEOUT); if (ret) return ret; sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN, SPRD_THM_MON_EN); sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY, SPRD_THM_SET_RDY); return 0; } static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm) { u32 val; /* Wait for first temperature data ready before reading temperature */ return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val, !(val & SPRD_THM_TEMPER_RDY), SPRD_THM_TEMP_READY_POLL_TIME, SPRD_THM_TEMP_READY_TIMEOUT); } static int sprd_thm_set_ready(struct sprd_thermal_data *thm) { int ret; ret = sprd_thm_poll_ready_status(thm); if (ret) return ret; /* * Clear interrupt status, enable thermal interrupt and enable thermal. * * The SPRD thermal controller integrates a hardware interrupt signal, * which means if the temperature is overheat, it will generate an * interrupt and notify the event to PMIC automatically to shutdown the * system. So here we should enable the interrupt bits, though we have * not registered an irq handler. */ writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR); sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN, SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN); sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_EN, SPRD_THM_EN); return 0; } static void sprd_thm_sensor_init(struct sprd_thermal_data *thm, struct sprd_thermal_sensor *sen) { u32 otp_rawdata, hot_rawdata; otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen); hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen); /* Enable the sensor' overheat temperature protection interrupt */ sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN, SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id), SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id)); /* Set the sensor' overheat and hot threshold temperature */ sprd_thm_update_bits(thm->base + SPRD_THM_THRES(sen->id), SPRD_THM_THRES_MASK, (otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) | hot_rawdata); /* Enable the corresponding sensor */ sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id), SPRD_THM_SEN(sen->id)); } static void sprd_thm_para_config(struct sprd_thermal_data *thm) { /* Set the period of two valid temperature detection action */ sprd_thm_update_bits(thm->base + SPRD_THM_DET_PERIOD, SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD); /* Set the sensors' monitor mode */ sprd_thm_update_bits(thm->base + SPRD_THM_MON_CTL, SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE); /* Set the sensors' monitor period */ sprd_thm_update_bits(thm->base + SPRD_THM_MON_PERIOD, SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD); } static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on) { struct thermal_zone_device *tzd = sen->tzd; if (on) thermal_zone_device_enable(tzd); else thermal_zone_device_disable(tzd); } static int sprd_thm_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device_node *sen_child; struct sprd_thermal_data *thm; struct sprd_thermal_sensor *sen; const struct sprd_thm_variant_data *pdata; int ret, i; u32 val; pdata = of_device_get_match_data(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "No matching driver data found\n"); return -EINVAL; } thm = devm_kzalloc(&pdev->dev, sizeof(*thm), GFP_KERNEL); if (!thm) return -ENOMEM; thm->var_data = pdata; thm->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(thm->base)) return PTR_ERR(thm->base); thm->nr_sensors = of_get_child_count(np); if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) { dev_err(&pdev->dev, "incorrect sensor count\n"); return -EINVAL; } thm->clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(thm->clk)) { dev_err(&pdev->dev, "failed to get enable clock\n"); return PTR_ERR(thm->clk); } ret = clk_prepare_enable(thm->clk); if (ret) return ret; sprd_thm_para_config(thm); ret = sprd_thm_cal_read(np, "thm_sign_cal", &val); if (ret) goto disable_clk; if (val > 0) thm->ratio_sign = -1; else thm->ratio_sign = 1; ret = sprd_thm_cal_read(np, "thm_ratio_cal", &thm->ratio_off); if (ret) goto disable_clk; for_each_child_of_node(np, sen_child) { sen = devm_kzalloc(&pdev->dev, sizeof(*sen), GFP_KERNEL); if (!sen) { ret = -ENOMEM; goto of_put; } sen->data = thm; sen->dev = &pdev->dev; ret = of_property_read_u32(sen_child, "reg", &sen->id); if (ret) { dev_err(&pdev->dev, "get sensor reg failed"); goto of_put; } ret = sprd_thm_sensor_calibration(sen_child, thm, sen); if (ret) { dev_err(&pdev->dev, "efuse cal analysis failed"); goto of_put; } sprd_thm_sensor_init(thm, sen); sen->tzd = devm_thermal_of_zone_register(sen->dev, sen->id, sen, &sprd_thm_ops); if (IS_ERR(sen->tzd)) { dev_err(&pdev->dev, "register thermal zone failed %d\n", sen->id); ret = PTR_ERR(sen->tzd); goto of_put; } thm->sensor[sen->id] = sen; } /* sen_child set to NULL at this point */ ret = sprd_thm_set_ready(thm); if (ret) goto of_put; ret = sprd_thm_wait_temp_ready(thm); if (ret) goto of_put; for (i = 0; i < thm->nr_sensors; i++) sprd_thm_toggle_sensor(thm->sensor[i], true); platform_set_drvdata(pdev, thm); return 0; of_put: of_node_put(sen_child); disable_clk: clk_disable_unprepare(thm->clk); return ret; } #ifdef CONFIG_PM_SLEEP static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm) { int i; for (i = 0; i < thm->nr_sensors; i++) { sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(thm->sensor[i]->id), 0); } sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_EN, 0x0); } static int sprd_thm_suspend(struct device *dev) { struct sprd_thermal_data *thm = dev_get_drvdata(dev); int i; for (i = 0; i < thm->nr_sensors; i++) sprd_thm_toggle_sensor(thm->sensor[i], false); sprd_thm_hw_suspend(thm); clk_disable_unprepare(thm->clk); return 0; } static int sprd_thm_hw_resume(struct sprd_thermal_data *thm) { int ret, i; for (i = 0; i < thm->nr_sensors; i++) { sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(thm->sensor[i]->id), SPRD_THM_SEN(thm->sensor[i]->id)); } ret = sprd_thm_poll_ready_status(thm); if (ret) return ret; writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR); sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_EN, SPRD_THM_EN); return sprd_thm_wait_temp_ready(thm); } static int sprd_thm_resume(struct device *dev) { struct sprd_thermal_data *thm = dev_get_drvdata(dev); int ret, i; ret = clk_prepare_enable(thm->clk); if (ret) return ret; ret = sprd_thm_hw_resume(thm); if (ret) goto disable_clk; for (i = 0; i < thm->nr_sensors; i++) sprd_thm_toggle_sensor(thm->sensor[i], true); return 0; disable_clk: clk_disable_unprepare(thm->clk); return ret; } #endif static int sprd_thm_remove(struct platform_device *pdev) { struct sprd_thermal_data *thm = platform_get_drvdata(pdev); int i; for (i = 0; i < thm->nr_sensors; i++) { sprd_thm_toggle_sensor(thm->sensor[i], false); devm_thermal_of_zone_unregister(&pdev->dev, thm->sensor[i]->tzd); } clk_disable_unprepare(thm->clk); return 0; } static const struct of_device_id sprd_thermal_of_match[] = { { .compatible = "sprd,ums512-thermal", .data = &ums512_data }, { }, }; MODULE_DEVICE_TABLE(of, sprd_thermal_of_match); static const struct dev_pm_ops sprd_thermal_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume) }; static struct platform_driver sprd_thermal_driver = { .probe = sprd_thm_probe, .remove = sprd_thm_remove, .driver = { .name = "sprd-thermal", .pm = &sprd_thermal_pm_ops, .of_match_table = sprd_thermal_of_match, }, }; module_platform_driver(sprd_thermal_driver); MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>"); MODULE_DESCRIPTION("Spreadtrum thermal driver"); MODULE_LICENSE("GPL v2");