// SPDX-License-Identifier: GPL-2.0+ // // Copyright (c) 2009 Samsung Electronics Co., Ltd. // Jaswinder Singh #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_SPI_PORTS 12 #define S3C64XX_SPI_QUIRK_CS_AUTO (1 << 1) #define AUTOSUSPEND_TIMEOUT 2000 /* Registers and bit-fields */ #define S3C64XX_SPI_CH_CFG 0x00 #define S3C64XX_SPI_CLK_CFG 0x04 #define S3C64XX_SPI_MODE_CFG 0x08 #define S3C64XX_SPI_CS_REG 0x0C #define S3C64XX_SPI_INT_EN 0x10 #define S3C64XX_SPI_STATUS 0x14 #define S3C64XX_SPI_TX_DATA 0x18 #define S3C64XX_SPI_RX_DATA 0x1C #define S3C64XX_SPI_PACKET_CNT 0x20 #define S3C64XX_SPI_PENDING_CLR 0x24 #define S3C64XX_SPI_SWAP_CFG 0x28 #define S3C64XX_SPI_FB_CLK 0x2C #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */ #define S3C64XX_SPI_CH_SW_RST (1<<5) #define S3C64XX_SPI_CH_SLAVE (1<<4) #define S3C64XX_SPI_CPOL_L (1<<3) #define S3C64XX_SPI_CPHA_B (1<<2) #define S3C64XX_SPI_CH_RXCH_ON (1<<1) #define S3C64XX_SPI_CH_TXCH_ON (1<<0) #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9) #define S3C64XX_SPI_CLKSEL_SRCSHFT 9 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8) #define S3C64XX_SPI_PSR_MASK 0xff #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29) #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29) #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29) #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29) #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17) #define S3C64XX_SPI_MODE_RX_RDY_LVL GENMASK(16, 11) #define S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT 11 #define S3C64XX_SPI_MODE_SELF_LOOPBACK (1<<3) #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2) #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1) #define S3C64XX_SPI_MODE_4BURST (1<<0) #define S3C64XX_SPI_CS_NSC_CNT_2 (2<<4) #define S3C64XX_SPI_CS_AUTO (1<<1) #define S3C64XX_SPI_CS_SIG_INACT (1<<0) #define S3C64XX_SPI_INT_TRAILING_EN (1<<6) #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5) #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4) #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3) #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2) #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1) #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0) #define S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT 6 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5) #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4) #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3) #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2) #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1) #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0) #define S3C64XX_SPI_PACKET_CNT_EN (1<<16) #define S3C64XX_SPI_PACKET_CNT_MASK GENMASK(15, 0) #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4) #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3) #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2) #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1) #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0) #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7) #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6) #define S3C64XX_SPI_SWAP_RX_BIT (1<<5) #define S3C64XX_SPI_SWAP_RX_EN (1<<4) #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3) #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2) #define S3C64XX_SPI_SWAP_TX_BIT (1<<1) #define S3C64XX_SPI_SWAP_TX_EN (1<<0) #define S3C64XX_SPI_FBCLK_MSK (3<<0) #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id]) #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \ (1 << (i)->port_conf->tx_st_done)) ? 1 : 0) #define TX_FIFO_LVL(v, sdd) (((v) & (sdd)->tx_fifomask) >> \ __ffs((sdd)->tx_fifomask)) #define RX_FIFO_LVL(v, sdd) (((v) & (sdd)->rx_fifomask) >> \ __ffs((sdd)->rx_fifomask)) #define FIFO_DEPTH(i) ((FIFO_LVL_MASK(i) >> 1) + 1) #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff #define S3C64XX_SPI_TRAILCNT_OFF 19 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT #define S3C64XX_SPI_POLLING_SIZE 32 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) #define is_polling(x) (x->cntrlr_info->polling) #define RXBUSY (1<<2) #define TXBUSY (1<<3) struct s3c64xx_spi_dma_data { struct dma_chan *ch; dma_cookie_t cookie; enum dma_transfer_direction direction; }; /** * struct s3c64xx_spi_port_config - SPI Controller hardware info * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register. * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter. * @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's * length and position. * @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's * length and position. * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter. * @clk_div: Internal clock divider * @quirks: Bitmask of known quirks * @high_speed: True, if the controller supports HIGH_SPEED_EN bit. * @clk_from_cmu: True, if the controller does not include a clock mux and * prescaler unit. * @clk_ioclk: True if clock is present on this device * @has_loopback: True if loopback mode can be supported * * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but * differ in some aspects such as the size of the fifo and spi bus clock * setup. Such differences are specified to the driver using this structure * which is provided as driver data to the driver. */ struct s3c64xx_spi_port_config { int fifo_lvl_mask[MAX_SPI_PORTS]; int rx_lvl_offset; u32 rx_fifomask; u32 tx_fifomask; int tx_st_done; int quirks; int clk_div; bool high_speed; bool clk_from_cmu; bool clk_ioclk; bool has_loopback; }; /** * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver. * @clk: Pointer to the spi clock. * @src_clk: Pointer to the clock used to generate SPI signals. * @ioclk: Pointer to the i/o clock between host and target * @pdev: Pointer to device's platform device data * @host: Pointer to the SPI Protocol host. * @cntrlr_info: Platform specific data for the controller this driver manages. * @lock: Controller specific lock. * @state: Set of FLAGS to indicate status. * @sfr_start: BUS address of SPI controller regs. * @regs: Pointer to ioremap'ed controller registers. * @xfer_completion: To indicate completion of xfer task. * @cur_mode: Stores the active configuration of the controller. * @cur_bpw: Stores the active bits per word settings. * @cur_speed: Current clock speed * @rx_dma: Local receive DMA data (e.g. chan and direction) * @tx_dma: Local transmit DMA data (e.g. chan and direction) * @port_conf: Local SPI port configuartion data * @port_id: Port identification number * @fifo_depth: depth of the FIFO. * @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's * length and position. * @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's * length and position. */ struct s3c64xx_spi_driver_data { void __iomem *regs; struct clk *clk; struct clk *src_clk; struct clk *ioclk; struct platform_device *pdev; struct spi_controller *host; struct s3c64xx_spi_info *cntrlr_info; spinlock_t lock; unsigned long sfr_start; struct completion xfer_completion; unsigned state; unsigned cur_mode, cur_bpw; unsigned cur_speed; struct s3c64xx_spi_dma_data rx_dma; struct s3c64xx_spi_dma_data tx_dma; const struct s3c64xx_spi_port_config *port_conf; unsigned int port_id; unsigned int fifo_depth; u32 rx_fifomask; u32 tx_fifomask; }; static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd) { void __iomem *regs = sdd->regs; unsigned long loops; u32 val; writel(0, regs + S3C64XX_SPI_PACKET_CNT); val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON); writel(val, regs + S3C64XX_SPI_CH_CFG); val = readl(regs + S3C64XX_SPI_CH_CFG); val |= S3C64XX_SPI_CH_SW_RST; val &= ~S3C64XX_SPI_CH_HS_EN; writel(val, regs + S3C64XX_SPI_CH_CFG); /* Flush TxFIFO*/ loops = msecs_to_loops(1); do { val = readl(regs + S3C64XX_SPI_STATUS); } while (TX_FIFO_LVL(val, sdd) && --loops); if (loops == 0) dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n"); /* Flush RxFIFO*/ loops = msecs_to_loops(1); do { val = readl(regs + S3C64XX_SPI_STATUS); if (RX_FIFO_LVL(val, sdd)) readl(regs + S3C64XX_SPI_RX_DATA); else break; } while (--loops); if (loops == 0) dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n"); val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~S3C64XX_SPI_CH_SW_RST; writel(val, regs + S3C64XX_SPI_CH_CFG); val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON); writel(val, regs + S3C64XX_SPI_MODE_CFG); } static void s3c64xx_spi_dmacb(void *data) { struct s3c64xx_spi_driver_data *sdd; struct s3c64xx_spi_dma_data *dma = data; unsigned long flags; if (dma->direction == DMA_DEV_TO_MEM) sdd = container_of(data, struct s3c64xx_spi_driver_data, rx_dma); else sdd = container_of(data, struct s3c64xx_spi_driver_data, tx_dma); spin_lock_irqsave(&sdd->lock, flags); if (dma->direction == DMA_DEV_TO_MEM) { sdd->state &= ~RXBUSY; if (!(sdd->state & TXBUSY)) complete(&sdd->xfer_completion); } else { sdd->state &= ~TXBUSY; if (!(sdd->state & RXBUSY)) complete(&sdd->xfer_completion); } spin_unlock_irqrestore(&sdd->lock, flags); } static int prepare_dma(struct s3c64xx_spi_dma_data *dma, struct sg_table *sgt) { struct s3c64xx_spi_driver_data *sdd; struct dma_slave_config config; struct dma_async_tx_descriptor *desc; int ret; memset(&config, 0, sizeof(config)); if (dma->direction == DMA_DEV_TO_MEM) { sdd = container_of((void *)dma, struct s3c64xx_spi_driver_data, rx_dma); config.direction = dma->direction; config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA; config.src_addr_width = sdd->cur_bpw / 8; config.src_maxburst = 1; dmaengine_slave_config(dma->ch, &config); } else { sdd = container_of((void *)dma, struct s3c64xx_spi_driver_data, tx_dma); config.direction = dma->direction; config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA; config.dst_addr_width = sdd->cur_bpw / 8; config.dst_maxburst = 1; dmaengine_slave_config(dma->ch, &config); } desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents, dma->direction, DMA_PREP_INTERRUPT); if (!desc) { dev_err(&sdd->pdev->dev, "unable to prepare %s scatterlist", dma->direction == DMA_DEV_TO_MEM ? "rx" : "tx"); return -ENOMEM; } desc->callback = s3c64xx_spi_dmacb; desc->callback_param = dma; dma->cookie = dmaengine_submit(desc); ret = dma_submit_error(dma->cookie); if (ret) { dev_err(&sdd->pdev->dev, "DMA submission failed"); return -EIO; } dma_async_issue_pending(dma->ch); return 0; } static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi->controller); if (sdd->cntrlr_info->no_cs) return; if (enable) { if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) { writel(0, sdd->regs + S3C64XX_SPI_CS_REG); } else { u32 ssel = readl(sdd->regs + S3C64XX_SPI_CS_REG); ssel |= (S3C64XX_SPI_CS_AUTO | S3C64XX_SPI_CS_NSC_CNT_2); writel(ssel, sdd->regs + S3C64XX_SPI_CS_REG); } } else { if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) writel(S3C64XX_SPI_CS_SIG_INACT, sdd->regs + S3C64XX_SPI_CS_REG); } } static int s3c64xx_spi_prepare_transfer(struct spi_controller *spi) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi); if (is_polling(sdd)) return 0; /* Requests DMA channels */ sdd->rx_dma.ch = dma_request_chan(&sdd->pdev->dev, "rx"); if (IS_ERR(sdd->rx_dma.ch)) { dev_err(&sdd->pdev->dev, "Failed to get RX DMA channel\n"); sdd->rx_dma.ch = NULL; return 0; } sdd->tx_dma.ch = dma_request_chan(&sdd->pdev->dev, "tx"); if (IS_ERR(sdd->tx_dma.ch)) { dev_err(&sdd->pdev->dev, "Failed to get TX DMA channel\n"); dma_release_channel(sdd->rx_dma.ch); sdd->tx_dma.ch = NULL; sdd->rx_dma.ch = NULL; return 0; } spi->dma_rx = sdd->rx_dma.ch; spi->dma_tx = sdd->tx_dma.ch; return 0; } static int s3c64xx_spi_unprepare_transfer(struct spi_controller *spi) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi); if (is_polling(sdd)) return 0; /* Releases DMA channels if they are allocated */ if (sdd->rx_dma.ch && sdd->tx_dma.ch) { dma_release_channel(sdd->rx_dma.ch); dma_release_channel(sdd->tx_dma.ch); sdd->rx_dma.ch = NULL; sdd->tx_dma.ch = NULL; } return 0; } static bool s3c64xx_spi_can_dma(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); if (sdd->rx_dma.ch && sdd->tx_dma.ch) return xfer->len >= sdd->fifo_depth; return false; } static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd, struct spi_transfer *xfer, int dma_mode) { void __iomem *regs = sdd->regs; u32 modecfg, chcfg; int ret = 0; modecfg = readl(regs + S3C64XX_SPI_MODE_CFG); modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON); chcfg = readl(regs + S3C64XX_SPI_CH_CFG); chcfg &= ~S3C64XX_SPI_CH_TXCH_ON; if (dma_mode) { chcfg &= ~S3C64XX_SPI_CH_RXCH_ON; } else { /* Always shift in data in FIFO, even if xfer is Tx only, * this helps setting PCKT_CNT value for generating clocks * as exactly needed. */ chcfg |= S3C64XX_SPI_CH_RXCH_ON; writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff) | S3C64XX_SPI_PACKET_CNT_EN, regs + S3C64XX_SPI_PACKET_CNT); } if (xfer->tx_buf != NULL) { sdd->state |= TXBUSY; chcfg |= S3C64XX_SPI_CH_TXCH_ON; if (dma_mode) { modecfg |= S3C64XX_SPI_MODE_TXDMA_ON; ret = prepare_dma(&sdd->tx_dma, &xfer->tx_sg); } else { switch (sdd->cur_bpw) { case 32: iowrite32_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len / 4); break; case 16: iowrite16_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len / 2); break; default: iowrite8_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len); break; } } } if (xfer->rx_buf != NULL) { sdd->state |= RXBUSY; if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL && !(sdd->cur_mode & SPI_CPHA)) chcfg |= S3C64XX_SPI_CH_HS_EN; if (dma_mode) { modecfg |= S3C64XX_SPI_MODE_RXDMA_ON; chcfg |= S3C64XX_SPI_CH_RXCH_ON; writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff) | S3C64XX_SPI_PACKET_CNT_EN, regs + S3C64XX_SPI_PACKET_CNT); ret = prepare_dma(&sdd->rx_dma, &xfer->rx_sg); } } if (ret) return ret; writel(modecfg, regs + S3C64XX_SPI_MODE_CFG); writel(chcfg, regs + S3C64XX_SPI_CH_CFG); return 0; } static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd, int timeout_ms) { void __iomem *regs = sdd->regs; unsigned long val = 1; u32 status; u32 max_fifo = sdd->fifo_depth; if (timeout_ms) val = msecs_to_loops(timeout_ms); do { status = readl(regs + S3C64XX_SPI_STATUS); } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val); /* return the actual received data length */ return RX_FIFO_LVL(status, sdd); } static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd, struct spi_transfer *xfer) { void __iomem *regs = sdd->regs; unsigned long val; u32 status; int ms; /* millisecs to xfer 'len' bytes @ 'cur_speed' */ ms = xfer->len * 8 * 1000 / sdd->cur_speed; ms += 30; /* some tolerance */ ms = max(ms, 100); /* minimum timeout */ val = msecs_to_jiffies(ms) + 10; val = wait_for_completion_timeout(&sdd->xfer_completion, val); /* * If the previous xfer was completed within timeout, then * proceed further else return -EIO. * DmaTx returns after simply writing data in the FIFO, * w/o waiting for real transmission on the bus to finish. * DmaRx returns only after Dma read data from FIFO which * needs bus transmission to finish, so we don't worry if * Xfer involved Rx(with or without Tx). */ if (val && !xfer->rx_buf) { val = msecs_to_loops(10); status = readl(regs + S3C64XX_SPI_STATUS); while ((TX_FIFO_LVL(status, sdd) || !S3C64XX_SPI_ST_TX_DONE(status, sdd)) && --val) { cpu_relax(); status = readl(regs + S3C64XX_SPI_STATUS); } } /* If timed out while checking rx/tx status return error */ if (!val) return -EIO; return 0; } static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd, struct spi_transfer *xfer, bool use_irq) { void __iomem *regs = sdd->regs; unsigned long val; u32 status; int loops; u32 cpy_len; u8 *buf; int ms; unsigned long time_us; /* microsecs to xfer 'len' bytes @ 'cur_speed' */ time_us = (xfer->len * 8 * 1000 * 1000) / sdd->cur_speed; ms = (time_us / 1000); ms += 10; /* some tolerance */ /* sleep during signal transfer time */ status = readl(regs + S3C64XX_SPI_STATUS); if (RX_FIFO_LVL(status, sdd) < xfer->len) usleep_range(time_us / 2, time_us); if (use_irq) { val = msecs_to_jiffies(ms); if (!wait_for_completion_timeout(&sdd->xfer_completion, val)) return -EIO; } val = msecs_to_loops(ms); do { status = readl(regs + S3C64XX_SPI_STATUS); } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val); if (!val) return -EIO; /* If it was only Tx */ if (!xfer->rx_buf) { sdd->state &= ~TXBUSY; return 0; } /* * If the receive length is bigger than the controller fifo * size, calculate the loops and read the fifo as many times. * loops = length / max fifo size (calculated by using the * fifo mask). * For any size less than the fifo size the below code is * executed atleast once. */ loops = xfer->len / sdd->fifo_depth; buf = xfer->rx_buf; do { /* wait for data to be received in the fifo */ cpy_len = s3c64xx_spi_wait_for_timeout(sdd, (loops ? ms : 0)); switch (sdd->cur_bpw) { case 32: ioread32_rep(regs + S3C64XX_SPI_RX_DATA, buf, cpy_len / 4); break; case 16: ioread16_rep(regs + S3C64XX_SPI_RX_DATA, buf, cpy_len / 2); break; default: ioread8_rep(regs + S3C64XX_SPI_RX_DATA, buf, cpy_len); break; } buf = buf + cpy_len; } while (loops--); sdd->state &= ~RXBUSY; return 0; } static int s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd) { void __iomem *regs = sdd->regs; int ret; u32 val; int div = sdd->port_conf->clk_div; /* Disable Clock */ if (!sdd->port_conf->clk_from_cmu) { val = readl(regs + S3C64XX_SPI_CLK_CFG); val &= ~S3C64XX_SPI_ENCLK_ENABLE; writel(val, regs + S3C64XX_SPI_CLK_CFG); } /* Set Polarity and Phase */ val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~(S3C64XX_SPI_CH_SLAVE | S3C64XX_SPI_CPOL_L | S3C64XX_SPI_CPHA_B); if (sdd->cur_mode & SPI_CPOL) val |= S3C64XX_SPI_CPOL_L; if (sdd->cur_mode & SPI_CPHA) val |= S3C64XX_SPI_CPHA_B; writel(val, regs + S3C64XX_SPI_CH_CFG); /* Set Channel & DMA Mode */ val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK | S3C64XX_SPI_MODE_CH_TSZ_MASK); switch (sdd->cur_bpw) { case 32: val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD; val |= S3C64XX_SPI_MODE_CH_TSZ_WORD; break; case 16: val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD; val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD; break; default: val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE; val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; break; } if ((sdd->cur_mode & SPI_LOOP) && sdd->port_conf->has_loopback) val |= S3C64XX_SPI_MODE_SELF_LOOPBACK; else val &= ~S3C64XX_SPI_MODE_SELF_LOOPBACK; writel(val, regs + S3C64XX_SPI_MODE_CFG); if (sdd->port_conf->clk_from_cmu) { ret = clk_set_rate(sdd->src_clk, sdd->cur_speed * div); if (ret) return ret; sdd->cur_speed = clk_get_rate(sdd->src_clk) / div; } else { /* Configure Clock */ val = readl(regs + S3C64XX_SPI_CLK_CFG); val &= ~S3C64XX_SPI_PSR_MASK; val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / div - 1) & S3C64XX_SPI_PSR_MASK); writel(val, regs + S3C64XX_SPI_CLK_CFG); /* Enable Clock */ val = readl(regs + S3C64XX_SPI_CLK_CFG); val |= S3C64XX_SPI_ENCLK_ENABLE; writel(val, regs + S3C64XX_SPI_CLK_CFG); } return 0; } #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32) static int s3c64xx_spi_prepare_message(struct spi_controller *host, struct spi_message *msg) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); struct spi_device *spi = msg->spi; struct s3c64xx_spi_csinfo *cs = spi->controller_data; /* Configure feedback delay */ if (!cs) /* No delay if not defined */ writel(0, sdd->regs + S3C64XX_SPI_FB_CLK); else writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK); return 0; } static size_t s3c64xx_spi_max_transfer_size(struct spi_device *spi) { struct spi_controller *ctlr = spi->controller; return ctlr->can_dma ? S3C64XX_SPI_PACKET_CNT_MASK : SIZE_MAX; } static int s3c64xx_spi_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); const unsigned int fifo_len = sdd->fifo_depth; const void *tx_buf = NULL; void *rx_buf = NULL; int target_len = 0, origin_len = 0; int use_dma = 0; bool use_irq = false; int status; u32 speed; u8 bpw; unsigned long flags; u32 rdy_lv; u32 val; reinit_completion(&sdd->xfer_completion); /* Only BPW and Speed may change across transfers */ bpw = xfer->bits_per_word; speed = xfer->speed_hz; if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) { sdd->cur_bpw = bpw; sdd->cur_speed = speed; sdd->cur_mode = spi->mode; status = s3c64xx_spi_config(sdd); if (status) return status; } if (!is_polling(sdd) && xfer->len >= fifo_len && sdd->rx_dma.ch && sdd->tx_dma.ch) { use_dma = 1; } else if (xfer->len >= fifo_len) { tx_buf = xfer->tx_buf; rx_buf = xfer->rx_buf; origin_len = xfer->len; target_len = xfer->len; xfer->len = fifo_len - 1; } do { /* transfer size is greater than 32, change to IRQ mode */ if (!use_dma && xfer->len > S3C64XX_SPI_POLLING_SIZE) use_irq = true; if (use_irq) { reinit_completion(&sdd->xfer_completion); rdy_lv = xfer->len; /* Setup RDY_FIFO trigger Level * RDY_LVL = * fifo_lvl up to 64 byte -> N bytes * 128 byte -> RDY_LVL * 2 bytes * 256 byte -> RDY_LVL * 4 bytes */ if (fifo_len == 128) rdy_lv /= 2; else if (fifo_len == 256) rdy_lv /= 4; val = readl(sdd->regs + S3C64XX_SPI_MODE_CFG); val &= ~S3C64XX_SPI_MODE_RX_RDY_LVL; val |= (rdy_lv << S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT); writel(val, sdd->regs + S3C64XX_SPI_MODE_CFG); /* Enable FIFO_RDY_EN IRQ */ val = readl(sdd->regs + S3C64XX_SPI_INT_EN); writel((val | S3C64XX_SPI_INT_RX_FIFORDY_EN), sdd->regs + S3C64XX_SPI_INT_EN); } spin_lock_irqsave(&sdd->lock, flags); /* Pending only which is to be done */ sdd->state &= ~RXBUSY; sdd->state &= ~TXBUSY; /* Start the signals */ s3c64xx_spi_set_cs(spi, true); status = s3c64xx_enable_datapath(sdd, xfer, use_dma); spin_unlock_irqrestore(&sdd->lock, flags); if (status) { dev_err(&spi->dev, "failed to enable data path for transfer: %d\n", status); break; } if (use_dma) status = s3c64xx_wait_for_dma(sdd, xfer); else status = s3c64xx_wait_for_pio(sdd, xfer, use_irq); if (status) { dev_err(&spi->dev, "I/O Error: rx-%d tx-%d rx-%c tx-%c len-%d dma-%d res-(%d)\n", xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0, (sdd->state & RXBUSY) ? 'f' : 'p', (sdd->state & TXBUSY) ? 'f' : 'p', xfer->len, use_dma ? 1 : 0, status); if (use_dma) { struct dma_tx_state s; if (xfer->tx_buf && (sdd->state & TXBUSY)) { dmaengine_pause(sdd->tx_dma.ch); dmaengine_tx_status(sdd->tx_dma.ch, sdd->tx_dma.cookie, &s); dmaengine_terminate_all(sdd->tx_dma.ch); dev_err(&spi->dev, "TX residue: %d\n", s.residue); } if (xfer->rx_buf && (sdd->state & RXBUSY)) { dmaengine_pause(sdd->rx_dma.ch); dmaengine_tx_status(sdd->rx_dma.ch, sdd->rx_dma.cookie, &s); dmaengine_terminate_all(sdd->rx_dma.ch); dev_err(&spi->dev, "RX residue: %d\n", s.residue); } } } else { s3c64xx_flush_fifo(sdd); } if (target_len > 0) { target_len -= xfer->len; if (xfer->tx_buf) xfer->tx_buf += xfer->len; if (xfer->rx_buf) xfer->rx_buf += xfer->len; if (target_len >= fifo_len) xfer->len = fifo_len - 1; else xfer->len = target_len; } } while (target_len > 0); if (origin_len) { /* Restore original xfer buffers and length */ xfer->tx_buf = tx_buf; xfer->rx_buf = rx_buf; xfer->len = origin_len; } return status; } static struct s3c64xx_spi_csinfo *s3c64xx_get_target_ctrldata( struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs; struct device_node *target_np, *data_np = NULL; u32 fb_delay = 0; target_np = spi->dev.of_node; if (!target_np) { dev_err(&spi->dev, "device node not found\n"); return ERR_PTR(-EINVAL); } cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return ERR_PTR(-ENOMEM); data_np = of_get_child_by_name(target_np, "controller-data"); if (!data_np) { dev_info(&spi->dev, "feedback delay set to default (0)\n"); return cs; } of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay); cs->fb_delay = fb_delay; of_node_put(data_np); return cs; } /* * Here we only check the validity of requested configuration * and save the configuration in a local data-structure. * The controller is actually configured only just before we * get a message to transfer. */ static int s3c64xx_spi_setup(struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs = spi->controller_data; struct s3c64xx_spi_driver_data *sdd; int err; int div; sdd = spi_controller_get_devdata(spi->controller); if (spi->dev.of_node) { cs = s3c64xx_get_target_ctrldata(spi); spi->controller_data = cs; } /* NULL is fine, we just avoid using the FB delay (=0) */ if (IS_ERR(cs)) { dev_err(&spi->dev, "No CS for SPI(%d)\n", spi_get_chipselect(spi, 0)); return -ENODEV; } if (!spi_get_ctldata(spi)) spi_set_ctldata(spi, cs); pm_runtime_get_sync(&sdd->pdev->dev); div = sdd->port_conf->clk_div; /* Check if we can provide the requested rate */ if (!sdd->port_conf->clk_from_cmu) { u32 psr, speed; /* Max possible */ speed = clk_get_rate(sdd->src_clk) / div / (0 + 1); if (spi->max_speed_hz > speed) spi->max_speed_hz = speed; psr = clk_get_rate(sdd->src_clk) / div / spi->max_speed_hz - 1; psr &= S3C64XX_SPI_PSR_MASK; if (psr == S3C64XX_SPI_PSR_MASK) psr--; speed = clk_get_rate(sdd->src_clk) / div / (psr + 1); if (spi->max_speed_hz < speed) { if (psr+1 < S3C64XX_SPI_PSR_MASK) { psr++; } else { err = -EINVAL; goto setup_exit; } } speed = clk_get_rate(sdd->src_clk) / div / (psr + 1); if (spi->max_speed_hz >= speed) { spi->max_speed_hz = speed; } else { dev_err(&spi->dev, "Can't set %dHz transfer speed\n", spi->max_speed_hz); err = -EINVAL; goto setup_exit; } } pm_runtime_mark_last_busy(&sdd->pdev->dev); pm_runtime_put_autosuspend(&sdd->pdev->dev); s3c64xx_spi_set_cs(spi, false); return 0; setup_exit: pm_runtime_mark_last_busy(&sdd->pdev->dev); pm_runtime_put_autosuspend(&sdd->pdev->dev); /* setup() returns with device de-selected */ s3c64xx_spi_set_cs(spi, false); spi_set_ctldata(spi, NULL); /* This was dynamically allocated on the DT path */ if (spi->dev.of_node) kfree(cs); return err; } static void s3c64xx_spi_cleanup(struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi); /* This was dynamically allocated on the DT path */ if (spi->dev.of_node) kfree(cs); spi_set_ctldata(spi, NULL); } static irqreturn_t s3c64xx_spi_irq(int irq, void *data) { struct s3c64xx_spi_driver_data *sdd = data; struct spi_controller *spi = sdd->host; unsigned int val, clr = 0; val = readl(sdd->regs + S3C64XX_SPI_STATUS); if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) { clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR; dev_err(&spi->dev, "RX overrun\n"); } if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) { clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR; dev_err(&spi->dev, "RX underrun\n"); } if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) { clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR; dev_err(&spi->dev, "TX overrun\n"); } if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) { clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR; dev_err(&spi->dev, "TX underrun\n"); } if (val & S3C64XX_SPI_ST_RX_FIFORDY) { complete(&sdd->xfer_completion); /* No pending clear irq, turn-off INT_EN_RX_FIFO_RDY */ val = readl(sdd->regs + S3C64XX_SPI_INT_EN); writel((val & ~S3C64XX_SPI_INT_RX_FIFORDY_EN), sdd->regs + S3C64XX_SPI_INT_EN); } /* Clear the pending irq by setting and then clearing it */ writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR); writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR); return IRQ_HANDLED; } static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; unsigned int val; sdd->cur_speed = 0; if (sci->no_cs) writel(0, sdd->regs + S3C64XX_SPI_CS_REG); else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) writel(S3C64XX_SPI_CS_SIG_INACT, sdd->regs + S3C64XX_SPI_CS_REG); /* Disable Interrupts - we use Polling if not DMA mode */ writel(0, regs + S3C64XX_SPI_INT_EN); if (!sdd->port_conf->clk_from_cmu) writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT, regs + S3C64XX_SPI_CLK_CFG); writel(0, regs + S3C64XX_SPI_MODE_CFG); writel(0, regs + S3C64XX_SPI_PACKET_CNT); /* Clear any irq pending bits, should set and clear the bits */ val = S3C64XX_SPI_PND_RX_OVERRUN_CLR | S3C64XX_SPI_PND_RX_UNDERRUN_CLR | S3C64XX_SPI_PND_TX_OVERRUN_CLR | S3C64XX_SPI_PND_TX_UNDERRUN_CLR; writel(val, regs + S3C64XX_SPI_PENDING_CLR); writel(0, regs + S3C64XX_SPI_PENDING_CLR); writel(0, regs + S3C64XX_SPI_SWAP_CFG); val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~S3C64XX_SPI_MODE_4BURST; val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF); val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF); writel(val, regs + S3C64XX_SPI_MODE_CFG); s3c64xx_flush_fifo(sdd); } #ifdef CONFIG_OF static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev) { struct s3c64xx_spi_info *sci; u32 temp; sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL); if (!sci) return ERR_PTR(-ENOMEM); if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) { dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n"); sci->src_clk_nr = 0; } else { sci->src_clk_nr = temp; } if (of_property_read_u32(dev->of_node, "num-cs", &temp)) { dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n"); sci->num_cs = 1; } else { sci->num_cs = temp; } sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback"); sci->polling = !of_property_present(dev->of_node, "dmas"); return sci; } #else static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev) { return dev_get_platdata(dev); } #endif static inline const struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config( struct platform_device *pdev) { #ifdef CONFIG_OF if (pdev->dev.of_node) return of_device_get_match_data(&pdev->dev); #endif return (const struct s3c64xx_spi_port_config *)platform_get_device_id(pdev)->driver_data; } static void s3c64xx_spi_set_fifomask(struct s3c64xx_spi_driver_data *sdd) { const struct s3c64xx_spi_port_config *port_conf = sdd->port_conf; if (port_conf->rx_fifomask) sdd->rx_fifomask = port_conf->rx_fifomask; else sdd->rx_fifomask = FIFO_LVL_MASK(sdd) << port_conf->rx_lvl_offset; if (port_conf->tx_fifomask) sdd->tx_fifomask = port_conf->tx_fifomask; else sdd->tx_fifomask = FIFO_LVL_MASK(sdd) << S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT; } static int s3c64xx_spi_probe(struct platform_device *pdev) { struct resource *mem_res; struct s3c64xx_spi_driver_data *sdd; struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev); struct spi_controller *host; int ret, irq; char clk_name[16]; if (!sci && pdev->dev.of_node) { sci = s3c64xx_spi_parse_dt(&pdev->dev); if (IS_ERR(sci)) return PTR_ERR(sci); } if (!sci) return dev_err_probe(&pdev->dev, -ENODEV, "Platform_data missing!\n"); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; host = devm_spi_alloc_host(&pdev->dev, sizeof(*sdd)); if (!host) return dev_err_probe(&pdev->dev, -ENOMEM, "Unable to allocate SPI Host\n"); platform_set_drvdata(pdev, host); sdd = spi_controller_get_devdata(host); sdd->port_conf = s3c64xx_spi_get_port_config(pdev); sdd->host = host; sdd->cntrlr_info = sci; sdd->pdev = pdev; if (pdev->dev.of_node) { ret = of_alias_get_id(pdev->dev.of_node, "spi"); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Failed to get alias id\n"); sdd->port_id = ret; } else { sdd->port_id = pdev->id; } sdd->fifo_depth = FIFO_DEPTH(sdd); s3c64xx_spi_set_fifomask(sdd); sdd->cur_bpw = 8; sdd->tx_dma.direction = DMA_MEM_TO_DEV; sdd->rx_dma.direction = DMA_DEV_TO_MEM; host->dev.of_node = pdev->dev.of_node; host->bus_num = sdd->port_id; host->setup = s3c64xx_spi_setup; host->cleanup = s3c64xx_spi_cleanup; host->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer; host->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer; host->prepare_message = s3c64xx_spi_prepare_message; host->transfer_one = s3c64xx_spi_transfer_one; host->max_transfer_size = s3c64xx_spi_max_transfer_size; host->num_chipselect = sci->num_cs; host->use_gpio_descriptors = true; host->dma_alignment = 8; host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8); /* the spi->mode bits understood by this driver: */ host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; if (sdd->port_conf->has_loopback) host->mode_bits |= SPI_LOOP; host->auto_runtime_pm = true; if (!is_polling(sdd)) host->can_dma = s3c64xx_spi_can_dma; sdd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem_res); if (IS_ERR(sdd->regs)) return PTR_ERR(sdd->regs); sdd->sfr_start = mem_res->start; if (sci->cfg_gpio && sci->cfg_gpio()) return dev_err_probe(&pdev->dev, -EBUSY, "Unable to config gpio\n"); /* Setup clocks */ sdd->clk = devm_clk_get_enabled(&pdev->dev, "spi"); if (IS_ERR(sdd->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sdd->clk), "Unable to acquire clock 'spi'\n"); sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr); sdd->src_clk = devm_clk_get_enabled(&pdev->dev, clk_name); if (IS_ERR(sdd->src_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sdd->src_clk), "Unable to acquire clock '%s'\n", clk_name); if (sdd->port_conf->clk_ioclk) { sdd->ioclk = devm_clk_get_enabled(&pdev->dev, "spi_ioclk"); if (IS_ERR(sdd->ioclk)) return dev_err_probe(&pdev->dev, PTR_ERR(sdd->ioclk), "Unable to acquire 'ioclk'\n"); } pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); /* Setup Deufult Mode */ s3c64xx_spi_hwinit(sdd); spin_lock_init(&sdd->lock); init_completion(&sdd->xfer_completion); ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0, "spi-s3c64xx", sdd); if (ret != 0) { dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n", irq, ret); goto err_pm_put; } writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN | S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN, sdd->regs + S3C64XX_SPI_INT_EN); ret = devm_spi_register_controller(&pdev->dev, host); if (ret != 0) { dev_err(&pdev->dev, "cannot register SPI host: %d\n", ret); goto err_pm_put; } dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Targets attached\n", sdd->port_id, host->num_chipselect); dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n", mem_res, sdd->fifo_depth); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; err_pm_put: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); return ret; } static void s3c64xx_spi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); pm_runtime_get_sync(&pdev->dev); writel(0, sdd->regs + S3C64XX_SPI_INT_EN); if (!is_polling(sdd)) { dma_release_channel(sdd->rx_dma.ch); dma_release_channel(sdd->tx_dma.ch); } pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int s3c64xx_spi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); int ret = spi_controller_suspend(host); if (ret) return ret; ret = pm_runtime_force_suspend(dev); if (ret < 0) return ret; sdd->cur_speed = 0; /* Output Clock is stopped */ return 0; } static int s3c64xx_spi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); struct s3c64xx_spi_info *sci = sdd->cntrlr_info; int ret; if (sci->cfg_gpio) sci->cfg_gpio(); ret = pm_runtime_force_resume(dev); if (ret < 0) return ret; return spi_controller_resume(host); } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int s3c64xx_spi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); clk_disable_unprepare(sdd->clk); clk_disable_unprepare(sdd->src_clk); clk_disable_unprepare(sdd->ioclk); return 0; } static int s3c64xx_spi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host); int ret; if (sdd->port_conf->clk_ioclk) { ret = clk_prepare_enable(sdd->ioclk); if (ret != 0) return ret; } ret = clk_prepare_enable(sdd->src_clk); if (ret != 0) goto err_disable_ioclk; ret = clk_prepare_enable(sdd->clk); if (ret != 0) goto err_disable_src_clk; s3c64xx_spi_hwinit(sdd); writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN | S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN, sdd->regs + S3C64XX_SPI_INT_EN); return 0; err_disable_src_clk: clk_disable_unprepare(sdd->src_clk); err_disable_ioclk: clk_disable_unprepare(sdd->ioclk); return ret; } #endif /* CONFIG_PM */ static const struct dev_pm_ops s3c64xx_spi_pm = { SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume) SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend, s3c64xx_spi_runtime_resume, NULL) }; static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = { .fifo_lvl_mask = { 0x7f }, .rx_lvl_offset = 13, .tx_st_done = 21, .clk_div = 2, .high_speed = true, }; static const struct s3c64xx_spi_port_config s3c6410_spi_port_config = { .fifo_lvl_mask = { 0x7f, 0x7F }, .rx_lvl_offset = 13, .tx_st_done = 21, .clk_div = 2, }; static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = { .fifo_lvl_mask = { 0x1ff, 0x7F }, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 2, .high_speed = true, }; static const struct s3c64xx_spi_port_config exynos4_spi_port_config = { .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F }, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 2, .high_speed = true, .clk_from_cmu = true, .quirks = S3C64XX_SPI_QUIRK_CS_AUTO, }; static const struct s3c64xx_spi_port_config exynos7_spi_port_config = { .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff}, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 2, .high_speed = true, .clk_from_cmu = true, .quirks = S3C64XX_SPI_QUIRK_CS_AUTO, }; static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = { .fifo_lvl_mask = { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff}, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 2, .high_speed = true, .clk_from_cmu = true, .clk_ioclk = true, .quirks = S3C64XX_SPI_QUIRK_CS_AUTO, }; static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = { .fifo_lvl_mask = { 0x1ff, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f}, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 4, .high_speed = true, .clk_from_cmu = true, .clk_ioclk = true, .has_loopback = true, .quirks = S3C64XX_SPI_QUIRK_CS_AUTO, }; static const struct s3c64xx_spi_port_config fsd_spi_port_config = { .fifo_lvl_mask = { 0x7f, 0x7f, 0x7f, 0x7f, 0x7f}, .rx_lvl_offset = 15, .tx_st_done = 25, .clk_div = 2, .high_speed = true, .clk_from_cmu = true, .clk_ioclk = false, .quirks = S3C64XX_SPI_QUIRK_CS_AUTO, }; static const struct platform_device_id s3c64xx_spi_driver_ids[] = { { .name = "s3c2443-spi", .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config, }, { .name = "s3c6410-spi", .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config, }, { }, }; static const struct of_device_id s3c64xx_spi_dt_match[] = { { .compatible = "samsung,s3c2443-spi", .data = (void *)&s3c2443_spi_port_config, }, { .compatible = "samsung,s3c6410-spi", .data = (void *)&s3c6410_spi_port_config, }, { .compatible = "samsung,s5pv210-spi", .data = (void *)&s5pv210_spi_port_config, }, { .compatible = "samsung,exynos4210-spi", .data = (void *)&exynos4_spi_port_config, }, { .compatible = "samsung,exynos7-spi", .data = (void *)&exynos7_spi_port_config, }, { .compatible = "samsung,exynos5433-spi", .data = (void *)&exynos5433_spi_port_config, }, { .compatible = "samsung,exynosautov9-spi", .data = (void *)&exynosautov9_spi_port_config, }, { .compatible = "tesla,fsd-spi", .data = (void *)&fsd_spi_port_config, }, { }, }; MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match); static struct platform_driver s3c64xx_spi_driver = { .driver = { .name = "s3c64xx-spi", .pm = &s3c64xx_spi_pm, .of_match_table = of_match_ptr(s3c64xx_spi_dt_match), }, .probe = s3c64xx_spi_probe, .remove_new = s3c64xx_spi_remove, .id_table = s3c64xx_spi_driver_ids, }; MODULE_ALIAS("platform:s3c64xx-spi"); module_platform_driver(s3c64xx_spi_driver); MODULE_AUTHOR("Jaswinder Singh "); MODULE_DESCRIPTION("S3C64XX SPI Controller Driver"); MODULE_LICENSE("GPL");