// SPDX-License-Identifier: GPL-2.0-only /* * QLogic iSCSI HBA Driver * Copyright (c) 2003-2013 QLogic Corporation */ #include #include #include #include #include "ql4_def.h" #include "ql4_glbl.h" #include "ql4_inline.h" #include #define TIMEOUT_100_MS 100 #define MASK(n) DMA_BIT_MASK(n) #define MN_WIN(addr) (((addr & 0x1fc0000) >> 1) | ((addr >> 25) & 0x3ff)) #define OCM_WIN(addr) (((addr & 0x1ff0000) >> 1) | ((addr >> 25) & 0x3ff)) #define MS_WIN(addr) (addr & 0x0ffc0000) #define QLA82XX_PCI_MN_2M (0) #define QLA82XX_PCI_MS_2M (0x80000) #define QLA82XX_PCI_OCM0_2M (0xc0000) #define VALID_OCM_ADDR(addr) (((addr) & 0x3f800) != 0x3f800) #define GET_MEM_OFFS_2M(addr) (addr & MASK(18)) /* CRB window related */ #define CRB_BLK(off) ((off >> 20) & 0x3f) #define CRB_SUBBLK(off) ((off >> 16) & 0xf) #define CRB_WINDOW_2M (0x130060) #define CRB_HI(off) ((qla4_82xx_crb_hub_agt[CRB_BLK(off)] << 20) | \ ((off) & 0xf0000)) #define QLA82XX_PCI_CAMQM_2M_END (0x04800800UL) #define QLA82XX_PCI_CAMQM_2M_BASE (0x000ff800UL) #define CRB_INDIRECT_2M (0x1e0000UL) static inline void __iomem * qla4_8xxx_pci_base_offsetfset(struct scsi_qla_host *ha, unsigned long off) { if ((off < ha->first_page_group_end) && (off >= ha->first_page_group_start)) return (void __iomem *)(ha->nx_pcibase + off); return NULL; } static const int MD_MIU_TEST_AGT_RDDATA[] = { 0x410000A8, 0x410000AC, 0x410000B8, 0x410000BC }; #define MAX_CRB_XFORM 60 static unsigned long crb_addr_xform[MAX_CRB_XFORM]; static int qla4_8xxx_crb_table_initialized; #define qla4_8xxx_crb_addr_transform(name) \ (crb_addr_xform[QLA82XX_HW_PX_MAP_CRB_##name] = \ QLA82XX_HW_CRB_HUB_AGT_ADR_##name << 20) static void qla4_82xx_crb_addr_transform_setup(void) { qla4_8xxx_crb_addr_transform(XDMA); qla4_8xxx_crb_addr_transform(TIMR); qla4_8xxx_crb_addr_transform(SRE); qla4_8xxx_crb_addr_transform(SQN3); qla4_8xxx_crb_addr_transform(SQN2); qla4_8xxx_crb_addr_transform(SQN1); qla4_8xxx_crb_addr_transform(SQN0); qla4_8xxx_crb_addr_transform(SQS3); qla4_8xxx_crb_addr_transform(SQS2); qla4_8xxx_crb_addr_transform(SQS1); qla4_8xxx_crb_addr_transform(SQS0); qla4_8xxx_crb_addr_transform(RPMX7); qla4_8xxx_crb_addr_transform(RPMX6); qla4_8xxx_crb_addr_transform(RPMX5); qla4_8xxx_crb_addr_transform(RPMX4); qla4_8xxx_crb_addr_transform(RPMX3); qla4_8xxx_crb_addr_transform(RPMX2); qla4_8xxx_crb_addr_transform(RPMX1); qla4_8xxx_crb_addr_transform(RPMX0); qla4_8xxx_crb_addr_transform(ROMUSB); qla4_8xxx_crb_addr_transform(SN); qla4_8xxx_crb_addr_transform(QMN); qla4_8xxx_crb_addr_transform(QMS); qla4_8xxx_crb_addr_transform(PGNI); qla4_8xxx_crb_addr_transform(PGND); qla4_8xxx_crb_addr_transform(PGN3); qla4_8xxx_crb_addr_transform(PGN2); qla4_8xxx_crb_addr_transform(PGN1); qla4_8xxx_crb_addr_transform(PGN0); qla4_8xxx_crb_addr_transform(PGSI); qla4_8xxx_crb_addr_transform(PGSD); qla4_8xxx_crb_addr_transform(PGS3); qla4_8xxx_crb_addr_transform(PGS2); qla4_8xxx_crb_addr_transform(PGS1); qla4_8xxx_crb_addr_transform(PGS0); qla4_8xxx_crb_addr_transform(PS); qla4_8xxx_crb_addr_transform(PH); qla4_8xxx_crb_addr_transform(NIU); qla4_8xxx_crb_addr_transform(I2Q); qla4_8xxx_crb_addr_transform(EG); qla4_8xxx_crb_addr_transform(MN); qla4_8xxx_crb_addr_transform(MS); qla4_8xxx_crb_addr_transform(CAS2); qla4_8xxx_crb_addr_transform(CAS1); qla4_8xxx_crb_addr_transform(CAS0); qla4_8xxx_crb_addr_transform(CAM); qla4_8xxx_crb_addr_transform(C2C1); qla4_8xxx_crb_addr_transform(C2C0); qla4_8xxx_crb_addr_transform(SMB); qla4_8xxx_crb_addr_transform(OCM0); qla4_8xxx_crb_addr_transform(I2C0); qla4_8xxx_crb_table_initialized = 1; } static struct crb_128M_2M_block_map crb_128M_2M_map[64] = { {{{0, 0, 0, 0} } }, /* 0: PCI */ {{{1, 0x0100000, 0x0102000, 0x120000}, /* 1: PCIE */ {1, 0x0110000, 0x0120000, 0x130000}, {1, 0x0120000, 0x0122000, 0x124000}, {1, 0x0130000, 0x0132000, 0x126000}, {1, 0x0140000, 0x0142000, 0x128000}, {1, 0x0150000, 0x0152000, 0x12a000}, {1, 0x0160000, 0x0170000, 0x110000}, {1, 0x0170000, 0x0172000, 0x12e000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {1, 0x01e0000, 0x01e0800, 0x122000}, {0, 0x0000000, 0x0000000, 0x000000} } }, {{{1, 0x0200000, 0x0210000, 0x180000} } },/* 2: MN */ {{{0, 0, 0, 0} } }, /* 3: */ {{{1, 0x0400000, 0x0401000, 0x169000} } },/* 4: P2NR1 */ {{{1, 0x0500000, 0x0510000, 0x140000} } },/* 5: SRE */ {{{1, 0x0600000, 0x0610000, 0x1c0000} } },/* 6: NIU */ {{{1, 0x0700000, 0x0704000, 0x1b8000} } },/* 7: QM */ {{{1, 0x0800000, 0x0802000, 0x170000}, /* 8: SQM0 */ {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {1, 0x08f0000, 0x08f2000, 0x172000} } }, {{{1, 0x0900000, 0x0902000, 0x174000}, /* 9: SQM1*/ {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {1, 0x09f0000, 0x09f2000, 0x176000} } }, {{{0, 0x0a00000, 0x0a02000, 0x178000}, /* 10: SQM2*/ {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {1, 0x0af0000, 0x0af2000, 0x17a000} } }, {{{0, 0x0b00000, 0x0b02000, 0x17c000}, /* 11: SQM3*/ {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {1, 0x0bf0000, 0x0bf2000, 0x17e000} } }, {{{1, 0x0c00000, 0x0c04000, 0x1d4000} } },/* 12: I2Q */ {{{1, 0x0d00000, 0x0d04000, 0x1a4000} } },/* 13: TMR */ {{{1, 0x0e00000, 0x0e04000, 0x1a0000} } },/* 14: ROMUSB */ {{{1, 0x0f00000, 0x0f01000, 0x164000} } },/* 15: PEG4 */ {{{0, 0x1000000, 0x1004000, 0x1a8000} } },/* 16: XDMA */ {{{1, 0x1100000, 0x1101000, 0x160000} } },/* 17: PEG0 */ {{{1, 0x1200000, 0x1201000, 0x161000} } },/* 18: PEG1 */ {{{1, 0x1300000, 0x1301000, 0x162000} } },/* 19: PEG2 */ {{{1, 0x1400000, 0x1401000, 0x163000} } },/* 20: PEG3 */ {{{1, 0x1500000, 0x1501000, 0x165000} } },/* 21: P2ND */ {{{1, 0x1600000, 0x1601000, 0x166000} } },/* 22: P2NI */ {{{0, 0, 0, 0} } }, /* 23: */ {{{0, 0, 0, 0} } }, /* 24: */ {{{0, 0, 0, 0} } }, /* 25: */ {{{0, 0, 0, 0} } }, /* 26: */ {{{0, 0, 0, 0} } }, /* 27: */ {{{0, 0, 0, 0} } }, /* 28: */ {{{1, 0x1d00000, 0x1d10000, 0x190000} } },/* 29: MS */ {{{1, 0x1e00000, 0x1e01000, 0x16a000} } },/* 30: P2NR2 */ {{{1, 0x1f00000, 0x1f10000, 0x150000} } },/* 31: EPG */ {{{0} } }, /* 32: PCI */ {{{1, 0x2100000, 0x2102000, 0x120000}, /* 33: PCIE */ {1, 0x2110000, 0x2120000, 0x130000}, {1, 0x2120000, 0x2122000, 0x124000}, {1, 0x2130000, 0x2132000, 0x126000}, {1, 0x2140000, 0x2142000, 0x128000}, {1, 0x2150000, 0x2152000, 0x12a000}, {1, 0x2160000, 0x2170000, 0x110000}, {1, 0x2170000, 0x2172000, 0x12e000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000}, {0, 0x0000000, 0x0000000, 0x000000} } }, {{{1, 0x2200000, 0x2204000, 0x1b0000} } },/* 34: CAM */ {{{0} } }, /* 35: */ {{{0} } }, /* 36: */ {{{0} } }, /* 37: */ {{{0} } }, /* 38: */ {{{0} } }, /* 39: */ {{{1, 0x2800000, 0x2804000, 0x1a4000} } },/* 40: TMR */ {{{1, 0x2900000, 0x2901000, 0x16b000} } },/* 41: P2NR3 */ {{{1, 0x2a00000, 0x2a00400, 0x1ac400} } },/* 42: RPMX1 */ {{{1, 0x2b00000, 0x2b00400, 0x1ac800} } },/* 43: RPMX2 */ {{{1, 0x2c00000, 0x2c00400, 0x1acc00} } },/* 44: RPMX3 */ {{{1, 0x2d00000, 0x2d00400, 0x1ad000} } },/* 45: RPMX4 */ {{{1, 0x2e00000, 0x2e00400, 0x1ad400} } },/* 46: RPMX5 */ {{{1, 0x2f00000, 0x2f00400, 0x1ad800} } },/* 47: RPMX6 */ {{{1, 0x3000000, 0x3000400, 0x1adc00} } },/* 48: RPMX7 */ {{{0, 0x3100000, 0x3104000, 0x1a8000} } },/* 49: XDMA */ {{{1, 0x3200000, 0x3204000, 0x1d4000} } },/* 50: I2Q */ {{{1, 0x3300000, 0x3304000, 0x1a0000} } },/* 51: ROMUSB */ {{{0} } }, /* 52: */ {{{1, 0x3500000, 0x3500400, 0x1ac000} } },/* 53: RPMX0 */ {{{1, 0x3600000, 0x3600400, 0x1ae000} } },/* 54: RPMX8 */ {{{1, 0x3700000, 0x3700400, 0x1ae400} } },/* 55: RPMX9 */ {{{1, 0x3800000, 0x3804000, 0x1d0000} } },/* 56: OCM0 */ {{{1, 0x3900000, 0x3904000, 0x1b4000} } },/* 57: CRYPTO */ {{{1, 0x3a00000, 0x3a04000, 0x1d8000} } },/* 58: SMB */ {{{0} } }, /* 59: I2C0 */ {{{0} } }, /* 60: I2C1 */ {{{1, 0x3d00000, 0x3d04000, 0x1dc000} } },/* 61: LPC */ {{{1, 0x3e00000, 0x3e01000, 0x167000} } },/* 62: P2NC */ {{{1, 0x3f00000, 0x3f01000, 0x168000} } } /* 63: P2NR0 */ }; /* * top 12 bits of crb internal address (hub, agent) */ static unsigned qla4_82xx_crb_hub_agt[64] = { 0, QLA82XX_HW_CRB_HUB_AGT_ADR_PS, QLA82XX_HW_CRB_HUB_AGT_ADR_MN, QLA82XX_HW_CRB_HUB_AGT_ADR_MS, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_SRE, QLA82XX_HW_CRB_HUB_AGT_ADR_NIU, QLA82XX_HW_CRB_HUB_AGT_ADR_QMN, QLA82XX_HW_CRB_HUB_AGT_ADR_SQN0, QLA82XX_HW_CRB_HUB_AGT_ADR_SQN1, QLA82XX_HW_CRB_HUB_AGT_ADR_SQN2, QLA82XX_HW_CRB_HUB_AGT_ADR_SQN3, QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q, QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR, QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB, QLA82XX_HW_CRB_HUB_AGT_ADR_PGN4, QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA, QLA82XX_HW_CRB_HUB_AGT_ADR_PGN0, QLA82XX_HW_CRB_HUB_AGT_ADR_PGN1, QLA82XX_HW_CRB_HUB_AGT_ADR_PGN2, QLA82XX_HW_CRB_HUB_AGT_ADR_PGN3, QLA82XX_HW_CRB_HUB_AGT_ADR_PGND, QLA82XX_HW_CRB_HUB_AGT_ADR_PGNI, QLA82XX_HW_CRB_HUB_AGT_ADR_PGS0, QLA82XX_HW_CRB_HUB_AGT_ADR_PGS1, QLA82XX_HW_CRB_HUB_AGT_ADR_PGS2, QLA82XX_HW_CRB_HUB_AGT_ADR_PGS3, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_PGSI, QLA82XX_HW_CRB_HUB_AGT_ADR_SN, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_EG, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_PS, QLA82XX_HW_CRB_HUB_AGT_ADR_CAM, 0, 0, 0, 0, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX1, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX2, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX3, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX4, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX5, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX6, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX7, QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA, QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q, QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX0, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX8, QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX9, QLA82XX_HW_CRB_HUB_AGT_ADR_OCM0, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_SMB, QLA82XX_HW_CRB_HUB_AGT_ADR_I2C0, QLA82XX_HW_CRB_HUB_AGT_ADR_I2C1, 0, QLA82XX_HW_CRB_HUB_AGT_ADR_PGNC, 0, }; /* Device states */ static char *qdev_state[] = { "Unknown", "Cold", "Initializing", "Ready", "Need Reset", "Need Quiescent", "Failed", "Quiescent", }; /* * In: 'off' is offset from CRB space in 128M pci map * Out: 'off' is 2M pci map addr * side effect: lock crb window */ static void qla4_82xx_pci_set_crbwindow_2M(struct scsi_qla_host *ha, ulong *off) { u32 win_read; ha->crb_win = CRB_HI(*off); writel(ha->crb_win, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); /* Read back value to make sure write has gone through before trying * to use it. */ win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); if (win_read != ha->crb_win) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Written crbwin (0x%x) != Read crbwin (0x%x)," " off=0x%lx\n", __func__, ha->crb_win, win_read, *off)); } *off = (*off & MASK(16)) + CRB_INDIRECT_2M + ha->nx_pcibase; } void qla4_82xx_wr_32(struct scsi_qla_host *ha, ulong off, u32 data) { unsigned long flags = 0; int rv; rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off); BUG_ON(rv == -1); if (rv == 1) { write_lock_irqsave(&ha->hw_lock, flags); qla4_82xx_crb_win_lock(ha); qla4_82xx_pci_set_crbwindow_2M(ha, &off); } writel(data, (void __iomem *)off); if (rv == 1) { qla4_82xx_crb_win_unlock(ha); write_unlock_irqrestore(&ha->hw_lock, flags); } } uint32_t qla4_82xx_rd_32(struct scsi_qla_host *ha, ulong off) { unsigned long flags = 0; int rv; u32 data; rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off); BUG_ON(rv == -1); if (rv == 1) { write_lock_irqsave(&ha->hw_lock, flags); qla4_82xx_crb_win_lock(ha); qla4_82xx_pci_set_crbwindow_2M(ha, &off); } data = readl((void __iomem *)off); if (rv == 1) { qla4_82xx_crb_win_unlock(ha); write_unlock_irqrestore(&ha->hw_lock, flags); } return data; } /* Minidump related functions */ int qla4_82xx_md_rd_32(struct scsi_qla_host *ha, uint32_t off, uint32_t *data) { uint32_t win_read, off_value; int rval = QLA_SUCCESS; off_value = off & 0xFFFF0000; writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); /* * Read back value to make sure write has gone through before trying * to use it. */ win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); if (win_read != off_value) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Written (0x%x) != Read (0x%x), off=0x%x\n", __func__, off_value, win_read, off)); rval = QLA_ERROR; } else { off_value = off & 0x0000FFFF; *data = readl((void __iomem *)(off_value + CRB_INDIRECT_2M + ha->nx_pcibase)); } return rval; } int qla4_82xx_md_wr_32(struct scsi_qla_host *ha, uint32_t off, uint32_t data) { uint32_t win_read, off_value; int rval = QLA_SUCCESS; off_value = off & 0xFFFF0000; writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); /* Read back value to make sure write has gone through before trying * to use it. */ win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); if (win_read != off_value) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Written (0x%x) != Read (0x%x), off=0x%x\n", __func__, off_value, win_read, off)); rval = QLA_ERROR; } else { off_value = off & 0x0000FFFF; writel(data, (void __iomem *)(off_value + CRB_INDIRECT_2M + ha->nx_pcibase)); } return rval; } #define CRB_WIN_LOCK_TIMEOUT 100000000 int qla4_82xx_crb_win_lock(struct scsi_qla_host *ha) { int i; int done = 0, timeout = 0; while (!done) { /* acquire semaphore3 from PCI HW block */ done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_LOCK)); if (done == 1) break; if (timeout >= CRB_WIN_LOCK_TIMEOUT) return -1; timeout++; /* Yield CPU */ if (!in_interrupt()) schedule(); else { for (i = 0; i < 20; i++) cpu_relax(); /*This a nop instr on i386*/ } } qla4_82xx_wr_32(ha, QLA82XX_CRB_WIN_LOCK_ID, ha->func_num); return 0; } void qla4_82xx_crb_win_unlock(struct scsi_qla_host *ha) { qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_UNLOCK)); } #define IDC_LOCK_TIMEOUT 100000000 /** * qla4_82xx_idc_lock - hw_lock * @ha: pointer to adapter structure * * General purpose lock used to synchronize access to * CRB_DEV_STATE, CRB_DEV_REF_COUNT, etc. **/ int qla4_82xx_idc_lock(struct scsi_qla_host *ha) { int i; int done = 0, timeout = 0; while (!done) { /* acquire semaphore5 from PCI HW block */ done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_LOCK)); if (done == 1) break; if (timeout >= IDC_LOCK_TIMEOUT) return -1; timeout++; /* Yield CPU */ if (!in_interrupt()) schedule(); else { for (i = 0; i < 20; i++) cpu_relax(); /*This a nop instr on i386*/ } } return 0; } void qla4_82xx_idc_unlock(struct scsi_qla_host *ha) { qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_UNLOCK)); } int qla4_82xx_pci_get_crb_addr_2M(struct scsi_qla_host *ha, ulong *off) { struct crb_128M_2M_sub_block_map *m; if (*off >= QLA82XX_CRB_MAX) return -1; if (*off >= QLA82XX_PCI_CAMQM && (*off < QLA82XX_PCI_CAMQM_2M_END)) { *off = (*off - QLA82XX_PCI_CAMQM) + QLA82XX_PCI_CAMQM_2M_BASE + ha->nx_pcibase; return 0; } if (*off < QLA82XX_PCI_CRBSPACE) return -1; *off -= QLA82XX_PCI_CRBSPACE; /* * Try direct map */ m = &crb_128M_2M_map[CRB_BLK(*off)].sub_block[CRB_SUBBLK(*off)]; if (m->valid && (m->start_128M <= *off) && (m->end_128M > *off)) { *off = *off + m->start_2M - m->start_128M + ha->nx_pcibase; return 0; } /* * Not in direct map, use crb window */ return 1; } /* * check memory access boundary. * used by test agent. support ddr access only for now */ static unsigned long qla4_82xx_pci_mem_bound_check(struct scsi_qla_host *ha, unsigned long long addr, int size) { if (!QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX) || !QLA8XXX_ADDR_IN_RANGE(addr + size - 1, QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX) || ((size != 1) && (size != 2) && (size != 4) && (size != 8))) { return 0; } return 1; } static int qla4_82xx_pci_set_window_warning_count; static unsigned long qla4_82xx_pci_set_window(struct scsi_qla_host *ha, unsigned long long addr) { int window; u32 win_read; if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX)) { /* DDR network side */ window = MN_WIN(addr); ha->ddr_mn_window = window; qla4_82xx_wr_32(ha, ha->mn_win_crb | QLA82XX_PCI_CRBSPACE, window); win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb | QLA82XX_PCI_CRBSPACE); if ((win_read << 17) != window) { ql4_printk(KERN_WARNING, ha, "%s: Written MNwin (0x%x) != Read MNwin (0x%x)\n", __func__, window, win_read); } addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_DDR_NET; } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0, QLA8XXX_ADDR_OCM0_MAX)) { unsigned int temp1; /* if bits 19:18&17:11 are on */ if ((addr & 0x00ff800) == 0xff800) { printk("%s: QM access not handled.\n", __func__); addr = -1UL; } window = OCM_WIN(addr); ha->ddr_mn_window = window; qla4_82xx_wr_32(ha, ha->mn_win_crb | QLA82XX_PCI_CRBSPACE, window); win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb | QLA82XX_PCI_CRBSPACE); temp1 = ((window & 0x1FF) << 7) | ((window & 0x0FFFE0000) >> 17); if (win_read != temp1) { printk("%s: Written OCMwin (0x%x) != Read" " OCMwin (0x%x)\n", __func__, temp1, win_read); } addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_OCM0_2M; } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET, QLA82XX_P3_ADDR_QDR_NET_MAX)) { /* QDR network side */ window = MS_WIN(addr); ha->qdr_sn_window = window; qla4_82xx_wr_32(ha, ha->ms_win_crb | QLA82XX_PCI_CRBSPACE, window); win_read = qla4_82xx_rd_32(ha, ha->ms_win_crb | QLA82XX_PCI_CRBSPACE); if (win_read != window) { printk("%s: Written MSwin (0x%x) != Read " "MSwin (0x%x)\n", __func__, window, win_read); } addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_QDR_NET; } else { /* * peg gdb frequently accesses memory that doesn't exist, * this limits the chit chat so debugging isn't slowed down. */ if ((qla4_82xx_pci_set_window_warning_count++ < 8) || (qla4_82xx_pci_set_window_warning_count%64 == 0)) { printk("%s: Warning:%s Unknown address range!\n", __func__, DRIVER_NAME); } addr = -1UL; } return addr; } /* check if address is in the same windows as the previous access */ static int qla4_82xx_pci_is_same_window(struct scsi_qla_host *ha, unsigned long long addr) { int window; unsigned long long qdr_max; qdr_max = QLA82XX_P3_ADDR_QDR_NET_MAX; if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX)) { /* DDR network side */ BUG(); /* MN access can not come here */ } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0, QLA8XXX_ADDR_OCM0_MAX)) { return 1; } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM1, QLA8XXX_ADDR_OCM1_MAX)) { return 1; } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET, qdr_max)) { /* QDR network side */ window = ((addr - QLA8XXX_ADDR_QDR_NET) >> 22) & 0x3f; if (ha->qdr_sn_window == window) return 1; } return 0; } static int qla4_82xx_pci_mem_read_direct(struct scsi_qla_host *ha, u64 off, void *data, int size) { unsigned long flags; void __iomem *addr; int ret = 0; u64 start; void __iomem *mem_ptr = NULL; unsigned long mem_base; unsigned long mem_page; write_lock_irqsave(&ha->hw_lock, flags); /* * If attempting to access unknown address or straddle hw windows, * do not access. */ start = qla4_82xx_pci_set_window(ha, off); if ((start == -1UL) || (qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) { write_unlock_irqrestore(&ha->hw_lock, flags); printk(KERN_ERR"%s out of bound pci memory access. " "offset is 0x%llx\n", DRIVER_NAME, off); return -1; } addr = qla4_8xxx_pci_base_offsetfset(ha, start); if (!addr) { write_unlock_irqrestore(&ha->hw_lock, flags); mem_base = pci_resource_start(ha->pdev, 0); mem_page = start & PAGE_MASK; /* Map two pages whenever user tries to access addresses in two consecutive pages. */ if (mem_page != ((start + size - 1) & PAGE_MASK)) mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE * 2); else mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE); if (mem_ptr == NULL) { *(u8 *)data = 0; return -1; } addr = mem_ptr; addr += start & (PAGE_SIZE - 1); write_lock_irqsave(&ha->hw_lock, flags); } switch (size) { case 1: *(u8 *)data = readb(addr); break; case 2: *(u16 *)data = readw(addr); break; case 4: *(u32 *)data = readl(addr); break; case 8: *(u64 *)data = readq(addr); break; default: ret = -1; break; } write_unlock_irqrestore(&ha->hw_lock, flags); if (mem_ptr) iounmap(mem_ptr); return ret; } static int qla4_82xx_pci_mem_write_direct(struct scsi_qla_host *ha, u64 off, void *data, int size) { unsigned long flags; void __iomem *addr; int ret = 0; u64 start; void __iomem *mem_ptr = NULL; unsigned long mem_base; unsigned long mem_page; write_lock_irqsave(&ha->hw_lock, flags); /* * If attempting to access unknown address or straddle hw windows, * do not access. */ start = qla4_82xx_pci_set_window(ha, off); if ((start == -1UL) || (qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) { write_unlock_irqrestore(&ha->hw_lock, flags); printk(KERN_ERR"%s out of bound pci memory access. " "offset is 0x%llx\n", DRIVER_NAME, off); return -1; } addr = qla4_8xxx_pci_base_offsetfset(ha, start); if (!addr) { write_unlock_irqrestore(&ha->hw_lock, flags); mem_base = pci_resource_start(ha->pdev, 0); mem_page = start & PAGE_MASK; /* Map two pages whenever user tries to access addresses in two consecutive pages. */ if (mem_page != ((start + size - 1) & PAGE_MASK)) mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE*2); else mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE); if (mem_ptr == NULL) return -1; addr = mem_ptr; addr += start & (PAGE_SIZE - 1); write_lock_irqsave(&ha->hw_lock, flags); } switch (size) { case 1: writeb(*(u8 *)data, addr); break; case 2: writew(*(u16 *)data, addr); break; case 4: writel(*(u32 *)data, addr); break; case 8: writeq(*(u64 *)data, addr); break; default: ret = -1; break; } write_unlock_irqrestore(&ha->hw_lock, flags); if (mem_ptr) iounmap(mem_ptr); return ret; } #define MTU_FUDGE_FACTOR 100 static unsigned long qla4_82xx_decode_crb_addr(unsigned long addr) { int i; unsigned long base_addr, offset, pci_base; if (!qla4_8xxx_crb_table_initialized) qla4_82xx_crb_addr_transform_setup(); pci_base = ADDR_ERROR; base_addr = addr & 0xfff00000; offset = addr & 0x000fffff; for (i = 0; i < MAX_CRB_XFORM; i++) { if (crb_addr_xform[i] == base_addr) { pci_base = i << 20; break; } } if (pci_base == ADDR_ERROR) return pci_base; else return pci_base + offset; } static long rom_max_timeout = 100; static long qla4_82xx_rom_lock_timeout = 100; static int qla4_82xx_rom_lock(struct scsi_qla_host *ha) { int i; int done = 0, timeout = 0; while (!done) { /* acquire semaphore2 from PCI HW block */ done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_LOCK)); if (done == 1) break; if (timeout >= qla4_82xx_rom_lock_timeout) return -1; timeout++; /* Yield CPU */ if (!in_interrupt()) schedule(); else { for (i = 0; i < 20; i++) cpu_relax(); /*This a nop instr on i386*/ } } qla4_82xx_wr_32(ha, QLA82XX_ROM_LOCK_ID, ROM_LOCK_DRIVER); return 0; } static void qla4_82xx_rom_unlock(struct scsi_qla_host *ha) { qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_UNLOCK)); } static int qla4_82xx_wait_rom_done(struct scsi_qla_host *ha) { long timeout = 0; long done = 0 ; while (done == 0) { done = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_STATUS); done &= 2; timeout++; if (timeout >= rom_max_timeout) { printk("%s: Timeout reached waiting for rom done", DRIVER_NAME); return -1; } } return 0; } static int qla4_82xx_do_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp) { qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ADDRESS, addr); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 3); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_INSTR_OPCODE, 0xb); if (qla4_82xx_wait_rom_done(ha)) { printk("%s: Error waiting for rom done\n", DRIVER_NAME); return -1; } /* reset abyte_cnt and dummy_byte_cnt */ qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); udelay(10); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 0); *valp = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_ROM_RDATA); return 0; } static int qla4_82xx_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp) { int ret, loops = 0; while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) { udelay(100); loops++; } if (loops >= 50000) { ql4_printk(KERN_WARNING, ha, "%s: qla4_82xx_rom_lock failed\n", DRIVER_NAME); return -1; } ret = qla4_82xx_do_rom_fast_read(ha, addr, valp); qla4_82xx_rom_unlock(ha); return ret; } /* * This routine does CRB initialize sequence * to put the ISP into operational state */ static int qla4_82xx_pinit_from_rom(struct scsi_qla_host *ha, int verbose) { int addr, val; int i ; struct crb_addr_pair *buf; unsigned long off; unsigned offset, n; struct crb_addr_pair { long addr; long data; }; /* Halt all the indiviual PEGs and other blocks of the ISP */ qla4_82xx_rom_lock(ha); /* disable all I2Q */ qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x10, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x14, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x18, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x1c, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x20, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x24, 0x0); /* disable all niu interrupts */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x40, 0xff); /* disable xge rx/tx */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x70000, 0x00); /* disable xg1 rx/tx */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x80000, 0x00); /* disable sideband mac */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x90000, 0x00); /* disable ap0 mac */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xa0000, 0x00); /* disable ap1 mac */ qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xb0000, 0x00); /* halt sre */ val = qla4_82xx_rd_32(ha, QLA82XX_CRB_SRE + 0x1000); qla4_82xx_wr_32(ha, QLA82XX_CRB_SRE + 0x1000, val & (~(0x1))); /* halt epg */ qla4_82xx_wr_32(ha, QLA82XX_CRB_EPG + 0x1300, 0x1); /* halt timers */ qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x0, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x8, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x10, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x18, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x100, 0x0); qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x200, 0x0); /* halt pegs */ qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x3c, 1); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1 + 0x3c, 1); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2 + 0x3c, 1); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3 + 0x3c, 1); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_4 + 0x3c, 1); msleep(5); /* big hammer */ if (test_bit(DPC_RESET_HA, &ha->dpc_flags)) /* don't reset CAM block on reset */ qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xfeffffff); else qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xffffffff); qla4_82xx_rom_unlock(ha); /* Read the signature value from the flash. * Offset 0: Contain signature (0xcafecafe) * Offset 4: Offset and number of addr/value pairs * that present in CRB initialize sequence */ if (qla4_82xx_rom_fast_read(ha, 0, &n) != 0 || n != 0xcafecafeUL || qla4_82xx_rom_fast_read(ha, 4, &n) != 0) { ql4_printk(KERN_WARNING, ha, "[ERROR] Reading crb_init area: n: %08x\n", n); return -1; } /* Offset in flash = lower 16 bits * Number of enteries = upper 16 bits */ offset = n & 0xffffU; n = (n >> 16) & 0xffffU; /* number of addr/value pair should not exceed 1024 enteries */ if (n >= 1024) { ql4_printk(KERN_WARNING, ha, "%s: %s:n=0x%x [ERROR] Card flash not initialized.\n", DRIVER_NAME, __func__, n); return -1; } ql4_printk(KERN_INFO, ha, "%s: %d CRB init values found in ROM.\n", DRIVER_NAME, n); buf = kmalloc_array(n, sizeof(struct crb_addr_pair), GFP_KERNEL); if (buf == NULL) { ql4_printk(KERN_WARNING, ha, "%s: [ERROR] Unable to malloc memory.\n", DRIVER_NAME); return -1; } for (i = 0; i < n; i++) { if (qla4_82xx_rom_fast_read(ha, 8*i + 4*offset, &val) != 0 || qla4_82xx_rom_fast_read(ha, 8*i + 4*offset + 4, &addr) != 0) { kfree(buf); return -1; } buf[i].addr = addr; buf[i].data = val; } for (i = 0; i < n; i++) { /* Translate internal CRB initialization * address to PCI bus address */ off = qla4_82xx_decode_crb_addr((unsigned long)buf[i].addr) + QLA82XX_PCI_CRBSPACE; /* Not all CRB addr/value pair to be written, * some of them are skipped */ /* skip if LS bit is set*/ if (off & 0x1) { DEBUG2(ql4_printk(KERN_WARNING, ha, "Skip CRB init replay for offset = 0x%lx\n", off)); continue; } /* skipping cold reboot MAGIC */ if (off == QLA82XX_CAM_RAM(0x1fc)) continue; /* do not reset PCI */ if (off == (ROMUSB_GLB + 0xbc)) continue; /* skip core clock, so that firmware can increase the clock */ if (off == (ROMUSB_GLB + 0xc8)) continue; /* skip the function enable register */ if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION)) continue; if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION2)) continue; if ((off & 0x0ff00000) == QLA82XX_CRB_SMB) continue; if ((off & 0x0ff00000) == QLA82XX_CRB_DDR_NET) continue; if (off == ADDR_ERROR) { ql4_printk(KERN_WARNING, ha, "%s: [ERROR] Unknown addr: 0x%08lx\n", DRIVER_NAME, buf[i].addr); continue; } qla4_82xx_wr_32(ha, off, buf[i].data); /* ISP requires much bigger delay to settle down, * else crb_window returns 0xffffffff */ if (off == QLA82XX_ROMUSB_GLB_SW_RESET) msleep(1000); /* ISP requires millisec delay between * successive CRB register updation */ msleep(1); } kfree(buf); /* Resetting the data and instruction cache */ qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0xec, 0x1e); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0x4c, 8); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_I+0x4c, 8); /* Clear all protocol processing engines */ qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0x8, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0xc, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0x8, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0xc, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0x8, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0xc, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0x8, 0); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0xc, 0); return 0; } /** * qla4_8xxx_ms_mem_write_128b - Writes data to MS/off-chip memory * @ha: Pointer to adapter structure * @addr: Flash address to write to * @data: Data to be written * @count: word_count to be written * * Return: On success return QLA_SUCCESS * On error return QLA_ERROR **/ int qla4_8xxx_ms_mem_write_128b(struct scsi_qla_host *ha, uint64_t addr, uint32_t *data, uint32_t count) { int i, j; uint32_t agt_ctrl; unsigned long flags; int ret_val = QLA_SUCCESS; /* Only 128-bit aligned access */ if (addr & 0xF) { ret_val = QLA_ERROR; goto exit_ms_mem_write; } write_lock_irqsave(&ha->hw_lock, flags); /* Write address */ ret_val = ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI, 0); if (ret_val == QLA_ERROR) { ql4_printk(KERN_ERR, ha, "%s: write to AGT_ADDR_HI failed\n", __func__); goto exit_ms_mem_write_unlock; } for (i = 0; i < count; i++, addr += 16) { if (!((QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET, QLA8XXX_ADDR_QDR_NET_MAX)) || (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX)))) { ret_val = QLA_ERROR; goto exit_ms_mem_write_unlock; } ret_val = ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_LO, addr); /* Write data */ ret_val |= ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_WRDATA_LO, *data++); ret_val |= ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_WRDATA_HI, *data++); ret_val |= ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_WRDATA_ULO, *data++); ret_val |= ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_WRDATA_UHI, *data++); if (ret_val == QLA_ERROR) { ql4_printk(KERN_ERR, ha, "%s: write to AGT_WRDATA failed\n", __func__); goto exit_ms_mem_write_unlock; } /* Check write status */ ret_val = ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, MIU_TA_CTL_WRITE_ENABLE); ret_val |= ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, MIU_TA_CTL_WRITE_START); if (ret_val == QLA_ERROR) { ql4_printk(KERN_ERR, ha, "%s: write to AGT_CTRL failed\n", __func__); goto exit_ms_mem_write_unlock; } for (j = 0; j < MAX_CTL_CHECK; j++) { ret_val = ha->isp_ops->rd_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, &agt_ctrl); if (ret_val == QLA_ERROR) { ql4_printk(KERN_ERR, ha, "%s: failed to read MD_MIU_TEST_AGT_CTRL\n", __func__); goto exit_ms_mem_write_unlock; } if ((agt_ctrl & MIU_TA_CTL_BUSY) == 0) break; } /* Status check failed */ if (j >= MAX_CTL_CHECK) { printk_ratelimited(KERN_ERR "%s: MS memory write failed!\n", __func__); ret_val = QLA_ERROR; goto exit_ms_mem_write_unlock; } } exit_ms_mem_write_unlock: write_unlock_irqrestore(&ha->hw_lock, flags); exit_ms_mem_write: return ret_val; } static int qla4_82xx_load_from_flash(struct scsi_qla_host *ha, uint32_t image_start) { int i, rval = 0; long size = 0; long flashaddr, memaddr; u64 data; u32 high, low; flashaddr = memaddr = ha->hw.flt_region_bootload; size = (image_start - flashaddr) / 8; DEBUG2(printk("scsi%ld: %s: bootldr=0x%lx, fw_image=0x%x\n", ha->host_no, __func__, flashaddr, image_start)); for (i = 0; i < size; i++) { if ((qla4_82xx_rom_fast_read(ha, flashaddr, (int *)&low)) || (qla4_82xx_rom_fast_read(ha, flashaddr + 4, (int *)&high))) { rval = -1; goto exit_load_from_flash; } data = ((u64)high << 32) | low ; rval = qla4_82xx_pci_mem_write_2M(ha, memaddr, &data, 8); if (rval) goto exit_load_from_flash; flashaddr += 8; memaddr += 8; if (i % 0x1000 == 0) msleep(1); } udelay(100); read_lock(&ha->hw_lock); qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x18, 0x1020); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0x80001e); read_unlock(&ha->hw_lock); exit_load_from_flash: return rval; } static int qla4_82xx_load_fw(struct scsi_qla_host *ha, uint32_t image_start) { u32 rst; qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0); if (qla4_82xx_pinit_from_rom(ha, 0) != QLA_SUCCESS) { printk(KERN_WARNING "%s: Error during CRB Initialization\n", __func__); return QLA_ERROR; } udelay(500); /* at this point, QM is in reset. This could be a problem if there are * incoming d* transition queue messages. QM/PCIE could wedge. * To get around this, QM is brought out of reset. */ rst = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET); /* unreset qm */ rst &= ~(1 << 28); qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, rst); if (qla4_82xx_load_from_flash(ha, image_start)) { printk("%s: Error trying to load fw from flash!\n", __func__); return QLA_ERROR; } return QLA_SUCCESS; } int qla4_82xx_pci_mem_read_2M(struct scsi_qla_host *ha, u64 off, void *data, int size) { int i, j = 0, k, start, end, loop, sz[2], off0[2]; int shift_amount; uint32_t temp; uint64_t off8, val, mem_crb, word[2] = {0, 0}; /* * If not MN, go check for MS or invalid. */ if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX) mem_crb = QLA82XX_CRB_QDR_NET; else { mem_crb = QLA82XX_CRB_DDR_NET; if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0) return qla4_82xx_pci_mem_read_direct(ha, off, data, size); } off8 = off & 0xfffffff0; off0[0] = off & 0xf; sz[0] = (size < (16 - off0[0])) ? size : (16 - off0[0]); shift_amount = 4; loop = ((off0[0] + size - 1) >> shift_amount) + 1; off0[1] = 0; sz[1] = size - sz[0]; for (i = 0; i < loop; i++) { temp = off8 + (i << shift_amount); qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_LO, temp); temp = 0; qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_HI, temp); temp = MIU_TA_CTL_ENABLE; qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp); temp = MIU_TA_CTL_START_ENABLE; qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp); for (j = 0; j < MAX_CTL_CHECK; j++) { temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL); if ((temp & MIU_TA_CTL_BUSY) == 0) break; } if (j >= MAX_CTL_CHECK) { printk_ratelimited(KERN_ERR "%s: failed to read through agent\n", __func__); break; } start = off0[i] >> 2; end = (off0[i] + sz[i] - 1) >> 2; for (k = start; k <= end; k++) { temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_RDDATA(k)); word[i] |= ((uint64_t)temp << (32 * (k & 1))); } } if (j >= MAX_CTL_CHECK) return -1; if ((off0[0] & 7) == 0) { val = word[0]; } else { val = ((word[0] >> (off0[0] * 8)) & (~(~0ULL << (sz[0] * 8)))) | ((word[1] & (~(~0ULL << (sz[1] * 8)))) << (sz[0] * 8)); } switch (size) { case 1: *(uint8_t *)data = val; break; case 2: *(uint16_t *)data = val; break; case 4: *(uint32_t *)data = val; break; case 8: *(uint64_t *)data = val; break; } return 0; } int qla4_82xx_pci_mem_write_2M(struct scsi_qla_host *ha, u64 off, void *data, int size) { int i, j, ret = 0, loop, sz[2], off0; int scale, shift_amount, startword; uint32_t temp; uint64_t off8, mem_crb, tmpw, word[2] = {0, 0}; /* * If not MN, go check for MS or invalid. */ if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX) mem_crb = QLA82XX_CRB_QDR_NET; else { mem_crb = QLA82XX_CRB_DDR_NET; if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0) return qla4_82xx_pci_mem_write_direct(ha, off, data, size); } off0 = off & 0x7; sz[0] = (size < (8 - off0)) ? size : (8 - off0); sz[1] = size - sz[0]; off8 = off & 0xfffffff0; loop = (((off & 0xf) + size - 1) >> 4) + 1; shift_amount = 4; scale = 2; startword = (off & 0xf)/8; for (i = 0; i < loop; i++) { if (qla4_82xx_pci_mem_read_2M(ha, off8 + (i << shift_amount), &word[i * scale], 8)) return -1; } switch (size) { case 1: tmpw = *((uint8_t *)data); break; case 2: tmpw = *((uint16_t *)data); break; case 4: tmpw = *((uint32_t *)data); break; case 8: default: tmpw = *((uint64_t *)data); break; } if (sz[0] == 8) word[startword] = tmpw; else { word[startword] &= ~((~(~0ULL << (sz[0] * 8))) << (off0 * 8)); word[startword] |= tmpw << (off0 * 8); } if (sz[1] != 0) { word[startword+1] &= ~(~0ULL << (sz[1] * 8)); word[startword+1] |= tmpw >> (sz[0] * 8); } for (i = 0; i < loop; i++) { temp = off8 + (i << shift_amount); qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_LO, temp); temp = 0; qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_HI, temp); temp = word[i * scale] & 0xffffffff; qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_LO, temp); temp = (word[i * scale] >> 32) & 0xffffffff; qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_HI, temp); temp = word[i*scale + 1] & 0xffffffff; qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_LO, temp); temp = (word[i*scale + 1] >> 32) & 0xffffffff; qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_HI, temp); temp = MIU_TA_CTL_WRITE_ENABLE; qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp); temp = MIU_TA_CTL_WRITE_START; qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp); for (j = 0; j < MAX_CTL_CHECK; j++) { temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL); if ((temp & MIU_TA_CTL_BUSY) == 0) break; } if (j >= MAX_CTL_CHECK) { if (printk_ratelimit()) ql4_printk(KERN_ERR, ha, "%s: failed to read through agent\n", __func__); ret = -1; break; } } return ret; } static int qla4_82xx_cmdpeg_ready(struct scsi_qla_host *ha, int pegtune_val) { u32 val = 0; int retries = 60; if (!pegtune_val) { do { val = qla4_82xx_rd_32(ha, CRB_CMDPEG_STATE); if ((val == PHAN_INITIALIZE_COMPLETE) || (val == PHAN_INITIALIZE_ACK)) return 0; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(500); } while (--retries); if (!retries) { pegtune_val = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_PEGTUNE_DONE); printk(KERN_WARNING "%s: init failed, " "pegtune_val = %x\n", __func__, pegtune_val); return -1; } } return 0; } static int qla4_82xx_rcvpeg_ready(struct scsi_qla_host *ha) { uint32_t state = 0; int loops = 0; /* Window 1 call */ read_lock(&ha->hw_lock); state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE); read_unlock(&ha->hw_lock); while ((state != PHAN_PEG_RCV_INITIALIZED) && (loops < 30000)) { udelay(100); /* Window 1 call */ read_lock(&ha->hw_lock); state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE); read_unlock(&ha->hw_lock); loops++; } if (loops >= 30000) { DEBUG2(ql4_printk(KERN_INFO, ha, "Receive Peg initialization not complete: 0x%x.\n", state)); return QLA_ERROR; } return QLA_SUCCESS; } void qla4_8xxx_set_drv_active(struct scsi_qla_host *ha) { uint32_t drv_active; drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function */ if (is_qla8032(ha) || is_qla8042(ha)) drv_active |= (1 << ha->func_num); else drv_active |= (1 << (ha->func_num * 4)); ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n", __func__, ha->host_no, drv_active); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active); } void qla4_8xxx_clear_drv_active(struct scsi_qla_host *ha) { uint32_t drv_active; drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function */ if (is_qla8032(ha) || is_qla8042(ha)) drv_active &= ~(1 << (ha->func_num)); else drv_active &= ~(1 << (ha->func_num * 4)); ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n", __func__, ha->host_no, drv_active); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active); } inline int qla4_8xxx_need_reset(struct scsi_qla_host *ha) { uint32_t drv_state, drv_active; int rval; drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function */ if (is_qla8032(ha) || is_qla8042(ha)) rval = drv_state & (1 << ha->func_num); else rval = drv_state & (1 << (ha->func_num * 4)); if ((test_bit(AF_EEH_BUSY, &ha->flags)) && drv_active) rval = 1; return rval; } void qla4_8xxx_set_rst_ready(struct scsi_qla_host *ha) { uint32_t drv_state; drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function */ if (is_qla8032(ha) || is_qla8042(ha)) drv_state |= (1 << ha->func_num); else drv_state |= (1 << (ha->func_num * 4)); ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n", __func__, ha->host_no, drv_state); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state); } void qla4_8xxx_clear_rst_ready(struct scsi_qla_host *ha) { uint32_t drv_state; drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function */ if (is_qla8032(ha) || is_qla8042(ha)) drv_state &= ~(1 << ha->func_num); else drv_state &= ~(1 << (ha->func_num * 4)); ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n", __func__, ha->host_no, drv_state); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state); } static inline void qla4_8xxx_set_qsnt_ready(struct scsi_qla_host *ha) { uint32_t qsnt_state; qsnt_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); /* * For ISP8324 and ISP8042, drv_active register has 1 bit per function, * shift 1 by func_num to set a bit for the function. * For ISP8022, drv_active has 4 bits per function. */ if (is_qla8032(ha) || is_qla8042(ha)) qsnt_state |= (1 << ha->func_num); else qsnt_state |= (2 << (ha->func_num * 4)); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, qsnt_state); } static int qla4_82xx_start_firmware(struct scsi_qla_host *ha, uint32_t image_start) { uint16_t lnk; /* scrub dma mask expansion register */ qla4_82xx_wr_32(ha, CRB_DMA_SHIFT, 0x55555555); /* Overwrite stale initialization register values */ qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0); qla4_82xx_wr_32(ha, CRB_RCVPEG_STATE, 0); qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS1, 0); qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS2, 0); if (qla4_82xx_load_fw(ha, image_start) != QLA_SUCCESS) { printk("%s: Error trying to start fw!\n", __func__); return QLA_ERROR; } /* Handshake with the card before we register the devices. */ if (qla4_82xx_cmdpeg_ready(ha, 0) != QLA_SUCCESS) { printk("%s: Error during card handshake!\n", __func__); return QLA_ERROR; } /* Negotiated Link width */ pcie_capability_read_word(ha->pdev, PCI_EXP_LNKSTA, &lnk); ha->link_width = (lnk >> 4) & 0x3f; /* Synchronize with Receive peg */ return qla4_82xx_rcvpeg_ready(ha); } int qla4_82xx_try_start_fw(struct scsi_qla_host *ha) { int rval = QLA_ERROR; /* * FW Load priority: * 1) Operational firmware residing in flash. * 2) Fail */ ql4_printk(KERN_INFO, ha, "FW: Retrieving flash offsets from FLT/FDT ...\n"); rval = qla4_8xxx_get_flash_info(ha); if (rval != QLA_SUCCESS) return rval; ql4_printk(KERN_INFO, ha, "FW: Attempting to load firmware from flash...\n"); rval = qla4_82xx_start_firmware(ha, ha->hw.flt_region_fw); if (rval != QLA_SUCCESS) { ql4_printk(KERN_ERR, ha, "FW: Load firmware from flash" " FAILED...\n"); return rval; } return rval; } void qla4_82xx_rom_lock_recovery(struct scsi_qla_host *ha) { if (qla4_82xx_rom_lock(ha)) { /* Someone else is holding the lock. */ dev_info(&ha->pdev->dev, "Resetting rom_lock\n"); } /* * Either we got the lock, or someone * else died while holding it. * In either case, unlock. */ qla4_82xx_rom_unlock(ha); } static uint32_t ql4_84xx_poll_wait_for_ready(struct scsi_qla_host *ha, uint32_t addr1, uint32_t mask) { unsigned long timeout; uint32_t rval = QLA_SUCCESS; uint32_t temp; timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS); do { ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); if ((temp & mask) != 0) break; if (time_after_eq(jiffies, timeout)) { ql4_printk(KERN_INFO, ha, "Error in processing rdmdio entry\n"); return QLA_ERROR; } } while (1); return rval; } static uint32_t ql4_84xx_ipmdio_rd_reg(struct scsi_qla_host *ha, uint32_t addr1, uint32_t addr3, uint32_t mask, uint32_t addr, uint32_t *data_ptr) { int rval = QLA_SUCCESS; uint32_t temp; uint32_t data; rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); if (rval) goto exit_ipmdio_rd_reg; temp = (0x40000000 | addr); ha->isp_ops->wr_reg_indirect(ha, addr1, temp); rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); if (rval) goto exit_ipmdio_rd_reg; ha->isp_ops->rd_reg_indirect(ha, addr3, &data); *data_ptr = data; exit_ipmdio_rd_reg: return rval; } static uint32_t ql4_84xx_poll_wait_ipmdio_bus_idle(struct scsi_qla_host *ha, uint32_t addr1, uint32_t addr2, uint32_t addr3, uint32_t mask) { unsigned long timeout; uint32_t temp; uint32_t rval = QLA_SUCCESS; timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS); do { ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3, mask, addr2, &temp); if ((temp & 0x1) != 1) break; if (time_after_eq(jiffies, timeout)) { ql4_printk(KERN_INFO, ha, "Error in processing mdiobus idle\n"); return QLA_ERROR; } } while (1); return rval; } static int ql4_84xx_ipmdio_wr_reg(struct scsi_qla_host *ha, uint32_t addr1, uint32_t addr3, uint32_t mask, uint32_t addr, uint32_t value) { int rval = QLA_SUCCESS; rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); if (rval) goto exit_ipmdio_wr_reg; ha->isp_ops->wr_reg_indirect(ha, addr3, value); ha->isp_ops->wr_reg_indirect(ha, addr1, addr); rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); if (rval) goto exit_ipmdio_wr_reg; exit_ipmdio_wr_reg: return rval; } static void qla4_8xxx_minidump_process_rdcrb(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, r_stride, loop_cnt, i, r_value; struct qla8xxx_minidump_entry_crb *crb_hdr; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); crb_hdr = (struct qla8xxx_minidump_entry_crb *)entry_hdr; r_addr = crb_hdr->addr; r_stride = crb_hdr->crb_strd.addr_stride; loop_cnt = crb_hdr->op_count; for (i = 0; i < loop_cnt; i++) { ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); *data_ptr++ = cpu_to_le32(r_addr); *data_ptr++ = cpu_to_le32(r_value); r_addr += r_stride; } *d_ptr = data_ptr; } static int qla4_83xx_check_dma_engine_state(struct scsi_qla_host *ha) { int rval = QLA_SUCCESS; uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0; uint64_t dma_base_addr = 0; struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL; tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) ha->fw_dump_tmplt_hdr; dma_eng_num = tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX]; dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS + (dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET); /* Read the pex-dma's command-status-and-control register. */ rval = ha->isp_ops->rd_reg_indirect(ha, (dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL), &cmd_sts_and_cntrl); if (rval) return QLA_ERROR; /* Check if requested pex-dma engine is available. */ if (cmd_sts_and_cntrl & BIT_31) return QLA_SUCCESS; else return QLA_ERROR; } static int qla4_83xx_start_pex_dma(struct scsi_qla_host *ha, struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr) { int rval = QLA_SUCCESS, wait = 0; uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0; uint64_t dma_base_addr = 0; struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL; tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) ha->fw_dump_tmplt_hdr; dma_eng_num = tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX]; dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS + (dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET); rval = ha->isp_ops->wr_reg_indirect(ha, dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_LOW, m_hdr->desc_card_addr); if (rval) goto error_exit; rval = ha->isp_ops->wr_reg_indirect(ha, dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_HIGH, 0); if (rval) goto error_exit; rval = ha->isp_ops->wr_reg_indirect(ha, dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL, m_hdr->start_dma_cmd); if (rval) goto error_exit; /* Wait for dma operation to complete. */ for (wait = 0; wait < QLA83XX_PEX_DMA_MAX_WAIT; wait++) { rval = ha->isp_ops->rd_reg_indirect(ha, (dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL), &cmd_sts_and_cntrl); if (rval) goto error_exit; if ((cmd_sts_and_cntrl & BIT_1) == 0) break; else udelay(10); } /* Wait a max of 100 ms, otherwise fallback to rdmem entry read */ if (wait >= QLA83XX_PEX_DMA_MAX_WAIT) { rval = QLA_ERROR; goto error_exit; } error_exit: return rval; } static int qla4_8xxx_minidump_pex_dma_read(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { int rval = QLA_SUCCESS; struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr = NULL; uint32_t size, read_size; uint8_t *data_ptr = (uint8_t *)*d_ptr; void *rdmem_buffer = NULL; dma_addr_t rdmem_dma; struct qla4_83xx_pex_dma_descriptor dma_desc; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); rval = qla4_83xx_check_dma_engine_state(ha); if (rval != QLA_SUCCESS) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: DMA engine not available. Fallback to rdmem-read.\n", __func__)); return QLA_ERROR; } m_hdr = (struct qla4_83xx_minidump_entry_rdmem_pex_dma *)entry_hdr; rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev, QLA83XX_PEX_DMA_READ_SIZE, &rdmem_dma, GFP_KERNEL); if (!rdmem_buffer) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Unable to allocate rdmem dma buffer\n", __func__)); return QLA_ERROR; } /* Prepare pex-dma descriptor to be written to MS memory. */ /* dma-desc-cmd layout: * 0-3: dma-desc-cmd 0-3 * 4-7: pcid function number * 8-15: dma-desc-cmd 8-15 */ dma_desc.cmd.dma_desc_cmd = (m_hdr->dma_desc_cmd & 0xff0f); dma_desc.cmd.dma_desc_cmd |= ((PCI_FUNC(ha->pdev->devfn) & 0xf) << 0x4); dma_desc.dma_bus_addr = rdmem_dma; size = 0; read_size = 0; /* * Perform rdmem operation using pex-dma. * Prepare dma in chunks of QLA83XX_PEX_DMA_READ_SIZE. */ while (read_size < m_hdr->read_data_size) { if (m_hdr->read_data_size - read_size >= QLA83XX_PEX_DMA_READ_SIZE) size = QLA83XX_PEX_DMA_READ_SIZE; else { size = (m_hdr->read_data_size - read_size); if (rdmem_buffer) dma_free_coherent(&ha->pdev->dev, QLA83XX_PEX_DMA_READ_SIZE, rdmem_buffer, rdmem_dma); rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev, size, &rdmem_dma, GFP_KERNEL); if (!rdmem_buffer) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Unable to allocate rdmem dma buffer\n", __func__)); return QLA_ERROR; } dma_desc.dma_bus_addr = rdmem_dma; } dma_desc.src_addr = m_hdr->read_addr + read_size; dma_desc.cmd.read_data_size = size; /* Prepare: Write pex-dma descriptor to MS memory. */ rval = qla4_8xxx_ms_mem_write_128b(ha, (uint64_t)m_hdr->desc_card_addr, (uint32_t *)&dma_desc, (sizeof(struct qla4_83xx_pex_dma_descriptor)/16)); if (rval != QLA_SUCCESS) { ql4_printk(KERN_INFO, ha, "%s: Error writing rdmem-dma-init to MS !!!\n", __func__); goto error_exit; } DEBUG2(ql4_printk(KERN_INFO, ha, "%s: Dma-desc: Instruct for rdmem dma (size 0x%x).\n", __func__, size)); /* Execute: Start pex-dma operation. */ rval = qla4_83xx_start_pex_dma(ha, m_hdr); if (rval != QLA_SUCCESS) { DEBUG2(ql4_printk(KERN_INFO, ha, "scsi(%ld): start-pex-dma failed rval=0x%x\n", ha->host_no, rval)); goto error_exit; } memcpy(data_ptr, rdmem_buffer, size); data_ptr += size; read_size += size; } DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__)); *d_ptr = (uint32_t *)data_ptr; error_exit: if (rdmem_buffer) dma_free_coherent(&ha->pdev->dev, size, rdmem_buffer, rdmem_dma); return rval; } static int qla4_8xxx_minidump_process_l2tag(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t addr, r_addr, c_addr, t_r_addr; uint32_t i, k, loop_count, t_value, r_cnt, r_value; unsigned long p_wait, w_time, p_mask; uint32_t c_value_w, c_value_r; struct qla8xxx_minidump_entry_cache *cache_hdr; int rval = QLA_ERROR; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr; loop_count = cache_hdr->op_count; r_addr = cache_hdr->read_addr; c_addr = cache_hdr->control_addr; c_value_w = cache_hdr->cache_ctrl.write_value; t_r_addr = cache_hdr->tag_reg_addr; t_value = cache_hdr->addr_ctrl.init_tag_value; r_cnt = cache_hdr->read_ctrl.read_addr_cnt; p_wait = cache_hdr->cache_ctrl.poll_wait; p_mask = cache_hdr->cache_ctrl.poll_mask; for (i = 0; i < loop_count; i++) { ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value); if (c_value_w) ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w); if (p_mask) { w_time = jiffies + p_wait; do { ha->isp_ops->rd_reg_indirect(ha, c_addr, &c_value_r); if ((c_value_r & p_mask) == 0) { break; } else if (time_after_eq(jiffies, w_time)) { /* capturing dump failed */ return rval; } } while (1); } addr = r_addr; for (k = 0; k < r_cnt; k++) { ha->isp_ops->rd_reg_indirect(ha, addr, &r_value); *data_ptr++ = cpu_to_le32(r_value); addr += cache_hdr->read_ctrl.read_addr_stride; } t_value += cache_hdr->addr_ctrl.tag_value_stride; } *d_ptr = data_ptr; return QLA_SUCCESS; } static int qla4_8xxx_minidump_process_control(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr) { struct qla8xxx_minidump_entry_crb *crb_entry; uint32_t read_value, opcode, poll_time, addr, index, rval = QLA_SUCCESS; uint32_t crb_addr; unsigned long wtime; struct qla4_8xxx_minidump_template_hdr *tmplt_hdr; int i; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) ha->fw_dump_tmplt_hdr; crb_entry = (struct qla8xxx_minidump_entry_crb *)entry_hdr; crb_addr = crb_entry->addr; for (i = 0; i < crb_entry->op_count; i++) { opcode = crb_entry->crb_ctrl.opcode; if (opcode & QLA8XXX_DBG_OPCODE_WR) { ha->isp_ops->wr_reg_indirect(ha, crb_addr, crb_entry->value_1); opcode &= ~QLA8XXX_DBG_OPCODE_WR; } if (opcode & QLA8XXX_DBG_OPCODE_RW) { ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); opcode &= ~QLA8XXX_DBG_OPCODE_RW; } if (opcode & QLA8XXX_DBG_OPCODE_AND) { ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); read_value &= crb_entry->value_2; opcode &= ~QLA8XXX_DBG_OPCODE_AND; if (opcode & QLA8XXX_DBG_OPCODE_OR) { read_value |= crb_entry->value_3; opcode &= ~QLA8XXX_DBG_OPCODE_OR; } ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); } if (opcode & QLA8XXX_DBG_OPCODE_OR) { ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); read_value |= crb_entry->value_3; ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); opcode &= ~QLA8XXX_DBG_OPCODE_OR; } if (opcode & QLA8XXX_DBG_OPCODE_POLL) { poll_time = crb_entry->crb_strd.poll_timeout; wtime = jiffies + poll_time; ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); do { if ((read_value & crb_entry->value_2) == crb_entry->value_1) { break; } else if (time_after_eq(jiffies, wtime)) { /* capturing dump failed */ rval = QLA_ERROR; break; } else { ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); } } while (1); opcode &= ~QLA8XXX_DBG_OPCODE_POLL; } if (opcode & QLA8XXX_DBG_OPCODE_RDSTATE) { if (crb_entry->crb_strd.state_index_a) { index = crb_entry->crb_strd.state_index_a; addr = tmplt_hdr->saved_state_array[index]; } else { addr = crb_addr; } ha->isp_ops->rd_reg_indirect(ha, addr, &read_value); index = crb_entry->crb_ctrl.state_index_v; tmplt_hdr->saved_state_array[index] = read_value; opcode &= ~QLA8XXX_DBG_OPCODE_RDSTATE; } if (opcode & QLA8XXX_DBG_OPCODE_WRSTATE) { if (crb_entry->crb_strd.state_index_a) { index = crb_entry->crb_strd.state_index_a; addr = tmplt_hdr->saved_state_array[index]; } else { addr = crb_addr; } if (crb_entry->crb_ctrl.state_index_v) { index = crb_entry->crb_ctrl.state_index_v; read_value = tmplt_hdr->saved_state_array[index]; } else { read_value = crb_entry->value_1; } ha->isp_ops->wr_reg_indirect(ha, addr, read_value); opcode &= ~QLA8XXX_DBG_OPCODE_WRSTATE; } if (opcode & QLA8XXX_DBG_OPCODE_MDSTATE) { index = crb_entry->crb_ctrl.state_index_v; read_value = tmplt_hdr->saved_state_array[index]; read_value <<= crb_entry->crb_ctrl.shl; read_value >>= crb_entry->crb_ctrl.shr; if (crb_entry->value_2) read_value &= crb_entry->value_2; read_value |= crb_entry->value_3; read_value += crb_entry->value_1; tmplt_hdr->saved_state_array[index] = read_value; opcode &= ~QLA8XXX_DBG_OPCODE_MDSTATE; } crb_addr += crb_entry->crb_strd.addr_stride; } DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__)); return rval; } static void qla4_8xxx_minidump_process_rdocm(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, r_stride, loop_cnt, i, r_value; struct qla8xxx_minidump_entry_rdocm *ocm_hdr; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); ocm_hdr = (struct qla8xxx_minidump_entry_rdocm *)entry_hdr; r_addr = ocm_hdr->read_addr; r_stride = ocm_hdr->read_addr_stride; loop_cnt = ocm_hdr->op_count; DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: r_addr: 0x%x, r_stride: 0x%x, loop_cnt: 0x%x\n", __func__, r_addr, r_stride, loop_cnt)); for (i = 0; i < loop_cnt; i++) { r_value = readl((void __iomem *)(r_addr + ha->nx_pcibase)); *data_ptr++ = cpu_to_le32(r_value); r_addr += r_stride; } DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%lx\n", __func__, (long unsigned int) (loop_cnt * sizeof(uint32_t)))); *d_ptr = data_ptr; } static void qla4_8xxx_minidump_process_rdmux(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, s_stride, s_addr, s_value, loop_cnt, i, r_value; struct qla8xxx_minidump_entry_mux *mux_hdr; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); mux_hdr = (struct qla8xxx_minidump_entry_mux *)entry_hdr; r_addr = mux_hdr->read_addr; s_addr = mux_hdr->select_addr; s_stride = mux_hdr->select_value_stride; s_value = mux_hdr->select_value; loop_cnt = mux_hdr->op_count; for (i = 0; i < loop_cnt; i++) { ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value); ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); *data_ptr++ = cpu_to_le32(s_value); *data_ptr++ = cpu_to_le32(r_value); s_value += s_stride; } *d_ptr = data_ptr; } static void qla4_8xxx_minidump_process_l1cache(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t addr, r_addr, c_addr, t_r_addr; uint32_t i, k, loop_count, t_value, r_cnt, r_value; uint32_t c_value_w; struct qla8xxx_minidump_entry_cache *cache_hdr; uint32_t *data_ptr = *d_ptr; cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr; loop_count = cache_hdr->op_count; r_addr = cache_hdr->read_addr; c_addr = cache_hdr->control_addr; c_value_w = cache_hdr->cache_ctrl.write_value; t_r_addr = cache_hdr->tag_reg_addr; t_value = cache_hdr->addr_ctrl.init_tag_value; r_cnt = cache_hdr->read_ctrl.read_addr_cnt; for (i = 0; i < loop_count; i++) { ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value); ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w); addr = r_addr; for (k = 0; k < r_cnt; k++) { ha->isp_ops->rd_reg_indirect(ha, addr, &r_value); *data_ptr++ = cpu_to_le32(r_value); addr += cache_hdr->read_ctrl.read_addr_stride; } t_value += cache_hdr->addr_ctrl.tag_value_stride; } *d_ptr = data_ptr; } static void qla4_8xxx_minidump_process_queue(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t s_addr, r_addr; uint32_t r_stride, r_value, r_cnt, qid = 0; uint32_t i, k, loop_cnt; struct qla8xxx_minidump_entry_queue *q_hdr; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); q_hdr = (struct qla8xxx_minidump_entry_queue *)entry_hdr; s_addr = q_hdr->select_addr; r_cnt = q_hdr->rd_strd.read_addr_cnt; r_stride = q_hdr->rd_strd.read_addr_stride; loop_cnt = q_hdr->op_count; for (i = 0; i < loop_cnt; i++) { ha->isp_ops->wr_reg_indirect(ha, s_addr, qid); r_addr = q_hdr->read_addr; for (k = 0; k < r_cnt; k++) { ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); *data_ptr++ = cpu_to_le32(r_value); r_addr += r_stride; } qid += q_hdr->q_strd.queue_id_stride; } *d_ptr = data_ptr; } #define MD_DIRECT_ROM_WINDOW 0x42110030 #define MD_DIRECT_ROM_READ_BASE 0x42150000 static void qla4_82xx_minidump_process_rdrom(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, r_value; uint32_t i, loop_cnt; struct qla8xxx_minidump_entry_rdrom *rom_hdr; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr; r_addr = rom_hdr->read_addr; loop_cnt = rom_hdr->read_data_size/sizeof(uint32_t); DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: flash_addr: 0x%x, read_data_size: 0x%x\n", __func__, r_addr, loop_cnt)); for (i = 0; i < loop_cnt; i++) { ha->isp_ops->wr_reg_indirect(ha, MD_DIRECT_ROM_WINDOW, (r_addr & 0xFFFF0000)); ha->isp_ops->rd_reg_indirect(ha, MD_DIRECT_ROM_READ_BASE + (r_addr & 0x0000FFFF), &r_value); *data_ptr++ = cpu_to_le32(r_value); r_addr += sizeof(uint32_t); } *d_ptr = data_ptr; } #define MD_MIU_TEST_AGT_CTRL 0x41000090 #define MD_MIU_TEST_AGT_ADDR_LO 0x41000094 #define MD_MIU_TEST_AGT_ADDR_HI 0x41000098 static int __qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, r_value, r_data; uint32_t i, j, loop_cnt; struct qla8xxx_minidump_entry_rdmem *m_hdr; unsigned long flags; uint32_t *data_ptr = *d_ptr; DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); m_hdr = (struct qla8xxx_minidump_entry_rdmem *)entry_hdr; r_addr = m_hdr->read_addr; loop_cnt = m_hdr->read_data_size/16; DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: Read addr: 0x%x, read_data_size: 0x%x\n", __func__, r_addr, m_hdr->read_data_size)); if (r_addr & 0xf) { DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: Read addr 0x%x not 16 bytes aligned\n", __func__, r_addr)); return QLA_ERROR; } if (m_hdr->read_data_size % 16) { DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: Read data[0x%x] not multiple of 16 bytes\n", __func__, m_hdr->read_data_size)); return QLA_ERROR; } DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: rdmem_addr: 0x%x, read_data_size: 0x%x, loop_cnt: 0x%x\n", __func__, r_addr, m_hdr->read_data_size, loop_cnt)); write_lock_irqsave(&ha->hw_lock, flags); for (i = 0; i < loop_cnt; i++) { ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_LO, r_addr); r_value = 0; ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI, r_value); r_value = MIU_TA_CTL_ENABLE; ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value); r_value = MIU_TA_CTL_START_ENABLE; ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value); for (j = 0; j < MAX_CTL_CHECK; j++) { ha->isp_ops->rd_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, &r_value); if ((r_value & MIU_TA_CTL_BUSY) == 0) break; } if (j >= MAX_CTL_CHECK) { printk_ratelimited(KERN_ERR "%s: failed to read through agent\n", __func__); write_unlock_irqrestore(&ha->hw_lock, flags); return QLA_SUCCESS; } for (j = 0; j < 4; j++) { ha->isp_ops->rd_reg_indirect(ha, MD_MIU_TEST_AGT_RDDATA[j], &r_data); *data_ptr++ = cpu_to_le32(r_data); } r_addr += 16; } write_unlock_irqrestore(&ha->hw_lock, flags); DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%x\n", __func__, (loop_cnt * 16))); *d_ptr = data_ptr; return QLA_SUCCESS; } static int qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t *data_ptr = *d_ptr; int rval = QLA_SUCCESS; rval = qla4_8xxx_minidump_pex_dma_read(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) rval = __qla4_8xxx_minidump_process_rdmem(ha, entry_hdr, &data_ptr); *d_ptr = data_ptr; return rval; } static void qla4_8xxx_mark_entry_skipped(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, int index) { entry_hdr->d_ctrl.driver_flags |= QLA8XXX_DBG_SKIPPED_FLAG; DEBUG2(ql4_printk(KERN_INFO, ha, "scsi(%ld): Skipping entry[%d]: ETYPE[0x%x]-ELEVEL[0x%x]\n", ha->host_no, index, entry_hdr->entry_type, entry_hdr->d_ctrl.entry_capture_mask)); /* If driver encounters a new entry type that it cannot process, * it should just skip the entry and adjust the total buffer size by * from subtracting the skipped bytes from it */ ha->fw_dump_skip_size += entry_hdr->entry_capture_size; } /* ISP83xx functions to process new minidump entries... */ static uint32_t qla83xx_minidump_process_pollrd(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t r_addr, s_addr, s_value, r_value, poll_wait, poll_mask; uint16_t s_stride, i; uint32_t *data_ptr = *d_ptr; uint32_t rval = QLA_SUCCESS; struct qla83xx_minidump_entry_pollrd *pollrd_hdr; pollrd_hdr = (struct qla83xx_minidump_entry_pollrd *)entry_hdr; s_addr = le32_to_cpu(pollrd_hdr->select_addr); r_addr = le32_to_cpu(pollrd_hdr->read_addr); s_value = le32_to_cpu(pollrd_hdr->select_value); s_stride = le32_to_cpu(pollrd_hdr->select_value_stride); poll_wait = le32_to_cpu(pollrd_hdr->poll_wait); poll_mask = le32_to_cpu(pollrd_hdr->poll_mask); for (i = 0; i < le32_to_cpu(pollrd_hdr->op_count); i++) { ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value); poll_wait = le32_to_cpu(pollrd_hdr->poll_wait); while (1) { ha->isp_ops->rd_reg_indirect(ha, s_addr, &r_value); if ((r_value & poll_mask) != 0) { break; } else { msleep(1); if (--poll_wait == 0) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); rval = QLA_ERROR; goto exit_process_pollrd; } } } ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); *data_ptr++ = cpu_to_le32(s_value); *data_ptr++ = cpu_to_le32(r_value); s_value += s_stride; } *d_ptr = data_ptr; exit_process_pollrd: return rval; } static uint32_t qla4_84xx_minidump_process_rddfe(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { int loop_cnt; uint32_t addr1, addr2, value, data, temp, wrval; uint8_t stride, stride2; uint16_t count; uint32_t poll, mask, modify_mask; uint32_t wait_count = 0; uint32_t *data_ptr = *d_ptr; struct qla8044_minidump_entry_rddfe *rddfe; uint32_t rval = QLA_SUCCESS; rddfe = (struct qla8044_minidump_entry_rddfe *)entry_hdr; addr1 = le32_to_cpu(rddfe->addr_1); value = le32_to_cpu(rddfe->value); stride = le32_to_cpu(rddfe->stride); stride2 = le32_to_cpu(rddfe->stride2); count = le32_to_cpu(rddfe->count); poll = le32_to_cpu(rddfe->poll); mask = le32_to_cpu(rddfe->mask); modify_mask = le32_to_cpu(rddfe->modify_mask); addr2 = addr1 + stride; for (loop_cnt = 0x0; loop_cnt < count; loop_cnt++) { ha->isp_ops->wr_reg_indirect(ha, addr1, (0x40000000 | value)); wait_count = 0; while (wait_count < poll) { ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); if ((temp & mask) != 0) break; wait_count++; } if (wait_count == poll) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); rval = QLA_ERROR; goto exit_process_rddfe; } else { ha->isp_ops->rd_reg_indirect(ha, addr2, &temp); temp = temp & modify_mask; temp = (temp | ((loop_cnt << 16) | loop_cnt)); wrval = ((temp << 16) | temp); ha->isp_ops->wr_reg_indirect(ha, addr2, wrval); ha->isp_ops->wr_reg_indirect(ha, addr1, value); wait_count = 0; while (wait_count < poll) { ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); if ((temp & mask) != 0) break; wait_count++; } if (wait_count == poll) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); rval = QLA_ERROR; goto exit_process_rddfe; } ha->isp_ops->wr_reg_indirect(ha, addr1, ((0x40000000 | value) + stride2)); wait_count = 0; while (wait_count < poll) { ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); if ((temp & mask) != 0) break; wait_count++; } if (wait_count == poll) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); rval = QLA_ERROR; goto exit_process_rddfe; } ha->isp_ops->rd_reg_indirect(ha, addr2, &data); *data_ptr++ = cpu_to_le32(wrval); *data_ptr++ = cpu_to_le32(data); } } *d_ptr = data_ptr; exit_process_rddfe: return rval; } static uint32_t qla4_84xx_minidump_process_rdmdio(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { int rval = QLA_SUCCESS; uint32_t addr1, addr2, value1, value2, data, selval; uint8_t stride1, stride2; uint32_t addr3, addr4, addr5, addr6, addr7; uint16_t count, loop_cnt; uint32_t mask; uint32_t *data_ptr = *d_ptr; struct qla8044_minidump_entry_rdmdio *rdmdio; rdmdio = (struct qla8044_minidump_entry_rdmdio *)entry_hdr; addr1 = le32_to_cpu(rdmdio->addr_1); addr2 = le32_to_cpu(rdmdio->addr_2); value1 = le32_to_cpu(rdmdio->value_1); stride1 = le32_to_cpu(rdmdio->stride_1); stride2 = le32_to_cpu(rdmdio->stride_2); count = le32_to_cpu(rdmdio->count); mask = le32_to_cpu(rdmdio->mask); value2 = le32_to_cpu(rdmdio->value_2); addr3 = addr1 + stride1; for (loop_cnt = 0; loop_cnt < count; loop_cnt++) { rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2, addr3, mask); if (rval) goto exit_process_rdmdio; addr4 = addr2 - stride1; rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr4, value2); if (rval) goto exit_process_rdmdio; addr5 = addr2 - (2 * stride1); rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr5, value1); if (rval) goto exit_process_rdmdio; addr6 = addr2 - (3 * stride1); rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr6, 0x2); if (rval) goto exit_process_rdmdio; rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2, addr3, mask); if (rval) goto exit_process_rdmdio; addr7 = addr2 - (4 * stride1); rval = ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3, mask, addr7, &data); if (rval) goto exit_process_rdmdio; selval = (value2 << 18) | (value1 << 2) | 2; stride2 = le32_to_cpu(rdmdio->stride_2); *data_ptr++ = cpu_to_le32(selval); *data_ptr++ = cpu_to_le32(data); value1 = value1 + stride2; *d_ptr = data_ptr; } exit_process_rdmdio: return rval; } static uint32_t qla4_84xx_minidump_process_pollwr(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t addr1, addr2, value1, value2, poll, r_value; struct qla8044_minidump_entry_pollwr *pollwr_hdr; uint32_t wait_count = 0; uint32_t rval = QLA_SUCCESS; pollwr_hdr = (struct qla8044_minidump_entry_pollwr *)entry_hdr; addr1 = le32_to_cpu(pollwr_hdr->addr_1); addr2 = le32_to_cpu(pollwr_hdr->addr_2); value1 = le32_to_cpu(pollwr_hdr->value_1); value2 = le32_to_cpu(pollwr_hdr->value_2); poll = le32_to_cpu(pollwr_hdr->poll); while (wait_count < poll) { ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value); if ((r_value & poll) != 0) break; wait_count++; } if (wait_count == poll) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); rval = QLA_ERROR; goto exit_process_pollwr; } ha->isp_ops->wr_reg_indirect(ha, addr2, value2); ha->isp_ops->wr_reg_indirect(ha, addr1, value1); wait_count = 0; while (wait_count < poll) { ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value); if ((r_value & poll) != 0) break; wait_count++; } exit_process_pollwr: return rval; } static void qla83xx_minidump_process_rdmux2(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t sel_val1, sel_val2, t_sel_val, data, i; uint32_t sel_addr1, sel_addr2, sel_val_mask, read_addr; struct qla83xx_minidump_entry_rdmux2 *rdmux2_hdr; uint32_t *data_ptr = *d_ptr; rdmux2_hdr = (struct qla83xx_minidump_entry_rdmux2 *)entry_hdr; sel_val1 = le32_to_cpu(rdmux2_hdr->select_value_1); sel_val2 = le32_to_cpu(rdmux2_hdr->select_value_2); sel_addr1 = le32_to_cpu(rdmux2_hdr->select_addr_1); sel_addr2 = le32_to_cpu(rdmux2_hdr->select_addr_2); sel_val_mask = le32_to_cpu(rdmux2_hdr->select_value_mask); read_addr = le32_to_cpu(rdmux2_hdr->read_addr); for (i = 0; i < rdmux2_hdr->op_count; i++) { ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val1); t_sel_val = sel_val1 & sel_val_mask; *data_ptr++ = cpu_to_le32(t_sel_val); ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val); ha->isp_ops->rd_reg_indirect(ha, read_addr, &data); *data_ptr++ = cpu_to_le32(data); ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val2); t_sel_val = sel_val2 & sel_val_mask; *data_ptr++ = cpu_to_le32(t_sel_val); ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val); ha->isp_ops->rd_reg_indirect(ha, read_addr, &data); *data_ptr++ = cpu_to_le32(data); sel_val1 += rdmux2_hdr->select_value_stride; sel_val2 += rdmux2_hdr->select_value_stride; } *d_ptr = data_ptr; } static uint32_t qla83xx_minidump_process_pollrdmwr(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t poll_wait, poll_mask, r_value, data; uint32_t addr_1, addr_2, value_1, value_2; uint32_t *data_ptr = *d_ptr; uint32_t rval = QLA_SUCCESS; struct qla83xx_minidump_entry_pollrdmwr *poll_hdr; poll_hdr = (struct qla83xx_minidump_entry_pollrdmwr *)entry_hdr; addr_1 = le32_to_cpu(poll_hdr->addr_1); addr_2 = le32_to_cpu(poll_hdr->addr_2); value_1 = le32_to_cpu(poll_hdr->value_1); value_2 = le32_to_cpu(poll_hdr->value_2); poll_mask = le32_to_cpu(poll_hdr->poll_mask); ha->isp_ops->wr_reg_indirect(ha, addr_1, value_1); poll_wait = le32_to_cpu(poll_hdr->poll_wait); while (1) { ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value); if ((r_value & poll_mask) != 0) { break; } else { msleep(1); if (--poll_wait == 0) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_1\n", __func__); rval = QLA_ERROR; goto exit_process_pollrdmwr; } } } ha->isp_ops->rd_reg_indirect(ha, addr_2, &data); data &= le32_to_cpu(poll_hdr->modify_mask); ha->isp_ops->wr_reg_indirect(ha, addr_2, data); ha->isp_ops->wr_reg_indirect(ha, addr_1, value_2); poll_wait = le32_to_cpu(poll_hdr->poll_wait); while (1) { ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value); if ((r_value & poll_mask) != 0) { break; } else { msleep(1); if (--poll_wait == 0) { ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_2\n", __func__); rval = QLA_ERROR; goto exit_process_pollrdmwr; } } } *data_ptr++ = cpu_to_le32(addr_2); *data_ptr++ = cpu_to_le32(data); *d_ptr = data_ptr; exit_process_pollrdmwr: return rval; } static uint32_t qla4_83xx_minidump_process_rdrom(struct scsi_qla_host *ha, struct qla8xxx_minidump_entry_hdr *entry_hdr, uint32_t **d_ptr) { uint32_t fl_addr, u32_count, rval; struct qla8xxx_minidump_entry_rdrom *rom_hdr; uint32_t *data_ptr = *d_ptr; rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr; fl_addr = le32_to_cpu(rom_hdr->read_addr); u32_count = le32_to_cpu(rom_hdr->read_data_size)/sizeof(uint32_t); DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: fl_addr: 0x%x, count: 0x%x\n", __func__, fl_addr, u32_count)); rval = qla4_83xx_lockless_flash_read_u32(ha, fl_addr, (u8 *)(data_ptr), u32_count); if (rval == QLA_ERROR) { ql4_printk(KERN_ERR, ha, "%s: Flash Read Error,Count=%d\n", __func__, u32_count); goto exit_process_rdrom; } data_ptr += u32_count; *d_ptr = data_ptr; exit_process_rdrom: return rval; } /** * qla4_8xxx_collect_md_data - Retrieve firmware minidump data. * @ha: pointer to adapter structure **/ static int qla4_8xxx_collect_md_data(struct scsi_qla_host *ha) { int num_entry_hdr = 0; struct qla8xxx_minidump_entry_hdr *entry_hdr; struct qla4_8xxx_minidump_template_hdr *tmplt_hdr; uint32_t *data_ptr; uint32_t data_collected = 0; int i, rval = QLA_ERROR; uint64_t now; uint32_t timestamp; ha->fw_dump_skip_size = 0; if (!ha->fw_dump) { ql4_printk(KERN_INFO, ha, "%s(%ld) No buffer to dump\n", __func__, ha->host_no); return rval; } tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) ha->fw_dump_tmplt_hdr; data_ptr = (uint32_t *)((uint8_t *)ha->fw_dump + ha->fw_dump_tmplt_size); data_collected += ha->fw_dump_tmplt_size; num_entry_hdr = tmplt_hdr->num_of_entries; ql4_printk(KERN_INFO, ha, "[%s]: starting data ptr: %p\n", __func__, data_ptr); ql4_printk(KERN_INFO, ha, "[%s]: no of entry headers in Template: 0x%x\n", __func__, num_entry_hdr); ql4_printk(KERN_INFO, ha, "[%s]: Capture Mask obtained: 0x%x\n", __func__, ha->fw_dump_capture_mask); ql4_printk(KERN_INFO, ha, "[%s]: Total_data_size 0x%x, %d obtained\n", __func__, ha->fw_dump_size, ha->fw_dump_size); /* Update current timestamp before taking dump */ now = get_jiffies_64(); timestamp = (u32)(jiffies_to_msecs(now) / 1000); tmplt_hdr->driver_timestamp = timestamp; entry_hdr = (struct qla8xxx_minidump_entry_hdr *) (((uint8_t *)ha->fw_dump_tmplt_hdr) + tmplt_hdr->first_entry_offset); if (is_qla8032(ha) || is_qla8042(ha)) tmplt_hdr->saved_state_array[QLA83XX_SS_OCM_WNDREG_INDEX] = tmplt_hdr->ocm_window_reg[ha->func_num]; /* Walk through the entry headers - validate/perform required action */ for (i = 0; i < num_entry_hdr; i++) { if (data_collected > ha->fw_dump_size) { ql4_printk(KERN_INFO, ha, "Data collected: [0x%x], Total Dump size: [0x%x]\n", data_collected, ha->fw_dump_size); return rval; } if (!(entry_hdr->d_ctrl.entry_capture_mask & ha->fw_dump_capture_mask)) { entry_hdr->d_ctrl.driver_flags |= QLA8XXX_DBG_SKIPPED_FLAG; goto skip_nxt_entry; } DEBUG2(ql4_printk(KERN_INFO, ha, "Data collected: [0x%x], Dump size left:[0x%x]\n", data_collected, (ha->fw_dump_size - data_collected))); /* Decode the entry type and take required action to capture * debug data */ switch (entry_hdr->entry_type) { case QLA8XXX_RDEND: qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA8XXX_CNTRL: rval = qla4_8xxx_minidump_process_control(ha, entry_hdr); if (rval != QLA_SUCCESS) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); goto md_failed; } break; case QLA8XXX_RDCRB: qla4_8xxx_minidump_process_rdcrb(ha, entry_hdr, &data_ptr); break; case QLA8XXX_RDMEM: rval = qla4_8xxx_minidump_process_rdmem(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); goto md_failed; } break; case QLA8XXX_BOARD: case QLA8XXX_RDROM: if (is_qla8022(ha)) { qla4_82xx_minidump_process_rdrom(ha, entry_hdr, &data_ptr); } else if (is_qla8032(ha) || is_qla8042(ha)) { rval = qla4_83xx_minidump_process_rdrom(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); } break; case QLA8XXX_L2DTG: case QLA8XXX_L2ITG: case QLA8XXX_L2DAT: case QLA8XXX_L2INS: rval = qla4_8xxx_minidump_process_l2tag(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); goto md_failed; } break; case QLA8XXX_L1DTG: case QLA8XXX_L1ITG: case QLA8XXX_L1DAT: case QLA8XXX_L1INS: qla4_8xxx_minidump_process_l1cache(ha, entry_hdr, &data_ptr); break; case QLA8XXX_RDOCM: qla4_8xxx_minidump_process_rdocm(ha, entry_hdr, &data_ptr); break; case QLA8XXX_RDMUX: qla4_8xxx_minidump_process_rdmux(ha, entry_hdr, &data_ptr); break; case QLA8XXX_QUEUE: qla4_8xxx_minidump_process_queue(ha, entry_hdr, &data_ptr); break; case QLA83XX_POLLRD: if (is_qla8022(ha)) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; } rval = qla83xx_minidump_process_pollrd(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA83XX_RDMUX2: if (is_qla8022(ha)) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; } qla83xx_minidump_process_rdmux2(ha, entry_hdr, &data_ptr); break; case QLA83XX_POLLRDMWR: if (is_qla8022(ha)) { qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; } rval = qla83xx_minidump_process_pollrdmwr(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA8044_RDDFE: rval = qla4_84xx_minidump_process_rddfe(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA8044_RDMDIO: rval = qla4_84xx_minidump_process_rdmdio(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA8044_POLLWR: rval = qla4_84xx_minidump_process_pollwr(ha, entry_hdr, &data_ptr); if (rval != QLA_SUCCESS) qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; case QLA8XXX_RDNOP: default: qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); break; } data_collected = (uint8_t *)data_ptr - (uint8_t *)ha->fw_dump; skip_nxt_entry: /* next entry in the template */ entry_hdr = (struct qla8xxx_minidump_entry_hdr *) (((uint8_t *)entry_hdr) + entry_hdr->entry_size); } if ((data_collected + ha->fw_dump_skip_size) != ha->fw_dump_size) { ql4_printk(KERN_INFO, ha, "Dump data mismatch: Data collected: [0x%x], total_data_size:[0x%x]\n", data_collected, ha->fw_dump_size); rval = QLA_ERROR; goto md_failed; } DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s Last entry: 0x%x\n", __func__, i)); md_failed: return rval; } /** * qla4_8xxx_uevent_emit - Send uevent when the firmware dump is ready. * @ha: pointer to adapter structure * @code: uevent code to act upon **/ static void qla4_8xxx_uevent_emit(struct scsi_qla_host *ha, u32 code) { char event_string[40]; char *envp[] = { event_string, NULL }; switch (code) { case QL4_UEVENT_CODE_FW_DUMP: snprintf(event_string, sizeof(event_string), "FW_DUMP=%ld", ha->host_no); break; default: /*do nothing*/ break; } kobject_uevent_env(&(&ha->pdev->dev)->kobj, KOBJ_CHANGE, envp); } void qla4_8xxx_get_minidump(struct scsi_qla_host *ha) { if (ql4xenablemd && test_bit(AF_FW_RECOVERY, &ha->flags) && !test_bit(AF_82XX_FW_DUMPED, &ha->flags)) { if (!qla4_8xxx_collect_md_data(ha)) { qla4_8xxx_uevent_emit(ha, QL4_UEVENT_CODE_FW_DUMP); set_bit(AF_82XX_FW_DUMPED, &ha->flags); } else { ql4_printk(KERN_INFO, ha, "%s: Unable to collect minidump\n", __func__); } } } /** * qla4_8xxx_device_bootstrap - Initialize device, set DEV_READY, start fw * @ha: pointer to adapter structure * * Note: IDC lock must be held upon entry **/ int qla4_8xxx_device_bootstrap(struct scsi_qla_host *ha) { int rval = QLA_ERROR; int i; uint32_t old_count, count; int need_reset = 0; need_reset = ha->isp_ops->need_reset(ha); if (need_reset) { /* We are trying to perform a recovery here. */ if (test_bit(AF_FW_RECOVERY, &ha->flags)) ha->isp_ops->rom_lock_recovery(ha); } else { old_count = qla4_8xxx_rd_direct(ha, QLA8XXX_PEG_ALIVE_COUNTER); for (i = 0; i < 10; i++) { msleep(200); count = qla4_8xxx_rd_direct(ha, QLA8XXX_PEG_ALIVE_COUNTER); if (count != old_count) { rval = QLA_SUCCESS; goto dev_ready; } } ha->isp_ops->rom_lock_recovery(ha); } /* set to DEV_INITIALIZING */ ql4_printk(KERN_INFO, ha, "HW State: INITIALIZING\n"); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_INITIALIZING); ha->isp_ops->idc_unlock(ha); if (is_qla8022(ha)) qla4_8xxx_get_minidump(ha); rval = ha->isp_ops->restart_firmware(ha); ha->isp_ops->idc_lock(ha); if (rval != QLA_SUCCESS) { ql4_printk(KERN_INFO, ha, "HW State: FAILED\n"); qla4_8xxx_clear_drv_active(ha); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_FAILED); return rval; } dev_ready: ql4_printk(KERN_INFO, ha, "HW State: READY\n"); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_READY); return rval; } /** * qla4_82xx_need_reset_handler - Code to start reset sequence * @ha: pointer to adapter structure * * Note: IDC lock must be held upon entry **/ static void qla4_82xx_need_reset_handler(struct scsi_qla_host *ha) { uint32_t dev_state, drv_state, drv_active; uint32_t active_mask = 0xFFFFFFFF; unsigned long reset_timeout; ql4_printk(KERN_INFO, ha, "Performing ISP error recovery\n"); if (test_and_clear_bit(AF_ONLINE, &ha->flags)) { qla4_82xx_idc_unlock(ha); ha->isp_ops->disable_intrs(ha); qla4_82xx_idc_lock(ha); } if (!test_bit(AF_8XXX_RST_OWNER, &ha->flags)) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s(%ld): reset acknowledged\n", __func__, ha->host_no)); qla4_8xxx_set_rst_ready(ha); } else { active_mask = (~(1 << (ha->func_num * 4))); } /* wait for 10 seconds for reset ack from all functions */ reset_timeout = jiffies + (ha->nx_reset_timeout * HZ); drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE); drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE); ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n", __func__, ha->host_no, drv_state, drv_active); while (drv_state != (drv_active & active_mask)) { if (time_after_eq(jiffies, reset_timeout)) { ql4_printk(KERN_INFO, ha, "%s: RESET TIMEOUT! drv_state: 0x%08x, drv_active: 0x%08x\n", DRIVER_NAME, drv_state, drv_active); break; } /* * When reset_owner times out, check which functions * acked/did not ack */ if (test_bit(AF_8XXX_RST_OWNER, &ha->flags)) { ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n", __func__, ha->host_no, drv_state, drv_active); } qla4_82xx_idc_unlock(ha); msleep(1000); qla4_82xx_idc_lock(ha); drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE); drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE); } /* Clear RESET OWNER as we are not going to use it any further */ clear_bit(AF_8XXX_RST_OWNER, &ha->flags); dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE); ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", dev_state, dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown"); /* Force to DEV_COLD unless someone else is starting a reset */ if (dev_state != QLA8XXX_DEV_INITIALIZING) { ql4_printk(KERN_INFO, ha, "HW State: COLD/RE-INIT\n"); qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE, QLA8XXX_DEV_COLD); qla4_8xxx_set_rst_ready(ha); } } /** * qla4_8xxx_need_qsnt_handler - Code to start qsnt * @ha: pointer to adapter structure **/ void qla4_8xxx_need_qsnt_handler(struct scsi_qla_host *ha) { ha->isp_ops->idc_lock(ha); qla4_8xxx_set_qsnt_ready(ha); ha->isp_ops->idc_unlock(ha); } static void qla4_82xx_set_idc_ver(struct scsi_qla_host *ha) { int idc_ver; uint32_t drv_active; drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); if (drv_active == (1 << (ha->func_num * 4))) { qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION, QLA82XX_IDC_VERSION); ql4_printk(KERN_INFO, ha, "%s: IDC version updated to %d\n", __func__, QLA82XX_IDC_VERSION); } else { idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); if (QLA82XX_IDC_VERSION != idc_ver) { ql4_printk(KERN_INFO, ha, "%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n", __func__, QLA82XX_IDC_VERSION, idc_ver); } } } static int qla4_83xx_set_idc_ver(struct scsi_qla_host *ha) { int idc_ver; uint32_t drv_active; int rval = QLA_SUCCESS; drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); if (drv_active == (1 << ha->func_num)) { idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); idc_ver &= (~0xFF); idc_ver |= QLA83XX_IDC_VER_MAJ_VALUE; qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION, idc_ver); ql4_printk(KERN_INFO, ha, "%s: IDC version updated to %d\n", __func__, idc_ver); } else { idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); idc_ver &= 0xFF; if (QLA83XX_IDC_VER_MAJ_VALUE != idc_ver) { ql4_printk(KERN_INFO, ha, "%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n", __func__, QLA83XX_IDC_VER_MAJ_VALUE, idc_ver); rval = QLA_ERROR; goto exit_set_idc_ver; } } /* Update IDC_MINOR_VERSION */ idc_ver = qla4_83xx_rd_reg(ha, QLA83XX_CRB_IDC_VER_MINOR); idc_ver &= ~(0x03 << (ha->func_num * 2)); idc_ver |= (QLA83XX_IDC_VER_MIN_VALUE << (ha->func_num * 2)); qla4_83xx_wr_reg(ha, QLA83XX_CRB_IDC_VER_MINOR, idc_ver); exit_set_idc_ver: return rval; } int qla4_8xxx_update_idc_reg(struct scsi_qla_host *ha) { uint32_t drv_active; int rval = QLA_SUCCESS; if (test_bit(AF_INIT_DONE, &ha->flags)) goto exit_update_idc_reg; ha->isp_ops->idc_lock(ha); qla4_8xxx_set_drv_active(ha); /* * If we are the first driver to load and * ql4xdontresethba is not set, clear IDC_CTRL BIT0. */ if (is_qla8032(ha) || is_qla8042(ha)) { drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); if ((drv_active == (1 << ha->func_num)) && !ql4xdontresethba) qla4_83xx_clear_idc_dontreset(ha); } if (is_qla8022(ha)) { qla4_82xx_set_idc_ver(ha); } else if (is_qla8032(ha) || is_qla8042(ha)) { rval = qla4_83xx_set_idc_ver(ha); if (rval == QLA_ERROR) qla4_8xxx_clear_drv_active(ha); } ha->isp_ops->idc_unlock(ha); exit_update_idc_reg: return rval; } /** * qla4_8xxx_device_state_handler - Adapter state machine * @ha: pointer to host adapter structure. * * Note: IDC lock must be UNLOCKED upon entry **/ int qla4_8xxx_device_state_handler(struct scsi_qla_host *ha) { uint32_t dev_state; int rval = QLA_SUCCESS; unsigned long dev_init_timeout; rval = qla4_8xxx_update_idc_reg(ha); if (rval == QLA_ERROR) goto exit_state_handler; dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE); DEBUG2(ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", dev_state, dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown")); /* wait for 30 seconds for device to go ready */ dev_init_timeout = jiffies + (ha->nx_dev_init_timeout * HZ); ha->isp_ops->idc_lock(ha); while (1) { if (time_after_eq(jiffies, dev_init_timeout)) { ql4_printk(KERN_WARNING, ha, "%s: Device Init Failed 0x%x = %s\n", DRIVER_NAME, dev_state, dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown"); qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_FAILED); } dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE); ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", dev_state, dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown"); /* NOTE: Make sure idc unlocked upon exit of switch statement */ switch (dev_state) { case QLA8XXX_DEV_READY: goto exit; case QLA8XXX_DEV_COLD: rval = qla4_8xxx_device_bootstrap(ha); goto exit; case QLA8XXX_DEV_INITIALIZING: ha->isp_ops->idc_unlock(ha); msleep(1000); ha->isp_ops->idc_lock(ha); break; case QLA8XXX_DEV_NEED_RESET: /* * For ISP8324 and ISP8042, if NEED_RESET is set by any * driver, it should be honored, irrespective of * IDC_CTRL DONTRESET_BIT0 */ if (is_qla8032(ha) || is_qla8042(ha)) { qla4_83xx_need_reset_handler(ha); } else if (is_qla8022(ha)) { if (!ql4xdontresethba) { qla4_82xx_need_reset_handler(ha); /* Update timeout value after need * reset handler */ dev_init_timeout = jiffies + (ha->nx_dev_init_timeout * HZ); } else { ha->isp_ops->idc_unlock(ha); msleep(1000); ha->isp_ops->idc_lock(ha); } } break; case QLA8XXX_DEV_NEED_QUIESCENT: /* idc locked/unlocked in handler */ qla4_8xxx_need_qsnt_handler(ha); break; case QLA8XXX_DEV_QUIESCENT: ha->isp_ops->idc_unlock(ha); msleep(1000); ha->isp_ops->idc_lock(ha); break; case QLA8XXX_DEV_FAILED: ha->isp_ops->idc_unlock(ha); qla4xxx_dead_adapter_cleanup(ha); rval = QLA_ERROR; ha->isp_ops->idc_lock(ha); goto exit; default: ha->isp_ops->idc_unlock(ha); qla4xxx_dead_adapter_cleanup(ha); rval = QLA_ERROR; ha->isp_ops->idc_lock(ha); goto exit; } } exit: ha->isp_ops->idc_unlock(ha); exit_state_handler: return rval; } int qla4_8xxx_load_risc(struct scsi_qla_host *ha) { int retval; /* clear the interrupt */ if (is_qla8032(ha) || is_qla8042(ha)) { writel(0, &ha->qla4_83xx_reg->risc_intr); readl(&ha->qla4_83xx_reg->risc_intr); } else if (is_qla8022(ha)) { writel(0, &ha->qla4_82xx_reg->host_int); readl(&ha->qla4_82xx_reg->host_int); } retval = qla4_8xxx_device_state_handler(ha); /* Initialize request and response queues. */ if (retval == QLA_SUCCESS) qla4xxx_init_rings(ha); if (retval == QLA_SUCCESS && !test_bit(AF_IRQ_ATTACHED, &ha->flags)) retval = qla4xxx_request_irqs(ha); return retval; } /*****************************************************************************/ /* Flash Manipulation Routines */ /*****************************************************************************/ #define OPTROM_BURST_SIZE 0x1000 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4) #define FARX_DATA_FLAG BIT_31 #define FARX_ACCESS_FLASH_CONF 0x7FFD0000 #define FARX_ACCESS_FLASH_DATA 0x7FF00000 static inline uint32_t flash_conf_addr(struct ql82xx_hw_data *hw, uint32_t faddr) { return hw->flash_conf_off | faddr; } static inline uint32_t flash_data_addr(struct ql82xx_hw_data *hw, uint32_t faddr) { return hw->flash_data_off | faddr; } static uint32_t * qla4_82xx_read_flash_data(struct scsi_qla_host *ha, uint32_t *dwptr, uint32_t faddr, uint32_t length) { uint32_t i; uint32_t val; int loops = 0; while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) { udelay(100); cond_resched(); loops++; } if (loops >= 50000) { ql4_printk(KERN_WARNING, ha, "ROM lock failed\n"); return dwptr; } /* Dword reads to flash. */ for (i = 0; i < length/4; i++, faddr += 4) { if (qla4_82xx_do_rom_fast_read(ha, faddr, &val)) { ql4_printk(KERN_WARNING, ha, "Do ROM fast read failed\n"); goto done_read; } dwptr[i] = __constant_cpu_to_le32(val); } done_read: qla4_82xx_rom_unlock(ha); return dwptr; } /* * Address and length are byte address */ static uint8_t * qla4_82xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf, uint32_t offset, uint32_t length) { qla4_82xx_read_flash_data(ha, (uint32_t *)buf, offset, length); return buf; } static int qla4_8xxx_find_flt_start(struct scsi_qla_host *ha, uint32_t *start) { const char *loc, *locations[] = { "DEF", "PCI" }; /* * FLT-location structure resides after the last PCI region. */ /* Begin with sane defaults. */ loc = locations[0]; *start = FA_FLASH_LAYOUT_ADDR_82; DEBUG2(ql4_printk(KERN_INFO, ha, "FLTL[%s] = 0x%x.\n", loc, *start)); return QLA_SUCCESS; } static void qla4_8xxx_get_flt_info(struct scsi_qla_host *ha, uint32_t flt_addr) { const char *loc, *locations[] = { "DEF", "FLT" }; uint16_t *wptr; uint16_t cnt, chksum; uint32_t start, status; struct qla_flt_header *flt; struct qla_flt_region *region; struct ql82xx_hw_data *hw = &ha->hw; hw->flt_region_flt = flt_addr; wptr = (uint16_t *)ha->request_ring; flt = (struct qla_flt_header *)ha->request_ring; region = (struct qla_flt_region *)&flt[1]; if (is_qla8022(ha)) { qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, flt_addr << 2, OPTROM_BURST_SIZE); } else if (is_qla8032(ha) || is_qla8042(ha)) { status = qla4_83xx_flash_read_u32(ha, flt_addr << 2, (uint8_t *)ha->request_ring, 0x400); if (status != QLA_SUCCESS) goto no_flash_data; } if (*wptr == __constant_cpu_to_le16(0xffff)) goto no_flash_data; if (flt->version != __constant_cpu_to_le16(1)) { DEBUG2(ql4_printk(KERN_INFO, ha, "Unsupported FLT detected: " "version=0x%x length=0x%x checksum=0x%x.\n", le16_to_cpu(flt->version), le16_to_cpu(flt->length), le16_to_cpu(flt->checksum))); goto no_flash_data; } cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; for (chksum = 0; cnt; cnt--) chksum += le16_to_cpu(*wptr++); if (chksum) { DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FLT detected: " "version=0x%x length=0x%x checksum=0x%x.\n", le16_to_cpu(flt->version), le16_to_cpu(flt->length), chksum)); goto no_flash_data; } loc = locations[1]; cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); for ( ; cnt; cnt--, region++) { /* Store addresses as DWORD offsets. */ start = le32_to_cpu(region->start) >> 2; DEBUG3(ql4_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x " "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start, le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size))); switch (le32_to_cpu(region->code) & 0xff) { case FLT_REG_FDT: hw->flt_region_fdt = start; break; case FLT_REG_BOOT_CODE_82: hw->flt_region_boot = start; break; case FLT_REG_FW_82: case FLT_REG_FW_82_1: hw->flt_region_fw = start; break; case FLT_REG_BOOTLOAD_82: hw->flt_region_bootload = start; break; case FLT_REG_ISCSI_PARAM: hw->flt_iscsi_param = start; break; case FLT_REG_ISCSI_CHAP: hw->flt_region_chap = start; hw->flt_chap_size = le32_to_cpu(region->size); break; case FLT_REG_ISCSI_DDB: hw->flt_region_ddb = start; hw->flt_ddb_size = le32_to_cpu(region->size); break; } } goto done; no_flash_data: /* Use hardcoded defaults. */ loc = locations[0]; hw->flt_region_fdt = FA_FLASH_DESCR_ADDR_82; hw->flt_region_boot = FA_BOOT_CODE_ADDR_82; hw->flt_region_bootload = FA_BOOT_LOAD_ADDR_82; hw->flt_region_fw = FA_RISC_CODE_ADDR_82; hw->flt_region_chap = FA_FLASH_ISCSI_CHAP >> 2; hw->flt_chap_size = FA_FLASH_CHAP_SIZE; hw->flt_region_ddb = FA_FLASH_ISCSI_DDB >> 2; hw->flt_ddb_size = FA_FLASH_DDB_SIZE; done: DEBUG2(ql4_printk(KERN_INFO, ha, "FLT[%s]: flt=0x%x fdt=0x%x boot=0x%x bootload=0x%x fw=0x%x chap=0x%x chap_size=0x%x ddb=0x%x ddb_size=0x%x\n", loc, hw->flt_region_flt, hw->flt_region_fdt, hw->flt_region_boot, hw->flt_region_bootload, hw->flt_region_fw, hw->flt_region_chap, hw->flt_chap_size, hw->flt_region_ddb, hw->flt_ddb_size)); } static void qla4_82xx_get_fdt_info(struct scsi_qla_host *ha) { #define FLASH_BLK_SIZE_4K 0x1000 #define FLASH_BLK_SIZE_32K 0x8000 #define FLASH_BLK_SIZE_64K 0x10000 const char *loc, *locations[] = { "MID", "FDT" }; uint16_t cnt, chksum; uint16_t *wptr; struct qla_fdt_layout *fdt; uint16_t mid = 0; uint16_t fid = 0; struct ql82xx_hw_data *hw = &ha->hw; hw->flash_conf_off = FARX_ACCESS_FLASH_CONF; hw->flash_data_off = FARX_ACCESS_FLASH_DATA; wptr = (uint16_t *)ha->request_ring; fdt = (struct qla_fdt_layout *)ha->request_ring; qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, hw->flt_region_fdt << 2, OPTROM_BURST_SIZE); if (*wptr == __constant_cpu_to_le16(0xffff)) goto no_flash_data; if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || fdt->sig[3] != 'D') goto no_flash_data; for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; cnt++) chksum += le16_to_cpu(*wptr++); if (chksum) { DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FDT detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0], le16_to_cpu(fdt->version))); goto no_flash_data; } loc = locations[1]; mid = le16_to_cpu(fdt->man_id); fid = le16_to_cpu(fdt->id); hw->fdt_wrt_disable = fdt->wrt_disable_bits; hw->fdt_erase_cmd = flash_conf_addr(hw, 0x0300 | fdt->erase_cmd); hw->fdt_block_size = le32_to_cpu(fdt->block_size); if (fdt->unprotect_sec_cmd) { hw->fdt_unprotect_sec_cmd = flash_conf_addr(hw, 0x0300 | fdt->unprotect_sec_cmd); hw->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? flash_conf_addr(hw, 0x0300 | fdt->protect_sec_cmd) : flash_conf_addr(hw, 0x0336); } goto done; no_flash_data: loc = locations[0]; hw->fdt_block_size = FLASH_BLK_SIZE_64K; done: DEBUG2(ql4_printk(KERN_INFO, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x " "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid, hw->fdt_erase_cmd, hw->fdt_protect_sec_cmd, hw->fdt_unprotect_sec_cmd, hw->fdt_wrt_disable, hw->fdt_block_size)); } static void qla4_82xx_get_idc_param(struct scsi_qla_host *ha) { #define QLA82XX_IDC_PARAM_ADDR 0x003e885c uint32_t *wptr; if (!is_qla8022(ha)) return; wptr = (uint32_t *)ha->request_ring; qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, QLA82XX_IDC_PARAM_ADDR , 8); if (*wptr == __constant_cpu_to_le32(0xffffffff)) { ha->nx_dev_init_timeout = ROM_DEV_INIT_TIMEOUT; ha->nx_reset_timeout = ROM_DRV_RESET_ACK_TIMEOUT; } else { ha->nx_dev_init_timeout = le32_to_cpu(*wptr++); ha->nx_reset_timeout = le32_to_cpu(*wptr); } DEBUG2(ql4_printk(KERN_DEBUG, ha, "ha->nx_dev_init_timeout = %d\n", ha->nx_dev_init_timeout)); DEBUG2(ql4_printk(KERN_DEBUG, ha, "ha->nx_reset_timeout = %d\n", ha->nx_reset_timeout)); return; } void qla4_82xx_queue_mbox_cmd(struct scsi_qla_host *ha, uint32_t *mbx_cmd, int in_count) { int i; /* Load all mailbox registers, except mailbox 0. */ for (i = 1; i < in_count; i++) writel(mbx_cmd[i], &ha->qla4_82xx_reg->mailbox_in[i]); /* Wakeup firmware */ writel(mbx_cmd[0], &ha->qla4_82xx_reg->mailbox_in[0]); readl(&ha->qla4_82xx_reg->mailbox_in[0]); writel(HINT_MBX_INT_PENDING, &ha->qla4_82xx_reg->hint); readl(&ha->qla4_82xx_reg->hint); } void qla4_82xx_process_mbox_intr(struct scsi_qla_host *ha, int out_count) { int intr_status; intr_status = readl(&ha->qla4_82xx_reg->host_int); if (intr_status & ISRX_82XX_RISC_INT) { ha->mbox_status_count = out_count; intr_status = readl(&ha->qla4_82xx_reg->host_status); ha->isp_ops->interrupt_service_routine(ha, intr_status); if (test_bit(AF_INTERRUPTS_ON, &ha->flags) && (!ha->pdev->msi_enabled && !ha->pdev->msix_enabled)) qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0xfbff); } } int qla4_8xxx_get_flash_info(struct scsi_qla_host *ha) { int ret; uint32_t flt_addr; ret = qla4_8xxx_find_flt_start(ha, &flt_addr); if (ret != QLA_SUCCESS) return ret; qla4_8xxx_get_flt_info(ha, flt_addr); if (is_qla8022(ha)) { qla4_82xx_get_fdt_info(ha); qla4_82xx_get_idc_param(ha); } else if (is_qla8032(ha) || is_qla8042(ha)) { qla4_83xx_get_idc_param(ha); } return QLA_SUCCESS; } /** * qla4_8xxx_stop_firmware - stops firmware on specified adapter instance * @ha: pointer to host adapter structure. * * Remarks: * For iSCSI, throws away all I/O and AENs into bit bucket, so they will * not be available after successful return. Driver must cleanup potential * outstanding I/O's after calling this funcion. **/ int qla4_8xxx_stop_firmware(struct scsi_qla_host *ha) { int status; uint32_t mbox_cmd[MBOX_REG_COUNT]; uint32_t mbox_sts[MBOX_REG_COUNT]; memset(&mbox_cmd, 0, sizeof(mbox_cmd)); memset(&mbox_sts, 0, sizeof(mbox_sts)); mbox_cmd[0] = MBOX_CMD_STOP_FW; status = qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0], &mbox_sts[0]); DEBUG2(printk("scsi%ld: %s: status = %d\n", ha->host_no, __func__, status)); return status; } /** * qla4_82xx_isp_reset - Resets ISP and aborts all outstanding commands. * @ha: pointer to host adapter structure. **/ int qla4_82xx_isp_reset(struct scsi_qla_host *ha) { int rval; uint32_t dev_state; qla4_82xx_idc_lock(ha); dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE); if (dev_state == QLA8XXX_DEV_READY) { ql4_printk(KERN_INFO, ha, "HW State: NEED RESET\n"); qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE, QLA8XXX_DEV_NEED_RESET); set_bit(AF_8XXX_RST_OWNER, &ha->flags); } else ql4_printk(KERN_INFO, ha, "HW State: DEVICE INITIALIZING\n"); qla4_82xx_idc_unlock(ha); rval = qla4_8xxx_device_state_handler(ha); qla4_82xx_idc_lock(ha); qla4_8xxx_clear_rst_ready(ha); qla4_82xx_idc_unlock(ha); if (rval == QLA_SUCCESS) { ql4_printk(KERN_INFO, ha, "Clearing AF_RECOVERY in qla4_82xx_isp_reset\n"); clear_bit(AF_FW_RECOVERY, &ha->flags); } return rval; } /** * qla4_8xxx_get_sys_info - get adapter MAC address(es) and serial number * @ha: pointer to host adapter structure. * **/ int qla4_8xxx_get_sys_info(struct scsi_qla_host *ha) { uint32_t mbox_cmd[MBOX_REG_COUNT]; uint32_t mbox_sts[MBOX_REG_COUNT]; struct mbx_sys_info *sys_info; dma_addr_t sys_info_dma; int status = QLA_ERROR; sys_info = dma_alloc_coherent(&ha->pdev->dev, sizeof(*sys_info), &sys_info_dma, GFP_KERNEL); if (sys_info == NULL) { DEBUG2(printk("scsi%ld: %s: Unable to allocate dma buffer.\n", ha->host_no, __func__)); return status; } memset(&mbox_cmd, 0, sizeof(mbox_cmd)); memset(&mbox_sts, 0, sizeof(mbox_sts)); mbox_cmd[0] = MBOX_CMD_GET_SYS_INFO; mbox_cmd[1] = LSDW(sys_info_dma); mbox_cmd[2] = MSDW(sys_info_dma); mbox_cmd[4] = sizeof(*sys_info); if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 6, &mbox_cmd[0], &mbox_sts[0]) != QLA_SUCCESS) { DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO failed\n", ha->host_no, __func__)); goto exit_validate_mac82; } /* Make sure we receive the minimum required data to cache internally */ if (((is_qla8032(ha) || is_qla8042(ha)) ? mbox_sts[3] : mbox_sts[4]) < offsetof(struct mbx_sys_info, reserved)) { DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO data receive" " error (%x)\n", ha->host_no, __func__, mbox_sts[4])); goto exit_validate_mac82; } /* Save M.A.C. address & serial_number */ ha->port_num = sys_info->port_num; memcpy(ha->my_mac, &sys_info->mac_addr[0], min(sizeof(ha->my_mac), sizeof(sys_info->mac_addr))); memcpy(ha->serial_number, &sys_info->serial_number, min(sizeof(ha->serial_number), sizeof(sys_info->serial_number))); memcpy(ha->model_name, &sys_info->board_id_str, min(sizeof(ha->model_name), sizeof(sys_info->board_id_str))); ha->phy_port_cnt = sys_info->phys_port_cnt; ha->phy_port_num = sys_info->port_num; ha->iscsi_pci_func_cnt = sys_info->iscsi_pci_func_cnt; DEBUG2(printk("scsi%ld: %s: mac %pM serial %s\n", ha->host_no, __func__, ha->my_mac, ha->serial_number)); status = QLA_SUCCESS; exit_validate_mac82: dma_free_coherent(&ha->pdev->dev, sizeof(*sys_info), sys_info, sys_info_dma); return status; } /* Interrupt handling helpers. */ int qla4_8xxx_intr_enable(struct scsi_qla_host *ha) { uint32_t mbox_cmd[MBOX_REG_COUNT]; uint32_t mbox_sts[MBOX_REG_COUNT]; DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__)); memset(&mbox_cmd, 0, sizeof(mbox_cmd)); memset(&mbox_sts, 0, sizeof(mbox_sts)); mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS; mbox_cmd[1] = INTR_ENABLE; if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0], &mbox_sts[0]) != QLA_SUCCESS) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n", __func__, mbox_sts[0])); return QLA_ERROR; } return QLA_SUCCESS; } int qla4_8xxx_intr_disable(struct scsi_qla_host *ha) { uint32_t mbox_cmd[MBOX_REG_COUNT]; uint32_t mbox_sts[MBOX_REG_COUNT]; DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__)); memset(&mbox_cmd, 0, sizeof(mbox_cmd)); memset(&mbox_sts, 0, sizeof(mbox_sts)); mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS; mbox_cmd[1] = INTR_DISABLE; if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0], &mbox_sts[0]) != QLA_SUCCESS) { DEBUG2(ql4_printk(KERN_INFO, ha, "%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n", __func__, mbox_sts[0])); return QLA_ERROR; } return QLA_SUCCESS; } void qla4_82xx_enable_intrs(struct scsi_qla_host *ha) { qla4_8xxx_intr_enable(ha); spin_lock_irq(&ha->hardware_lock); /* BIT 10 - reset */ qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0xfbff); spin_unlock_irq(&ha->hardware_lock); set_bit(AF_INTERRUPTS_ON, &ha->flags); } void qla4_82xx_disable_intrs(struct scsi_qla_host *ha) { if (test_and_clear_bit(AF_INTERRUPTS_ON, &ha->flags)) qla4_8xxx_intr_disable(ha); spin_lock_irq(&ha->hardware_lock); /* BIT 10 - set */ qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0x0400); spin_unlock_irq(&ha->hardware_lock); } int qla4_8xxx_enable_msix(struct scsi_qla_host *ha) { int ret; ret = pci_alloc_irq_vectors(ha->pdev, QLA_MSIX_ENTRIES, QLA_MSIX_ENTRIES, PCI_IRQ_MSIX); if (ret < 0) { ql4_printk(KERN_WARNING, ha, "MSI-X: Failed to enable support -- %d/%d\n", QLA_MSIX_ENTRIES, ret); return ret; } ret = request_irq(pci_irq_vector(ha->pdev, 0), qla4_8xxx_default_intr_handler, 0, "qla4xxx (default)", ha); if (ret) goto out_free_vectors; ret = request_irq(pci_irq_vector(ha->pdev, 1), qla4_8xxx_msix_rsp_q, 0, "qla4xxx (rsp_q)", ha); if (ret) goto out_free_default_irq; return 0; out_free_default_irq: free_irq(pci_irq_vector(ha->pdev, 0), ha); out_free_vectors: pci_free_irq_vectors(ha->pdev); return ret; } int qla4_8xxx_check_init_adapter_retry(struct scsi_qla_host *ha) { int status = QLA_SUCCESS; /* Dont retry adapter initialization if IRQ allocation failed */ if (!test_bit(AF_IRQ_ATTACHED, &ha->flags)) { ql4_printk(KERN_WARNING, ha, "%s: Skipping retry of adapter initialization as IRQs are not attached\n", __func__); status = QLA_ERROR; goto exit_init_adapter_failure; } /* Since interrupts are registered in start_firmware for * 8xxx, release them here if initialize_adapter fails * and retry adapter initialization */ qla4xxx_free_irqs(ha); exit_init_adapter_failure: return status; }