// SPDX-License-Identifier: GPL-2.0-only /* * QLogic FCoE Offload Driver * Copyright (c) 2016-2018 Cavium Inc. */ #include <linux/spinlock.h> #include <linux/vmalloc.h> #include "qedf.h" #include <scsi/scsi_tcq.h> void qedf_cmd_timer_set(struct qedf_ctx *qedf, struct qedf_ioreq *io_req, unsigned int timer_msec) { queue_delayed_work(qedf->timer_work_queue, &io_req->timeout_work, msecs_to_jiffies(timer_msec)); } static void qedf_cmd_timeout(struct work_struct *work) { struct qedf_ioreq *io_req = container_of(work, struct qedf_ioreq, timeout_work.work); struct qedf_ctx *qedf; struct qedf_rport *fcport; u8 op = 0; if (io_req == NULL) { QEDF_INFO(NULL, QEDF_LOG_IO, "io_req is NULL.\n"); return; } fcport = io_req->fcport; if (io_req->fcport == NULL) { QEDF_INFO(NULL, QEDF_LOG_IO, "fcport is NULL.\n"); return; } qedf = fcport->qedf; switch (io_req->cmd_type) { case QEDF_ABTS: if (qedf == NULL) { QEDF_INFO(NULL, QEDF_LOG_IO, "qedf is NULL for ABTS xid=0x%x.\n", io_req->xid); return; } QEDF_ERR((&qedf->dbg_ctx), "ABTS timeout, xid=0x%x.\n", io_req->xid); /* Cleanup timed out ABTS */ qedf_initiate_cleanup(io_req, true); complete(&io_req->abts_done); /* * Need to call kref_put for reference taken when initiate_abts * was called since abts_compl won't be called now that we've * cleaned up the task. */ kref_put(&io_req->refcount, qedf_release_cmd); /* Clear in abort bit now that we're done with the command */ clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags); /* * Now that the original I/O and the ABTS are complete see * if we need to reconnect to the target. */ qedf_restart_rport(fcport); break; case QEDF_ELS: if (!qedf) { QEDF_INFO(NULL, QEDF_LOG_IO, "qedf is NULL for ELS xid=0x%x.\n", io_req->xid); return; } /* ELS request no longer outstanding since it timed out */ clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); kref_get(&io_req->refcount); /* * Don't attempt to clean an ELS timeout as any subseqeunt * ABTS or cleanup requests just hang. For now just free * the resources of the original I/O and the RRQ */ QEDF_ERR(&(qedf->dbg_ctx), "ELS timeout, xid=0x%x.\n", io_req->xid); io_req->event = QEDF_IOREQ_EV_ELS_TMO; /* Call callback function to complete command */ if (io_req->cb_func && io_req->cb_arg) { op = io_req->cb_arg->op; io_req->cb_func(io_req->cb_arg); io_req->cb_arg = NULL; } qedf_initiate_cleanup(io_req, true); kref_put(&io_req->refcount, qedf_release_cmd); break; case QEDF_SEQ_CLEANUP: QEDF_ERR(&(qedf->dbg_ctx), "Sequence cleanup timeout, " "xid=0x%x.\n", io_req->xid); qedf_initiate_cleanup(io_req, true); io_req->event = QEDF_IOREQ_EV_ELS_TMO; qedf_process_seq_cleanup_compl(qedf, NULL, io_req); break; default: break; } } void qedf_cmd_mgr_free(struct qedf_cmd_mgr *cmgr) { struct io_bdt *bdt_info; struct qedf_ctx *qedf = cmgr->qedf; size_t bd_tbl_sz; u16 min_xid = 0; u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1); int num_ios; int i; struct qedf_ioreq *io_req; num_ios = max_xid - min_xid + 1; /* Free fcoe_bdt_ctx structures */ if (!cmgr->io_bdt_pool) goto free_cmd_pool; bd_tbl_sz = QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge); for (i = 0; i < num_ios; i++) { bdt_info = cmgr->io_bdt_pool[i]; if (bdt_info->bd_tbl) { dma_free_coherent(&qedf->pdev->dev, bd_tbl_sz, bdt_info->bd_tbl, bdt_info->bd_tbl_dma); bdt_info->bd_tbl = NULL; } } /* Destroy io_bdt pool */ for (i = 0; i < num_ios; i++) { kfree(cmgr->io_bdt_pool[i]); cmgr->io_bdt_pool[i] = NULL; } kfree(cmgr->io_bdt_pool); cmgr->io_bdt_pool = NULL; free_cmd_pool: for (i = 0; i < num_ios; i++) { io_req = &cmgr->cmds[i]; kfree(io_req->sgl_task_params); kfree(io_req->task_params); /* Make sure we free per command sense buffer */ if (io_req->sense_buffer) dma_free_coherent(&qedf->pdev->dev, QEDF_SCSI_SENSE_BUFFERSIZE, io_req->sense_buffer, io_req->sense_buffer_dma); cancel_delayed_work_sync(&io_req->rrq_work); } /* Free command manager itself */ vfree(cmgr); } static void qedf_handle_rrq(struct work_struct *work) { struct qedf_ioreq *io_req = container_of(work, struct qedf_ioreq, rrq_work.work); atomic_set(&io_req->state, QEDFC_CMD_ST_RRQ_ACTIVE); qedf_send_rrq(io_req); } struct qedf_cmd_mgr *qedf_cmd_mgr_alloc(struct qedf_ctx *qedf) { struct qedf_cmd_mgr *cmgr; struct io_bdt *bdt_info; struct qedf_ioreq *io_req; u16 xid; int i; int num_ios; u16 min_xid = 0; u16 max_xid = (FCOE_PARAMS_NUM_TASKS - 1); /* Make sure num_queues is already set before calling this function */ if (!qedf->num_queues) { QEDF_ERR(&(qedf->dbg_ctx), "num_queues is not set.\n"); return NULL; } if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) { QEDF_WARN(&(qedf->dbg_ctx), "Invalid min_xid 0x%x and " "max_xid 0x%x.\n", min_xid, max_xid); return NULL; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "min xid 0x%x, max xid " "0x%x.\n", min_xid, max_xid); num_ios = max_xid - min_xid + 1; cmgr = vzalloc(sizeof(struct qedf_cmd_mgr)); if (!cmgr) { QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc cmd mgr.\n"); return NULL; } cmgr->qedf = qedf; spin_lock_init(&cmgr->lock); /* * Initialize I/O request fields. */ xid = 0; for (i = 0; i < num_ios; i++) { io_req = &cmgr->cmds[i]; INIT_DELAYED_WORK(&io_req->timeout_work, qedf_cmd_timeout); io_req->xid = xid++; INIT_DELAYED_WORK(&io_req->rrq_work, qedf_handle_rrq); /* Allocate DMA memory to hold sense buffer */ io_req->sense_buffer = dma_alloc_coherent(&qedf->pdev->dev, QEDF_SCSI_SENSE_BUFFERSIZE, &io_req->sense_buffer_dma, GFP_KERNEL); if (!io_req->sense_buffer) goto mem_err; /* Allocate task parameters to pass to f/w init funcions */ io_req->task_params = kzalloc(sizeof(*io_req->task_params), GFP_KERNEL); if (!io_req->task_params) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to allocate task_params for xid=0x%x\n", i); goto mem_err; } /* * Allocate scatter/gather list info to pass to f/w init * functions. */ io_req->sgl_task_params = kzalloc( sizeof(struct scsi_sgl_task_params), GFP_KERNEL); if (!io_req->sgl_task_params) { QEDF_ERR(&(qedf->dbg_ctx), "Failed to allocate sgl_task_params for xid=0x%x\n", i); goto mem_err; } } /* Allocate pool of io_bdts - one for each qedf_ioreq */ cmgr->io_bdt_pool = kmalloc_array(num_ios, sizeof(struct io_bdt *), GFP_KERNEL); if (!cmgr->io_bdt_pool) { QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc io_bdt_pool.\n"); goto mem_err; } for (i = 0; i < num_ios; i++) { cmgr->io_bdt_pool[i] = kmalloc(sizeof(struct io_bdt), GFP_KERNEL); if (!cmgr->io_bdt_pool[i]) { QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc io_bdt_pool[%d].\n", i); goto mem_err; } } for (i = 0; i < num_ios; i++) { bdt_info = cmgr->io_bdt_pool[i]; bdt_info->bd_tbl = dma_alloc_coherent(&qedf->pdev->dev, QEDF_MAX_BDS_PER_CMD * sizeof(struct scsi_sge), &bdt_info->bd_tbl_dma, GFP_KERNEL); if (!bdt_info->bd_tbl) { QEDF_WARN(&(qedf->dbg_ctx), "Failed to alloc bdt_tbl[%d].\n", i); goto mem_err; } } atomic_set(&cmgr->free_list_cnt, num_ios); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "cmgr->free_list_cnt=%d.\n", atomic_read(&cmgr->free_list_cnt)); return cmgr; mem_err: qedf_cmd_mgr_free(cmgr); return NULL; } struct qedf_ioreq *qedf_alloc_cmd(struct qedf_rport *fcport, u8 cmd_type) { struct qedf_ctx *qedf = fcport->qedf; struct qedf_cmd_mgr *cmd_mgr = qedf->cmd_mgr; struct qedf_ioreq *io_req = NULL; struct io_bdt *bd_tbl; u16 xid; uint32_t free_sqes; int i; unsigned long flags; free_sqes = atomic_read(&fcport->free_sqes); if (!free_sqes) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Returning NULL, free_sqes=%d.\n ", free_sqes); goto out_failed; } /* Limit the number of outstanding R/W tasks */ if ((atomic_read(&fcport->num_active_ios) >= NUM_RW_TASKS_PER_CONNECTION)) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Returning NULL, num_active_ios=%d.\n", atomic_read(&fcport->num_active_ios)); goto out_failed; } /* Limit global TIDs certain tasks */ if (atomic_read(&cmd_mgr->free_list_cnt) <= GBL_RSVD_TASKS) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Returning NULL, free_list_cnt=%d.\n", atomic_read(&cmd_mgr->free_list_cnt)); goto out_failed; } spin_lock_irqsave(&cmd_mgr->lock, flags); for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) { io_req = &cmd_mgr->cmds[cmd_mgr->idx]; cmd_mgr->idx++; if (cmd_mgr->idx == FCOE_PARAMS_NUM_TASKS) cmd_mgr->idx = 0; /* Check to make sure command was previously freed */ if (!io_req->alloc) break; } if (i == FCOE_PARAMS_NUM_TASKS) { spin_unlock_irqrestore(&cmd_mgr->lock, flags); goto out_failed; } if (test_bit(QEDF_CMD_DIRTY, &io_req->flags)) QEDF_ERR(&qedf->dbg_ctx, "io_req found to be dirty ox_id = 0x%x.\n", io_req->xid); /* Clear any flags now that we've reallocated the xid */ io_req->flags = 0; io_req->alloc = 1; spin_unlock_irqrestore(&cmd_mgr->lock, flags); atomic_inc(&fcport->num_active_ios); atomic_dec(&fcport->free_sqes); xid = io_req->xid; atomic_dec(&cmd_mgr->free_list_cnt); io_req->cmd_mgr = cmd_mgr; io_req->fcport = fcport; /* Clear any stale sc_cmd back pointer */ io_req->sc_cmd = NULL; io_req->lun = -1; /* Hold the io_req against deletion */ kref_init(&io_req->refcount); /* ID: 001 */ atomic_set(&io_req->state, QEDFC_CMD_ST_IO_ACTIVE); /* Bind io_bdt for this io_req */ /* Have a static link between io_req and io_bdt_pool */ bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid]; if (bd_tbl == NULL) { QEDF_ERR(&(qedf->dbg_ctx), "bd_tbl is NULL, xid=%x.\n", xid); kref_put(&io_req->refcount, qedf_release_cmd); goto out_failed; } bd_tbl->io_req = io_req; io_req->cmd_type = cmd_type; io_req->tm_flags = 0; /* Reset sequence offset data */ io_req->rx_buf_off = 0; io_req->tx_buf_off = 0; io_req->rx_id = 0xffff; /* No OX_ID */ return io_req; out_failed: /* Record failure for stats and return NULL to caller */ qedf->alloc_failures++; return NULL; } static void qedf_free_mp_resc(struct qedf_ioreq *io_req) { struct qedf_mp_req *mp_req = &(io_req->mp_req); struct qedf_ctx *qedf = io_req->fcport->qedf; uint64_t sz = sizeof(struct scsi_sge); /* clear tm flags */ if (mp_req->mp_req_bd) { dma_free_coherent(&qedf->pdev->dev, sz, mp_req->mp_req_bd, mp_req->mp_req_bd_dma); mp_req->mp_req_bd = NULL; } if (mp_req->mp_resp_bd) { dma_free_coherent(&qedf->pdev->dev, sz, mp_req->mp_resp_bd, mp_req->mp_resp_bd_dma); mp_req->mp_resp_bd = NULL; } if (mp_req->req_buf) { dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, mp_req->req_buf, mp_req->req_buf_dma); mp_req->req_buf = NULL; } if (mp_req->resp_buf) { dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, mp_req->resp_buf, mp_req->resp_buf_dma); mp_req->resp_buf = NULL; } } void qedf_release_cmd(struct kref *ref) { struct qedf_ioreq *io_req = container_of(ref, struct qedf_ioreq, refcount); struct qedf_cmd_mgr *cmd_mgr = io_req->cmd_mgr; struct qedf_rport *fcport = io_req->fcport; unsigned long flags; if (io_req->cmd_type == QEDF_SCSI_CMD) WARN_ON(io_req->sc_cmd); if (io_req->cmd_type == QEDF_ELS || io_req->cmd_type == QEDF_TASK_MGMT_CMD) qedf_free_mp_resc(io_req); atomic_inc(&cmd_mgr->free_list_cnt); atomic_dec(&fcport->num_active_ios); atomic_set(&io_req->state, QEDF_CMD_ST_INACTIVE); if (atomic_read(&fcport->num_active_ios) < 0) QEDF_WARN(&(fcport->qedf->dbg_ctx), "active_ios < 0.\n"); /* Increment task retry identifier now that the request is released */ io_req->task_retry_identifier++; io_req->fcport = NULL; clear_bit(QEDF_CMD_DIRTY, &io_req->flags); io_req->cpu = 0; spin_lock_irqsave(&cmd_mgr->lock, flags); io_req->fcport = NULL; io_req->alloc = 0; spin_unlock_irqrestore(&cmd_mgr->lock, flags); } static int qedf_map_sg(struct qedf_ioreq *io_req) { struct scsi_cmnd *sc = io_req->sc_cmd; struct Scsi_Host *host = sc->device->host; struct fc_lport *lport = shost_priv(host); struct qedf_ctx *qedf = lport_priv(lport); struct scsi_sge *bd = io_req->bd_tbl->bd_tbl; struct scatterlist *sg; int byte_count = 0; int sg_count = 0; int bd_count = 0; u32 sg_len; u64 addr, end_addr; int i = 0; sg_count = dma_map_sg(&qedf->pdev->dev, scsi_sglist(sc), scsi_sg_count(sc), sc->sc_data_direction); sg = scsi_sglist(sc); io_req->sge_type = QEDF_IOREQ_UNKNOWN_SGE; if (sg_count <= 8 || io_req->io_req_flags == QEDF_READ) io_req->sge_type = QEDF_IOREQ_FAST_SGE; scsi_for_each_sg(sc, sg, sg_count, i) { sg_len = (u32)sg_dma_len(sg); addr = (u64)sg_dma_address(sg); end_addr = (u64)(addr + sg_len); /* * Intermediate s/g element so check if start and end address * is page aligned. Only required for writes and only if the * number of scatter/gather elements is 8 or more. */ if (io_req->sge_type == QEDF_IOREQ_UNKNOWN_SGE && (i) && (i != (sg_count - 1)) && sg_len < QEDF_PAGE_SIZE) io_req->sge_type = QEDF_IOREQ_SLOW_SGE; bd[bd_count].sge_addr.lo = cpu_to_le32(U64_LO(addr)); bd[bd_count].sge_addr.hi = cpu_to_le32(U64_HI(addr)); bd[bd_count].sge_len = cpu_to_le32(sg_len); bd_count++; byte_count += sg_len; } /* To catch a case where FAST and SLOW nothing is set, set FAST */ if (io_req->sge_type == QEDF_IOREQ_UNKNOWN_SGE) io_req->sge_type = QEDF_IOREQ_FAST_SGE; if (byte_count != scsi_bufflen(sc)) QEDF_ERR(&(qedf->dbg_ctx), "byte_count = %d != " "scsi_bufflen = %d, task_id = 0x%x.\n", byte_count, scsi_bufflen(sc), io_req->xid); return bd_count; } static int qedf_build_bd_list_from_sg(struct qedf_ioreq *io_req) { struct scsi_cmnd *sc = io_req->sc_cmd; struct scsi_sge *bd = io_req->bd_tbl->bd_tbl; int bd_count; if (scsi_sg_count(sc)) { bd_count = qedf_map_sg(io_req); if (bd_count == 0) return -ENOMEM; } else { bd_count = 0; bd[0].sge_addr.lo = bd[0].sge_addr.hi = 0; bd[0].sge_len = 0; } io_req->bd_tbl->bd_valid = bd_count; return 0; } static void qedf_build_fcp_cmnd(struct qedf_ioreq *io_req, struct fcp_cmnd *fcp_cmnd) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; /* fcp_cmnd is 32 bytes */ memset(fcp_cmnd, 0, FCP_CMND_LEN); /* 8 bytes: SCSI LUN info */ int_to_scsilun(sc_cmd->device->lun, (struct scsi_lun *)&fcp_cmnd->fc_lun); /* 4 bytes: flag info */ fcp_cmnd->fc_pri_ta = 0; fcp_cmnd->fc_tm_flags = io_req->tm_flags; fcp_cmnd->fc_flags = io_req->io_req_flags; fcp_cmnd->fc_cmdref = 0; /* Populate data direction */ if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) { fcp_cmnd->fc_flags |= FCP_CFL_RDDATA; } else { if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) fcp_cmnd->fc_flags |= FCP_CFL_WRDATA; else if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) fcp_cmnd->fc_flags |= FCP_CFL_RDDATA; } fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE; /* 16 bytes: CDB information */ if (io_req->cmd_type != QEDF_TASK_MGMT_CMD) memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len); /* 4 bytes: FCP data length */ fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len); } static void qedf_init_task(struct qedf_rport *fcport, struct fc_lport *lport, struct qedf_ioreq *io_req, struct e4_fcoe_task_context *task_ctx, struct fcoe_wqe *sqe) { enum fcoe_task_type task_type; struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct io_bdt *bd_tbl = io_req->bd_tbl; u8 fcp_cmnd[32]; u32 tmp_fcp_cmnd[8]; int bd_count = 0; struct qedf_ctx *qedf = fcport->qedf; uint16_t cq_idx = smp_processor_id() % qedf->num_queues; struct regpair sense_data_buffer_phys_addr; u32 tx_io_size = 0; u32 rx_io_size = 0; int i, cnt; /* Note init_initiator_rw_fcoe_task memsets the task context */ io_req->task = task_ctx; memset(task_ctx, 0, sizeof(struct e4_fcoe_task_context)); memset(io_req->task_params, 0, sizeof(struct fcoe_task_params)); memset(io_req->sgl_task_params, 0, sizeof(struct scsi_sgl_task_params)); /* Set task type bassed on DMA directio of command */ if (io_req->cmd_type == QEDF_TASK_MGMT_CMD) { task_type = FCOE_TASK_TYPE_READ_INITIATOR; } else { if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) { task_type = FCOE_TASK_TYPE_WRITE_INITIATOR; tx_io_size = io_req->data_xfer_len; } else { task_type = FCOE_TASK_TYPE_READ_INITIATOR; rx_io_size = io_req->data_xfer_len; } } /* Setup the fields for fcoe_task_params */ io_req->task_params->context = task_ctx; io_req->task_params->sqe = sqe; io_req->task_params->task_type = task_type; io_req->task_params->tx_io_size = tx_io_size; io_req->task_params->rx_io_size = rx_io_size; io_req->task_params->conn_cid = fcport->fw_cid; io_req->task_params->itid = io_req->xid; io_req->task_params->cq_rss_number = cq_idx; io_req->task_params->is_tape_device = fcport->dev_type; /* Fill in information for scatter/gather list */ if (io_req->cmd_type != QEDF_TASK_MGMT_CMD) { bd_count = bd_tbl->bd_valid; io_req->sgl_task_params->sgl = bd_tbl->bd_tbl; io_req->sgl_task_params->sgl_phys_addr.lo = U64_LO(bd_tbl->bd_tbl_dma); io_req->sgl_task_params->sgl_phys_addr.hi = U64_HI(bd_tbl->bd_tbl_dma); io_req->sgl_task_params->num_sges = bd_count; io_req->sgl_task_params->total_buffer_size = scsi_bufflen(io_req->sc_cmd); if (io_req->sge_type == QEDF_IOREQ_SLOW_SGE) io_req->sgl_task_params->small_mid_sge = 1; else io_req->sgl_task_params->small_mid_sge = 0; } /* Fill in physical address of sense buffer */ sense_data_buffer_phys_addr.lo = U64_LO(io_req->sense_buffer_dma); sense_data_buffer_phys_addr.hi = U64_HI(io_req->sense_buffer_dma); /* fill FCP_CMND IU */ qedf_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tmp_fcp_cmnd); /* Swap fcp_cmnd since FC is big endian */ cnt = sizeof(struct fcp_cmnd) / sizeof(u32); for (i = 0; i < cnt; i++) { tmp_fcp_cmnd[i] = cpu_to_be32(tmp_fcp_cmnd[i]); } memcpy(fcp_cmnd, tmp_fcp_cmnd, sizeof(struct fcp_cmnd)); init_initiator_rw_fcoe_task(io_req->task_params, io_req->sgl_task_params, sense_data_buffer_phys_addr, io_req->task_retry_identifier, fcp_cmnd); /* Increment SGL type counters */ if (io_req->sge_type == QEDF_IOREQ_SLOW_SGE) qedf->slow_sge_ios++; else qedf->fast_sge_ios++; } void qedf_init_mp_task(struct qedf_ioreq *io_req, struct e4_fcoe_task_context *task_ctx, struct fcoe_wqe *sqe) { struct qedf_mp_req *mp_req = &(io_req->mp_req); struct qedf_rport *fcport = io_req->fcport; struct qedf_ctx *qedf = io_req->fcport->qedf; struct fc_frame_header *fc_hdr; struct fcoe_tx_mid_path_params task_fc_hdr; struct scsi_sgl_task_params tx_sgl_task_params; struct scsi_sgl_task_params rx_sgl_task_params; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Initializing MP task for cmd_type=%d\n", io_req->cmd_type); qedf->control_requests++; memset(&tx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params)); memset(&rx_sgl_task_params, 0, sizeof(struct scsi_sgl_task_params)); memset(task_ctx, 0, sizeof(struct e4_fcoe_task_context)); memset(&task_fc_hdr, 0, sizeof(struct fcoe_tx_mid_path_params)); /* Setup the task from io_req for easy reference */ io_req->task = task_ctx; /* Setup the fields for fcoe_task_params */ io_req->task_params->context = task_ctx; io_req->task_params->sqe = sqe; io_req->task_params->task_type = FCOE_TASK_TYPE_MIDPATH; io_req->task_params->tx_io_size = io_req->data_xfer_len; /* rx_io_size tells the f/w how large a response buffer we have */ io_req->task_params->rx_io_size = PAGE_SIZE; io_req->task_params->conn_cid = fcport->fw_cid; io_req->task_params->itid = io_req->xid; /* Return middle path commands on CQ 0 */ io_req->task_params->cq_rss_number = 0; io_req->task_params->is_tape_device = fcport->dev_type; fc_hdr = &(mp_req->req_fc_hdr); /* Set OX_ID and RX_ID based on driver task id */ fc_hdr->fh_ox_id = io_req->xid; fc_hdr->fh_rx_id = htons(0xffff); /* Set up FC header information */ task_fc_hdr.parameter = fc_hdr->fh_parm_offset; task_fc_hdr.r_ctl = fc_hdr->fh_r_ctl; task_fc_hdr.type = fc_hdr->fh_type; task_fc_hdr.cs_ctl = fc_hdr->fh_cs_ctl; task_fc_hdr.df_ctl = fc_hdr->fh_df_ctl; task_fc_hdr.rx_id = fc_hdr->fh_rx_id; task_fc_hdr.ox_id = fc_hdr->fh_ox_id; /* Set up s/g list parameters for request buffer */ tx_sgl_task_params.sgl = mp_req->mp_req_bd; tx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_req_bd_dma); tx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_req_bd_dma); tx_sgl_task_params.num_sges = 1; /* Set PAGE_SIZE for now since sg element is that size ??? */ tx_sgl_task_params.total_buffer_size = io_req->data_xfer_len; tx_sgl_task_params.small_mid_sge = 0; /* Set up s/g list parameters for request buffer */ rx_sgl_task_params.sgl = mp_req->mp_resp_bd; rx_sgl_task_params.sgl_phys_addr.lo = U64_LO(mp_req->mp_resp_bd_dma); rx_sgl_task_params.sgl_phys_addr.hi = U64_HI(mp_req->mp_resp_bd_dma); rx_sgl_task_params.num_sges = 1; /* Set PAGE_SIZE for now since sg element is that size ??? */ rx_sgl_task_params.total_buffer_size = PAGE_SIZE; rx_sgl_task_params.small_mid_sge = 0; /* * Last arg is 0 as previous code did not set that we wanted the * fc header information. */ init_initiator_midpath_unsolicited_fcoe_task(io_req->task_params, &task_fc_hdr, &tx_sgl_task_params, &rx_sgl_task_params, 0); } /* Presumed that fcport->rport_lock is held */ u16 qedf_get_sqe_idx(struct qedf_rport *fcport) { uint16_t total_sqe = (fcport->sq_mem_size)/(sizeof(struct fcoe_wqe)); u16 rval; rval = fcport->sq_prod_idx; /* Adjust ring index */ fcport->sq_prod_idx++; fcport->fw_sq_prod_idx++; if (fcport->sq_prod_idx == total_sqe) fcport->sq_prod_idx = 0; return rval; } void qedf_ring_doorbell(struct qedf_rport *fcport) { struct fcoe_db_data dbell = { 0 }; dbell.agg_flags = 0; dbell.params |= DB_DEST_XCM << FCOE_DB_DATA_DEST_SHIFT; dbell.params |= DB_AGG_CMD_SET << FCOE_DB_DATA_AGG_CMD_SHIFT; dbell.params |= DQ_XCM_FCOE_SQ_PROD_CMD << FCOE_DB_DATA_AGG_VAL_SEL_SHIFT; dbell.sq_prod = fcport->fw_sq_prod_idx; /* wmb makes sure that the BDs data is updated before updating the * producer, otherwise FW may read old data from the BDs. */ wmb(); barrier(); writel(*(u32 *)&dbell, fcport->p_doorbell); /* * Fence required to flush the write combined buffer, since another * CPU may write to the same doorbell address and data may be lost * due to relaxed order nature of write combined bar. */ wmb(); } static void qedf_trace_io(struct qedf_rport *fcport, struct qedf_ioreq *io_req, int8_t direction) { struct qedf_ctx *qedf = fcport->qedf; struct qedf_io_log *io_log; struct scsi_cmnd *sc_cmd = io_req->sc_cmd; unsigned long flags; uint8_t op; spin_lock_irqsave(&qedf->io_trace_lock, flags); io_log = &qedf->io_trace_buf[qedf->io_trace_idx]; io_log->direction = direction; io_log->task_id = io_req->xid; io_log->port_id = fcport->rdata->ids.port_id; io_log->lun = sc_cmd->device->lun; io_log->op = op = sc_cmd->cmnd[0]; io_log->lba[0] = sc_cmd->cmnd[2]; io_log->lba[1] = sc_cmd->cmnd[3]; io_log->lba[2] = sc_cmd->cmnd[4]; io_log->lba[3] = sc_cmd->cmnd[5]; io_log->bufflen = scsi_bufflen(sc_cmd); io_log->sg_count = scsi_sg_count(sc_cmd); io_log->result = sc_cmd->result; io_log->jiffies = jiffies; io_log->refcount = kref_read(&io_req->refcount); if (direction == QEDF_IO_TRACE_REQ) { /* For requests we only care abot the submission CPU */ io_log->req_cpu = io_req->cpu; io_log->int_cpu = 0; io_log->rsp_cpu = 0; } else if (direction == QEDF_IO_TRACE_RSP) { io_log->req_cpu = io_req->cpu; io_log->int_cpu = io_req->int_cpu; io_log->rsp_cpu = smp_processor_id(); } io_log->sge_type = io_req->sge_type; qedf->io_trace_idx++; if (qedf->io_trace_idx == QEDF_IO_TRACE_SIZE) qedf->io_trace_idx = 0; spin_unlock_irqrestore(&qedf->io_trace_lock, flags); } int qedf_post_io_req(struct qedf_rport *fcport, struct qedf_ioreq *io_req) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct Scsi_Host *host = sc_cmd->device->host; struct fc_lport *lport = shost_priv(host); struct qedf_ctx *qedf = lport_priv(lport); struct e4_fcoe_task_context *task_ctx; u16 xid; enum fcoe_task_type req_type = 0; struct fcoe_wqe *sqe; u16 sqe_idx; /* Initialize rest of io_req fileds */ io_req->data_xfer_len = scsi_bufflen(sc_cmd); sc_cmd->SCp.ptr = (char *)io_req; io_req->sge_type = QEDF_IOREQ_FAST_SGE; /* Assume fast SGL by default */ /* Record which cpu this request is associated with */ io_req->cpu = smp_processor_id(); if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) { req_type = FCOE_TASK_TYPE_READ_INITIATOR; io_req->io_req_flags = QEDF_READ; qedf->input_requests++; } else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) { req_type = FCOE_TASK_TYPE_WRITE_INITIATOR; io_req->io_req_flags = QEDF_WRITE; qedf->output_requests++; } else { io_req->io_req_flags = 0; qedf->control_requests++; } xid = io_req->xid; /* Build buffer descriptor list for firmware from sg list */ if (qedf_build_bd_list_from_sg(io_req)) { QEDF_ERR(&(qedf->dbg_ctx), "BD list creation failed.\n"); /* Release cmd will release io_req, but sc_cmd is assigned */ io_req->sc_cmd = NULL; kref_put(&io_req->refcount, qedf_release_cmd); return -EAGAIN; } if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) || test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "Session not offloaded yet.\n"); /* Release cmd will release io_req, but sc_cmd is assigned */ io_req->sc_cmd = NULL; kref_put(&io_req->refcount, qedf_release_cmd); return -EINVAL; } /* Record LUN number for later use if we neeed them */ io_req->lun = (int)sc_cmd->device->lun; /* Obtain free SQE */ sqe_idx = qedf_get_sqe_idx(fcport); sqe = &fcport->sq[sqe_idx]; memset(sqe, 0, sizeof(struct fcoe_wqe)); /* Get the task context */ task_ctx = qedf_get_task_mem(&qedf->tasks, xid); if (!task_ctx) { QEDF_WARN(&(qedf->dbg_ctx), "task_ctx is NULL, xid=%d.\n", xid); /* Release cmd will release io_req, but sc_cmd is assigned */ io_req->sc_cmd = NULL; kref_put(&io_req->refcount, qedf_release_cmd); return -EINVAL; } qedf_init_task(fcport, lport, io_req, task_ctx, sqe); /* Ring doorbell */ qedf_ring_doorbell(fcport); /* Set that command is with the firmware now */ set_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); if (qedf_io_tracing && io_req->sc_cmd) qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_REQ); return false; } int qedf_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *sc_cmd) { struct fc_lport *lport = shost_priv(host); struct qedf_ctx *qedf = lport_priv(lport); struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); struct fc_rport_libfc_priv *rp = rport->dd_data; struct qedf_rport *fcport; struct qedf_ioreq *io_req; int rc = 0; int rval; unsigned long flags = 0; int num_sgs = 0; num_sgs = scsi_sg_count(sc_cmd); if (scsi_sg_count(sc_cmd) > QEDF_MAX_BDS_PER_CMD) { QEDF_ERR(&qedf->dbg_ctx, "Number of SG elements %d exceeds what hardware limitation of %d.\n", num_sgs, QEDF_MAX_BDS_PER_CMD); sc_cmd->result = DID_ERROR; sc_cmd->scsi_done(sc_cmd); return 0; } if (test_bit(QEDF_UNLOADING, &qedf->flags) || test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) { sc_cmd->result = DID_NO_CONNECT << 16; sc_cmd->scsi_done(sc_cmd); return 0; } if (!qedf->pdev->msix_enabled) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Completing sc_cmd=%p DID_NO_CONNECT as MSI-X is not enabled.\n", sc_cmd); sc_cmd->result = DID_NO_CONNECT << 16; sc_cmd->scsi_done(sc_cmd); return 0; } rval = fc_remote_port_chkready(rport); if (rval) { sc_cmd->result = rval; sc_cmd->scsi_done(sc_cmd); return 0; } /* Retry command if we are doing a qed drain operation */ if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) { rc = SCSI_MLQUEUE_HOST_BUSY; goto exit_qcmd; } if (lport->state != LPORT_ST_READY || atomic_read(&qedf->link_state) != QEDF_LINK_UP) { rc = SCSI_MLQUEUE_HOST_BUSY; goto exit_qcmd; } /* rport and tgt are allocated together, so tgt should be non-NULL */ fcport = (struct qedf_rport *)&rp[1]; if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) || test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { /* * Session is not offloaded yet. Let SCSI-ml retry * the command. */ rc = SCSI_MLQUEUE_TARGET_BUSY; goto exit_qcmd; } atomic_inc(&fcport->ios_to_queue); if (fcport->retry_delay_timestamp) { if (time_after(jiffies, fcport->retry_delay_timestamp)) { fcport->retry_delay_timestamp = 0; } else { /* If retry_delay timer is active, flow off the ML */ rc = SCSI_MLQUEUE_TARGET_BUSY; atomic_dec(&fcport->ios_to_queue); goto exit_qcmd; } } io_req = qedf_alloc_cmd(fcport, QEDF_SCSI_CMD); if (!io_req) { rc = SCSI_MLQUEUE_HOST_BUSY; atomic_dec(&fcport->ios_to_queue); goto exit_qcmd; } io_req->sc_cmd = sc_cmd; /* Take fcport->rport_lock for posting to fcport send queue */ spin_lock_irqsave(&fcport->rport_lock, flags); if (qedf_post_io_req(fcport, io_req)) { QEDF_WARN(&(qedf->dbg_ctx), "Unable to post io_req\n"); /* Return SQE to pool */ atomic_inc(&fcport->free_sqes); rc = SCSI_MLQUEUE_HOST_BUSY; } spin_unlock_irqrestore(&fcport->rport_lock, flags); atomic_dec(&fcport->ios_to_queue); exit_qcmd: return rc; } static void qedf_parse_fcp_rsp(struct qedf_ioreq *io_req, struct fcoe_cqe_rsp_info *fcp_rsp) { struct scsi_cmnd *sc_cmd = io_req->sc_cmd; struct qedf_ctx *qedf = io_req->fcport->qedf; u8 rsp_flags = fcp_rsp->rsp_flags.flags; int fcp_sns_len = 0; int fcp_rsp_len = 0; uint8_t *rsp_info, *sense_data; io_req->fcp_status = FC_GOOD; io_req->fcp_resid = 0; if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER | FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER)) io_req->fcp_resid = fcp_rsp->fcp_resid; io_req->scsi_comp_flags = rsp_flags; CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status = fcp_rsp->scsi_status_code; if (rsp_flags & FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) fcp_rsp_len = fcp_rsp->fcp_rsp_len; if (rsp_flags & FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) fcp_sns_len = fcp_rsp->fcp_sns_len; io_req->fcp_rsp_len = fcp_rsp_len; io_req->fcp_sns_len = fcp_sns_len; rsp_info = sense_data = io_req->sense_buffer; /* fetch fcp_rsp_code */ if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) { /* Only for task management function */ io_req->fcp_rsp_code = rsp_info[3]; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "fcp_rsp_code = %d\n", io_req->fcp_rsp_code); /* Adjust sense-data location. */ sense_data += fcp_rsp_len; } if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Truncating sense buffer\n"); fcp_sns_len = SCSI_SENSE_BUFFERSIZE; } /* The sense buffer can be NULL for TMF commands */ if (sc_cmd->sense_buffer) { memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); if (fcp_sns_len) memcpy(sc_cmd->sense_buffer, sense_data, fcp_sns_len); } } static void qedf_unmap_sg_list(struct qedf_ctx *qedf, struct qedf_ioreq *io_req) { struct scsi_cmnd *sc = io_req->sc_cmd; if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) { dma_unmap_sg(&qedf->pdev->dev, scsi_sglist(sc), scsi_sg_count(sc), sc->sc_data_direction); io_req->bd_tbl->bd_valid = 0; } } void qedf_scsi_completion(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { u16 xid; struct e4_fcoe_task_context *task_ctx; struct scsi_cmnd *sc_cmd; struct fcoe_cqe_rsp_info *fcp_rsp; struct qedf_rport *fcport; int refcount; u16 scope, qualifier = 0; u8 fw_residual_flag = 0; if (!io_req) return; if (!cqe) return; if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) || test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags) || test_bit(QEDF_CMD_IN_ABORT, &io_req->flags)) { QEDF_ERR(&qedf->dbg_ctx, "io_req xid=0x%x already in cleanup or abort processing or already completed.\n", io_req->xid); return; } xid = io_req->xid; task_ctx = qedf_get_task_mem(&qedf->tasks, xid); sc_cmd = io_req->sc_cmd; fcp_rsp = &cqe->cqe_info.rsp_info; if (!sc_cmd) { QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n"); return; } if (!sc_cmd->SCp.ptr) { QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in " "another context.\n"); return; } if (!sc_cmd->device) { QEDF_ERR(&qedf->dbg_ctx, "Device for sc_cmd %p is NULL.\n", sc_cmd); return; } if (!sc_cmd->request) { QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd->request is NULL, " "sc_cmd=%p.\n", sc_cmd); return; } if (!sc_cmd->request->q) { QEDF_WARN(&(qedf->dbg_ctx), "request->q is NULL so request " "is not valid, sc_cmd=%p.\n", sc_cmd); return; } fcport = io_req->fcport; /* * When flush is active, let the cmds be completed from the cleanup * context */ if (test_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags) || (test_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags) && sc_cmd->device->lun == (u64)fcport->lun_reset_lun)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Dropping good completion xid=0x%x as fcport is flushing", io_req->xid); return; } qedf_parse_fcp_rsp(io_req, fcp_rsp); qedf_unmap_sg_list(qedf, io_req); /* Check for FCP transport error */ if (io_req->fcp_rsp_len > 3 && io_req->fcp_rsp_code) { QEDF_ERR(&(qedf->dbg_ctx), "FCP I/O protocol failure xid=0x%x fcp_rsp_len=%d " "fcp_rsp_code=%d.\n", io_req->xid, io_req->fcp_rsp_len, io_req->fcp_rsp_code); sc_cmd->result = DID_BUS_BUSY << 16; goto out; } fw_residual_flag = GET_FIELD(cqe->cqe_info.rsp_info.fw_error_flags, FCOE_CQE_RSP_INFO_FW_UNDERRUN); if (fw_residual_flag) { QEDF_ERR(&qedf->dbg_ctx, "Firmware detected underrun: xid=0x%x fcp_rsp.flags=0x%02x fcp_resid=%d fw_residual=0x%x lba=%02x%02x%02x%02x.\n", io_req->xid, fcp_rsp->rsp_flags.flags, io_req->fcp_resid, cqe->cqe_info.rsp_info.fw_residual, sc_cmd->cmnd[2], sc_cmd->cmnd[3], sc_cmd->cmnd[4], sc_cmd->cmnd[5]); if (io_req->cdb_status == 0) sc_cmd->result = (DID_ERROR << 16) | io_req->cdb_status; else sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; /* * Set resid to the whole buffer length so we won't try to resue * any previously data. */ scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd)); goto out; } switch (io_req->fcp_status) { case FC_GOOD: if (io_req->cdb_status == 0) { /* Good I/O completion */ sc_cmd->result = DID_OK << 16; } else { refcount = kref_read(&io_req->refcount); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "%d:0:%d:%lld xid=0x%0x op=0x%02x " "lba=%02x%02x%02x%02x cdb_status=%d " "fcp_resid=0x%x refcount=%d.\n", qedf->lport->host->host_no, sc_cmd->device->id, sc_cmd->device->lun, io_req->xid, sc_cmd->cmnd[0], sc_cmd->cmnd[2], sc_cmd->cmnd[3], sc_cmd->cmnd[4], sc_cmd->cmnd[5], io_req->cdb_status, io_req->fcp_resid, refcount); sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL || io_req->cdb_status == SAM_STAT_BUSY) { /* * Check whether we need to set retry_delay at * all based on retry_delay module parameter * and the status qualifier. */ /* Upper 2 bits */ scope = fcp_rsp->retry_delay_timer & 0xC000; /* Lower 14 bits */ qualifier = fcp_rsp->retry_delay_timer & 0x3FFF; if (qedf_retry_delay && scope > 0 && qualifier > 0 && qualifier <= 0x3FEF) { /* Check we don't go over the max */ if (qualifier > QEDF_RETRY_DELAY_MAX) qualifier = QEDF_RETRY_DELAY_MAX; fcport->retry_delay_timestamp = jiffies + (qualifier * HZ / 10); } /* Record stats */ if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL) qedf->task_set_fulls++; else qedf->busy++; } } if (io_req->fcp_resid) scsi_set_resid(sc_cmd, io_req->fcp_resid); break; default: QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "fcp_status=%d.\n", io_req->fcp_status); break; } out: if (qedf_io_tracing) qedf_trace_io(fcport, io_req, QEDF_IO_TRACE_RSP); /* * We wait till the end of the function to clear the * outstanding bit in case we need to send an abort */ clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); io_req->sc_cmd = NULL; sc_cmd->SCp.ptr = NULL; sc_cmd->scsi_done(sc_cmd); kref_put(&io_req->refcount, qedf_release_cmd); } /* Return a SCSI command in some other context besides a normal completion */ void qedf_scsi_done(struct qedf_ctx *qedf, struct qedf_ioreq *io_req, int result) { u16 xid; struct scsi_cmnd *sc_cmd; int refcount; if (!io_req) return; if (test_and_set_bit(QEDF_CMD_ERR_SCSI_DONE, &io_req->flags)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "io_req:%p scsi_done handling already done\n", io_req); return; } /* * We will be done with this command after this call so clear the * outstanding bit. */ clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); xid = io_req->xid; sc_cmd = io_req->sc_cmd; if (!sc_cmd) { QEDF_WARN(&(qedf->dbg_ctx), "sc_cmd is NULL!\n"); return; } if (!virt_addr_valid(sc_cmd)) { QEDF_ERR(&qedf->dbg_ctx, "sc_cmd=%p is not valid.", sc_cmd); goto bad_scsi_ptr; } if (!sc_cmd->SCp.ptr) { QEDF_WARN(&(qedf->dbg_ctx), "SCp.ptr is NULL, returned in " "another context.\n"); return; } if (!sc_cmd->device) { QEDF_ERR(&qedf->dbg_ctx, "Device for sc_cmd %p is NULL.\n", sc_cmd); goto bad_scsi_ptr; } if (!virt_addr_valid(sc_cmd->device)) { QEDF_ERR(&qedf->dbg_ctx, "Device pointer for sc_cmd %p is bad.\n", sc_cmd); goto bad_scsi_ptr; } if (!sc_cmd->sense_buffer) { QEDF_ERR(&qedf->dbg_ctx, "sc_cmd->sense_buffer for sc_cmd %p is NULL.\n", sc_cmd); goto bad_scsi_ptr; } if (!virt_addr_valid(sc_cmd->sense_buffer)) { QEDF_ERR(&qedf->dbg_ctx, "sc_cmd->sense_buffer for sc_cmd %p is bad.\n", sc_cmd); goto bad_scsi_ptr; } if (!sc_cmd->scsi_done) { QEDF_ERR(&qedf->dbg_ctx, "sc_cmd->scsi_done for sc_cmd %p is NULL.\n", sc_cmd); goto bad_scsi_ptr; } qedf_unmap_sg_list(qedf, io_req); sc_cmd->result = result << 16; refcount = kref_read(&io_req->refcount); QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "%d:0:%d:%lld: Completing " "sc_cmd=%p result=0x%08x op=0x%02x lba=0x%02x%02x%02x%02x, " "allowed=%d retries=%d refcount=%d.\n", qedf->lport->host->host_no, sc_cmd->device->id, sc_cmd->device->lun, sc_cmd, sc_cmd->result, sc_cmd->cmnd[0], sc_cmd->cmnd[2], sc_cmd->cmnd[3], sc_cmd->cmnd[4], sc_cmd->cmnd[5], sc_cmd->allowed, sc_cmd->retries, refcount); /* * Set resid to the whole buffer length so we won't try to resue any * previously read data */ scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd)); if (qedf_io_tracing) qedf_trace_io(io_req->fcport, io_req, QEDF_IO_TRACE_RSP); io_req->sc_cmd = NULL; sc_cmd->SCp.ptr = NULL; sc_cmd->scsi_done(sc_cmd); kref_put(&io_req->refcount, qedf_release_cmd); return; bad_scsi_ptr: /* * Clear the io_req->sc_cmd backpointer so we don't try to process * this again */ io_req->sc_cmd = NULL; kref_put(&io_req->refcount, qedf_release_cmd); /* ID: 001 */ } /* * Handle warning type CQE completions. This is mainly used for REC timer * popping. */ void qedf_process_warning_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { int rval, i; struct qedf_rport *fcport = io_req->fcport; u64 err_warn_bit_map; u8 err_warn = 0xff; if (!cqe) return; QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Warning CQE, " "xid=0x%x\n", io_req->xid); QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "err_warn_bitmap=%08x:%08x\n", le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi), le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo)); QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, " "rx_buff_off=%08x, rx_id=%04x\n", le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off), le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off), le32_to_cpu(cqe->cqe_info.err_info.rx_id)); /* Normalize the error bitmap value to an just an unsigned int */ err_warn_bit_map = (u64) ((u64)cqe->cqe_info.err_info.err_warn_bitmap_hi << 32) | (u64)cqe->cqe_info.err_info.err_warn_bitmap_lo; for (i = 0; i < 64; i++) { if (err_warn_bit_map & (u64)((u64)1 << i)) { err_warn = i; break; } } /* Check if REC TOV expired if this is a tape device */ if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) { if (err_warn == FCOE_WARNING_CODE_REC_TOV_TIMER_EXPIRATION) { QEDF_ERR(&(qedf->dbg_ctx), "REC timer expired.\n"); if (!test_bit(QEDF_CMD_SRR_SENT, &io_req->flags)) { io_req->rx_buf_off = cqe->cqe_info.err_info.rx_buf_off; io_req->tx_buf_off = cqe->cqe_info.err_info.tx_buf_off; io_req->rx_id = cqe->cqe_info.err_info.rx_id; rval = qedf_send_rec(io_req); /* * We only want to abort the io_req if we * can't queue the REC command as we want to * keep the exchange open for recovery. */ if (rval) goto send_abort; } return; } } send_abort: init_completion(&io_req->abts_done); rval = qedf_initiate_abts(io_req, true); if (rval) QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n"); } /* Cleanup a command when we receive an error detection completion */ void qedf_process_error_detect(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { int rval; if (!cqe) return; QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "Error detection CQE, " "xid=0x%x\n", io_req->xid); QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "err_warn_bitmap=%08x:%08x\n", le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_hi), le32_to_cpu(cqe->cqe_info.err_info.err_warn_bitmap_lo)); QEDF_ERR(&(io_req->fcport->qedf->dbg_ctx), "tx_buff_off=%08x, " "rx_buff_off=%08x, rx_id=%04x\n", le32_to_cpu(cqe->cqe_info.err_info.tx_buf_off), le32_to_cpu(cqe->cqe_info.err_info.rx_buf_off), le32_to_cpu(cqe->cqe_info.err_info.rx_id)); if (qedf->stop_io_on_error) { qedf_stop_all_io(qedf); return; } init_completion(&io_req->abts_done); rval = qedf_initiate_abts(io_req, true); if (rval) QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n"); } static void qedf_flush_els_req(struct qedf_ctx *qedf, struct qedf_ioreq *els_req) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Flushing ELS request xid=0x%x refcount=%d.\n", els_req->xid, kref_read(&els_req->refcount)); /* * Need to distinguish this from a timeout when calling the * els_req->cb_func. */ els_req->event = QEDF_IOREQ_EV_ELS_FLUSH; /* Cancel the timer */ cancel_delayed_work_sync(&els_req->timeout_work); /* Call callback function to complete command */ if (els_req->cb_func && els_req->cb_arg) { els_req->cb_func(els_req->cb_arg); els_req->cb_arg = NULL; } /* Release kref for original initiate_els */ kref_put(&els_req->refcount, qedf_release_cmd); } /* A value of -1 for lun is a wild card that means flush all * active SCSI I/Os for the target. */ void qedf_flush_active_ios(struct qedf_rport *fcport, int lun) { struct qedf_ioreq *io_req; struct qedf_ctx *qedf; struct qedf_cmd_mgr *cmd_mgr; int i, rc; unsigned long flags; int flush_cnt = 0; int wait_cnt = 100; int refcount = 0; if (!fcport) return; /* Check that fcport is still offloaded */ if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_ERR(NULL, "fcport is no longer offloaded.\n"); return; } qedf = fcport->qedf; if (!qedf) { QEDF_ERR(NULL, "qedf is NULL.\n"); return; } /* Only wait for all commands to be queued in the Upload context */ if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags) && (lun == -1)) { while (atomic_read(&fcport->ios_to_queue)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Waiting for %d I/Os to be queued\n", atomic_read(&fcport->ios_to_queue)); if (wait_cnt == 0) { QEDF_ERR(NULL, "%d IOs request could not be queued\n", atomic_read(&fcport->ios_to_queue)); } msleep(20); wait_cnt--; } } cmd_mgr = qedf->cmd_mgr; QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Flush active i/o's num=0x%x fcport=0x%p port_id=0x%06x scsi_id=%d.\n", atomic_read(&fcport->num_active_ios), fcport, fcport->rdata->ids.port_id, fcport->rport->scsi_target_id); QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Locking flush mutex.\n"); mutex_lock(&qedf->flush_mutex); if (lun == -1) { set_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags); } else { set_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags); fcport->lun_reset_lun = lun; } for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) { io_req = &cmd_mgr->cmds[i]; if (!io_req) continue; if (!io_req->fcport) continue; spin_lock_irqsave(&cmd_mgr->lock, flags); if (io_req->alloc) { if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags)) { if (io_req->cmd_type == QEDF_SCSI_CMD) QEDF_ERR(&qedf->dbg_ctx, "Allocated but not queued, xid=0x%x\n", io_req->xid); } spin_unlock_irqrestore(&cmd_mgr->lock, flags); } else { spin_unlock_irqrestore(&cmd_mgr->lock, flags); continue; } if (io_req->fcport != fcport) continue; /* In case of ABTS, CMD_OUTSTANDING is cleared on ABTS response, * but RRQ is still pending. * Workaround: Within qedf_send_rrq, we check if the fcport is * NULL, and we drop the ref on the io_req to clean it up. */ if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags)) { refcount = kref_read(&io_req->refcount); QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Not outstanding, xid=0x%x, cmd_type=%d refcount=%d.\n", io_req->xid, io_req->cmd_type, refcount); /* If RRQ work has been queue, try to cancel it and * free the io_req */ if (atomic_read(&io_req->state) == QEDFC_CMD_ST_RRQ_WAIT) { if (cancel_delayed_work_sync (&io_req->rrq_work)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Putting reference for pending RRQ work xid=0x%x.\n", io_req->xid); /* ID: 003 */ kref_put(&io_req->refcount, qedf_release_cmd); } } continue; } /* Only consider flushing ELS during target reset */ if (io_req->cmd_type == QEDF_ELS && lun == -1) { rc = kref_get_unless_zero(&io_req->refcount); if (!rc) { QEDF_ERR(&(qedf->dbg_ctx), "Could not get kref for ELS io_req=0x%p xid=0x%x.\n", io_req, io_req->xid); continue; } flush_cnt++; qedf_flush_els_req(qedf, io_req); /* * Release the kref and go back to the top of the * loop. */ goto free_cmd; } if (io_req->cmd_type == QEDF_ABTS) { /* ID: 004 */ rc = kref_get_unless_zero(&io_req->refcount); if (!rc) { QEDF_ERR(&(qedf->dbg_ctx), "Could not get kref for abort io_req=0x%p xid=0x%x.\n", io_req, io_req->xid); continue; } if (lun != -1 && io_req->lun != lun) goto free_cmd; QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Flushing abort xid=0x%x.\n", io_req->xid); if (cancel_delayed_work_sync(&io_req->rrq_work)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Putting ref for cancelled RRQ work xid=0x%x.\n", io_req->xid); kref_put(&io_req->refcount, qedf_release_cmd); } if (cancel_delayed_work_sync(&io_req->timeout_work)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Putting ref for cancelled tmo work xid=0x%x.\n", io_req->xid); qedf_initiate_cleanup(io_req, true); /* Notify eh_abort handler that ABTS is * complete */ complete(&io_req->abts_done); clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags); /* ID: 002 */ kref_put(&io_req->refcount, qedf_release_cmd); } flush_cnt++; goto free_cmd; } if (!io_req->sc_cmd) continue; if (!io_req->sc_cmd->device) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Device backpointer NULL for sc_cmd=%p.\n", io_req->sc_cmd); /* Put reference for non-existent scsi_cmnd */ io_req->sc_cmd = NULL; qedf_initiate_cleanup(io_req, false); kref_put(&io_req->refcount, qedf_release_cmd); continue; } if (lun > -1) { if (io_req->lun != lun) continue; } /* * Use kref_get_unless_zero in the unlikely case the command * we're about to flush was completed in the normal SCSI path */ rc = kref_get_unless_zero(&io_req->refcount); if (!rc) { QEDF_ERR(&(qedf->dbg_ctx), "Could not get kref for " "io_req=0x%p xid=0x%x\n", io_req, io_req->xid); continue; } QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Cleanup xid=0x%x.\n", io_req->xid); flush_cnt++; /* Cleanup task and return I/O mid-layer */ qedf_initiate_cleanup(io_req, true); free_cmd: kref_put(&io_req->refcount, qedf_release_cmd); /* ID: 004 */ } wait_cnt = 60; QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Flushed 0x%x I/Os, active=0x%x.\n", flush_cnt, atomic_read(&fcport->num_active_ios)); /* Only wait for all commands to complete in the Upload context */ if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags) && (lun == -1)) { while (atomic_read(&fcport->num_active_ios)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Flushed 0x%x I/Os, active=0x%x cnt=%d.\n", flush_cnt, atomic_read(&fcport->num_active_ios), wait_cnt); if (wait_cnt == 0) { QEDF_ERR(&qedf->dbg_ctx, "Flushed %d I/Os, active=%d.\n", flush_cnt, atomic_read(&fcport->num_active_ios)); for (i = 0; i < FCOE_PARAMS_NUM_TASKS; i++) { io_req = &cmd_mgr->cmds[i]; if (io_req->fcport && io_req->fcport == fcport) { refcount = kref_read(&io_req->refcount); set_bit(QEDF_CMD_DIRTY, &io_req->flags); QEDF_ERR(&qedf->dbg_ctx, "Outstanding io_req =%p xid=0x%x flags=0x%lx, sc_cmd=%p refcount=%d cmd_type=%d.\n", io_req, io_req->xid, io_req->flags, io_req->sc_cmd, refcount, io_req->cmd_type); } } WARN_ON(1); break; } msleep(500); wait_cnt--; } } clear_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags); clear_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags); QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Unlocking flush mutex.\n"); mutex_unlock(&qedf->flush_mutex); } /* * Initiate a ABTS middle path command. Note that we don't have to initialize * the task context for an ABTS task. */ int qedf_initiate_abts(struct qedf_ioreq *io_req, bool return_scsi_cmd_on_abts) { struct fc_lport *lport; struct qedf_rport *fcport = io_req->fcport; struct fc_rport_priv *rdata; struct qedf_ctx *qedf; u16 xid; u32 r_a_tov = 0; int rc = 0; unsigned long flags; struct fcoe_wqe *sqe; u16 sqe_idx; int refcount = 0; /* Sanity check qedf_rport before dereferencing any pointers */ if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_ERR(NULL, "tgt not offloaded\n"); rc = 1; goto out; } qedf = fcport->qedf; rdata = fcport->rdata; if (!rdata || !kref_get_unless_zero(&rdata->kref)) { QEDF_ERR(&qedf->dbg_ctx, "stale rport\n"); rc = 1; goto out; } r_a_tov = rdata->r_a_tov; lport = qedf->lport; if (lport->state != LPORT_ST_READY || !(lport->link_up)) { QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n"); rc = 1; goto drop_rdata_kref; } if (atomic_read(&qedf->link_down_tmo_valid) > 0) { QEDF_ERR(&(qedf->dbg_ctx), "link_down_tmo active.\n"); rc = 1; goto drop_rdata_kref; } /* Ensure room on SQ */ if (!atomic_read(&fcport->free_sqes)) { QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n"); rc = 1; goto drop_rdata_kref; } if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { QEDF_ERR(&qedf->dbg_ctx, "fcport is uploading.\n"); rc = 1; goto drop_rdata_kref; } if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) || test_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags) || test_bit(QEDF_CMD_IN_ABORT, &io_req->flags)) { QEDF_ERR(&qedf->dbg_ctx, "io_req xid=0x%x sc_cmd=%p already in cleanup or abort processing or already completed.\n", io_req->xid, io_req->sc_cmd); rc = 1; goto drop_rdata_kref; } kref_get(&io_req->refcount); xid = io_req->xid; qedf->control_requests++; qedf->packet_aborts++; /* Set the command type to abort */ io_req->cmd_type = QEDF_ABTS; io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts; set_bit(QEDF_CMD_IN_ABORT, &io_req->flags); refcount = kref_read(&io_req->refcount); QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM, "ABTS io_req xid = 0x%x refcount=%d\n", xid, refcount); qedf_cmd_timer_set(qedf, io_req, QEDF_ABORT_TIMEOUT); spin_lock_irqsave(&fcport->rport_lock, flags); sqe_idx = qedf_get_sqe_idx(fcport); sqe = &fcport->sq[sqe_idx]; memset(sqe, 0, sizeof(struct fcoe_wqe)); io_req->task_params->sqe = sqe; init_initiator_abort_fcoe_task(io_req->task_params); qedf_ring_doorbell(fcport); spin_unlock_irqrestore(&fcport->rport_lock, flags); drop_rdata_kref: kref_put(&rdata->kref, fc_rport_destroy); out: return rc; } void qedf_process_abts_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { uint32_t r_ctl; uint16_t xid; int rc; struct qedf_rport *fcport = io_req->fcport; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "Entered with xid = " "0x%x cmd_type = %d\n", io_req->xid, io_req->cmd_type); xid = io_req->xid; r_ctl = cqe->cqe_info.abts_info.r_ctl; /* This was added at a point when we were scheduling abts_compl & * cleanup_compl on different CPUs and there was a possibility of * the io_req to be freed from the other context before we got here. */ if (!fcport) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Dropping ABTS completion xid=0x%x as fcport is NULL", io_req->xid); return; } /* * When flush is active, let the cmds be completed from the cleanup * context */ if (test_bit(QEDF_RPORT_IN_TARGET_RESET, &fcport->flags) || test_bit(QEDF_RPORT_IN_LUN_RESET, &fcport->flags)) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Dropping ABTS completion xid=0x%x as fcport is flushing", io_req->xid); return; } if (!cancel_delayed_work(&io_req->timeout_work)) { QEDF_ERR(&qedf->dbg_ctx, "Wasn't able to cancel abts timeout work.\n"); } switch (r_ctl) { case FC_RCTL_BA_ACC: QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "ABTS response - ACC Send RRQ after R_A_TOV\n"); io_req->event = QEDF_IOREQ_EV_ABORT_SUCCESS; rc = kref_get_unless_zero(&io_req->refcount); /* ID: 003 */ if (!rc) { QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_SCSI_TM, "kref is already zero so ABTS was already completed or flushed xid=0x%x.\n", io_req->xid); return; } /* * Dont release this cmd yet. It will be relesed * after we get RRQ response */ queue_delayed_work(qedf->dpc_wq, &io_req->rrq_work, msecs_to_jiffies(qedf->lport->r_a_tov)); atomic_set(&io_req->state, QEDFC_CMD_ST_RRQ_WAIT); break; /* For error cases let the cleanup return the command */ case FC_RCTL_BA_RJT: QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "ABTS response - RJT\n"); io_req->event = QEDF_IOREQ_EV_ABORT_FAILED; break; default: QEDF_ERR(&(qedf->dbg_ctx), "Unknown ABTS response\n"); break; } clear_bit(QEDF_CMD_IN_ABORT, &io_req->flags); if (io_req->sc_cmd) { if (io_req->return_scsi_cmd_on_abts) qedf_scsi_done(qedf, io_req, DID_ERROR); } /* Notify eh_abort handler that ABTS is complete */ complete(&io_req->abts_done); kref_put(&io_req->refcount, qedf_release_cmd); } int qedf_init_mp_req(struct qedf_ioreq *io_req) { struct qedf_mp_req *mp_req; struct scsi_sge *mp_req_bd; struct scsi_sge *mp_resp_bd; struct qedf_ctx *qedf = io_req->fcport->qedf; dma_addr_t addr; uint64_t sz; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_MP_REQ, "Entered.\n"); mp_req = (struct qedf_mp_req *)&(io_req->mp_req); memset(mp_req, 0, sizeof(struct qedf_mp_req)); if (io_req->cmd_type != QEDF_ELS) { mp_req->req_len = sizeof(struct fcp_cmnd); io_req->data_xfer_len = mp_req->req_len; } else mp_req->req_len = io_req->data_xfer_len; mp_req->req_buf = dma_alloc_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, &mp_req->req_buf_dma, GFP_KERNEL); if (!mp_req->req_buf) { QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req buffer\n"); qedf_free_mp_resc(io_req); return -ENOMEM; } mp_req->resp_buf = dma_alloc_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE, &mp_req->resp_buf_dma, GFP_KERNEL); if (!mp_req->resp_buf) { QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc TM resp " "buffer\n"); qedf_free_mp_resc(io_req); return -ENOMEM; } /* Allocate and map mp_req_bd and mp_resp_bd */ sz = sizeof(struct scsi_sge); mp_req->mp_req_bd = dma_alloc_coherent(&qedf->pdev->dev, sz, &mp_req->mp_req_bd_dma, GFP_KERNEL); if (!mp_req->mp_req_bd) { QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP req bd\n"); qedf_free_mp_resc(io_req); return -ENOMEM; } mp_req->mp_resp_bd = dma_alloc_coherent(&qedf->pdev->dev, sz, &mp_req->mp_resp_bd_dma, GFP_KERNEL); if (!mp_req->mp_resp_bd) { QEDF_ERR(&(qedf->dbg_ctx), "Unable to alloc MP resp bd\n"); qedf_free_mp_resc(io_req); return -ENOMEM; } /* Fill bd table */ addr = mp_req->req_buf_dma; mp_req_bd = mp_req->mp_req_bd; mp_req_bd->sge_addr.lo = U64_LO(addr); mp_req_bd->sge_addr.hi = U64_HI(addr); mp_req_bd->sge_len = QEDF_PAGE_SIZE; /* * MP buffer is either a task mgmt command or an ELS. * So the assumption is that it consumes a single bd * entry in the bd table */ mp_resp_bd = mp_req->mp_resp_bd; addr = mp_req->resp_buf_dma; mp_resp_bd->sge_addr.lo = U64_LO(addr); mp_resp_bd->sge_addr.hi = U64_HI(addr); mp_resp_bd->sge_len = QEDF_PAGE_SIZE; return 0; } /* * Last ditch effort to clear the port if it's stuck. Used only after a * cleanup task times out. */ static void qedf_drain_request(struct qedf_ctx *qedf) { if (test_bit(QEDF_DRAIN_ACTIVE, &qedf->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "MCP drain already active.\n"); return; } /* Set bit to return all queuecommand requests as busy */ set_bit(QEDF_DRAIN_ACTIVE, &qedf->flags); /* Call qed drain request for function. Should be synchronous */ qed_ops->common->drain(qedf->cdev); /* Settle time for CQEs to be returned */ msleep(100); /* Unplug and continue */ clear_bit(QEDF_DRAIN_ACTIVE, &qedf->flags); } /* * Returns SUCCESS if the cleanup task does not timeout, otherwise return * FAILURE. */ int qedf_initiate_cleanup(struct qedf_ioreq *io_req, bool return_scsi_cmd_on_abts) { struct qedf_rport *fcport; struct qedf_ctx *qedf; uint16_t xid; struct e4_fcoe_task_context *task; int tmo = 0; int rc = SUCCESS; unsigned long flags; struct fcoe_wqe *sqe; u16 sqe_idx; int refcount = 0; fcport = io_req->fcport; if (!fcport) { QEDF_ERR(NULL, "fcport is NULL.\n"); return SUCCESS; } /* Sanity check qedf_rport before dereferencing any pointers */ if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_ERR(NULL, "tgt not offloaded\n"); rc = 1; return SUCCESS; } qedf = fcport->qedf; if (!qedf) { QEDF_ERR(NULL, "qedf is NULL.\n"); return SUCCESS; } if (!test_bit(QEDF_CMD_OUTSTANDING, &io_req->flags) || test_and_set_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "io_req xid=0x%x already in " "cleanup processing or already completed.\n", io_req->xid); return SUCCESS; } set_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags); /* Ensure room on SQ */ if (!atomic_read(&fcport->free_sqes)) { QEDF_ERR(&(qedf->dbg_ctx), "No SQ entries available\n"); /* Need to make sure we clear the flag since it was set */ clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags); return FAILED; } if (io_req->cmd_type == QEDF_CLEANUP) { QEDF_ERR(&qedf->dbg_ctx, "io_req=0x%x is already a cleanup command cmd_type=%d.\n", io_req->xid, io_req->cmd_type); clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags); return SUCCESS; } refcount = kref_read(&io_req->refcount); QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_IO, "Entered xid=0x%x sc_cmd=%p cmd_type=%d flags=0x%lx refcount=%d fcport=%p port_id=0x%06x\n", io_req->xid, io_req->sc_cmd, io_req->cmd_type, io_req->flags, refcount, fcport, fcport->rdata->ids.port_id); /* Cleanup cmds re-use the same TID as the original I/O */ xid = io_req->xid; io_req->cmd_type = QEDF_CLEANUP; io_req->return_scsi_cmd_on_abts = return_scsi_cmd_on_abts; task = qedf_get_task_mem(&qedf->tasks, xid); init_completion(&io_req->cleanup_done); spin_lock_irqsave(&fcport->rport_lock, flags); sqe_idx = qedf_get_sqe_idx(fcport); sqe = &fcport->sq[sqe_idx]; memset(sqe, 0, sizeof(struct fcoe_wqe)); io_req->task_params->sqe = sqe; init_initiator_cleanup_fcoe_task(io_req->task_params); qedf_ring_doorbell(fcport); spin_unlock_irqrestore(&fcport->rport_lock, flags); tmo = wait_for_completion_timeout(&io_req->cleanup_done, QEDF_CLEANUP_TIMEOUT * HZ); if (!tmo) { rc = FAILED; /* Timeout case */ QEDF_ERR(&(qedf->dbg_ctx), "Cleanup command timeout, " "xid=%x.\n", io_req->xid); clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags); /* Issue a drain request if cleanup task times out */ QEDF_ERR(&(qedf->dbg_ctx), "Issuing MCP drain request.\n"); qedf_drain_request(qedf); } /* If it TASK MGMT handle it, reference will be decreased * in qedf_execute_tmf */ if (io_req->tm_flags == FCP_TMF_LUN_RESET || io_req->tm_flags == FCP_TMF_TGT_RESET) { clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); io_req->sc_cmd = NULL; complete(&io_req->tm_done); } if (io_req->sc_cmd) { if (io_req->return_scsi_cmd_on_abts) qedf_scsi_done(qedf, io_req, DID_ERROR); } if (rc == SUCCESS) io_req->event = QEDF_IOREQ_EV_CLEANUP_SUCCESS; else io_req->event = QEDF_IOREQ_EV_CLEANUP_FAILED; return rc; } void qedf_process_cleanup_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO, "Entered xid = 0x%x\n", io_req->xid); clear_bit(QEDF_CMD_IN_CLEANUP, &io_req->flags); /* Complete so we can finish cleaning up the I/O */ complete(&io_req->cleanup_done); } static int qedf_execute_tmf(struct qedf_rport *fcport, struct scsi_cmnd *sc_cmd, uint8_t tm_flags) { struct qedf_ioreq *io_req; struct e4_fcoe_task_context *task; struct qedf_ctx *qedf = fcport->qedf; struct fc_lport *lport = qedf->lport; int rc = 0; uint16_t xid; int tmo = 0; int lun = 0; unsigned long flags; struct fcoe_wqe *sqe; u16 sqe_idx; if (!sc_cmd) { QEDF_ERR(&(qedf->dbg_ctx), "invalid arg\n"); return FAILED; } lun = (int)sc_cmd->device->lun; if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) { QEDF_ERR(&(qedf->dbg_ctx), "fcport not offloaded\n"); rc = FAILED; goto no_flush; } io_req = qedf_alloc_cmd(fcport, QEDF_TASK_MGMT_CMD); if (!io_req) { QEDF_ERR(&(qedf->dbg_ctx), "Failed TMF"); rc = -EAGAIN; goto no_flush; } if (tm_flags == FCP_TMF_LUN_RESET) qedf->lun_resets++; else if (tm_flags == FCP_TMF_TGT_RESET) qedf->target_resets++; /* Initialize rest of io_req fields */ io_req->sc_cmd = sc_cmd; io_req->fcport = fcport; io_req->cmd_type = QEDF_TASK_MGMT_CMD; /* Record which cpu this request is associated with */ io_req->cpu = smp_processor_id(); /* Set TM flags */ io_req->io_req_flags = QEDF_READ; io_req->data_xfer_len = 0; io_req->tm_flags = tm_flags; /* Default is to return a SCSI command when an error occurs */ io_req->return_scsi_cmd_on_abts = false; /* Obtain exchange id */ xid = io_req->xid; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_SCSI_TM, "TMF io_req xid = " "0x%x\n", xid); /* Initialize task context for this IO request */ task = qedf_get_task_mem(&qedf->tasks, xid); init_completion(&io_req->tm_done); spin_lock_irqsave(&fcport->rport_lock, flags); sqe_idx = qedf_get_sqe_idx(fcport); sqe = &fcport->sq[sqe_idx]; memset(sqe, 0, sizeof(struct fcoe_wqe)); qedf_init_task(fcport, lport, io_req, task, sqe); qedf_ring_doorbell(fcport); spin_unlock_irqrestore(&fcport->rport_lock, flags); set_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); tmo = wait_for_completion_timeout(&io_req->tm_done, QEDF_TM_TIMEOUT * HZ); if (!tmo) { rc = FAILED; QEDF_ERR(&(qedf->dbg_ctx), "wait for tm_cmpl timeout!\n"); /* Clear outstanding bit since command timed out */ clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); io_req->sc_cmd = NULL; } else { /* Check TMF response code */ if (io_req->fcp_rsp_code == 0) rc = SUCCESS; else rc = FAILED; } /* * Double check that fcport has not gone into an uploading state before * executing the command flush for the LUN/target. */ if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { QEDF_ERR(&qedf->dbg_ctx, "fcport is uploading, not executing flush.\n"); goto no_flush; } /* We do not need this io_req any more */ kref_put(&io_req->refcount, qedf_release_cmd); if (tm_flags == FCP_TMF_LUN_RESET) qedf_flush_active_ios(fcport, lun); else qedf_flush_active_ios(fcport, -1); no_flush: if (rc != SUCCESS) { QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command failed...\n"); rc = FAILED; } else { QEDF_ERR(&(qedf->dbg_ctx), "task mgmt command success...\n"); rc = SUCCESS; } return rc; } int qedf_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags) { struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); struct fc_rport_libfc_priv *rp = rport->dd_data; struct qedf_rport *fcport = (struct qedf_rport *)&rp[1]; struct qedf_ctx *qedf; struct fc_lport *lport = shost_priv(sc_cmd->device->host); int rc = SUCCESS; int rval; struct qedf_ioreq *io_req = NULL; int ref_cnt = 0; struct fc_rport_priv *rdata = fcport->rdata; QEDF_ERR(NULL, "tm_flags 0x%x sc_cmd %p op = 0x%02x target_id = 0x%x lun=%d\n", tm_flags, sc_cmd, sc_cmd->cmnd[0], rport->scsi_target_id, (int)sc_cmd->device->lun); if (!rdata || !kref_get_unless_zero(&rdata->kref)) { QEDF_ERR(NULL, "stale rport\n"); return FAILED; } QEDF_ERR(NULL, "portid=%06x tm_flags =%s\n", rdata->ids.port_id, (tm_flags == FCP_TMF_TGT_RESET) ? "TARGET RESET" : "LUN RESET"); if (sc_cmd->SCp.ptr) { io_req = (struct qedf_ioreq *)sc_cmd->SCp.ptr; ref_cnt = kref_read(&io_req->refcount); QEDF_ERR(NULL, "orig io_req = %p xid = 0x%x ref_cnt = %d.\n", io_req, io_req->xid, ref_cnt); } rval = fc_remote_port_chkready(rport); if (rval) { QEDF_ERR(NULL, "device_reset rport not ready\n"); rc = FAILED; goto tmf_err; } rc = fc_block_scsi_eh(sc_cmd); if (rc) goto tmf_err; if (!fcport) { QEDF_ERR(NULL, "device_reset: rport is NULL\n"); rc = FAILED; goto tmf_err; } qedf = fcport->qedf; if (!qedf) { QEDF_ERR(NULL, "qedf is NULL.\n"); rc = FAILED; goto tmf_err; } if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { QEDF_ERR(&qedf->dbg_ctx, "Connection is getting uploaded.\n"); rc = SUCCESS; goto tmf_err; } if (test_bit(QEDF_UNLOADING, &qedf->flags) || test_bit(QEDF_DBG_STOP_IO, &qedf->flags)) { rc = SUCCESS; goto tmf_err; } if (lport->state != LPORT_ST_READY || !(lport->link_up)) { QEDF_ERR(&(qedf->dbg_ctx), "link is not ready\n"); rc = FAILED; goto tmf_err; } if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) { if (!fcport->rdata) QEDF_ERR(&qedf->dbg_ctx, "fcport %p is uploading.\n", fcport); else QEDF_ERR(&qedf->dbg_ctx, "fcport %p port_id=%06x is uploading.\n", fcport, fcport->rdata->ids.port_id); rc = FAILED; goto tmf_err; } rc = qedf_execute_tmf(fcport, sc_cmd, tm_flags); tmf_err: kref_put(&rdata->kref, fc_rport_destroy); return rc; } void qedf_process_tmf_compl(struct qedf_ctx *qedf, struct fcoe_cqe *cqe, struct qedf_ioreq *io_req) { struct fcoe_cqe_rsp_info *fcp_rsp; clear_bit(QEDF_CMD_OUTSTANDING, &io_req->flags); fcp_rsp = &cqe->cqe_info.rsp_info; qedf_parse_fcp_rsp(io_req, fcp_rsp); io_req->sc_cmd = NULL; complete(&io_req->tm_done); } void qedf_process_unsol_compl(struct qedf_ctx *qedf, uint16_t que_idx, struct fcoe_cqe *cqe) { unsigned long flags; uint16_t tmp; uint16_t pktlen = cqe->cqe_info.unsolic_info.pkt_len; u32 payload_len, crc; struct fc_frame_header *fh; struct fc_frame *fp; struct qedf_io_work *io_work; u32 bdq_idx; void *bdq_addr; struct scsi_bd *p_bd_info; p_bd_info = &cqe->cqe_info.unsolic_info.bd_info; QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL, "address.hi=%x, address.lo=%x, opaque_data.hi=%x, opaque_data.lo=%x, bdq_prod_idx=%u, len=%u\n", le32_to_cpu(p_bd_info->address.hi), le32_to_cpu(p_bd_info->address.lo), le32_to_cpu(p_bd_info->opaque.fcoe_opaque.hi), le32_to_cpu(p_bd_info->opaque.fcoe_opaque.lo), qedf->bdq_prod_idx, pktlen); bdq_idx = le32_to_cpu(p_bd_info->opaque.fcoe_opaque.lo); if (bdq_idx >= QEDF_BDQ_SIZE) { QEDF_ERR(&(qedf->dbg_ctx), "bdq_idx is out of range %d.\n", bdq_idx); goto increment_prod; } bdq_addr = qedf->bdq[bdq_idx].buf_addr; if (!bdq_addr) { QEDF_ERR(&(qedf->dbg_ctx), "bdq_addr is NULL, dropping " "unsolicited packet.\n"); goto increment_prod; } if (qedf_dump_frames) { QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL, "BDQ frame is at addr=%p.\n", bdq_addr); print_hex_dump(KERN_WARNING, "bdq ", DUMP_PREFIX_OFFSET, 16, 1, (void *)bdq_addr, pktlen, false); } /* Allocate frame */ payload_len = pktlen - sizeof(struct fc_frame_header); fp = fc_frame_alloc(qedf->lport, payload_len); if (!fp) { QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate fp.\n"); goto increment_prod; } /* Copy data from BDQ buffer into fc_frame struct */ fh = (struct fc_frame_header *)fc_frame_header_get(fp); memcpy(fh, (void *)bdq_addr, pktlen); /* Initialize the frame so libfc sees it as a valid frame */ crc = fcoe_fc_crc(fp); fc_frame_init(fp); fr_dev(fp) = qedf->lport; fr_sof(fp) = FC_SOF_I3; fr_eof(fp) = FC_EOF_T; fr_crc(fp) = cpu_to_le32(~crc); /* * We need to return the frame back up to libfc in a non-atomic * context */ io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC); if (!io_work) { QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate " "work for I/O completion.\n"); fc_frame_free(fp); goto increment_prod; } memset(io_work, 0, sizeof(struct qedf_io_work)); INIT_WORK(&io_work->work, qedf_fp_io_handler); /* Copy contents of CQE for deferred processing */ memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe)); io_work->qedf = qedf; io_work->fp = fp; queue_work_on(smp_processor_id(), qedf_io_wq, &io_work->work); increment_prod: spin_lock_irqsave(&qedf->hba_lock, flags); /* Increment producer to let f/w know we've handled the frame */ qedf->bdq_prod_idx++; /* Producer index wraps at uint16_t boundary */ if (qedf->bdq_prod_idx == 0xffff) qedf->bdq_prod_idx = 0; writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod); tmp = readw(qedf->bdq_primary_prod); writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod); tmp = readw(qedf->bdq_secondary_prod); spin_unlock_irqrestore(&qedf->hba_lock, flags); }