// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Broadcom MPI3 Storage Controllers * * Copyright (C) 2017-2022 Broadcom Inc. * (mailto: mpi3mr-linuxdrv.pdl@broadcom.com) * */ #include "mpi3mr.h" #include <linux/io-64-nonatomic-lo-hi.h> static int mpi3mr_issue_reset(struct mpi3mr_ioc *mrioc, u16 reset_type, u32 reset_reason); static int mpi3mr_setup_admin_qpair(struct mpi3mr_ioc *mrioc); static void mpi3mr_process_factsdata(struct mpi3mr_ioc *mrioc, struct mpi3_ioc_facts_data *facts_data); static void mpi3mr_pel_wait_complete(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd); static int poll_queues; module_param(poll_queues, int, 0444); MODULE_PARM_DESC(poll_queues, "Number of queues for io_uring poll mode. (Range 1 - 126)"); #if defined(writeq) && defined(CONFIG_64BIT) static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr) { writeq(b, addr); } #else static inline void mpi3mr_writeq(__u64 b, volatile void __iomem *addr) { __u64 data_out = b; writel((u32)(data_out), addr); writel((u32)(data_out >> 32), (addr + 4)); } #endif static inline bool mpi3mr_check_req_qfull(struct op_req_qinfo *op_req_q) { u16 pi, ci, max_entries; bool is_qfull = false; pi = op_req_q->pi; ci = READ_ONCE(op_req_q->ci); max_entries = op_req_q->num_requests; if ((ci == (pi + 1)) || ((!ci) && (pi == (max_entries - 1)))) is_qfull = true; return is_qfull; } static void mpi3mr_sync_irqs(struct mpi3mr_ioc *mrioc) { u16 i, max_vectors; max_vectors = mrioc->intr_info_count; for (i = 0; i < max_vectors; i++) synchronize_irq(pci_irq_vector(mrioc->pdev, i)); } void mpi3mr_ioc_disable_intr(struct mpi3mr_ioc *mrioc) { mrioc->intr_enabled = 0; mpi3mr_sync_irqs(mrioc); } void mpi3mr_ioc_enable_intr(struct mpi3mr_ioc *mrioc) { mrioc->intr_enabled = 1; } static void mpi3mr_cleanup_isr(struct mpi3mr_ioc *mrioc) { u16 i; mpi3mr_ioc_disable_intr(mrioc); if (!mrioc->intr_info) return; for (i = 0; i < mrioc->intr_info_count; i++) free_irq(pci_irq_vector(mrioc->pdev, i), (mrioc->intr_info + i)); kfree(mrioc->intr_info); mrioc->intr_info = NULL; mrioc->intr_info_count = 0; mrioc->is_intr_info_set = false; pci_free_irq_vectors(mrioc->pdev); } void mpi3mr_add_sg_single(void *paddr, u8 flags, u32 length, dma_addr_t dma_addr) { struct mpi3_sge_common *sgel = paddr; sgel->flags = flags; sgel->length = cpu_to_le32(length); sgel->address = cpu_to_le64(dma_addr); } void mpi3mr_build_zero_len_sge(void *paddr) { u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST; mpi3mr_add_sg_single(paddr, sgl_flags, 0, -1); } void *mpi3mr_get_reply_virt_addr(struct mpi3mr_ioc *mrioc, dma_addr_t phys_addr) { if (!phys_addr) return NULL; if ((phys_addr < mrioc->reply_buf_dma) || (phys_addr > mrioc->reply_buf_dma_max_address)) return NULL; return mrioc->reply_buf + (phys_addr - mrioc->reply_buf_dma); } void *mpi3mr_get_sensebuf_virt_addr(struct mpi3mr_ioc *mrioc, dma_addr_t phys_addr) { if (!phys_addr) return NULL; return mrioc->sense_buf + (phys_addr - mrioc->sense_buf_dma); } static void mpi3mr_repost_reply_buf(struct mpi3mr_ioc *mrioc, u64 reply_dma) { u32 old_idx = 0; unsigned long flags; spin_lock_irqsave(&mrioc->reply_free_queue_lock, flags); old_idx = mrioc->reply_free_queue_host_index; mrioc->reply_free_queue_host_index = ( (mrioc->reply_free_queue_host_index == (mrioc->reply_free_qsz - 1)) ? 0 : (mrioc->reply_free_queue_host_index + 1)); mrioc->reply_free_q[old_idx] = cpu_to_le64(reply_dma); writel(mrioc->reply_free_queue_host_index, &mrioc->sysif_regs->reply_free_host_index); spin_unlock_irqrestore(&mrioc->reply_free_queue_lock, flags); } void mpi3mr_repost_sense_buf(struct mpi3mr_ioc *mrioc, u64 sense_buf_dma) { u32 old_idx = 0; unsigned long flags; spin_lock_irqsave(&mrioc->sbq_lock, flags); old_idx = mrioc->sbq_host_index; mrioc->sbq_host_index = ((mrioc->sbq_host_index == (mrioc->sense_buf_q_sz - 1)) ? 0 : (mrioc->sbq_host_index + 1)); mrioc->sense_buf_q[old_idx] = cpu_to_le64(sense_buf_dma); writel(mrioc->sbq_host_index, &mrioc->sysif_regs->sense_buffer_free_host_index); spin_unlock_irqrestore(&mrioc->sbq_lock, flags); } static void mpi3mr_print_event_data(struct mpi3mr_ioc *mrioc, struct mpi3_event_notification_reply *event_reply) { char *desc = NULL; u16 event; event = event_reply->event; switch (event) { case MPI3_EVENT_LOG_DATA: desc = "Log Data"; break; case MPI3_EVENT_CHANGE: desc = "Event Change"; break; case MPI3_EVENT_GPIO_INTERRUPT: desc = "GPIO Interrupt"; break; case MPI3_EVENT_CABLE_MGMT: desc = "Cable Management"; break; case MPI3_EVENT_ENERGY_PACK_CHANGE: desc = "Energy Pack Change"; break; case MPI3_EVENT_DEVICE_ADDED: { struct mpi3_device_page0 *event_data = (struct mpi3_device_page0 *)event_reply->event_data; ioc_info(mrioc, "Device Added: dev=0x%04x Form=0x%x\n", event_data->dev_handle, event_data->device_form); return; } case MPI3_EVENT_DEVICE_INFO_CHANGED: { struct mpi3_device_page0 *event_data = (struct mpi3_device_page0 *)event_reply->event_data; ioc_info(mrioc, "Device Info Changed: dev=0x%04x Form=0x%x\n", event_data->dev_handle, event_data->device_form); return; } case MPI3_EVENT_DEVICE_STATUS_CHANGE: { struct mpi3_event_data_device_status_change *event_data = (struct mpi3_event_data_device_status_change *)event_reply->event_data; ioc_info(mrioc, "Device status Change: dev=0x%04x RC=0x%x\n", event_data->dev_handle, event_data->reason_code); return; } case MPI3_EVENT_SAS_DISCOVERY: { struct mpi3_event_data_sas_discovery *event_data = (struct mpi3_event_data_sas_discovery *)event_reply->event_data; ioc_info(mrioc, "SAS Discovery: (%s) status (0x%08x)\n", (event_data->reason_code == MPI3_EVENT_SAS_DISC_RC_STARTED) ? "start" : "stop", le32_to_cpu(event_data->discovery_status)); return; } case MPI3_EVENT_SAS_BROADCAST_PRIMITIVE: desc = "SAS Broadcast Primitive"; break; case MPI3_EVENT_SAS_NOTIFY_PRIMITIVE: desc = "SAS Notify Primitive"; break; case MPI3_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: desc = "SAS Init Device Status Change"; break; case MPI3_EVENT_SAS_INIT_TABLE_OVERFLOW: desc = "SAS Init Table Overflow"; break; case MPI3_EVENT_SAS_TOPOLOGY_CHANGE_LIST: desc = "SAS Topology Change List"; break; case MPI3_EVENT_ENCL_DEVICE_STATUS_CHANGE: desc = "Enclosure Device Status Change"; break; case MPI3_EVENT_ENCL_DEVICE_ADDED: desc = "Enclosure Added"; break; case MPI3_EVENT_HARD_RESET_RECEIVED: desc = "Hard Reset Received"; break; case MPI3_EVENT_SAS_PHY_COUNTER: desc = "SAS PHY Counter"; break; case MPI3_EVENT_SAS_DEVICE_DISCOVERY_ERROR: desc = "SAS Device Discovery Error"; break; case MPI3_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: desc = "PCIE Topology Change List"; break; case MPI3_EVENT_PCIE_ENUMERATION: { struct mpi3_event_data_pcie_enumeration *event_data = (struct mpi3_event_data_pcie_enumeration *)event_reply->event_data; ioc_info(mrioc, "PCIE Enumeration: (%s)", (event_data->reason_code == MPI3_EVENT_PCIE_ENUM_RC_STARTED) ? "start" : "stop"); if (event_data->enumeration_status) ioc_info(mrioc, "enumeration_status(0x%08x)\n", le32_to_cpu(event_data->enumeration_status)); return; } case MPI3_EVENT_PREPARE_FOR_RESET: desc = "Prepare For Reset"; break; } if (!desc) return; ioc_info(mrioc, "%s\n", desc); } static void mpi3mr_handle_events(struct mpi3mr_ioc *mrioc, struct mpi3_default_reply *def_reply) { struct mpi3_event_notification_reply *event_reply = (struct mpi3_event_notification_reply *)def_reply; mrioc->change_count = le16_to_cpu(event_reply->ioc_change_count); mpi3mr_print_event_data(mrioc, event_reply); mpi3mr_os_handle_events(mrioc, event_reply); } static struct mpi3mr_drv_cmd * mpi3mr_get_drv_cmd(struct mpi3mr_ioc *mrioc, u16 host_tag, struct mpi3_default_reply *def_reply) { u16 idx; switch (host_tag) { case MPI3MR_HOSTTAG_INITCMDS: return &mrioc->init_cmds; case MPI3MR_HOSTTAG_CFG_CMDS: return &mrioc->cfg_cmds; case MPI3MR_HOSTTAG_BSG_CMDS: return &mrioc->bsg_cmds; case MPI3MR_HOSTTAG_BLK_TMS: return &mrioc->host_tm_cmds; case MPI3MR_HOSTTAG_PEL_ABORT: return &mrioc->pel_abort_cmd; case MPI3MR_HOSTTAG_PEL_WAIT: return &mrioc->pel_cmds; case MPI3MR_HOSTTAG_TRANSPORT_CMDS: return &mrioc->transport_cmds; case MPI3MR_HOSTTAG_INVALID: if (def_reply && def_reply->function == MPI3_FUNCTION_EVENT_NOTIFICATION) mpi3mr_handle_events(mrioc, def_reply); return NULL; default: break; } if (host_tag >= MPI3MR_HOSTTAG_DEVRMCMD_MIN && host_tag <= MPI3MR_HOSTTAG_DEVRMCMD_MAX) { idx = host_tag - MPI3MR_HOSTTAG_DEVRMCMD_MIN; return &mrioc->dev_rmhs_cmds[idx]; } if (host_tag >= MPI3MR_HOSTTAG_EVTACKCMD_MIN && host_tag <= MPI3MR_HOSTTAG_EVTACKCMD_MAX) { idx = host_tag - MPI3MR_HOSTTAG_EVTACKCMD_MIN; return &mrioc->evtack_cmds[idx]; } return NULL; } static void mpi3mr_process_admin_reply_desc(struct mpi3mr_ioc *mrioc, struct mpi3_default_reply_descriptor *reply_desc, u64 *reply_dma) { u16 reply_desc_type, host_tag = 0; u16 ioc_status = MPI3_IOCSTATUS_SUCCESS; u32 ioc_loginfo = 0; struct mpi3_status_reply_descriptor *status_desc; struct mpi3_address_reply_descriptor *addr_desc; struct mpi3_success_reply_descriptor *success_desc; struct mpi3_default_reply *def_reply = NULL; struct mpi3mr_drv_cmd *cmdptr = NULL; struct mpi3_scsi_io_reply *scsi_reply; u8 *sense_buf = NULL; *reply_dma = 0; reply_desc_type = le16_to_cpu(reply_desc->reply_flags) & MPI3_REPLY_DESCRIPT_FLAGS_TYPE_MASK; switch (reply_desc_type) { case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_STATUS: status_desc = (struct mpi3_status_reply_descriptor *)reply_desc; host_tag = le16_to_cpu(status_desc->host_tag); ioc_status = le16_to_cpu(status_desc->ioc_status); if (ioc_status & MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL) ioc_loginfo = le32_to_cpu(status_desc->ioc_log_info); ioc_status &= MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_STATUS_MASK; break; case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_ADDRESS_REPLY: addr_desc = (struct mpi3_address_reply_descriptor *)reply_desc; *reply_dma = le64_to_cpu(addr_desc->reply_frame_address); def_reply = mpi3mr_get_reply_virt_addr(mrioc, *reply_dma); if (!def_reply) goto out; host_tag = le16_to_cpu(def_reply->host_tag); ioc_status = le16_to_cpu(def_reply->ioc_status); if (ioc_status & MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_LOGINFOAVAIL) ioc_loginfo = le32_to_cpu(def_reply->ioc_log_info); ioc_status &= MPI3_REPLY_DESCRIPT_STATUS_IOCSTATUS_STATUS_MASK; if (def_reply->function == MPI3_FUNCTION_SCSI_IO) { scsi_reply = (struct mpi3_scsi_io_reply *)def_reply; sense_buf = mpi3mr_get_sensebuf_virt_addr(mrioc, le64_to_cpu(scsi_reply->sense_data_buffer_address)); } break; case MPI3_REPLY_DESCRIPT_FLAGS_TYPE_SUCCESS: success_desc = (struct mpi3_success_reply_descriptor *)reply_desc; host_tag = le16_to_cpu(success_desc->host_tag); break; default: break; } cmdptr = mpi3mr_get_drv_cmd(mrioc, host_tag, def_reply); if (cmdptr) { if (cmdptr->state & MPI3MR_CMD_PENDING) { cmdptr->state |= MPI3MR_CMD_COMPLETE; cmdptr->ioc_loginfo = ioc_loginfo; cmdptr->ioc_status = ioc_status; cmdptr->state &= ~MPI3MR_CMD_PENDING; if (def_reply) { cmdptr->state |= MPI3MR_CMD_REPLY_VALID; memcpy((u8 *)cmdptr->reply, (u8 *)def_reply, mrioc->reply_sz); } if (cmdptr->is_waiting) { complete(&cmdptr->done); cmdptr->is_waiting = 0; } else if (cmdptr->callback) cmdptr->callback(mrioc, cmdptr); } } out: if (sense_buf) mpi3mr_repost_sense_buf(mrioc, le64_to_cpu(scsi_reply->sense_data_buffer_address)); } static int mpi3mr_process_admin_reply_q(struct mpi3mr_ioc *mrioc) { u32 exp_phase = mrioc->admin_reply_ephase; u32 admin_reply_ci = mrioc->admin_reply_ci; u32 num_admin_replies = 0; u64 reply_dma = 0; struct mpi3_default_reply_descriptor *reply_desc; reply_desc = (struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base + admin_reply_ci; if ((le16_to_cpu(reply_desc->reply_flags) & MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) return 0; do { if (mrioc->unrecoverable) break; mrioc->admin_req_ci = le16_to_cpu(reply_desc->request_queue_ci); mpi3mr_process_admin_reply_desc(mrioc, reply_desc, &reply_dma); if (reply_dma) mpi3mr_repost_reply_buf(mrioc, reply_dma); num_admin_replies++; if (++admin_reply_ci == mrioc->num_admin_replies) { admin_reply_ci = 0; exp_phase ^= 1; } reply_desc = (struct mpi3_default_reply_descriptor *)mrioc->admin_reply_base + admin_reply_ci; if ((le16_to_cpu(reply_desc->reply_flags) & MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) break; } while (1); writel(admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci); mrioc->admin_reply_ci = admin_reply_ci; mrioc->admin_reply_ephase = exp_phase; return num_admin_replies; } /** * mpi3mr_get_reply_desc - get reply descriptor frame corresponding to * queue's consumer index from operational reply descriptor queue. * @op_reply_q: op_reply_qinfo object * @reply_ci: operational reply descriptor's queue consumer index * * Returns reply descriptor frame address */ static inline struct mpi3_default_reply_descriptor * mpi3mr_get_reply_desc(struct op_reply_qinfo *op_reply_q, u32 reply_ci) { void *segment_base_addr; struct segments *segments = op_reply_q->q_segments; struct mpi3_default_reply_descriptor *reply_desc = NULL; segment_base_addr = segments[reply_ci / op_reply_q->segment_qd].segment; reply_desc = (struct mpi3_default_reply_descriptor *)segment_base_addr + (reply_ci % op_reply_q->segment_qd); return reply_desc; } /** * mpi3mr_process_op_reply_q - Operational reply queue handler * @mrioc: Adapter instance reference * @op_reply_q: Operational reply queue info * * Checks the specific operational reply queue and drains the * reply queue entries until the queue is empty and process the * individual reply descriptors. * * Return: 0 if queue is already processed,or number of reply * descriptors processed. */ int mpi3mr_process_op_reply_q(struct mpi3mr_ioc *mrioc, struct op_reply_qinfo *op_reply_q) { struct op_req_qinfo *op_req_q; u32 exp_phase; u32 reply_ci; u32 num_op_reply = 0; u64 reply_dma = 0; struct mpi3_default_reply_descriptor *reply_desc; u16 req_q_idx = 0, reply_qidx; reply_qidx = op_reply_q->qid - 1; if (!atomic_add_unless(&op_reply_q->in_use, 1, 1)) return 0; exp_phase = op_reply_q->ephase; reply_ci = op_reply_q->ci; reply_desc = mpi3mr_get_reply_desc(op_reply_q, reply_ci); if ((le16_to_cpu(reply_desc->reply_flags) & MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) { atomic_dec(&op_reply_q->in_use); return 0; } do { if (mrioc->unrecoverable) break; req_q_idx = le16_to_cpu(reply_desc->request_queue_id) - 1; op_req_q = &mrioc->req_qinfo[req_q_idx]; WRITE_ONCE(op_req_q->ci, le16_to_cpu(reply_desc->request_queue_ci)); mpi3mr_process_op_reply_desc(mrioc, reply_desc, &reply_dma, reply_qidx); atomic_dec(&op_reply_q->pend_ios); if (reply_dma) mpi3mr_repost_reply_buf(mrioc, reply_dma); num_op_reply++; if (++reply_ci == op_reply_q->num_replies) { reply_ci = 0; exp_phase ^= 1; } reply_desc = mpi3mr_get_reply_desc(op_reply_q, reply_ci); if ((le16_to_cpu(reply_desc->reply_flags) & MPI3_REPLY_DESCRIPT_FLAGS_PHASE_MASK) != exp_phase) break; #ifndef CONFIG_PREEMPT_RT /* * Exit completion loop to avoid CPU lockup * Ensure remaining completion happens from threaded ISR. */ if (num_op_reply > mrioc->max_host_ios) { op_reply_q->enable_irq_poll = true; break; } #endif } while (1); writel(reply_ci, &mrioc->sysif_regs->oper_queue_indexes[reply_qidx].consumer_index); op_reply_q->ci = reply_ci; op_reply_q->ephase = exp_phase; atomic_dec(&op_reply_q->in_use); return num_op_reply; } /** * mpi3mr_blk_mq_poll - Operational reply queue handler * @shost: SCSI Host reference * @queue_num: Request queue number (w.r.t OS it is hardware context number) * * Checks the specific operational reply queue and drains the * reply queue entries until the queue is empty and process the * individual reply descriptors. * * Return: 0 if queue is already processed,or number of reply * descriptors processed. */ int mpi3mr_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) { int num_entries = 0; struct mpi3mr_ioc *mrioc; mrioc = (struct mpi3mr_ioc *)shost->hostdata; if ((mrioc->reset_in_progress || mrioc->prepare_for_reset || mrioc->unrecoverable)) return 0; num_entries = mpi3mr_process_op_reply_q(mrioc, &mrioc->op_reply_qinfo[queue_num]); return num_entries; } static irqreturn_t mpi3mr_isr_primary(int irq, void *privdata) { struct mpi3mr_intr_info *intr_info = privdata; struct mpi3mr_ioc *mrioc; u16 midx; u32 num_admin_replies = 0, num_op_reply = 0; if (!intr_info) return IRQ_NONE; mrioc = intr_info->mrioc; if (!mrioc->intr_enabled) return IRQ_NONE; midx = intr_info->msix_index; if (!midx) num_admin_replies = mpi3mr_process_admin_reply_q(mrioc); if (intr_info->op_reply_q) num_op_reply = mpi3mr_process_op_reply_q(mrioc, intr_info->op_reply_q); if (num_admin_replies || num_op_reply) return IRQ_HANDLED; else return IRQ_NONE; } #ifndef CONFIG_PREEMPT_RT static irqreturn_t mpi3mr_isr(int irq, void *privdata) { struct mpi3mr_intr_info *intr_info = privdata; int ret; if (!intr_info) return IRQ_NONE; /* Call primary ISR routine */ ret = mpi3mr_isr_primary(irq, privdata); /* * If more IOs are expected, schedule IRQ polling thread. * Otherwise exit from ISR. */ if (!intr_info->op_reply_q) return ret; if (!intr_info->op_reply_q->enable_irq_poll || !atomic_read(&intr_info->op_reply_q->pend_ios)) return ret; disable_irq_nosync(intr_info->os_irq); return IRQ_WAKE_THREAD; } /** * mpi3mr_isr_poll - Reply queue polling routine * @irq: IRQ * @privdata: Interrupt info * * poll for pending I/O completions in a loop until pending I/Os * present or controller queue depth I/Os are processed. * * Return: IRQ_NONE or IRQ_HANDLED */ static irqreturn_t mpi3mr_isr_poll(int irq, void *privdata) { struct mpi3mr_intr_info *intr_info = privdata; struct mpi3mr_ioc *mrioc; u16 midx; u32 num_op_reply = 0; if (!intr_info || !intr_info->op_reply_q) return IRQ_NONE; mrioc = intr_info->mrioc; midx = intr_info->msix_index; /* Poll for pending IOs completions */ do { if (!mrioc->intr_enabled || mrioc->unrecoverable) break; if (!midx) mpi3mr_process_admin_reply_q(mrioc); if (intr_info->op_reply_q) num_op_reply += mpi3mr_process_op_reply_q(mrioc, intr_info->op_reply_q); usleep_range(MPI3MR_IRQ_POLL_SLEEP, 10 * MPI3MR_IRQ_POLL_SLEEP); } while (atomic_read(&intr_info->op_reply_q->pend_ios) && (num_op_reply < mrioc->max_host_ios)); intr_info->op_reply_q->enable_irq_poll = false; enable_irq(intr_info->os_irq); return IRQ_HANDLED; } #endif /** * mpi3mr_request_irq - Request IRQ and register ISR * @mrioc: Adapter instance reference * @index: IRQ vector index * * Request threaded ISR with primary ISR and secondary * * Return: 0 on success and non zero on failures. */ static inline int mpi3mr_request_irq(struct mpi3mr_ioc *mrioc, u16 index) { struct pci_dev *pdev = mrioc->pdev; struct mpi3mr_intr_info *intr_info = mrioc->intr_info + index; int retval = 0; intr_info->mrioc = mrioc; intr_info->msix_index = index; intr_info->op_reply_q = NULL; snprintf(intr_info->name, MPI3MR_NAME_LENGTH, "%s%d-msix%d", mrioc->driver_name, mrioc->id, index); #ifndef CONFIG_PREEMPT_RT retval = request_threaded_irq(pci_irq_vector(pdev, index), mpi3mr_isr, mpi3mr_isr_poll, IRQF_SHARED, intr_info->name, intr_info); #else retval = request_threaded_irq(pci_irq_vector(pdev, index), mpi3mr_isr_primary, NULL, IRQF_SHARED, intr_info->name, intr_info); #endif if (retval) { ioc_err(mrioc, "%s: Unable to allocate interrupt %d!\n", intr_info->name, pci_irq_vector(pdev, index)); return retval; } intr_info->os_irq = pci_irq_vector(pdev, index); return retval; } static void mpi3mr_calc_poll_queues(struct mpi3mr_ioc *mrioc, u16 max_vectors) { if (!mrioc->requested_poll_qcount) return; /* Reserved for Admin and Default Queue */ if (max_vectors > 2 && (mrioc->requested_poll_qcount < max_vectors - 2)) { ioc_info(mrioc, "enabled polled queues (%d) msix (%d)\n", mrioc->requested_poll_qcount, max_vectors); } else { ioc_info(mrioc, "disabled polled queues (%d) msix (%d) because of no resources for default queue\n", mrioc->requested_poll_qcount, max_vectors); mrioc->requested_poll_qcount = 0; } } /** * mpi3mr_setup_isr - Setup ISR for the controller * @mrioc: Adapter instance reference * @setup_one: Request one IRQ or more * * Allocate IRQ vectors and call mpi3mr_request_irq to setup ISR * * Return: 0 on success and non zero on failures. */ static int mpi3mr_setup_isr(struct mpi3mr_ioc *mrioc, u8 setup_one) { unsigned int irq_flags = PCI_IRQ_MSIX; int max_vectors, min_vec; int retval; int i; struct irq_affinity desc = { .pre_vectors = 1, .post_vectors = 1 }; if (mrioc->is_intr_info_set) return 0; mpi3mr_cleanup_isr(mrioc); if (setup_one || reset_devices) { max_vectors = 1; retval = pci_alloc_irq_vectors(mrioc->pdev, 1, max_vectors, irq_flags); if (retval < 0) { ioc_err(mrioc, "cannot allocate irq vectors, ret %d\n", retval); goto out_failed; } } else { max_vectors = min_t(int, mrioc->cpu_count + 1 + mrioc->requested_poll_qcount, mrioc->msix_count); mpi3mr_calc_poll_queues(mrioc, max_vectors); ioc_info(mrioc, "MSI-X vectors supported: %d, no of cores: %d,", mrioc->msix_count, mrioc->cpu_count); ioc_info(mrioc, "MSI-x vectors requested: %d poll_queues %d\n", max_vectors, mrioc->requested_poll_qcount); desc.post_vectors = mrioc->requested_poll_qcount; min_vec = desc.pre_vectors + desc.post_vectors; irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; retval = pci_alloc_irq_vectors_affinity(mrioc->pdev, min_vec, max_vectors, irq_flags, &desc); if (retval < 0) { ioc_err(mrioc, "cannot allocate irq vectors, ret %d\n", retval); goto out_failed; } /* * If only one MSI-x is allocated, then MSI-x 0 will be shared * between Admin queue and operational queue */ if (retval == min_vec) mrioc->op_reply_q_offset = 0; else if (retval != (max_vectors)) { ioc_info(mrioc, "allocated vectors (%d) are less than configured (%d)\n", retval, max_vectors); } max_vectors = retval; mrioc->op_reply_q_offset = (max_vectors > 1) ? 1 : 0; mpi3mr_calc_poll_queues(mrioc, max_vectors); } mrioc->intr_info = kzalloc(sizeof(struct mpi3mr_intr_info) * max_vectors, GFP_KERNEL); if (!mrioc->intr_info) { retval = -ENOMEM; pci_free_irq_vectors(mrioc->pdev); goto out_failed; } for (i = 0; i < max_vectors; i++) { retval = mpi3mr_request_irq(mrioc, i); if (retval) { mrioc->intr_info_count = i; goto out_failed; } } if (reset_devices || !setup_one) mrioc->is_intr_info_set = true; mrioc->intr_info_count = max_vectors; mpi3mr_ioc_enable_intr(mrioc); return 0; out_failed: mpi3mr_cleanup_isr(mrioc); return retval; } static const struct { enum mpi3mr_iocstate value; char *name; } mrioc_states[] = { { MRIOC_STATE_READY, "ready" }, { MRIOC_STATE_FAULT, "fault" }, { MRIOC_STATE_RESET, "reset" }, { MRIOC_STATE_BECOMING_READY, "becoming ready" }, { MRIOC_STATE_RESET_REQUESTED, "reset requested" }, { MRIOC_STATE_UNRECOVERABLE, "unrecoverable error" }, }; static const char *mpi3mr_iocstate_name(enum mpi3mr_iocstate mrioc_state) { int i; char *name = NULL; for (i = 0; i < ARRAY_SIZE(mrioc_states); i++) { if (mrioc_states[i].value == mrioc_state) { name = mrioc_states[i].name; break; } } return name; } /* Reset reason to name mapper structure*/ static const struct { enum mpi3mr_reset_reason value; char *name; } mpi3mr_reset_reason_codes[] = { { MPI3MR_RESET_FROM_BRINGUP, "timeout in bringup" }, { MPI3MR_RESET_FROM_FAULT_WATCH, "fault" }, { MPI3MR_RESET_FROM_APP, "application invocation" }, { MPI3MR_RESET_FROM_EH_HOS, "error handling" }, { MPI3MR_RESET_FROM_TM_TIMEOUT, "TM timeout" }, { MPI3MR_RESET_FROM_APP_TIMEOUT, "application command timeout" }, { MPI3MR_RESET_FROM_MUR_FAILURE, "MUR failure" }, { MPI3MR_RESET_FROM_CTLR_CLEANUP, "timeout in controller cleanup" }, { MPI3MR_RESET_FROM_CIACTIV_FAULT, "component image activation fault" }, { MPI3MR_RESET_FROM_PE_TIMEOUT, "port enable timeout" }, { MPI3MR_RESET_FROM_TSU_TIMEOUT, "time stamp update timeout" }, { MPI3MR_RESET_FROM_DELREQQ_TIMEOUT, "delete request queue timeout" }, { MPI3MR_RESET_FROM_DELREPQ_TIMEOUT, "delete reply queue timeout" }, { MPI3MR_RESET_FROM_CREATEREPQ_TIMEOUT, "create request queue timeout" }, { MPI3MR_RESET_FROM_CREATEREQQ_TIMEOUT, "create reply queue timeout" }, { MPI3MR_RESET_FROM_IOCFACTS_TIMEOUT, "IOC facts timeout" }, { MPI3MR_RESET_FROM_IOCINIT_TIMEOUT, "IOC init timeout" }, { MPI3MR_RESET_FROM_EVTNOTIFY_TIMEOUT, "event notify timeout" }, { MPI3MR_RESET_FROM_EVTACK_TIMEOUT, "event acknowledgment timeout" }, { MPI3MR_RESET_FROM_CIACTVRST_TIMER, "component image activation timeout" }, { MPI3MR_RESET_FROM_GETPKGVER_TIMEOUT, "get package version timeout" }, { MPI3MR_RESET_FROM_SYSFS, "sysfs invocation" }, { MPI3MR_RESET_FROM_SYSFS_TIMEOUT, "sysfs TM timeout" }, { MPI3MR_RESET_FROM_FIRMWARE, "firmware asynchronous reset" }, { MPI3MR_RESET_FROM_CFG_REQ_TIMEOUT, "configuration request timeout"}, { MPI3MR_RESET_FROM_SAS_TRANSPORT_TIMEOUT, "timeout of a SAS transport layer request" }, }; /** * mpi3mr_reset_rc_name - get reset reason code name * @reason_code: reset reason code value * * Map reset reason to an NULL terminated ASCII string * * Return: name corresponding to reset reason value or NULL. */ static const char *mpi3mr_reset_rc_name(enum mpi3mr_reset_reason reason_code) { int i; char *name = NULL; for (i = 0; i < ARRAY_SIZE(mpi3mr_reset_reason_codes); i++) { if (mpi3mr_reset_reason_codes[i].value == reason_code) { name = mpi3mr_reset_reason_codes[i].name; break; } } return name; } /* Reset type to name mapper structure*/ static const struct { u16 reset_type; char *name; } mpi3mr_reset_types[] = { { MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, "soft" }, { MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, "diag fault" }, }; /** * mpi3mr_reset_type_name - get reset type name * @reset_type: reset type value * * Map reset type to an NULL terminated ASCII string * * Return: name corresponding to reset type value or NULL. */ static const char *mpi3mr_reset_type_name(u16 reset_type) { int i; char *name = NULL; for (i = 0; i < ARRAY_SIZE(mpi3mr_reset_types); i++) { if (mpi3mr_reset_types[i].reset_type == reset_type) { name = mpi3mr_reset_types[i].name; break; } } return name; } /** * mpi3mr_print_fault_info - Display fault information * @mrioc: Adapter instance reference * * Display the controller fault information if there is a * controller fault. * * Return: Nothing. */ void mpi3mr_print_fault_info(struct mpi3mr_ioc *mrioc) { u32 ioc_status, code, code1, code2, code3; ioc_status = readl(&mrioc->sysif_regs->ioc_status); if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) { code = readl(&mrioc->sysif_regs->fault); code1 = readl(&mrioc->sysif_regs->fault_info[0]); code2 = readl(&mrioc->sysif_regs->fault_info[1]); code3 = readl(&mrioc->sysif_regs->fault_info[2]); ioc_info(mrioc, "fault code(0x%08X): Additional code: (0x%08X:0x%08X:0x%08X)\n", code, code1, code2, code3); } } /** * mpi3mr_get_iocstate - Get IOC State * @mrioc: Adapter instance reference * * Return a proper IOC state enum based on the IOC status and * IOC configuration and unrcoverable state of the controller. * * Return: Current IOC state. */ enum mpi3mr_iocstate mpi3mr_get_iocstate(struct mpi3mr_ioc *mrioc) { u32 ioc_status, ioc_config; u8 ready, enabled; ioc_status = readl(&mrioc->sysif_regs->ioc_status); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); if (mrioc->unrecoverable) return MRIOC_STATE_UNRECOVERABLE; if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) return MRIOC_STATE_FAULT; ready = (ioc_status & MPI3_SYSIF_IOC_STATUS_READY); enabled = (ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC); if (ready && enabled) return MRIOC_STATE_READY; if ((!ready) && (!enabled)) return MRIOC_STATE_RESET; if ((!ready) && (enabled)) return MRIOC_STATE_BECOMING_READY; return MRIOC_STATE_RESET_REQUESTED; } /** * mpi3mr_clear_reset_history - clear reset history * @mrioc: Adapter instance reference * * Write the reset history bit in IOC status to clear the bit, * if it is already set. * * Return: Nothing. */ static inline void mpi3mr_clear_reset_history(struct mpi3mr_ioc *mrioc) { u32 ioc_status; ioc_status = readl(&mrioc->sysif_regs->ioc_status); if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) writel(ioc_status, &mrioc->sysif_regs->ioc_status); } /** * mpi3mr_issue_and_process_mur - Message unit Reset handler * @mrioc: Adapter instance reference * @reset_reason: Reset reason code * * Issue Message unit Reset to the controller and wait for it to * be complete. * * Return: 0 on success, -1 on failure. */ static int mpi3mr_issue_and_process_mur(struct mpi3mr_ioc *mrioc, u32 reset_reason) { u32 ioc_config, timeout, ioc_status; int retval = -1; ioc_info(mrioc, "Issuing Message unit Reset(MUR)\n"); if (mrioc->unrecoverable) { ioc_info(mrioc, "IOC is unrecoverable MUR not issued\n"); return retval; } mpi3mr_clear_reset_history(mrioc); writel(reset_reason, &mrioc->sysif_regs->scratchpad[0]); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); ioc_config &= ~MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC; writel(ioc_config, &mrioc->sysif_regs->ioc_configuration); timeout = MPI3MR_RESET_ACK_TIMEOUT * 10; do { ioc_status = readl(&mrioc->sysif_regs->ioc_status); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY)) { mpi3mr_clear_reset_history(mrioc); break; } if (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) { mpi3mr_print_fault_info(mrioc); break; } msleep(100); } while (--timeout); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); if (timeout && !((ioc_status & MPI3_SYSIF_IOC_STATUS_READY) || (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT) || (ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC))) retval = 0; ioc_info(mrioc, "Base IOC Sts/Config after %s MUR is (0x%x)/(0x%x)\n", (!retval) ? "successful" : "failed", ioc_status, ioc_config); return retval; } /** * mpi3mr_revalidate_factsdata - validate IOCFacts parameters * during reset/resume * @mrioc: Adapter instance reference * * Return zero if the new IOCFacts parameters value is compatible with * older values else return -EPERM */ static int mpi3mr_revalidate_factsdata(struct mpi3mr_ioc *mrioc) { void *removepend_bitmap; if (mrioc->facts.reply_sz > mrioc->reply_sz) { ioc_err(mrioc, "cannot increase reply size from %d to %d\n", mrioc->reply_sz, mrioc->facts.reply_sz); return -EPERM; } if (mrioc->facts.max_op_reply_q < mrioc->num_op_reply_q) { ioc_err(mrioc, "cannot reduce number of operational reply queues from %d to %d\n", mrioc->num_op_reply_q, mrioc->facts.max_op_reply_q); return -EPERM; } if (mrioc->facts.max_op_req_q < mrioc->num_op_req_q) { ioc_err(mrioc, "cannot reduce number of operational request queues from %d to %d\n", mrioc->num_op_req_q, mrioc->facts.max_op_req_q); return -EPERM; } if ((mrioc->sas_transport_enabled) && (mrioc->facts.ioc_capabilities & MPI3_IOCFACTS_CAPABILITY_MULTIPATH_ENABLED)) ioc_err(mrioc, "critical error: multipath capability is enabled at the\n" "\tcontroller while sas transport support is enabled at the\n" "\tdriver, please reboot the system or reload the driver\n"); if (mrioc->facts.max_devhandle > mrioc->dev_handle_bitmap_bits) { removepend_bitmap = bitmap_zalloc(mrioc->facts.max_devhandle, GFP_KERNEL); if (!removepend_bitmap) { ioc_err(mrioc, "failed to increase removepend_bitmap bits from %d to %d\n", mrioc->dev_handle_bitmap_bits, mrioc->facts.max_devhandle); return -EPERM; } bitmap_free(mrioc->removepend_bitmap); mrioc->removepend_bitmap = removepend_bitmap; ioc_info(mrioc, "increased bits of dev_handle_bitmap from %d to %d\n", mrioc->dev_handle_bitmap_bits, mrioc->facts.max_devhandle); mrioc->dev_handle_bitmap_bits = mrioc->facts.max_devhandle; } return 0; } /** * mpi3mr_bring_ioc_ready - Bring controller to ready state * @mrioc: Adapter instance reference * * Set Enable IOC bit in IOC configuration register and wait for * the controller to become ready. * * Return: 0 on success, appropriate error on failure. */ static int mpi3mr_bring_ioc_ready(struct mpi3mr_ioc *mrioc) { u32 ioc_config, ioc_status, timeout; int retval = 0; enum mpi3mr_iocstate ioc_state; u64 base_info; ioc_status = readl(&mrioc->sysif_regs->ioc_status); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); base_info = lo_hi_readq(&mrioc->sysif_regs->ioc_information); ioc_info(mrioc, "ioc_status(0x%08x), ioc_config(0x%08x), ioc_info(0x%016llx) at the bringup\n", ioc_status, ioc_config, base_info); /*The timeout value is in 2sec unit, changing it to seconds*/ mrioc->ready_timeout = ((base_info & MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_MASK) >> MPI3_SYSIF_IOC_INFO_LOW_TIMEOUT_SHIFT) * 2; ioc_info(mrioc, "ready timeout: %d seconds\n", mrioc->ready_timeout); ioc_state = mpi3mr_get_iocstate(mrioc); ioc_info(mrioc, "controller is in %s state during detection\n", mpi3mr_iocstate_name(ioc_state)); if (ioc_state == MRIOC_STATE_BECOMING_READY || ioc_state == MRIOC_STATE_RESET_REQUESTED) { timeout = mrioc->ready_timeout * 10; do { msleep(100); } while (--timeout); if (!pci_device_is_present(mrioc->pdev)) { mrioc->unrecoverable = 1; ioc_err(mrioc, "controller is not present while waiting to reset\n"); retval = -1; goto out_device_not_present; } ioc_state = mpi3mr_get_iocstate(mrioc); ioc_info(mrioc, "controller is in %s state after waiting to reset\n", mpi3mr_iocstate_name(ioc_state)); } if (ioc_state == MRIOC_STATE_READY) { ioc_info(mrioc, "issuing message unit reset (MUR) to bring to reset state\n"); retval = mpi3mr_issue_and_process_mur(mrioc, MPI3MR_RESET_FROM_BRINGUP); ioc_state = mpi3mr_get_iocstate(mrioc); if (retval) ioc_err(mrioc, "message unit reset failed with error %d current state %s\n", retval, mpi3mr_iocstate_name(ioc_state)); } if (ioc_state != MRIOC_STATE_RESET) { mpi3mr_print_fault_info(mrioc); ioc_info(mrioc, "issuing soft reset to bring to reset state\n"); retval = mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, MPI3MR_RESET_FROM_BRINGUP); if (retval) { ioc_err(mrioc, "soft reset failed with error %d\n", retval); goto out_failed; } } ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state != MRIOC_STATE_RESET) { ioc_err(mrioc, "cannot bring controller to reset state, current state: %s\n", mpi3mr_iocstate_name(ioc_state)); goto out_failed; } mpi3mr_clear_reset_history(mrioc); retval = mpi3mr_setup_admin_qpair(mrioc); if (retval) { ioc_err(mrioc, "failed to setup admin queues: error %d\n", retval); goto out_failed; } ioc_info(mrioc, "bringing controller to ready state\n"); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); ioc_config |= MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC; writel(ioc_config, &mrioc->sysif_regs->ioc_configuration); timeout = mrioc->ready_timeout * 10; do { ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state == MRIOC_STATE_READY) { ioc_info(mrioc, "successfully transitioned to %s state\n", mpi3mr_iocstate_name(ioc_state)); return 0; } if (!pci_device_is_present(mrioc->pdev)) { mrioc->unrecoverable = 1; ioc_err(mrioc, "controller is not present at the bringup\n"); retval = -1; goto out_device_not_present; } msleep(100); } while (--timeout); out_failed: ioc_state = mpi3mr_get_iocstate(mrioc); ioc_err(mrioc, "failed to bring to ready state, current state: %s\n", mpi3mr_iocstate_name(ioc_state)); out_device_not_present: return retval; } /** * mpi3mr_soft_reset_success - Check softreset is success or not * @ioc_status: IOC status register value * @ioc_config: IOC config register value * * Check whether the soft reset is successful or not based on * IOC status and IOC config register values. * * Return: True when the soft reset is success, false otherwise. */ static inline bool mpi3mr_soft_reset_success(u32 ioc_status, u32 ioc_config) { if (!((ioc_status & MPI3_SYSIF_IOC_STATUS_READY) || (ioc_config & MPI3_SYSIF_IOC_CONFIG_ENABLE_IOC))) return true; return false; } /** * mpi3mr_diagfault_success - Check diag fault is success or not * @mrioc: Adapter reference * @ioc_status: IOC status register value * * Check whether the controller hit diag reset fault code. * * Return: True when there is diag fault, false otherwise. */ static inline bool mpi3mr_diagfault_success(struct mpi3mr_ioc *mrioc, u32 ioc_status) { u32 fault; if (!(ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)) return false; fault = readl(&mrioc->sysif_regs->fault) & MPI3_SYSIF_FAULT_CODE_MASK; if (fault == MPI3_SYSIF_FAULT_CODE_DIAG_FAULT_RESET) { mpi3mr_print_fault_info(mrioc); return true; } return false; } /** * mpi3mr_set_diagsave - Set diag save bit for snapdump * @mrioc: Adapter reference * * Set diag save bit in IOC configuration register to enable * snapdump. * * Return: Nothing. */ static inline void mpi3mr_set_diagsave(struct mpi3mr_ioc *mrioc) { u32 ioc_config; ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); ioc_config |= MPI3_SYSIF_IOC_CONFIG_DIAG_SAVE; writel(ioc_config, &mrioc->sysif_regs->ioc_configuration); } /** * mpi3mr_issue_reset - Issue reset to the controller * @mrioc: Adapter reference * @reset_type: Reset type * @reset_reason: Reset reason code * * Unlock the host diagnostic registers and write the specific * reset type to that, wait for reset acknowledgment from the * controller, if the reset is not successful retry for the * predefined number of times. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_issue_reset(struct mpi3mr_ioc *mrioc, u16 reset_type, u32 reset_reason) { int retval = -1; u8 unlock_retry_count = 0; u32 host_diagnostic, ioc_status, ioc_config; u32 timeout = MPI3MR_RESET_ACK_TIMEOUT * 10; if ((reset_type != MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET) && (reset_type != MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT)) return retval; if (mrioc->unrecoverable) return retval; if (reset_reason == MPI3MR_RESET_FROM_FIRMWARE) { retval = 0; return retval; } ioc_info(mrioc, "%s reset due to %s(0x%x)\n", mpi3mr_reset_type_name(reset_type), mpi3mr_reset_rc_name(reset_reason), reset_reason); mpi3mr_clear_reset_history(mrioc); do { ioc_info(mrioc, "Write magic sequence to unlock host diag register (retry=%d)\n", ++unlock_retry_count); if (unlock_retry_count >= MPI3MR_HOSTDIAG_UNLOCK_RETRY_COUNT) { ioc_err(mrioc, "%s reset failed due to unlock failure, host_diagnostic(0x%08x)\n", mpi3mr_reset_type_name(reset_type), host_diagnostic); mrioc->unrecoverable = 1; return retval; } writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_FLUSH, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_1ST, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_2ND, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_3RD, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_4TH, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_5TH, &mrioc->sysif_regs->write_sequence); writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_6TH, &mrioc->sysif_regs->write_sequence); usleep_range(1000, 1100); host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic); ioc_info(mrioc, "wrote magic sequence: retry_count(%d), host_diagnostic(0x%08x)\n", unlock_retry_count, host_diagnostic); } while (!(host_diagnostic & MPI3_SYSIF_HOST_DIAG_DIAG_WRITE_ENABLE)); writel(reset_reason, &mrioc->sysif_regs->scratchpad[0]); writel(host_diagnostic | reset_type, &mrioc->sysif_regs->host_diagnostic); switch (reset_type) { case MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET: do { ioc_status = readl(&mrioc->sysif_regs->ioc_status); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) && mpi3mr_soft_reset_success(ioc_status, ioc_config) ) { mpi3mr_clear_reset_history(mrioc); retval = 0; break; } msleep(100); } while (--timeout); mpi3mr_print_fault_info(mrioc); break; case MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT: do { ioc_status = readl(&mrioc->sysif_regs->ioc_status); if (mpi3mr_diagfault_success(mrioc, ioc_status)) { retval = 0; break; } msleep(100); } while (--timeout); break; default: break; } writel(MPI3_SYSIF_WRITE_SEQUENCE_KEY_VALUE_2ND, &mrioc->sysif_regs->write_sequence); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); ioc_status = readl(&mrioc->sysif_regs->ioc_status); ioc_info(mrioc, "ioc_status/ioc_onfig after %s reset is (0x%x)/(0x%x)\n", (!retval)?"successful":"failed", ioc_status, ioc_config); if (retval) mrioc->unrecoverable = 1; return retval; } /** * mpi3mr_admin_request_post - Post request to admin queue * @mrioc: Adapter reference * @admin_req: MPI3 request * @admin_req_sz: Request size * @ignore_reset: Ignore reset in process * * Post the MPI3 request into admin request queue and * inform the controller, if the queue is full return * appropriate error. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_admin_request_post(struct mpi3mr_ioc *mrioc, void *admin_req, u16 admin_req_sz, u8 ignore_reset) { u16 areq_pi = 0, areq_ci = 0, max_entries = 0; int retval = 0; unsigned long flags; u8 *areq_entry; if (mrioc->unrecoverable) { ioc_err(mrioc, "%s : Unrecoverable controller\n", __func__); return -EFAULT; } spin_lock_irqsave(&mrioc->admin_req_lock, flags); areq_pi = mrioc->admin_req_pi; areq_ci = mrioc->admin_req_ci; max_entries = mrioc->num_admin_req; if ((areq_ci == (areq_pi + 1)) || ((!areq_ci) && (areq_pi == (max_entries - 1)))) { ioc_err(mrioc, "AdminReqQ full condition detected\n"); retval = -EAGAIN; goto out; } if (!ignore_reset && mrioc->reset_in_progress) { ioc_err(mrioc, "AdminReqQ submit reset in progress\n"); retval = -EAGAIN; goto out; } areq_entry = (u8 *)mrioc->admin_req_base + (areq_pi * MPI3MR_ADMIN_REQ_FRAME_SZ); memset(areq_entry, 0, MPI3MR_ADMIN_REQ_FRAME_SZ); memcpy(areq_entry, (u8 *)admin_req, admin_req_sz); if (++areq_pi == max_entries) areq_pi = 0; mrioc->admin_req_pi = areq_pi; writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi); out: spin_unlock_irqrestore(&mrioc->admin_req_lock, flags); return retval; } /** * mpi3mr_free_op_req_q_segments - free request memory segments * @mrioc: Adapter instance reference * @q_idx: operational request queue index * * Free memory segments allocated for operational request queue * * Return: Nothing. */ static void mpi3mr_free_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx) { u16 j; int size; struct segments *segments; segments = mrioc->req_qinfo[q_idx].q_segments; if (!segments) return; if (mrioc->enable_segqueue) { size = MPI3MR_OP_REQ_Q_SEG_SIZE; if (mrioc->req_qinfo[q_idx].q_segment_list) { dma_free_coherent(&mrioc->pdev->dev, MPI3MR_MAX_SEG_LIST_SIZE, mrioc->req_qinfo[q_idx].q_segment_list, mrioc->req_qinfo[q_idx].q_segment_list_dma); mrioc->req_qinfo[q_idx].q_segment_list = NULL; } } else size = mrioc->req_qinfo[q_idx].segment_qd * mrioc->facts.op_req_sz; for (j = 0; j < mrioc->req_qinfo[q_idx].num_segments; j++) { if (!segments[j].segment) continue; dma_free_coherent(&mrioc->pdev->dev, size, segments[j].segment, segments[j].segment_dma); segments[j].segment = NULL; } kfree(mrioc->req_qinfo[q_idx].q_segments); mrioc->req_qinfo[q_idx].q_segments = NULL; mrioc->req_qinfo[q_idx].qid = 0; } /** * mpi3mr_free_op_reply_q_segments - free reply memory segments * @mrioc: Adapter instance reference * @q_idx: operational reply queue index * * Free memory segments allocated for operational reply queue * * Return: Nothing. */ static void mpi3mr_free_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 q_idx) { u16 j; int size; struct segments *segments; segments = mrioc->op_reply_qinfo[q_idx].q_segments; if (!segments) return; if (mrioc->enable_segqueue) { size = MPI3MR_OP_REP_Q_SEG_SIZE; if (mrioc->op_reply_qinfo[q_idx].q_segment_list) { dma_free_coherent(&mrioc->pdev->dev, MPI3MR_MAX_SEG_LIST_SIZE, mrioc->op_reply_qinfo[q_idx].q_segment_list, mrioc->op_reply_qinfo[q_idx].q_segment_list_dma); mrioc->op_reply_qinfo[q_idx].q_segment_list = NULL; } } else size = mrioc->op_reply_qinfo[q_idx].segment_qd * mrioc->op_reply_desc_sz; for (j = 0; j < mrioc->op_reply_qinfo[q_idx].num_segments; j++) { if (!segments[j].segment) continue; dma_free_coherent(&mrioc->pdev->dev, size, segments[j].segment, segments[j].segment_dma); segments[j].segment = NULL; } kfree(mrioc->op_reply_qinfo[q_idx].q_segments); mrioc->op_reply_qinfo[q_idx].q_segments = NULL; mrioc->op_reply_qinfo[q_idx].qid = 0; } /** * mpi3mr_delete_op_reply_q - delete operational reply queue * @mrioc: Adapter instance reference * @qidx: operational reply queue index * * Delete operatinal reply queue by issuing MPI request * through admin queue. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_delete_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx) { struct mpi3_delete_reply_queue_request delq_req; struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx; int retval = 0; u16 reply_qid = 0, midx; reply_qid = op_reply_q->qid; midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset); if (!reply_qid) { retval = -1; ioc_err(mrioc, "Issue DelRepQ: called with invalid ReqQID\n"); goto out; } (op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) ? mrioc->default_qcount-- : mrioc->active_poll_qcount--; memset(&delq_req, 0, sizeof(delq_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue DelRepQ: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; delq_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); delq_req.function = MPI3_FUNCTION_DELETE_REPLY_QUEUE; delq_req.queue_id = cpu_to_le16(reply_qid); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &delq_req, sizeof(delq_req), 1); if (retval) { ioc_err(mrioc, "Issue DelRepQ: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "delete reply queue timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_DELREPQ_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Issue DelRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } mrioc->intr_info[midx].op_reply_q = NULL; mpi3mr_free_op_reply_q_segments(mrioc, qidx); out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_alloc_op_reply_q_segments -Alloc segmented reply pool * @mrioc: Adapter instance reference * @qidx: request queue index * * Allocate segmented memory pools for operational reply * queue. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_alloc_op_reply_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx) { struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx; int i, size; u64 *q_segment_list_entry = NULL; struct segments *segments; if (mrioc->enable_segqueue) { op_reply_q->segment_qd = MPI3MR_OP_REP_Q_SEG_SIZE / mrioc->op_reply_desc_sz; size = MPI3MR_OP_REP_Q_SEG_SIZE; op_reply_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev, MPI3MR_MAX_SEG_LIST_SIZE, &op_reply_q->q_segment_list_dma, GFP_KERNEL); if (!op_reply_q->q_segment_list) return -ENOMEM; q_segment_list_entry = (u64 *)op_reply_q->q_segment_list; } else { op_reply_q->segment_qd = op_reply_q->num_replies; size = op_reply_q->num_replies * mrioc->op_reply_desc_sz; } op_reply_q->num_segments = DIV_ROUND_UP(op_reply_q->num_replies, op_reply_q->segment_qd); op_reply_q->q_segments = kcalloc(op_reply_q->num_segments, sizeof(struct segments), GFP_KERNEL); if (!op_reply_q->q_segments) return -ENOMEM; segments = op_reply_q->q_segments; for (i = 0; i < op_reply_q->num_segments; i++) { segments[i].segment = dma_alloc_coherent(&mrioc->pdev->dev, size, &segments[i].segment_dma, GFP_KERNEL); if (!segments[i].segment) return -ENOMEM; if (mrioc->enable_segqueue) q_segment_list_entry[i] = (unsigned long)segments[i].segment_dma; } return 0; } /** * mpi3mr_alloc_op_req_q_segments - Alloc segmented req pool. * @mrioc: Adapter instance reference * @qidx: request queue index * * Allocate segmented memory pools for operational request * queue. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_alloc_op_req_q_segments(struct mpi3mr_ioc *mrioc, u16 qidx) { struct op_req_qinfo *op_req_q = mrioc->req_qinfo + qidx; int i, size; u64 *q_segment_list_entry = NULL; struct segments *segments; if (mrioc->enable_segqueue) { op_req_q->segment_qd = MPI3MR_OP_REQ_Q_SEG_SIZE / mrioc->facts.op_req_sz; size = MPI3MR_OP_REQ_Q_SEG_SIZE; op_req_q->q_segment_list = dma_alloc_coherent(&mrioc->pdev->dev, MPI3MR_MAX_SEG_LIST_SIZE, &op_req_q->q_segment_list_dma, GFP_KERNEL); if (!op_req_q->q_segment_list) return -ENOMEM; q_segment_list_entry = (u64 *)op_req_q->q_segment_list; } else { op_req_q->segment_qd = op_req_q->num_requests; size = op_req_q->num_requests * mrioc->facts.op_req_sz; } op_req_q->num_segments = DIV_ROUND_UP(op_req_q->num_requests, op_req_q->segment_qd); op_req_q->q_segments = kcalloc(op_req_q->num_segments, sizeof(struct segments), GFP_KERNEL); if (!op_req_q->q_segments) return -ENOMEM; segments = op_req_q->q_segments; for (i = 0; i < op_req_q->num_segments; i++) { segments[i].segment = dma_alloc_coherent(&mrioc->pdev->dev, size, &segments[i].segment_dma, GFP_KERNEL); if (!segments[i].segment) return -ENOMEM; if (mrioc->enable_segqueue) q_segment_list_entry[i] = (unsigned long)segments[i].segment_dma; } return 0; } /** * mpi3mr_create_op_reply_q - create operational reply queue * @mrioc: Adapter instance reference * @qidx: operational reply queue index * * Create operatinal reply queue by issuing MPI request * through admin queue. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_create_op_reply_q(struct mpi3mr_ioc *mrioc, u16 qidx) { struct mpi3_create_reply_queue_request create_req; struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx; int retval = 0; u16 reply_qid = 0, midx; reply_qid = op_reply_q->qid; midx = REPLY_QUEUE_IDX_TO_MSIX_IDX(qidx, mrioc->op_reply_q_offset); if (reply_qid) { retval = -1; ioc_err(mrioc, "CreateRepQ: called for duplicate qid %d\n", reply_qid); return retval; } reply_qid = qidx + 1; op_reply_q->num_replies = MPI3MR_OP_REP_Q_QD; if (!mrioc->pdev->revision) op_reply_q->num_replies = MPI3MR_OP_REP_Q_QD4K; op_reply_q->ci = 0; op_reply_q->ephase = 1; atomic_set(&op_reply_q->pend_ios, 0); atomic_set(&op_reply_q->in_use, 0); op_reply_q->enable_irq_poll = false; if (!op_reply_q->q_segments) { retval = mpi3mr_alloc_op_reply_q_segments(mrioc, qidx); if (retval) { mpi3mr_free_op_reply_q_segments(mrioc, qidx); goto out; } } memset(&create_req, 0, sizeof(create_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "CreateRepQ: Init command is in use\n"); goto out_unlock; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); create_req.function = MPI3_FUNCTION_CREATE_REPLY_QUEUE; create_req.queue_id = cpu_to_le16(reply_qid); if (midx < (mrioc->intr_info_count - mrioc->requested_poll_qcount)) op_reply_q->qtype = MPI3MR_DEFAULT_QUEUE; else op_reply_q->qtype = MPI3MR_POLL_QUEUE; if (op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) { create_req.flags = MPI3_CREATE_REPLY_QUEUE_FLAGS_INT_ENABLE_ENABLE; create_req.msix_index = cpu_to_le16(mrioc->intr_info[midx].msix_index); } else { create_req.msix_index = cpu_to_le16(mrioc->intr_info_count - 1); ioc_info(mrioc, "create reply queue(polled): for qid(%d), midx(%d)\n", reply_qid, midx); if (!mrioc->active_poll_qcount) disable_irq_nosync(pci_irq_vector(mrioc->pdev, mrioc->intr_info_count - 1)); } if (mrioc->enable_segqueue) { create_req.flags |= MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED; create_req.base_address = cpu_to_le64( op_reply_q->q_segment_list_dma); } else create_req.base_address = cpu_to_le64( op_reply_q->q_segments[0].segment_dma); create_req.size = cpu_to_le16(op_reply_q->num_replies); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &create_req, sizeof(create_req), 1); if (retval) { ioc_err(mrioc, "CreateRepQ: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "create reply queue timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_CREATEREPQ_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "CreateRepQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } op_reply_q->qid = reply_qid; if (midx < mrioc->intr_info_count) mrioc->intr_info[midx].op_reply_q = op_reply_q; (op_reply_q->qtype == MPI3MR_DEFAULT_QUEUE) ? mrioc->default_qcount++ : mrioc->active_poll_qcount++; out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_create_op_req_q - create operational request queue * @mrioc: Adapter instance reference * @idx: operational request queue index * @reply_qid: Reply queue ID * * Create operatinal request queue by issuing MPI request * through admin queue. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_create_op_req_q(struct mpi3mr_ioc *mrioc, u16 idx, u16 reply_qid) { struct mpi3_create_request_queue_request create_req; struct op_req_qinfo *op_req_q = mrioc->req_qinfo + idx; int retval = 0; u16 req_qid = 0; req_qid = op_req_q->qid; if (req_qid) { retval = -1; ioc_err(mrioc, "CreateReqQ: called for duplicate qid %d\n", req_qid); return retval; } req_qid = idx + 1; op_req_q->num_requests = MPI3MR_OP_REQ_Q_QD; op_req_q->ci = 0; op_req_q->pi = 0; op_req_q->reply_qid = reply_qid; spin_lock_init(&op_req_q->q_lock); if (!op_req_q->q_segments) { retval = mpi3mr_alloc_op_req_q_segments(mrioc, idx); if (retval) { mpi3mr_free_op_req_q_segments(mrioc, idx); goto out; } } memset(&create_req, 0, sizeof(create_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "CreateReqQ: Init command is in use\n"); goto out_unlock; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; create_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); create_req.function = MPI3_FUNCTION_CREATE_REQUEST_QUEUE; create_req.queue_id = cpu_to_le16(req_qid); if (mrioc->enable_segqueue) { create_req.flags = MPI3_CREATE_REQUEST_QUEUE_FLAGS_SEGMENTED_SEGMENTED; create_req.base_address = cpu_to_le64( op_req_q->q_segment_list_dma); } else create_req.base_address = cpu_to_le64( op_req_q->q_segments[0].segment_dma); create_req.reply_queue_id = cpu_to_le16(reply_qid); create_req.size = cpu_to_le16(op_req_q->num_requests); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &create_req, sizeof(create_req), 1); if (retval) { ioc_err(mrioc, "CreateReqQ: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "create request queue timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_CREATEREQQ_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "CreateReqQ: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } op_req_q->qid = req_qid; out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_create_op_queues - create operational queue pairs * @mrioc: Adapter instance reference * * Allocate memory for operational queue meta data and call * create request and reply queue functions. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_create_op_queues(struct mpi3mr_ioc *mrioc) { int retval = 0; u16 num_queues = 0, i = 0, msix_count_op_q = 1; num_queues = min_t(int, mrioc->facts.max_op_reply_q, mrioc->facts.max_op_req_q); msix_count_op_q = mrioc->intr_info_count - mrioc->op_reply_q_offset; if (!mrioc->num_queues) mrioc->num_queues = min_t(int, num_queues, msix_count_op_q); /* * During reset set the num_queues to the number of queues * that was set before the reset. */ num_queues = mrioc->num_op_reply_q ? mrioc->num_op_reply_q : mrioc->num_queues; ioc_info(mrioc, "trying to create %d operational queue pairs\n", num_queues); if (!mrioc->req_qinfo) { mrioc->req_qinfo = kcalloc(num_queues, sizeof(struct op_req_qinfo), GFP_KERNEL); if (!mrioc->req_qinfo) { retval = -1; goto out_failed; } mrioc->op_reply_qinfo = kzalloc(sizeof(struct op_reply_qinfo) * num_queues, GFP_KERNEL); if (!mrioc->op_reply_qinfo) { retval = -1; goto out_failed; } } if (mrioc->enable_segqueue) ioc_info(mrioc, "allocating operational queues through segmented queues\n"); for (i = 0; i < num_queues; i++) { if (mpi3mr_create_op_reply_q(mrioc, i)) { ioc_err(mrioc, "Cannot create OP RepQ %d\n", i); break; } if (mpi3mr_create_op_req_q(mrioc, i, mrioc->op_reply_qinfo[i].qid)) { ioc_err(mrioc, "Cannot create OP ReqQ %d\n", i); mpi3mr_delete_op_reply_q(mrioc, i); break; } } if (i == 0) { /* Not even one queue is created successfully*/ retval = -1; goto out_failed; } mrioc->num_op_reply_q = mrioc->num_op_req_q = i; ioc_info(mrioc, "successfully created %d operational queue pairs(default/polled) queue = (%d/%d)\n", mrioc->num_op_reply_q, mrioc->default_qcount, mrioc->active_poll_qcount); return retval; out_failed: kfree(mrioc->req_qinfo); mrioc->req_qinfo = NULL; kfree(mrioc->op_reply_qinfo); mrioc->op_reply_qinfo = NULL; return retval; } /** * mpi3mr_op_request_post - Post request to operational queue * @mrioc: Adapter reference * @op_req_q: Operational request queue info * @req: MPI3 request * * Post the MPI3 request into operational request queue and * inform the controller, if the queue is full return * appropriate error. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_op_request_post(struct mpi3mr_ioc *mrioc, struct op_req_qinfo *op_req_q, u8 *req) { u16 pi = 0, max_entries, reply_qidx = 0, midx; int retval = 0; unsigned long flags; u8 *req_entry; void *segment_base_addr; u16 req_sz = mrioc->facts.op_req_sz; struct segments *segments = op_req_q->q_segments; reply_qidx = op_req_q->reply_qid - 1; if (mrioc->unrecoverable) return -EFAULT; spin_lock_irqsave(&op_req_q->q_lock, flags); pi = op_req_q->pi; max_entries = op_req_q->num_requests; if (mpi3mr_check_req_qfull(op_req_q)) { midx = REPLY_QUEUE_IDX_TO_MSIX_IDX( reply_qidx, mrioc->op_reply_q_offset); mpi3mr_process_op_reply_q(mrioc, mrioc->intr_info[midx].op_reply_q); if (mpi3mr_check_req_qfull(op_req_q)) { retval = -EAGAIN; goto out; } } if (mrioc->reset_in_progress) { ioc_err(mrioc, "OpReqQ submit reset in progress\n"); retval = -EAGAIN; goto out; } segment_base_addr = segments[pi / op_req_q->segment_qd].segment; req_entry = (u8 *)segment_base_addr + ((pi % op_req_q->segment_qd) * req_sz); memset(req_entry, 0, req_sz); memcpy(req_entry, req, MPI3MR_ADMIN_REQ_FRAME_SZ); if (++pi == max_entries) pi = 0; op_req_q->pi = pi; #ifndef CONFIG_PREEMPT_RT if (atomic_inc_return(&mrioc->op_reply_qinfo[reply_qidx].pend_ios) > MPI3MR_IRQ_POLL_TRIGGER_IOCOUNT) mrioc->op_reply_qinfo[reply_qidx].enable_irq_poll = true; #else atomic_inc_return(&mrioc->op_reply_qinfo[reply_qidx].pend_ios); #endif writel(op_req_q->pi, &mrioc->sysif_regs->oper_queue_indexes[reply_qidx].producer_index); out: spin_unlock_irqrestore(&op_req_q->q_lock, flags); return retval; } /** * mpi3mr_check_rh_fault_ioc - check reset history and fault * controller * @mrioc: Adapter instance reference * @reason_code: reason code for the fault. * * This routine will save snapdump and fault the controller with * the given reason code if it is not already in the fault or * not asynchronosuly reset. This will be used to handle * initilaization time faults/resets/timeout as in those cases * immediate soft reset invocation is not required. * * Return: None. */ void mpi3mr_check_rh_fault_ioc(struct mpi3mr_ioc *mrioc, u32 reason_code) { u32 ioc_status, host_diagnostic, timeout; if (mrioc->unrecoverable) { ioc_err(mrioc, "controller is unrecoverable\n"); return; } if (!pci_device_is_present(mrioc->pdev)) { mrioc->unrecoverable = 1; ioc_err(mrioc, "controller is not present\n"); return; } ioc_status = readl(&mrioc->sysif_regs->ioc_status); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) || (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)) { mpi3mr_print_fault_info(mrioc); return; } mpi3mr_set_diagsave(mrioc); mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, reason_code); timeout = MPI3_SYSIF_DIAG_SAVE_TIMEOUT * 10; do { host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic); if (!(host_diagnostic & MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS)) break; msleep(100); } while (--timeout); } /** * mpi3mr_sync_timestamp - Issue time stamp sync request * @mrioc: Adapter reference * * Issue IO unit control MPI request to synchornize firmware * timestamp with host time. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_sync_timestamp(struct mpi3mr_ioc *mrioc) { ktime_t current_time; struct mpi3_iounit_control_request iou_ctrl; int retval = 0; memset(&iou_ctrl, 0, sizeof(iou_ctrl)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue IOUCTL time_stamp: command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; iou_ctrl.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); iou_ctrl.function = MPI3_FUNCTION_IO_UNIT_CONTROL; iou_ctrl.operation = MPI3_CTRL_OP_UPDATE_TIMESTAMP; current_time = ktime_get_real(); iou_ctrl.param64[0] = cpu_to_le64(ktime_to_ms(current_time)); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &iou_ctrl, sizeof(iou_ctrl), 0); if (retval) { ioc_err(mrioc, "Issue IOUCTL time_stamp: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "Issue IOUCTL time_stamp: command timed out\n"); mrioc->init_cmds.is_waiting = 0; if (!(mrioc->init_cmds.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_TSU_TIMEOUT, 1); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Issue IOUCTL time_stamp: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_print_pkg_ver - display controller fw package version * @mrioc: Adapter reference * * Retrieve firmware package version from the component image * header of the controller flash and display it. * * Return: 0 on success and non-zero on failure. */ static int mpi3mr_print_pkg_ver(struct mpi3mr_ioc *mrioc) { struct mpi3_ci_upload_request ci_upload; int retval = -1; void *data = NULL; dma_addr_t data_dma; struct mpi3_ci_manifest_mpi *manifest; u32 data_len = sizeof(struct mpi3_ci_manifest_mpi); u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST; data = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma, GFP_KERNEL); if (!data) return -ENOMEM; memset(&ci_upload, 0, sizeof(ci_upload)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { ioc_err(mrioc, "sending get package version failed due to command in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; ci_upload.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); ci_upload.function = MPI3_FUNCTION_CI_UPLOAD; ci_upload.msg_flags = MPI3_CI_UPLOAD_MSGFLAGS_LOCATION_PRIMARY; ci_upload.signature1 = cpu_to_le32(MPI3_IMAGE_HEADER_SIGNATURE1_MANIFEST); ci_upload.image_offset = cpu_to_le32(MPI3_IMAGE_HEADER_SIZE); ci_upload.segment_size = cpu_to_le32(data_len); mpi3mr_add_sg_single(&ci_upload.sgl, sgl_flags, data_len, data_dma); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &ci_upload, sizeof(ci_upload), 1); if (retval) { ioc_err(mrioc, "posting get package version failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "get package version timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_GETPKGVER_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) == MPI3_IOCSTATUS_SUCCESS) { manifest = (struct mpi3_ci_manifest_mpi *) data; if (manifest->manifest_type == MPI3_CI_MANIFEST_TYPE_MPI) { ioc_info(mrioc, "firmware package version(%d.%d.%d.%d.%05d-%05d)\n", manifest->package_version.gen_major, manifest->package_version.gen_minor, manifest->package_version.phase_major, manifest->package_version.phase_minor, manifest->package_version.customer_id, manifest->package_version.build_num); } } retval = 0; out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: if (data) dma_free_coherent(&mrioc->pdev->dev, data_len, data, data_dma); return retval; } /** * mpi3mr_watchdog_work - watchdog thread to monitor faults * @work: work struct * * Watch dog work periodically executed (1 second interval) to * monitor firmware fault and to issue periodic timer sync to * the firmware. * * Return: Nothing. */ static void mpi3mr_watchdog_work(struct work_struct *work) { struct mpi3mr_ioc *mrioc = container_of(work, struct mpi3mr_ioc, watchdog_work.work); unsigned long flags; enum mpi3mr_iocstate ioc_state; u32 fault, host_diagnostic, ioc_status; u32 reset_reason = MPI3MR_RESET_FROM_FAULT_WATCH; if (mrioc->reset_in_progress) return; if (!mrioc->unrecoverable && !pci_device_is_present(mrioc->pdev)) { ioc_err(mrioc, "watchdog could not detect the controller\n"); mrioc->unrecoverable = 1; } if (mrioc->unrecoverable) { ioc_err(mrioc, "flush pending commands for unrecoverable controller\n"); mpi3mr_flush_cmds_for_unrecovered_controller(mrioc); return; } if (mrioc->ts_update_counter++ >= MPI3MR_TSUPDATE_INTERVAL) { mrioc->ts_update_counter = 0; mpi3mr_sync_timestamp(mrioc); } if ((mrioc->prepare_for_reset) && ((mrioc->prepare_for_reset_timeout_counter++) >= MPI3MR_PREPARE_FOR_RESET_TIMEOUT)) { mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_CIACTVRST_TIMER, 1); return; } ioc_status = readl(&mrioc->sysif_regs->ioc_status); if (ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) { mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_FIRMWARE, 0); return; } /*Check for fault state every one second and issue Soft reset*/ ioc_state = mpi3mr_get_iocstate(mrioc); if (ioc_state != MRIOC_STATE_FAULT) goto schedule_work; fault = readl(&mrioc->sysif_regs->fault) & MPI3_SYSIF_FAULT_CODE_MASK; host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic); if (host_diagnostic & MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS) { if (!mrioc->diagsave_timeout) { mpi3mr_print_fault_info(mrioc); ioc_warn(mrioc, "diag save in progress\n"); } if ((mrioc->diagsave_timeout++) <= MPI3_SYSIF_DIAG_SAVE_TIMEOUT) goto schedule_work; } mpi3mr_print_fault_info(mrioc); mrioc->diagsave_timeout = 0; switch (fault) { case MPI3_SYSIF_FAULT_CODE_COMPLETE_RESET_NEEDED: case MPI3_SYSIF_FAULT_CODE_POWER_CYCLE_REQUIRED: ioc_warn(mrioc, "controller requires system power cycle, marking controller as unrecoverable\n"); mrioc->unrecoverable = 1; goto schedule_work; case MPI3_SYSIF_FAULT_CODE_SOFT_RESET_IN_PROGRESS: return; case MPI3_SYSIF_FAULT_CODE_CI_ACTIVATION_RESET: reset_reason = MPI3MR_RESET_FROM_CIACTIV_FAULT; break; default: break; } mpi3mr_soft_reset_handler(mrioc, reset_reason, 0); return; schedule_work: spin_lock_irqsave(&mrioc->watchdog_lock, flags); if (mrioc->watchdog_work_q) queue_delayed_work(mrioc->watchdog_work_q, &mrioc->watchdog_work, msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL)); spin_unlock_irqrestore(&mrioc->watchdog_lock, flags); return; } /** * mpi3mr_start_watchdog - Start watchdog * @mrioc: Adapter instance reference * * Create and start the watchdog thread to monitor controller * faults. * * Return: Nothing. */ void mpi3mr_start_watchdog(struct mpi3mr_ioc *mrioc) { if (mrioc->watchdog_work_q) return; INIT_DELAYED_WORK(&mrioc->watchdog_work, mpi3mr_watchdog_work); snprintf(mrioc->watchdog_work_q_name, sizeof(mrioc->watchdog_work_q_name), "watchdog_%s%d", mrioc->name, mrioc->id); mrioc->watchdog_work_q = create_singlethread_workqueue(mrioc->watchdog_work_q_name); if (!mrioc->watchdog_work_q) { ioc_err(mrioc, "%s: failed (line=%d)\n", __func__, __LINE__); return; } if (mrioc->watchdog_work_q) queue_delayed_work(mrioc->watchdog_work_q, &mrioc->watchdog_work, msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL)); } /** * mpi3mr_stop_watchdog - Stop watchdog * @mrioc: Adapter instance reference * * Stop the watchdog thread created to monitor controller * faults. * * Return: Nothing. */ void mpi3mr_stop_watchdog(struct mpi3mr_ioc *mrioc) { unsigned long flags; struct workqueue_struct *wq; spin_lock_irqsave(&mrioc->watchdog_lock, flags); wq = mrioc->watchdog_work_q; mrioc->watchdog_work_q = NULL; spin_unlock_irqrestore(&mrioc->watchdog_lock, flags); if (wq) { if (!cancel_delayed_work_sync(&mrioc->watchdog_work)) flush_workqueue(wq); destroy_workqueue(wq); } } /** * mpi3mr_setup_admin_qpair - Setup admin queue pair * @mrioc: Adapter instance reference * * Allocate memory for admin queue pair if required and register * the admin queue with the controller. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_setup_admin_qpair(struct mpi3mr_ioc *mrioc) { int retval = 0; u32 num_admin_entries = 0; mrioc->admin_req_q_sz = MPI3MR_ADMIN_REQ_Q_SIZE; mrioc->num_admin_req = mrioc->admin_req_q_sz / MPI3MR_ADMIN_REQ_FRAME_SZ; mrioc->admin_req_ci = mrioc->admin_req_pi = 0; mrioc->admin_req_base = NULL; mrioc->admin_reply_q_sz = MPI3MR_ADMIN_REPLY_Q_SIZE; mrioc->num_admin_replies = mrioc->admin_reply_q_sz / MPI3MR_ADMIN_REPLY_FRAME_SZ; mrioc->admin_reply_ci = 0; mrioc->admin_reply_ephase = 1; mrioc->admin_reply_base = NULL; if (!mrioc->admin_req_base) { mrioc->admin_req_base = dma_alloc_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz, &mrioc->admin_req_dma, GFP_KERNEL); if (!mrioc->admin_req_base) { retval = -1; goto out_failed; } mrioc->admin_reply_base = dma_alloc_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz, &mrioc->admin_reply_dma, GFP_KERNEL); if (!mrioc->admin_reply_base) { retval = -1; goto out_failed; } } num_admin_entries = (mrioc->num_admin_replies << 16) | (mrioc->num_admin_req); writel(num_admin_entries, &mrioc->sysif_regs->admin_queue_num_entries); mpi3mr_writeq(mrioc->admin_req_dma, &mrioc->sysif_regs->admin_request_queue_address); mpi3mr_writeq(mrioc->admin_reply_dma, &mrioc->sysif_regs->admin_reply_queue_address); writel(mrioc->admin_req_pi, &mrioc->sysif_regs->admin_request_queue_pi); writel(mrioc->admin_reply_ci, &mrioc->sysif_regs->admin_reply_queue_ci); return retval; out_failed: if (mrioc->admin_reply_base) { dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz, mrioc->admin_reply_base, mrioc->admin_reply_dma); mrioc->admin_reply_base = NULL; } if (mrioc->admin_req_base) { dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz, mrioc->admin_req_base, mrioc->admin_req_dma); mrioc->admin_req_base = NULL; } return retval; } /** * mpi3mr_issue_iocfacts - Send IOC Facts * @mrioc: Adapter instance reference * @facts_data: Cached IOC facts data * * Issue IOC Facts MPI request through admin queue and wait for * the completion of it or time out. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_issue_iocfacts(struct mpi3mr_ioc *mrioc, struct mpi3_ioc_facts_data *facts_data) { struct mpi3_ioc_facts_request iocfacts_req; void *data = NULL; dma_addr_t data_dma; u32 data_len = sizeof(*facts_data); int retval = 0; u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST; data = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma, GFP_KERNEL); if (!data) { retval = -1; goto out; } memset(&iocfacts_req, 0, sizeof(iocfacts_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue IOCFacts: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; iocfacts_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); iocfacts_req.function = MPI3_FUNCTION_IOC_FACTS; mpi3mr_add_sg_single(&iocfacts_req.sgl, sgl_flags, data_len, data_dma); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &iocfacts_req, sizeof(iocfacts_req), 1); if (retval) { ioc_err(mrioc, "Issue IOCFacts: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "ioc_facts timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_IOCFACTS_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Issue IOCFacts: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } memcpy(facts_data, (u8 *)data, data_len); mpi3mr_process_factsdata(mrioc, facts_data); out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: if (data) dma_free_coherent(&mrioc->pdev->dev, data_len, data, data_dma); return retval; } /** * mpi3mr_check_reset_dma_mask - Process IOC facts data * @mrioc: Adapter instance reference * * Check whether the new DMA mask requested through IOCFacts by * firmware needs to be set, if so set it . * * Return: 0 on success, non-zero on failure. */ static inline int mpi3mr_check_reset_dma_mask(struct mpi3mr_ioc *mrioc) { struct pci_dev *pdev = mrioc->pdev; int r; u64 facts_dma_mask = DMA_BIT_MASK(mrioc->facts.dma_mask); if (!mrioc->facts.dma_mask || (mrioc->dma_mask <= facts_dma_mask)) return 0; ioc_info(mrioc, "Changing DMA mask from 0x%016llx to 0x%016llx\n", mrioc->dma_mask, facts_dma_mask); r = dma_set_mask_and_coherent(&pdev->dev, facts_dma_mask); if (r) { ioc_err(mrioc, "Setting DMA mask to 0x%016llx failed: %d\n", facts_dma_mask, r); return r; } mrioc->dma_mask = facts_dma_mask; return r; } /** * mpi3mr_process_factsdata - Process IOC facts data * @mrioc: Adapter instance reference * @facts_data: Cached IOC facts data * * Convert IOC facts data into cpu endianness and cache it in * the driver . * * Return: Nothing. */ static void mpi3mr_process_factsdata(struct mpi3mr_ioc *mrioc, struct mpi3_ioc_facts_data *facts_data) { u32 ioc_config, req_sz, facts_flags; if ((le16_to_cpu(facts_data->ioc_facts_data_length)) != (sizeof(*facts_data) / 4)) { ioc_warn(mrioc, "IOCFactsdata length mismatch driver_sz(%zu) firmware_sz(%d)\n", sizeof(*facts_data), le16_to_cpu(facts_data->ioc_facts_data_length) * 4); } ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); req_sz = 1 << ((ioc_config & MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ) >> MPI3_SYSIF_IOC_CONFIG_OPER_REQ_ENT_SZ_SHIFT); if (le16_to_cpu(facts_data->ioc_request_frame_size) != (req_sz / 4)) { ioc_err(mrioc, "IOCFacts data reqFrameSize mismatch hw_size(%d) firmware_sz(%d)\n", req_sz / 4, le16_to_cpu(facts_data->ioc_request_frame_size)); } memset(&mrioc->facts, 0, sizeof(mrioc->facts)); facts_flags = le32_to_cpu(facts_data->flags); mrioc->facts.op_req_sz = req_sz; mrioc->op_reply_desc_sz = 1 << ((ioc_config & MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ) >> MPI3_SYSIF_IOC_CONFIG_OPER_RPY_ENT_SZ_SHIFT); mrioc->facts.ioc_num = facts_data->ioc_number; mrioc->facts.who_init = facts_data->who_init; mrioc->facts.max_msix_vectors = le16_to_cpu(facts_data->max_msix_vectors); mrioc->facts.personality = (facts_flags & MPI3_IOCFACTS_FLAGS_PERSONALITY_MASK); mrioc->facts.dma_mask = (facts_flags & MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_MASK) >> MPI3_IOCFACTS_FLAGS_DMA_ADDRESS_WIDTH_SHIFT; mrioc->facts.protocol_flags = facts_data->protocol_flags; mrioc->facts.mpi_version = le32_to_cpu(facts_data->mpi_version.word); mrioc->facts.max_reqs = le16_to_cpu(facts_data->max_outstanding_requests); mrioc->facts.product_id = le16_to_cpu(facts_data->product_id); mrioc->facts.reply_sz = le16_to_cpu(facts_data->reply_frame_size) * 4; mrioc->facts.exceptions = le16_to_cpu(facts_data->ioc_exceptions); mrioc->facts.max_perids = le16_to_cpu(facts_data->max_persistent_id); mrioc->facts.max_vds = le16_to_cpu(facts_data->max_vds); mrioc->facts.max_hpds = le16_to_cpu(facts_data->max_host_pds); mrioc->facts.max_advhpds = le16_to_cpu(facts_data->max_adv_host_pds); mrioc->facts.max_raid_pds = le16_to_cpu(facts_data->max_raid_pds); mrioc->facts.max_nvme = le16_to_cpu(facts_data->max_nvme); mrioc->facts.max_pcie_switches = le16_to_cpu(facts_data->max_pcie_switches); mrioc->facts.max_sasexpanders = le16_to_cpu(facts_data->max_sas_expanders); mrioc->facts.max_sasinitiators = le16_to_cpu(facts_data->max_sas_initiators); mrioc->facts.max_enclosures = le16_to_cpu(facts_data->max_enclosures); mrioc->facts.min_devhandle = le16_to_cpu(facts_data->min_dev_handle); mrioc->facts.max_devhandle = le16_to_cpu(facts_data->max_dev_handle); mrioc->facts.max_op_req_q = le16_to_cpu(facts_data->max_operational_request_queues); mrioc->facts.max_op_reply_q = le16_to_cpu(facts_data->max_operational_reply_queues); mrioc->facts.ioc_capabilities = le32_to_cpu(facts_data->ioc_capabilities); mrioc->facts.fw_ver.build_num = le16_to_cpu(facts_data->fw_version.build_num); mrioc->facts.fw_ver.cust_id = le16_to_cpu(facts_data->fw_version.customer_id); mrioc->facts.fw_ver.ph_minor = facts_data->fw_version.phase_minor; mrioc->facts.fw_ver.ph_major = facts_data->fw_version.phase_major; mrioc->facts.fw_ver.gen_minor = facts_data->fw_version.gen_minor; mrioc->facts.fw_ver.gen_major = facts_data->fw_version.gen_major; mrioc->msix_count = min_t(int, mrioc->msix_count, mrioc->facts.max_msix_vectors); mrioc->facts.sge_mod_mask = facts_data->sge_modifier_mask; mrioc->facts.sge_mod_value = facts_data->sge_modifier_value; mrioc->facts.sge_mod_shift = facts_data->sge_modifier_shift; mrioc->facts.shutdown_timeout = le16_to_cpu(facts_data->shutdown_timeout); mrioc->facts.max_dev_per_tg = facts_data->max_devices_per_throttle_group; mrioc->facts.io_throttle_data_length = le16_to_cpu(facts_data->io_throttle_data_length); mrioc->facts.max_io_throttle_group = le16_to_cpu(facts_data->max_io_throttle_group); mrioc->facts.io_throttle_low = le16_to_cpu(facts_data->io_throttle_low); mrioc->facts.io_throttle_high = le16_to_cpu(facts_data->io_throttle_high); /* Store in 512b block count */ if (mrioc->facts.io_throttle_data_length) mrioc->io_throttle_data_length = (mrioc->facts.io_throttle_data_length * 2 * 4); else /* set the length to 1MB + 1K to disable throttle */ mrioc->io_throttle_data_length = MPI3MR_MAX_SECTORS + 2; mrioc->io_throttle_high = (mrioc->facts.io_throttle_high * 2 * 1024); mrioc->io_throttle_low = (mrioc->facts.io_throttle_low * 2 * 1024); ioc_info(mrioc, "ioc_num(%d), maxopQ(%d), maxopRepQ(%d), maxdh(%d),", mrioc->facts.ioc_num, mrioc->facts.max_op_req_q, mrioc->facts.max_op_reply_q, mrioc->facts.max_devhandle); ioc_info(mrioc, "maxreqs(%d), mindh(%d) maxvectors(%d) maxperids(%d)\n", mrioc->facts.max_reqs, mrioc->facts.min_devhandle, mrioc->facts.max_msix_vectors, mrioc->facts.max_perids); ioc_info(mrioc, "SGEModMask 0x%x SGEModVal 0x%x SGEModShift 0x%x ", mrioc->facts.sge_mod_mask, mrioc->facts.sge_mod_value, mrioc->facts.sge_mod_shift); ioc_info(mrioc, "DMA mask %d InitialPE status 0x%x\n", mrioc->facts.dma_mask, (facts_flags & MPI3_IOCFACTS_FLAGS_INITIAL_PORT_ENABLE_MASK)); ioc_info(mrioc, "max_dev_per_throttle_group(%d), max_throttle_groups(%d)\n", mrioc->facts.max_dev_per_tg, mrioc->facts.max_io_throttle_group); ioc_info(mrioc, "io_throttle_data_len(%dKiB), io_throttle_high(%dMiB), io_throttle_low(%dMiB)\n", mrioc->facts.io_throttle_data_length * 4, mrioc->facts.io_throttle_high, mrioc->facts.io_throttle_low); } /** * mpi3mr_alloc_reply_sense_bufs - Send IOC Init * @mrioc: Adapter instance reference * * Allocate and initialize the reply free buffers, sense * buffers, reply free queue and sense buffer queue. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_alloc_reply_sense_bufs(struct mpi3mr_ioc *mrioc) { int retval = 0; u32 sz, i; if (mrioc->init_cmds.reply) return retval; mrioc->init_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->init_cmds.reply) goto out_failed; mrioc->bsg_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->bsg_cmds.reply) goto out_failed; mrioc->transport_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->transport_cmds.reply) goto out_failed; for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) { mrioc->dev_rmhs_cmds[i].reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->dev_rmhs_cmds[i].reply) goto out_failed; } for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) { mrioc->evtack_cmds[i].reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->evtack_cmds[i].reply) goto out_failed; } mrioc->host_tm_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->host_tm_cmds.reply) goto out_failed; mrioc->pel_cmds.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->pel_cmds.reply) goto out_failed; mrioc->pel_abort_cmd.reply = kzalloc(mrioc->reply_sz, GFP_KERNEL); if (!mrioc->pel_abort_cmd.reply) goto out_failed; mrioc->dev_handle_bitmap_bits = mrioc->facts.max_devhandle; mrioc->removepend_bitmap = bitmap_zalloc(mrioc->dev_handle_bitmap_bits, GFP_KERNEL); if (!mrioc->removepend_bitmap) goto out_failed; mrioc->devrem_bitmap = bitmap_zalloc(MPI3MR_NUM_DEVRMCMD, GFP_KERNEL); if (!mrioc->devrem_bitmap) goto out_failed; mrioc->evtack_cmds_bitmap = bitmap_zalloc(MPI3MR_NUM_EVTACKCMD, GFP_KERNEL); if (!mrioc->evtack_cmds_bitmap) goto out_failed; mrioc->num_reply_bufs = mrioc->facts.max_reqs + MPI3MR_NUM_EVT_REPLIES; mrioc->reply_free_qsz = mrioc->num_reply_bufs + 1; mrioc->num_sense_bufs = mrioc->facts.max_reqs / MPI3MR_SENSEBUF_FACTOR; mrioc->sense_buf_q_sz = mrioc->num_sense_bufs + 1; /* reply buffer pool, 16 byte align */ sz = mrioc->num_reply_bufs * mrioc->reply_sz; mrioc->reply_buf_pool = dma_pool_create("reply_buf pool", &mrioc->pdev->dev, sz, 16, 0); if (!mrioc->reply_buf_pool) { ioc_err(mrioc, "reply buf pool: dma_pool_create failed\n"); goto out_failed; } mrioc->reply_buf = dma_pool_zalloc(mrioc->reply_buf_pool, GFP_KERNEL, &mrioc->reply_buf_dma); if (!mrioc->reply_buf) goto out_failed; mrioc->reply_buf_dma_max_address = mrioc->reply_buf_dma + sz; /* reply free queue, 8 byte align */ sz = mrioc->reply_free_qsz * 8; mrioc->reply_free_q_pool = dma_pool_create("reply_free_q pool", &mrioc->pdev->dev, sz, 8, 0); if (!mrioc->reply_free_q_pool) { ioc_err(mrioc, "reply_free_q pool: dma_pool_create failed\n"); goto out_failed; } mrioc->reply_free_q = dma_pool_zalloc(mrioc->reply_free_q_pool, GFP_KERNEL, &mrioc->reply_free_q_dma); if (!mrioc->reply_free_q) goto out_failed; /* sense buffer pool, 4 byte align */ sz = mrioc->num_sense_bufs * MPI3MR_SENSE_BUF_SZ; mrioc->sense_buf_pool = dma_pool_create("sense_buf pool", &mrioc->pdev->dev, sz, 4, 0); if (!mrioc->sense_buf_pool) { ioc_err(mrioc, "sense_buf pool: dma_pool_create failed\n"); goto out_failed; } mrioc->sense_buf = dma_pool_zalloc(mrioc->sense_buf_pool, GFP_KERNEL, &mrioc->sense_buf_dma); if (!mrioc->sense_buf) goto out_failed; /* sense buffer queue, 8 byte align */ sz = mrioc->sense_buf_q_sz * 8; mrioc->sense_buf_q_pool = dma_pool_create("sense_buf_q pool", &mrioc->pdev->dev, sz, 8, 0); if (!mrioc->sense_buf_q_pool) { ioc_err(mrioc, "sense_buf_q pool: dma_pool_create failed\n"); goto out_failed; } mrioc->sense_buf_q = dma_pool_zalloc(mrioc->sense_buf_q_pool, GFP_KERNEL, &mrioc->sense_buf_q_dma); if (!mrioc->sense_buf_q) goto out_failed; return retval; out_failed: retval = -1; return retval; } /** * mpimr_initialize_reply_sbuf_queues - initialize reply sense * buffers * @mrioc: Adapter instance reference * * Helper function to initialize reply and sense buffers along * with some debug prints. * * Return: None. */ static void mpimr_initialize_reply_sbuf_queues(struct mpi3mr_ioc *mrioc) { u32 sz, i; dma_addr_t phy_addr; sz = mrioc->num_reply_bufs * mrioc->reply_sz; ioc_info(mrioc, "reply buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n", mrioc->reply_buf, mrioc->num_reply_bufs, mrioc->reply_sz, (sz / 1024), (unsigned long long)mrioc->reply_buf_dma); sz = mrioc->reply_free_qsz * 8; ioc_info(mrioc, "reply_free_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), reply_dma(0x%llx)\n", mrioc->reply_free_q, mrioc->reply_free_qsz, 8, (sz / 1024), (unsigned long long)mrioc->reply_free_q_dma); sz = mrioc->num_sense_bufs * MPI3MR_SENSE_BUF_SZ; ioc_info(mrioc, "sense_buf pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n", mrioc->sense_buf, mrioc->num_sense_bufs, MPI3MR_SENSE_BUF_SZ, (sz / 1024), (unsigned long long)mrioc->sense_buf_dma); sz = mrioc->sense_buf_q_sz * 8; ioc_info(mrioc, "sense_buf_q pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB), sense_dma(0x%llx)\n", mrioc->sense_buf_q, mrioc->sense_buf_q_sz, 8, (sz / 1024), (unsigned long long)mrioc->sense_buf_q_dma); /* initialize Reply buffer Queue */ for (i = 0, phy_addr = mrioc->reply_buf_dma; i < mrioc->num_reply_bufs; i++, phy_addr += mrioc->reply_sz) mrioc->reply_free_q[i] = cpu_to_le64(phy_addr); mrioc->reply_free_q[i] = cpu_to_le64(0); /* initialize Sense Buffer Queue */ for (i = 0, phy_addr = mrioc->sense_buf_dma; i < mrioc->num_sense_bufs; i++, phy_addr += MPI3MR_SENSE_BUF_SZ) mrioc->sense_buf_q[i] = cpu_to_le64(phy_addr); mrioc->sense_buf_q[i] = cpu_to_le64(0); } /** * mpi3mr_issue_iocinit - Send IOC Init * @mrioc: Adapter instance reference * * Issue IOC Init MPI request through admin queue and wait for * the completion of it or time out. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_issue_iocinit(struct mpi3mr_ioc *mrioc) { struct mpi3_ioc_init_request iocinit_req; struct mpi3_driver_info_layout *drv_info; dma_addr_t data_dma; u32 data_len = sizeof(*drv_info); int retval = 0; ktime_t current_time; drv_info = dma_alloc_coherent(&mrioc->pdev->dev, data_len, &data_dma, GFP_KERNEL); if (!drv_info) { retval = -1; goto out; } mpimr_initialize_reply_sbuf_queues(mrioc); drv_info->information_length = cpu_to_le32(data_len); strscpy(drv_info->driver_signature, "Broadcom", sizeof(drv_info->driver_signature)); strscpy(drv_info->os_name, utsname()->sysname, sizeof(drv_info->os_name)); strscpy(drv_info->os_version, utsname()->release, sizeof(drv_info->os_version)); strscpy(drv_info->driver_name, MPI3MR_DRIVER_NAME, sizeof(drv_info->driver_name)); strscpy(drv_info->driver_version, MPI3MR_DRIVER_VERSION, sizeof(drv_info->driver_version)); strscpy(drv_info->driver_release_date, MPI3MR_DRIVER_RELDATE, sizeof(drv_info->driver_release_date)); drv_info->driver_capabilities = 0; memcpy((u8 *)&mrioc->driver_info, (u8 *)drv_info, sizeof(mrioc->driver_info)); memset(&iocinit_req, 0, sizeof(iocinit_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue IOCInit: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; iocinit_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); iocinit_req.function = MPI3_FUNCTION_IOC_INIT; iocinit_req.mpi_version.mpi3_version.dev = MPI3_VERSION_DEV; iocinit_req.mpi_version.mpi3_version.unit = MPI3_VERSION_UNIT; iocinit_req.mpi_version.mpi3_version.major = MPI3_VERSION_MAJOR; iocinit_req.mpi_version.mpi3_version.minor = MPI3_VERSION_MINOR; iocinit_req.who_init = MPI3_WHOINIT_HOST_DRIVER; iocinit_req.reply_free_queue_depth = cpu_to_le16(mrioc->reply_free_qsz); iocinit_req.reply_free_queue_address = cpu_to_le64(mrioc->reply_free_q_dma); iocinit_req.sense_buffer_length = cpu_to_le16(MPI3MR_SENSE_BUF_SZ); iocinit_req.sense_buffer_free_queue_depth = cpu_to_le16(mrioc->sense_buf_q_sz); iocinit_req.sense_buffer_free_queue_address = cpu_to_le64(mrioc->sense_buf_q_dma); iocinit_req.driver_information_address = cpu_to_le64(data_dma); current_time = ktime_get_real(); iocinit_req.time_stamp = cpu_to_le64(ktime_to_ms(current_time)); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &iocinit_req, sizeof(iocinit_req), 1); if (retval) { ioc_err(mrioc, "Issue IOCInit: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_IOCINIT_TIMEOUT); ioc_err(mrioc, "ioc_init timed out\n"); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Issue IOCInit: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } mrioc->reply_free_queue_host_index = mrioc->num_reply_bufs; writel(mrioc->reply_free_queue_host_index, &mrioc->sysif_regs->reply_free_host_index); mrioc->sbq_host_index = mrioc->num_sense_bufs; writel(mrioc->sbq_host_index, &mrioc->sysif_regs->sense_buffer_free_host_index); out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: if (drv_info) dma_free_coherent(&mrioc->pdev->dev, data_len, drv_info, data_dma); return retval; } /** * mpi3mr_unmask_events - Unmask events in event mask bitmap * @mrioc: Adapter instance reference * @event: MPI event ID * * Un mask the specific event by resetting the event_mask * bitmap. * * Return: 0 on success, non-zero on failures. */ static void mpi3mr_unmask_events(struct mpi3mr_ioc *mrioc, u16 event) { u32 desired_event; u8 word; if (event >= 128) return; desired_event = (1 << (event % 32)); word = event / 32; mrioc->event_masks[word] &= ~desired_event; } /** * mpi3mr_issue_event_notification - Send event notification * @mrioc: Adapter instance reference * * Issue event notification MPI request through admin queue and * wait for the completion of it or time out. * * Return: 0 on success, non-zero on failures. */ static int mpi3mr_issue_event_notification(struct mpi3mr_ioc *mrioc) { struct mpi3_event_notification_request evtnotify_req; int retval = 0; u8 i; memset(&evtnotify_req, 0, sizeof(evtnotify_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue EvtNotify: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; evtnotify_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); evtnotify_req.function = MPI3_FUNCTION_EVENT_NOTIFICATION; for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++) evtnotify_req.event_masks[i] = cpu_to_le32(mrioc->event_masks[i]); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &evtnotify_req, sizeof(evtnotify_req), 1); if (retval) { ioc_err(mrioc, "Issue EvtNotify: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "event notification timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_EVTNOTIFY_TIMEOUT); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Issue EvtNotify: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_process_event_ack - Process event acknowledgment * @mrioc: Adapter instance reference * @event: MPI3 event ID * @event_ctx: event context * * Send event acknowledgment through admin queue and wait for * it to complete. * * Return: 0 on success, non-zero on failures. */ int mpi3mr_process_event_ack(struct mpi3mr_ioc *mrioc, u8 event, u32 event_ctx) { struct mpi3_event_ack_request evtack_req; int retval = 0; memset(&evtack_req, 0, sizeof(evtack_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Send EvtAck: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; evtack_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); evtack_req.function = MPI3_FUNCTION_EVENT_ACK; evtack_req.event = event; evtack_req.event_context = cpu_to_le32(event_ctx); init_completion(&mrioc->init_cmds.done); retval = mpi3mr_admin_request_post(mrioc, &evtack_req, sizeof(evtack_req), 1); if (retval) { ioc_err(mrioc, "Send EvtAck: Admin Post failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->init_cmds.done, (MPI3MR_INTADMCMD_TIMEOUT * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "Issue EvtNotify: command timed out\n"); if (!(mrioc->init_cmds.state & MPI3MR_CMD_RESET)) mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_EVTACK_TIMEOUT, 1); retval = -1; goto out_unlock; } if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK) != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "Send EvtAck: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK), mrioc->init_cmds.ioc_loginfo); retval = -1; goto out_unlock; } out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /** * mpi3mr_alloc_chain_bufs - Allocate chain buffers * @mrioc: Adapter instance reference * * Allocate chain buffers and set a bitmap to indicate free * chain buffers. Chain buffers are used to pass the SGE * information along with MPI3 SCSI IO requests for host I/O. * * Return: 0 on success, non-zero on failure */ static int mpi3mr_alloc_chain_bufs(struct mpi3mr_ioc *mrioc) { int retval = 0; u32 sz, i; u16 num_chains; if (mrioc->chain_sgl_list) return retval; num_chains = mrioc->max_host_ios / MPI3MR_CHAINBUF_FACTOR; if (prot_mask & (SHOST_DIX_TYPE0_PROTECTION | SHOST_DIX_TYPE1_PROTECTION | SHOST_DIX_TYPE2_PROTECTION | SHOST_DIX_TYPE3_PROTECTION)) num_chains += (num_chains / MPI3MR_CHAINBUFDIX_FACTOR); mrioc->chain_buf_count = num_chains; sz = sizeof(struct chain_element) * num_chains; mrioc->chain_sgl_list = kzalloc(sz, GFP_KERNEL); if (!mrioc->chain_sgl_list) goto out_failed; sz = MPI3MR_PAGE_SIZE_4K; mrioc->chain_buf_pool = dma_pool_create("chain_buf pool", &mrioc->pdev->dev, sz, 16, 0); if (!mrioc->chain_buf_pool) { ioc_err(mrioc, "chain buf pool: dma_pool_create failed\n"); goto out_failed; } for (i = 0; i < num_chains; i++) { mrioc->chain_sgl_list[i].addr = dma_pool_zalloc(mrioc->chain_buf_pool, GFP_KERNEL, &mrioc->chain_sgl_list[i].dma_addr); if (!mrioc->chain_sgl_list[i].addr) goto out_failed; } mrioc->chain_bitmap = bitmap_zalloc(num_chains, GFP_KERNEL); if (!mrioc->chain_bitmap) goto out_failed; return retval; out_failed: retval = -1; return retval; } /** * mpi3mr_port_enable_complete - Mark port enable complete * @mrioc: Adapter instance reference * @drv_cmd: Internal command tracker * * Call back for asynchronous port enable request sets the * driver command to indicate port enable request is complete. * * Return: Nothing */ static void mpi3mr_port_enable_complete(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd) { drv_cmd->callback = NULL; mrioc->scan_started = 0; if (drv_cmd->state & MPI3MR_CMD_RESET) mrioc->scan_failed = MPI3_IOCSTATUS_INTERNAL_ERROR; else mrioc->scan_failed = drv_cmd->ioc_status; drv_cmd->state = MPI3MR_CMD_NOTUSED; } /** * mpi3mr_issue_port_enable - Issue Port Enable * @mrioc: Adapter instance reference * @async: Flag to wait for completion or not * * Issue Port Enable MPI request through admin queue and if the * async flag is not set wait for the completion of the port * enable or time out. * * Return: 0 on success, non-zero on failures. */ int mpi3mr_issue_port_enable(struct mpi3mr_ioc *mrioc, u8 async) { struct mpi3_port_enable_request pe_req; int retval = 0; u32 pe_timeout = MPI3MR_PORTENABLE_TIMEOUT; memset(&pe_req, 0, sizeof(pe_req)); mutex_lock(&mrioc->init_cmds.mutex); if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "Issue PortEnable: Init command is in use\n"); mutex_unlock(&mrioc->init_cmds.mutex); goto out; } mrioc->init_cmds.state = MPI3MR_CMD_PENDING; if (async) { mrioc->init_cmds.is_waiting = 0; mrioc->init_cmds.callback = mpi3mr_port_enable_complete; } else { mrioc->init_cmds.is_waiting = 1; mrioc->init_cmds.callback = NULL; init_completion(&mrioc->init_cmds.done); } pe_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS); pe_req.function = MPI3_FUNCTION_PORT_ENABLE; retval = mpi3mr_admin_request_post(mrioc, &pe_req, sizeof(pe_req), 1); if (retval) { ioc_err(mrioc, "Issue PortEnable: Admin Post failed\n"); goto out_unlock; } if (async) { mutex_unlock(&mrioc->init_cmds.mutex); goto out; } wait_for_completion_timeout(&mrioc->init_cmds.done, (pe_timeout * HZ)); if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) { ioc_err(mrioc, "port enable timed out\n"); retval = -1; mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_PE_TIMEOUT); goto out_unlock; } mpi3mr_port_enable_complete(mrioc, &mrioc->init_cmds); out_unlock: mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->init_cmds.mutex); out: return retval; } /* Protocol type to name mapper structure */ static const struct { u8 protocol; char *name; } mpi3mr_protocols[] = { { MPI3_IOCFACTS_PROTOCOL_SCSI_INITIATOR, "Initiator" }, { MPI3_IOCFACTS_PROTOCOL_SCSI_TARGET, "Target" }, { MPI3_IOCFACTS_PROTOCOL_NVME, "NVMe attachment" }, }; /* Capability to name mapper structure*/ static const struct { u32 capability; char *name; } mpi3mr_capabilities[] = { { MPI3_IOCFACTS_CAPABILITY_RAID_CAPABLE, "RAID" }, { MPI3_IOCFACTS_CAPABILITY_MULTIPATH_ENABLED, "MultiPath" }, }; /** * mpi3mr_print_ioc_info - Display controller information * @mrioc: Adapter instance reference * * Display controller personalit, capability, supported * protocols etc. * * Return: Nothing */ static void mpi3mr_print_ioc_info(struct mpi3mr_ioc *mrioc) { int i = 0, bytes_written = 0; char personality[16]; char protocol[50] = {0}; char capabilities[100] = {0}; struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver; switch (mrioc->facts.personality) { case MPI3_IOCFACTS_FLAGS_PERSONALITY_EHBA: strncpy(personality, "Enhanced HBA", sizeof(personality)); break; case MPI3_IOCFACTS_FLAGS_PERSONALITY_RAID_DDR: strncpy(personality, "RAID", sizeof(personality)); break; default: strncpy(personality, "Unknown", sizeof(personality)); break; } ioc_info(mrioc, "Running in %s Personality", personality); ioc_info(mrioc, "FW version(%d.%d.%d.%d.%d.%d)\n", fwver->gen_major, fwver->gen_minor, fwver->ph_major, fwver->ph_minor, fwver->cust_id, fwver->build_num); for (i = 0; i < ARRAY_SIZE(mpi3mr_protocols); i++) { if (mrioc->facts.protocol_flags & mpi3mr_protocols[i].protocol) { bytes_written += scnprintf(protocol + bytes_written, sizeof(protocol) - bytes_written, "%s%s", bytes_written ? "," : "", mpi3mr_protocols[i].name); } } bytes_written = 0; for (i = 0; i < ARRAY_SIZE(mpi3mr_capabilities); i++) { if (mrioc->facts.protocol_flags & mpi3mr_capabilities[i].capability) { bytes_written += scnprintf(capabilities + bytes_written, sizeof(capabilities) - bytes_written, "%s%s", bytes_written ? "," : "", mpi3mr_capabilities[i].name); } } ioc_info(mrioc, "Protocol=(%s), Capabilities=(%s)\n", protocol, capabilities); } /** * mpi3mr_cleanup_resources - Free PCI resources * @mrioc: Adapter instance reference * * Unmap PCI device memory and disable PCI device. * * Return: 0 on success and non-zero on failure. */ void mpi3mr_cleanup_resources(struct mpi3mr_ioc *mrioc) { struct pci_dev *pdev = mrioc->pdev; mpi3mr_cleanup_isr(mrioc); if (mrioc->sysif_regs) { iounmap((void __iomem *)mrioc->sysif_regs); mrioc->sysif_regs = NULL; } if (pci_is_enabled(pdev)) { if (mrioc->bars) pci_release_selected_regions(pdev, mrioc->bars); pci_disable_device(pdev); } } /** * mpi3mr_setup_resources - Enable PCI resources * @mrioc: Adapter instance reference * * Enable PCI device memory, MSI-x registers and set DMA mask. * * Return: 0 on success and non-zero on failure. */ int mpi3mr_setup_resources(struct mpi3mr_ioc *mrioc) { struct pci_dev *pdev = mrioc->pdev; u32 memap_sz = 0; int i, retval = 0, capb = 0; u16 message_control; u64 dma_mask = mrioc->dma_mask ? mrioc->dma_mask : ((sizeof(dma_addr_t) > 4) ? DMA_BIT_MASK(64) : DMA_BIT_MASK(32)); if (pci_enable_device_mem(pdev)) { ioc_err(mrioc, "pci_enable_device_mem: failed\n"); retval = -ENODEV; goto out_failed; } capb = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (!capb) { ioc_err(mrioc, "Unable to find MSI-X Capabilities\n"); retval = -ENODEV; goto out_failed; } mrioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_request_selected_regions(pdev, mrioc->bars, mrioc->driver_name)) { ioc_err(mrioc, "pci_request_selected_regions: failed\n"); retval = -ENODEV; goto out_failed; } for (i = 0; (i < DEVICE_COUNT_RESOURCE); i++) { if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { mrioc->sysif_regs_phys = pci_resource_start(pdev, i); memap_sz = pci_resource_len(pdev, i); mrioc->sysif_regs = ioremap(mrioc->sysif_regs_phys, memap_sz); break; } } pci_set_master(pdev); retval = dma_set_mask_and_coherent(&pdev->dev, dma_mask); if (retval) { if (dma_mask != DMA_BIT_MASK(32)) { ioc_warn(mrioc, "Setting 64 bit DMA mask failed\n"); dma_mask = DMA_BIT_MASK(32); retval = dma_set_mask_and_coherent(&pdev->dev, dma_mask); } if (retval) { mrioc->dma_mask = 0; ioc_err(mrioc, "Setting 32 bit DMA mask also failed\n"); goto out_failed; } } mrioc->dma_mask = dma_mask; if (!mrioc->sysif_regs) { ioc_err(mrioc, "Unable to map adapter memory or resource not found\n"); retval = -EINVAL; goto out_failed; } pci_read_config_word(pdev, capb + 2, &message_control); mrioc->msix_count = (message_control & 0x3FF) + 1; pci_save_state(pdev); pci_set_drvdata(pdev, mrioc->shost); mpi3mr_ioc_disable_intr(mrioc); ioc_info(mrioc, "iomem(0x%016llx), mapped(0x%p), size(%d)\n", (unsigned long long)mrioc->sysif_regs_phys, mrioc->sysif_regs, memap_sz); ioc_info(mrioc, "Number of MSI-X vectors found in capabilities: (%d)\n", mrioc->msix_count); if (!reset_devices && poll_queues > 0) mrioc->requested_poll_qcount = min_t(int, poll_queues, mrioc->msix_count - 2); return retval; out_failed: mpi3mr_cleanup_resources(mrioc); return retval; } /** * mpi3mr_enable_events - Enable required events * @mrioc: Adapter instance reference * * This routine unmasks the events required by the driver by * sennding appropriate event mask bitmapt through an event * notification request. * * Return: 0 on success and non-zero on failure. */ static int mpi3mr_enable_events(struct mpi3mr_ioc *mrioc) { int retval = 0; u32 i; for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++) mrioc->event_masks[i] = -1; mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_ADDED); mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_INFO_CHANGED); mpi3mr_unmask_events(mrioc, MPI3_EVENT_DEVICE_STATUS_CHANGE); mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENCL_DEVICE_STATUS_CHANGE); mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENCL_DEVICE_ADDED); mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_TOPOLOGY_CHANGE_LIST); mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_DISCOVERY); mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_DEVICE_DISCOVERY_ERROR); mpi3mr_unmask_events(mrioc, MPI3_EVENT_SAS_BROADCAST_PRIMITIVE); mpi3mr_unmask_events(mrioc, MPI3_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); mpi3mr_unmask_events(mrioc, MPI3_EVENT_PCIE_ENUMERATION); mpi3mr_unmask_events(mrioc, MPI3_EVENT_PREPARE_FOR_RESET); mpi3mr_unmask_events(mrioc, MPI3_EVENT_CABLE_MGMT); mpi3mr_unmask_events(mrioc, MPI3_EVENT_ENERGY_PACK_CHANGE); retval = mpi3mr_issue_event_notification(mrioc); if (retval) ioc_err(mrioc, "failed to issue event notification %d\n", retval); return retval; } /** * mpi3mr_init_ioc - Initialize the controller * @mrioc: Adapter instance reference * * This the controller initialization routine, executed either * after soft reset or from pci probe callback. * Setup the required resources, memory map the controller * registers, create admin and operational reply queue pairs, * allocate required memory for reply pool, sense buffer pool, * issue IOC init request to the firmware, unmask the events and * issue port enable to discover SAS/SATA/NVMe devies and RAID * volumes. * * Return: 0 on success and non-zero on failure. */ int mpi3mr_init_ioc(struct mpi3mr_ioc *mrioc) { int retval = 0; u8 retry = 0; struct mpi3_ioc_facts_data facts_data; u32 sz; retry_init: retval = mpi3mr_bring_ioc_ready(mrioc); if (retval) { ioc_err(mrioc, "Failed to bring ioc ready: error %d\n", retval); goto out_failed_noretry; } retval = mpi3mr_setup_isr(mrioc, 1); if (retval) { ioc_err(mrioc, "Failed to setup ISR error %d\n", retval); goto out_failed_noretry; } retval = mpi3mr_issue_iocfacts(mrioc, &facts_data); if (retval) { ioc_err(mrioc, "Failed to Issue IOC Facts %d\n", retval); goto out_failed; } mrioc->max_host_ios = mrioc->facts.max_reqs - MPI3MR_INTERNAL_CMDS_RESVD; mrioc->num_io_throttle_group = mrioc->facts.max_io_throttle_group; atomic_set(&mrioc->pend_large_data_sz, 0); if (reset_devices) mrioc->max_host_ios = min_t(int, mrioc->max_host_ios, MPI3MR_HOST_IOS_KDUMP); if (!(mrioc->facts.ioc_capabilities & MPI3_IOCFACTS_CAPABILITY_MULTIPATH_ENABLED)) { mrioc->sas_transport_enabled = 1; mrioc->scsi_device_channel = 1; mrioc->shost->max_channel = 1; mrioc->shost->transportt = mpi3mr_transport_template; } mrioc->reply_sz = mrioc->facts.reply_sz; retval = mpi3mr_check_reset_dma_mask(mrioc); if (retval) { ioc_err(mrioc, "Resetting dma mask failed %d\n", retval); goto out_failed_noretry; } mpi3mr_print_ioc_info(mrioc); dprint_init(mrioc, "allocating config page buffers\n"); mrioc->cfg_page = dma_alloc_coherent(&mrioc->pdev->dev, MPI3MR_DEFAULT_CFG_PAGE_SZ, &mrioc->cfg_page_dma, GFP_KERNEL); if (!mrioc->cfg_page) goto out_failed_noretry; mrioc->cfg_page_sz = MPI3MR_DEFAULT_CFG_PAGE_SZ; retval = mpi3mr_alloc_reply_sense_bufs(mrioc); if (retval) { ioc_err(mrioc, "%s :Failed to allocated reply sense buffers %d\n", __func__, retval); goto out_failed_noretry; } retval = mpi3mr_alloc_chain_bufs(mrioc); if (retval) { ioc_err(mrioc, "Failed to allocated chain buffers %d\n", retval); goto out_failed_noretry; } retval = mpi3mr_issue_iocinit(mrioc); if (retval) { ioc_err(mrioc, "Failed to Issue IOC Init %d\n", retval); goto out_failed; } retval = mpi3mr_print_pkg_ver(mrioc); if (retval) { ioc_err(mrioc, "failed to get package version\n"); goto out_failed; } retval = mpi3mr_setup_isr(mrioc, 0); if (retval) { ioc_err(mrioc, "Failed to re-setup ISR, error %d\n", retval); goto out_failed_noretry; } retval = mpi3mr_create_op_queues(mrioc); if (retval) { ioc_err(mrioc, "Failed to create OpQueues error %d\n", retval); goto out_failed; } if (!mrioc->pel_seqnum_virt) { dprint_init(mrioc, "allocating memory for pel_seqnum_virt\n"); mrioc->pel_seqnum_sz = sizeof(struct mpi3_pel_seq); mrioc->pel_seqnum_virt = dma_alloc_coherent(&mrioc->pdev->dev, mrioc->pel_seqnum_sz, &mrioc->pel_seqnum_dma, GFP_KERNEL); if (!mrioc->pel_seqnum_virt) { retval = -ENOMEM; goto out_failed_noretry; } } if (!mrioc->throttle_groups && mrioc->num_io_throttle_group) { dprint_init(mrioc, "allocating memory for throttle groups\n"); sz = sizeof(struct mpi3mr_throttle_group_info); mrioc->throttle_groups = kcalloc(mrioc->num_io_throttle_group, sz, GFP_KERNEL); if (!mrioc->throttle_groups) goto out_failed_noretry; } retval = mpi3mr_enable_events(mrioc); if (retval) { ioc_err(mrioc, "failed to enable events %d\n", retval); goto out_failed; } ioc_info(mrioc, "controller initialization completed successfully\n"); return retval; out_failed: if (retry < 2) { retry++; ioc_warn(mrioc, "retrying controller initialization, retry_count:%d\n", retry); mpi3mr_memset_buffers(mrioc); goto retry_init; } out_failed_noretry: ioc_err(mrioc, "controller initialization failed\n"); mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, MPI3MR_RESET_FROM_CTLR_CLEANUP); mrioc->unrecoverable = 1; return retval; } /** * mpi3mr_reinit_ioc - Re-Initialize the controller * @mrioc: Adapter instance reference * @is_resume: Called from resume or reset path * * This the controller re-initialization routine, executed from * the soft reset handler or resume callback. Creates * operational reply queue pairs, allocate required memory for * reply pool, sense buffer pool, issue IOC init request to the * firmware, unmask the events and issue port enable to discover * SAS/SATA/NVMe devices and RAID volumes. * * Return: 0 on success and non-zero on failure. */ int mpi3mr_reinit_ioc(struct mpi3mr_ioc *mrioc, u8 is_resume) { int retval = 0; u8 retry = 0; struct mpi3_ioc_facts_data facts_data; u32 pe_timeout, ioc_status; retry_init: pe_timeout = (MPI3MR_PORTENABLE_TIMEOUT / MPI3MR_PORTENABLE_POLL_INTERVAL); dprint_reset(mrioc, "bringing up the controller to ready state\n"); retval = mpi3mr_bring_ioc_ready(mrioc); if (retval) { ioc_err(mrioc, "failed to bring to ready state\n"); goto out_failed_noretry; } if (is_resume) { dprint_reset(mrioc, "setting up single ISR\n"); retval = mpi3mr_setup_isr(mrioc, 1); if (retval) { ioc_err(mrioc, "failed to setup ISR\n"); goto out_failed_noretry; } } else mpi3mr_ioc_enable_intr(mrioc); dprint_reset(mrioc, "getting ioc_facts\n"); retval = mpi3mr_issue_iocfacts(mrioc, &facts_data); if (retval) { ioc_err(mrioc, "failed to get ioc_facts\n"); goto out_failed; } dprint_reset(mrioc, "validating ioc_facts\n"); retval = mpi3mr_revalidate_factsdata(mrioc); if (retval) { ioc_err(mrioc, "failed to revalidate ioc_facts data\n"); goto out_failed_noretry; } mpi3mr_print_ioc_info(mrioc); dprint_reset(mrioc, "sending ioc_init\n"); retval = mpi3mr_issue_iocinit(mrioc); if (retval) { ioc_err(mrioc, "failed to send ioc_init\n"); goto out_failed; } dprint_reset(mrioc, "getting package version\n"); retval = mpi3mr_print_pkg_ver(mrioc); if (retval) { ioc_err(mrioc, "failed to get package version\n"); goto out_failed; } if (is_resume) { dprint_reset(mrioc, "setting up multiple ISR\n"); retval = mpi3mr_setup_isr(mrioc, 0); if (retval) { ioc_err(mrioc, "failed to re-setup ISR\n"); goto out_failed_noretry; } } dprint_reset(mrioc, "creating operational queue pairs\n"); retval = mpi3mr_create_op_queues(mrioc); if (retval) { ioc_err(mrioc, "failed to create operational queue pairs\n"); goto out_failed; } if (!mrioc->pel_seqnum_virt) { dprint_reset(mrioc, "allocating memory for pel_seqnum_virt\n"); mrioc->pel_seqnum_sz = sizeof(struct mpi3_pel_seq); mrioc->pel_seqnum_virt = dma_alloc_coherent(&mrioc->pdev->dev, mrioc->pel_seqnum_sz, &mrioc->pel_seqnum_dma, GFP_KERNEL); if (!mrioc->pel_seqnum_virt) { retval = -ENOMEM; goto out_failed_noretry; } } if (mrioc->shost->nr_hw_queues > mrioc->num_op_reply_q) { ioc_err(mrioc, "cannot create minimum number of operational queues expected:%d created:%d\n", mrioc->shost->nr_hw_queues, mrioc->num_op_reply_q); goto out_failed_noretry; } dprint_reset(mrioc, "enabling events\n"); retval = mpi3mr_enable_events(mrioc); if (retval) { ioc_err(mrioc, "failed to enable events\n"); goto out_failed; } mrioc->device_refresh_on = 1; mpi3mr_add_event_wait_for_device_refresh(mrioc); ioc_info(mrioc, "sending port enable\n"); retval = mpi3mr_issue_port_enable(mrioc, 1); if (retval) { ioc_err(mrioc, "failed to issue port enable\n"); goto out_failed; } do { ssleep(MPI3MR_PORTENABLE_POLL_INTERVAL); if (mrioc->init_cmds.state == MPI3MR_CMD_NOTUSED) break; if (!pci_device_is_present(mrioc->pdev)) mrioc->unrecoverable = 1; if (mrioc->unrecoverable) { retval = -1; goto out_failed_noretry; } ioc_status = readl(&mrioc->sysif_regs->ioc_status); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_RESET_HISTORY) || (ioc_status & MPI3_SYSIF_IOC_STATUS_FAULT)) { mpi3mr_print_fault_info(mrioc); mrioc->init_cmds.is_waiting = 0; mrioc->init_cmds.callback = NULL; mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; goto out_failed; } } while (--pe_timeout); if (!pe_timeout) { ioc_err(mrioc, "port enable timed out\n"); mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_PE_TIMEOUT); mrioc->init_cmds.is_waiting = 0; mrioc->init_cmds.callback = NULL; mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED; goto out_failed; } else if (mrioc->scan_failed) { ioc_err(mrioc, "port enable failed with status=0x%04x\n", mrioc->scan_failed); } else ioc_info(mrioc, "port enable completed successfully\n"); ioc_info(mrioc, "controller %s completed successfully\n", (is_resume)?"resume":"re-initialization"); return retval; out_failed: if (retry < 2) { retry++; ioc_warn(mrioc, "retrying controller %s, retry_count:%d\n", (is_resume)?"resume":"re-initialization", retry); mpi3mr_memset_buffers(mrioc); goto retry_init; } out_failed_noretry: ioc_err(mrioc, "controller %s is failed\n", (is_resume)?"resume":"re-initialization"); mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, MPI3MR_RESET_FROM_CTLR_CLEANUP); mrioc->unrecoverable = 1; return retval; } /** * mpi3mr_memset_op_reply_q_buffers - memset the operational reply queue's * segments * @mrioc: Adapter instance reference * @qidx: Operational reply queue index * * Return: Nothing. */ static void mpi3mr_memset_op_reply_q_buffers(struct mpi3mr_ioc *mrioc, u16 qidx) { struct op_reply_qinfo *op_reply_q = mrioc->op_reply_qinfo + qidx; struct segments *segments; int i, size; if (!op_reply_q->q_segments) return; size = op_reply_q->segment_qd * mrioc->op_reply_desc_sz; segments = op_reply_q->q_segments; for (i = 0; i < op_reply_q->num_segments; i++) memset(segments[i].segment, 0, size); } /** * mpi3mr_memset_op_req_q_buffers - memset the operational request queue's * segments * @mrioc: Adapter instance reference * @qidx: Operational request queue index * * Return: Nothing. */ static void mpi3mr_memset_op_req_q_buffers(struct mpi3mr_ioc *mrioc, u16 qidx) { struct op_req_qinfo *op_req_q = mrioc->req_qinfo + qidx; struct segments *segments; int i, size; if (!op_req_q->q_segments) return; size = op_req_q->segment_qd * mrioc->facts.op_req_sz; segments = op_req_q->q_segments; for (i = 0; i < op_req_q->num_segments; i++) memset(segments[i].segment, 0, size); } /** * mpi3mr_memset_buffers - memset memory for a controller * @mrioc: Adapter instance reference * * clear all the memory allocated for a controller, typically * called post reset to reuse the memory allocated during the * controller init. * * Return: Nothing. */ void mpi3mr_memset_buffers(struct mpi3mr_ioc *mrioc) { u16 i; struct mpi3mr_throttle_group_info *tg; mrioc->change_count = 0; mrioc->active_poll_qcount = 0; mrioc->default_qcount = 0; if (mrioc->admin_req_base) memset(mrioc->admin_req_base, 0, mrioc->admin_req_q_sz); if (mrioc->admin_reply_base) memset(mrioc->admin_reply_base, 0, mrioc->admin_reply_q_sz); if (mrioc->init_cmds.reply) { memset(mrioc->init_cmds.reply, 0, sizeof(*mrioc->init_cmds.reply)); memset(mrioc->bsg_cmds.reply, 0, sizeof(*mrioc->bsg_cmds.reply)); memset(mrioc->host_tm_cmds.reply, 0, sizeof(*mrioc->host_tm_cmds.reply)); memset(mrioc->pel_cmds.reply, 0, sizeof(*mrioc->pel_cmds.reply)); memset(mrioc->pel_abort_cmd.reply, 0, sizeof(*mrioc->pel_abort_cmd.reply)); memset(mrioc->transport_cmds.reply, 0, sizeof(*mrioc->transport_cmds.reply)); for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) memset(mrioc->dev_rmhs_cmds[i].reply, 0, sizeof(*mrioc->dev_rmhs_cmds[i].reply)); for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) memset(mrioc->evtack_cmds[i].reply, 0, sizeof(*mrioc->evtack_cmds[i].reply)); bitmap_clear(mrioc->removepend_bitmap, 0, mrioc->dev_handle_bitmap_bits); bitmap_clear(mrioc->devrem_bitmap, 0, MPI3MR_NUM_DEVRMCMD); bitmap_clear(mrioc->evtack_cmds_bitmap, 0, MPI3MR_NUM_EVTACKCMD); } for (i = 0; i < mrioc->num_queues; i++) { mrioc->op_reply_qinfo[i].qid = 0; mrioc->op_reply_qinfo[i].ci = 0; mrioc->op_reply_qinfo[i].num_replies = 0; mrioc->op_reply_qinfo[i].ephase = 0; atomic_set(&mrioc->op_reply_qinfo[i].pend_ios, 0); atomic_set(&mrioc->op_reply_qinfo[i].in_use, 0); mpi3mr_memset_op_reply_q_buffers(mrioc, i); mrioc->req_qinfo[i].ci = 0; mrioc->req_qinfo[i].pi = 0; mrioc->req_qinfo[i].num_requests = 0; mrioc->req_qinfo[i].qid = 0; mrioc->req_qinfo[i].reply_qid = 0; spin_lock_init(&mrioc->req_qinfo[i].q_lock); mpi3mr_memset_op_req_q_buffers(mrioc, i); } atomic_set(&mrioc->pend_large_data_sz, 0); if (mrioc->throttle_groups) { tg = mrioc->throttle_groups; for (i = 0; i < mrioc->num_io_throttle_group; i++, tg++) { tg->id = 0; tg->fw_qd = 0; tg->modified_qd = 0; tg->io_divert = 0; tg->need_qd_reduction = 0; tg->high = 0; tg->low = 0; tg->qd_reduction = 0; atomic_set(&tg->pend_large_data_sz, 0); } } } /** * mpi3mr_free_mem - Free memory allocated for a controller * @mrioc: Adapter instance reference * * Free all the memory allocated for a controller. * * Return: Nothing. */ void mpi3mr_free_mem(struct mpi3mr_ioc *mrioc) { u16 i; struct mpi3mr_intr_info *intr_info; mpi3mr_free_enclosure_list(mrioc); if (mrioc->sense_buf_pool) { if (mrioc->sense_buf) dma_pool_free(mrioc->sense_buf_pool, mrioc->sense_buf, mrioc->sense_buf_dma); dma_pool_destroy(mrioc->sense_buf_pool); mrioc->sense_buf = NULL; mrioc->sense_buf_pool = NULL; } if (mrioc->sense_buf_q_pool) { if (mrioc->sense_buf_q) dma_pool_free(mrioc->sense_buf_q_pool, mrioc->sense_buf_q, mrioc->sense_buf_q_dma); dma_pool_destroy(mrioc->sense_buf_q_pool); mrioc->sense_buf_q = NULL; mrioc->sense_buf_q_pool = NULL; } if (mrioc->reply_buf_pool) { if (mrioc->reply_buf) dma_pool_free(mrioc->reply_buf_pool, mrioc->reply_buf, mrioc->reply_buf_dma); dma_pool_destroy(mrioc->reply_buf_pool); mrioc->reply_buf = NULL; mrioc->reply_buf_pool = NULL; } if (mrioc->reply_free_q_pool) { if (mrioc->reply_free_q) dma_pool_free(mrioc->reply_free_q_pool, mrioc->reply_free_q, mrioc->reply_free_q_dma); dma_pool_destroy(mrioc->reply_free_q_pool); mrioc->reply_free_q = NULL; mrioc->reply_free_q_pool = NULL; } for (i = 0; i < mrioc->num_op_req_q; i++) mpi3mr_free_op_req_q_segments(mrioc, i); for (i = 0; i < mrioc->num_op_reply_q; i++) mpi3mr_free_op_reply_q_segments(mrioc, i); for (i = 0; i < mrioc->intr_info_count; i++) { intr_info = mrioc->intr_info + i; intr_info->op_reply_q = NULL; } kfree(mrioc->req_qinfo); mrioc->req_qinfo = NULL; mrioc->num_op_req_q = 0; kfree(mrioc->op_reply_qinfo); mrioc->op_reply_qinfo = NULL; mrioc->num_op_reply_q = 0; kfree(mrioc->init_cmds.reply); mrioc->init_cmds.reply = NULL; kfree(mrioc->bsg_cmds.reply); mrioc->bsg_cmds.reply = NULL; kfree(mrioc->host_tm_cmds.reply); mrioc->host_tm_cmds.reply = NULL; kfree(mrioc->pel_cmds.reply); mrioc->pel_cmds.reply = NULL; kfree(mrioc->pel_abort_cmd.reply); mrioc->pel_abort_cmd.reply = NULL; for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) { kfree(mrioc->evtack_cmds[i].reply); mrioc->evtack_cmds[i].reply = NULL; } bitmap_free(mrioc->removepend_bitmap); mrioc->removepend_bitmap = NULL; bitmap_free(mrioc->devrem_bitmap); mrioc->devrem_bitmap = NULL; bitmap_free(mrioc->evtack_cmds_bitmap); mrioc->evtack_cmds_bitmap = NULL; bitmap_free(mrioc->chain_bitmap); mrioc->chain_bitmap = NULL; kfree(mrioc->transport_cmds.reply); mrioc->transport_cmds.reply = NULL; for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) { kfree(mrioc->dev_rmhs_cmds[i].reply); mrioc->dev_rmhs_cmds[i].reply = NULL; } if (mrioc->chain_buf_pool) { for (i = 0; i < mrioc->chain_buf_count; i++) { if (mrioc->chain_sgl_list[i].addr) { dma_pool_free(mrioc->chain_buf_pool, mrioc->chain_sgl_list[i].addr, mrioc->chain_sgl_list[i].dma_addr); mrioc->chain_sgl_list[i].addr = NULL; } } dma_pool_destroy(mrioc->chain_buf_pool); mrioc->chain_buf_pool = NULL; } kfree(mrioc->chain_sgl_list); mrioc->chain_sgl_list = NULL; if (mrioc->admin_reply_base) { dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_reply_q_sz, mrioc->admin_reply_base, mrioc->admin_reply_dma); mrioc->admin_reply_base = NULL; } if (mrioc->admin_req_base) { dma_free_coherent(&mrioc->pdev->dev, mrioc->admin_req_q_sz, mrioc->admin_req_base, mrioc->admin_req_dma); mrioc->admin_req_base = NULL; } if (mrioc->pel_seqnum_virt) { dma_free_coherent(&mrioc->pdev->dev, mrioc->pel_seqnum_sz, mrioc->pel_seqnum_virt, mrioc->pel_seqnum_dma); mrioc->pel_seqnum_virt = NULL; } kfree(mrioc->logdata_buf); mrioc->logdata_buf = NULL; } /** * mpi3mr_issue_ioc_shutdown - shutdown controller * @mrioc: Adapter instance reference * * Send shutodwn notification to the controller and wait for the * shutdown_timeout for it to be completed. * * Return: Nothing. */ static void mpi3mr_issue_ioc_shutdown(struct mpi3mr_ioc *mrioc) { u32 ioc_config, ioc_status; u8 retval = 1; u32 timeout = MPI3MR_DEFAULT_SHUTDOWN_TIME * 10; ioc_info(mrioc, "Issuing shutdown Notification\n"); if (mrioc->unrecoverable) { ioc_warn(mrioc, "IOC is unrecoverable shutdown is not issued\n"); return; } ioc_status = readl(&mrioc->sysif_regs->ioc_status); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK) == MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS) { ioc_info(mrioc, "shutdown already in progress\n"); return; } ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); ioc_config |= MPI3_SYSIF_IOC_CONFIG_SHUTDOWN_NORMAL; ioc_config |= MPI3_SYSIF_IOC_CONFIG_DEVICE_SHUTDOWN_SEND_REQ; writel(ioc_config, &mrioc->sysif_regs->ioc_configuration); if (mrioc->facts.shutdown_timeout) timeout = mrioc->facts.shutdown_timeout * 10; do { ioc_status = readl(&mrioc->sysif_regs->ioc_status); if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK) == MPI3_SYSIF_IOC_STATUS_SHUTDOWN_COMPLETE) { retval = 0; break; } msleep(100); } while (--timeout); ioc_status = readl(&mrioc->sysif_regs->ioc_status); ioc_config = readl(&mrioc->sysif_regs->ioc_configuration); if (retval) { if ((ioc_status & MPI3_SYSIF_IOC_STATUS_SHUTDOWN_MASK) == MPI3_SYSIF_IOC_STATUS_SHUTDOWN_IN_PROGRESS) ioc_warn(mrioc, "shutdown still in progress after timeout\n"); } ioc_info(mrioc, "Base IOC Sts/Config after %s shutdown is (0x%x)/(0x%x)\n", (!retval) ? "successful" : "failed", ioc_status, ioc_config); } /** * mpi3mr_cleanup_ioc - Cleanup controller * @mrioc: Adapter instance reference * * controller cleanup handler, Message unit reset or soft reset * and shutdown notification is issued to the controller. * * Return: Nothing. */ void mpi3mr_cleanup_ioc(struct mpi3mr_ioc *mrioc) { enum mpi3mr_iocstate ioc_state; dprint_exit(mrioc, "cleaning up the controller\n"); mpi3mr_ioc_disable_intr(mrioc); ioc_state = mpi3mr_get_iocstate(mrioc); if ((!mrioc->unrecoverable) && (!mrioc->reset_in_progress) && (ioc_state == MRIOC_STATE_READY)) { if (mpi3mr_issue_and_process_mur(mrioc, MPI3MR_RESET_FROM_CTLR_CLEANUP)) mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, MPI3MR_RESET_FROM_MUR_FAILURE); mpi3mr_issue_ioc_shutdown(mrioc); } dprint_exit(mrioc, "controller cleanup completed\n"); } /** * mpi3mr_drv_cmd_comp_reset - Flush a internal driver command * @mrioc: Adapter instance reference * @cmdptr: Internal command tracker * * Complete an internal driver commands with state indicating it * is completed due to reset. * * Return: Nothing. */ static inline void mpi3mr_drv_cmd_comp_reset(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *cmdptr) { if (cmdptr->state & MPI3MR_CMD_PENDING) { cmdptr->state |= MPI3MR_CMD_RESET; cmdptr->state &= ~MPI3MR_CMD_PENDING; if (cmdptr->is_waiting) { complete(&cmdptr->done); cmdptr->is_waiting = 0; } else if (cmdptr->callback) cmdptr->callback(mrioc, cmdptr); } } /** * mpi3mr_flush_drv_cmds - Flush internaldriver commands * @mrioc: Adapter instance reference * * Flush all internal driver commands post reset * * Return: Nothing. */ void mpi3mr_flush_drv_cmds(struct mpi3mr_ioc *mrioc) { struct mpi3mr_drv_cmd *cmdptr; u8 i; cmdptr = &mrioc->init_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); cmdptr = &mrioc->cfg_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); cmdptr = &mrioc->bsg_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); cmdptr = &mrioc->host_tm_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); for (i = 0; i < MPI3MR_NUM_DEVRMCMD; i++) { cmdptr = &mrioc->dev_rmhs_cmds[i]; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); } for (i = 0; i < MPI3MR_NUM_EVTACKCMD; i++) { cmdptr = &mrioc->evtack_cmds[i]; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); } cmdptr = &mrioc->pel_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); cmdptr = &mrioc->pel_abort_cmd; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); cmdptr = &mrioc->transport_cmds; mpi3mr_drv_cmd_comp_reset(mrioc, cmdptr); } /** * mpi3mr_pel_wait_post - Issue PEL Wait * @mrioc: Adapter instance reference * @drv_cmd: Internal command tracker * * Issue PEL Wait MPI request through admin queue and return. * * Return: Nothing. */ static void mpi3mr_pel_wait_post(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd) { struct mpi3_pel_req_action_wait pel_wait; mrioc->pel_abort_requested = false; memset(&pel_wait, 0, sizeof(pel_wait)); drv_cmd->state = MPI3MR_CMD_PENDING; drv_cmd->is_waiting = 0; drv_cmd->callback = mpi3mr_pel_wait_complete; drv_cmd->ioc_status = 0; drv_cmd->ioc_loginfo = 0; pel_wait.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT); pel_wait.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG; pel_wait.action = MPI3_PEL_ACTION_WAIT; pel_wait.starting_sequence_number = cpu_to_le32(mrioc->pel_newest_seqnum); pel_wait.locale = cpu_to_le16(mrioc->pel_locale); pel_wait.class = cpu_to_le16(mrioc->pel_class); pel_wait.wait_time = MPI3_PEL_WAITTIME_INFINITE_WAIT; dprint_bsg_info(mrioc, "sending pel_wait seqnum(%d), class(%d), locale(0x%08x)\n", mrioc->pel_newest_seqnum, mrioc->pel_class, mrioc->pel_locale); if (mpi3mr_admin_request_post(mrioc, &pel_wait, sizeof(pel_wait), 0)) { dprint_bsg_err(mrioc, "Issuing PELWait: Admin post failed\n"); drv_cmd->state = MPI3MR_CMD_NOTUSED; drv_cmd->callback = NULL; drv_cmd->retry_count = 0; mrioc->pel_enabled = false; } } /** * mpi3mr_pel_get_seqnum_post - Issue PEL Get Sequence number * @mrioc: Adapter instance reference * @drv_cmd: Internal command tracker * * Issue PEL get sequence number MPI request through admin queue * and return. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_pel_get_seqnum_post(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd) { struct mpi3_pel_req_action_get_sequence_numbers pel_getseq_req; u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST; int retval = 0; memset(&pel_getseq_req, 0, sizeof(pel_getseq_req)); mrioc->pel_cmds.state = MPI3MR_CMD_PENDING; mrioc->pel_cmds.is_waiting = 0; mrioc->pel_cmds.ioc_status = 0; mrioc->pel_cmds.ioc_loginfo = 0; mrioc->pel_cmds.callback = mpi3mr_pel_get_seqnum_complete; pel_getseq_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT); pel_getseq_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG; pel_getseq_req.action = MPI3_PEL_ACTION_GET_SEQNUM; mpi3mr_add_sg_single(&pel_getseq_req.sgl, sgl_flags, mrioc->pel_seqnum_sz, mrioc->pel_seqnum_dma); retval = mpi3mr_admin_request_post(mrioc, &pel_getseq_req, sizeof(pel_getseq_req), 0); if (retval) { if (drv_cmd) { drv_cmd->state = MPI3MR_CMD_NOTUSED; drv_cmd->callback = NULL; drv_cmd->retry_count = 0; } mrioc->pel_enabled = false; } return retval; } /** * mpi3mr_pel_wait_complete - PELWait Completion callback * @mrioc: Adapter instance reference * @drv_cmd: Internal command tracker * * This is a callback handler for the PELWait request and * firmware completes a PELWait request when it is aborted or a * new PEL entry is available. This sends AEN to the application * and if the PELwait completion is not due to PELAbort then * this will send a request for new PEL Sequence number * * Return: Nothing. */ static void mpi3mr_pel_wait_complete(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd) { struct mpi3_pel_reply *pel_reply = NULL; u16 ioc_status, pe_log_status; bool do_retry = false; if (drv_cmd->state & MPI3MR_CMD_RESET) goto cleanup_drv_cmd; ioc_status = drv_cmd->ioc_status & MPI3_IOCSTATUS_STATUS_MASK; if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "%s: Failed ioc_status(0x%04x) Loginfo(0x%08x)\n", __func__, ioc_status, drv_cmd->ioc_loginfo); dprint_bsg_err(mrioc, "pel_wait: failed with ioc_status(0x%04x), log_info(0x%08x)\n", ioc_status, drv_cmd->ioc_loginfo); do_retry = true; } if (drv_cmd->state & MPI3MR_CMD_REPLY_VALID) pel_reply = (struct mpi3_pel_reply *)drv_cmd->reply; if (!pel_reply) { dprint_bsg_err(mrioc, "pel_wait: failed due to no reply\n"); goto out_failed; } pe_log_status = le16_to_cpu(pel_reply->pe_log_status); if ((pe_log_status != MPI3_PEL_STATUS_SUCCESS) && (pe_log_status != MPI3_PEL_STATUS_ABORTED)) { ioc_err(mrioc, "%s: Failed pe_log_status(0x%04x)\n", __func__, pe_log_status); dprint_bsg_err(mrioc, "pel_wait: failed due to pel_log_status(0x%04x)\n", pe_log_status); do_retry = true; } if (do_retry) { if (drv_cmd->retry_count < MPI3MR_PEL_RETRY_COUNT) { drv_cmd->retry_count++; dprint_bsg_err(mrioc, "pel_wait: retrying(%d)\n", drv_cmd->retry_count); mpi3mr_pel_wait_post(mrioc, drv_cmd); return; } dprint_bsg_err(mrioc, "pel_wait: failed after all retries(%d)\n", drv_cmd->retry_count); goto out_failed; } atomic64_inc(&event_counter); if (!mrioc->pel_abort_requested) { mrioc->pel_cmds.retry_count = 0; mpi3mr_pel_get_seqnum_post(mrioc, &mrioc->pel_cmds); } return; out_failed: mrioc->pel_enabled = false; cleanup_drv_cmd: drv_cmd->state = MPI3MR_CMD_NOTUSED; drv_cmd->callback = NULL; drv_cmd->retry_count = 0; } /** * mpi3mr_pel_get_seqnum_complete - PELGetSeqNum Completion callback * @mrioc: Adapter instance reference * @drv_cmd: Internal command tracker * * This is a callback handler for the PEL get sequence number * request and a new PEL wait request will be issued to the * firmware from this * * Return: Nothing. */ void mpi3mr_pel_get_seqnum_complete(struct mpi3mr_ioc *mrioc, struct mpi3mr_drv_cmd *drv_cmd) { struct mpi3_pel_reply *pel_reply = NULL; struct mpi3_pel_seq *pel_seqnum_virt; u16 ioc_status; bool do_retry = false; pel_seqnum_virt = (struct mpi3_pel_seq *)mrioc->pel_seqnum_virt; if (drv_cmd->state & MPI3MR_CMD_RESET) goto cleanup_drv_cmd; ioc_status = drv_cmd->ioc_status & MPI3_IOCSTATUS_STATUS_MASK; if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { dprint_bsg_err(mrioc, "pel_get_seqnum: failed with ioc_status(0x%04x), log_info(0x%08x)\n", ioc_status, drv_cmd->ioc_loginfo); do_retry = true; } if (drv_cmd->state & MPI3MR_CMD_REPLY_VALID) pel_reply = (struct mpi3_pel_reply *)drv_cmd->reply; if (!pel_reply) { dprint_bsg_err(mrioc, "pel_get_seqnum: failed due to no reply\n"); goto out_failed; } if (le16_to_cpu(pel_reply->pe_log_status) != MPI3_PEL_STATUS_SUCCESS) { dprint_bsg_err(mrioc, "pel_get_seqnum: failed due to pel_log_status(0x%04x)\n", le16_to_cpu(pel_reply->pe_log_status)); do_retry = true; } if (do_retry) { if (drv_cmd->retry_count < MPI3MR_PEL_RETRY_COUNT) { drv_cmd->retry_count++; dprint_bsg_err(mrioc, "pel_get_seqnum: retrying(%d)\n", drv_cmd->retry_count); mpi3mr_pel_get_seqnum_post(mrioc, drv_cmd); return; } dprint_bsg_err(mrioc, "pel_get_seqnum: failed after all retries(%d)\n", drv_cmd->retry_count); goto out_failed; } mrioc->pel_newest_seqnum = le32_to_cpu(pel_seqnum_virt->newest) + 1; drv_cmd->retry_count = 0; mpi3mr_pel_wait_post(mrioc, drv_cmd); return; out_failed: mrioc->pel_enabled = false; cleanup_drv_cmd: drv_cmd->state = MPI3MR_CMD_NOTUSED; drv_cmd->callback = NULL; drv_cmd->retry_count = 0; } /** * mpi3mr_soft_reset_handler - Reset the controller * @mrioc: Adapter instance reference * @reset_reason: Reset reason code * @snapdump: Flag to generate snapdump in firmware or not * * This is an handler for recovering controller by issuing soft * reset are diag fault reset. This is a blocking function and * when one reset is executed if any other resets they will be * blocked. All BSG requests will be blocked during the reset. If * controller reset is successful then the controller will be * reinitalized, otherwise the controller will be marked as not * recoverable * * In snapdump bit is set, the controller is issued with diag * fault reset so that the firmware can create a snap dump and * post that the firmware will result in F000 fault and the * driver will issue soft reset to recover from that. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_soft_reset_handler(struct mpi3mr_ioc *mrioc, u32 reset_reason, u8 snapdump) { int retval = 0, i; unsigned long flags; u32 host_diagnostic, timeout = MPI3_SYSIF_DIAG_SAVE_TIMEOUT * 10; /* Block the reset handler until diag save in progress*/ dprint_reset(mrioc, "soft_reset_handler: check and block on diagsave_timeout(%d)\n", mrioc->diagsave_timeout); while (mrioc->diagsave_timeout) ssleep(1); /* * Block new resets until the currently executing one is finished and * return the status of the existing reset for all blocked resets */ dprint_reset(mrioc, "soft_reset_handler: acquiring reset_mutex\n"); if (!mutex_trylock(&mrioc->reset_mutex)) { ioc_info(mrioc, "controller reset triggered by %s is blocked due to another reset in progress\n", mpi3mr_reset_rc_name(reset_reason)); do { ssleep(1); } while (mrioc->reset_in_progress == 1); ioc_info(mrioc, "returning previous reset result(%d) for the reset triggered by %s\n", mrioc->prev_reset_result, mpi3mr_reset_rc_name(reset_reason)); return mrioc->prev_reset_result; } ioc_info(mrioc, "controller reset is triggered by %s\n", mpi3mr_reset_rc_name(reset_reason)); mrioc->device_refresh_on = 0; mrioc->reset_in_progress = 1; mrioc->stop_bsgs = 1; mrioc->prev_reset_result = -1; if ((!snapdump) && (reset_reason != MPI3MR_RESET_FROM_FAULT_WATCH) && (reset_reason != MPI3MR_RESET_FROM_FIRMWARE) && (reset_reason != MPI3MR_RESET_FROM_CIACTIV_FAULT)) { for (i = 0; i < MPI3_EVENT_NOTIFY_EVENTMASK_WORDS; i++) mrioc->event_masks[i] = -1; dprint_reset(mrioc, "soft_reset_handler: masking events\n"); mpi3mr_issue_event_notification(mrioc); } mpi3mr_wait_for_host_io(mrioc, MPI3MR_RESET_HOST_IOWAIT_TIMEOUT); mpi3mr_ioc_disable_intr(mrioc); if (snapdump) { mpi3mr_set_diagsave(mrioc); retval = mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, reset_reason); if (!retval) { do { host_diagnostic = readl(&mrioc->sysif_regs->host_diagnostic); if (!(host_diagnostic & MPI3_SYSIF_HOST_DIAG_SAVE_IN_PROGRESS)) break; msleep(100); } while (--timeout); } } retval = mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_SOFT_RESET, reset_reason); if (retval) { ioc_err(mrioc, "Failed to issue soft reset to the ioc\n"); goto out; } if (mrioc->num_io_throttle_group != mrioc->facts.max_io_throttle_group) { ioc_err(mrioc, "max io throttle group doesn't match old(%d), new(%d)\n", mrioc->num_io_throttle_group, mrioc->facts.max_io_throttle_group); retval = -EPERM; goto out; } mpi3mr_flush_delayed_cmd_lists(mrioc); mpi3mr_flush_drv_cmds(mrioc); bitmap_clear(mrioc->devrem_bitmap, 0, MPI3MR_NUM_DEVRMCMD); bitmap_clear(mrioc->removepend_bitmap, 0, mrioc->dev_handle_bitmap_bits); bitmap_clear(mrioc->evtack_cmds_bitmap, 0, MPI3MR_NUM_EVTACKCMD); mpi3mr_flush_host_io(mrioc); mpi3mr_cleanup_fwevt_list(mrioc); mpi3mr_invalidate_devhandles(mrioc); mpi3mr_free_enclosure_list(mrioc); if (mrioc->prepare_for_reset) { mrioc->prepare_for_reset = 0; mrioc->prepare_for_reset_timeout_counter = 0; } mpi3mr_memset_buffers(mrioc); retval = mpi3mr_reinit_ioc(mrioc, 0); if (retval) { pr_err(IOCNAME "reinit after soft reset failed: reason %d\n", mrioc->name, reset_reason); goto out; } ssleep(MPI3MR_RESET_TOPOLOGY_SETTLE_TIME); out: if (!retval) { mrioc->diagsave_timeout = 0; mrioc->reset_in_progress = 0; mrioc->pel_abort_requested = 0; if (mrioc->pel_enabled) { mrioc->pel_cmds.retry_count = 0; mpi3mr_pel_wait_post(mrioc, &mrioc->pel_cmds); } mrioc->device_refresh_on = 0; mrioc->ts_update_counter = 0; spin_lock_irqsave(&mrioc->watchdog_lock, flags); if (mrioc->watchdog_work_q) queue_delayed_work(mrioc->watchdog_work_q, &mrioc->watchdog_work, msecs_to_jiffies(MPI3MR_WATCHDOG_INTERVAL)); spin_unlock_irqrestore(&mrioc->watchdog_lock, flags); mrioc->stop_bsgs = 0; if (mrioc->pel_enabled) atomic64_inc(&event_counter); } else { mpi3mr_issue_reset(mrioc, MPI3_SYSIF_HOST_DIAG_RESET_ACTION_DIAG_FAULT, reset_reason); mrioc->device_refresh_on = 0; mrioc->unrecoverable = 1; mrioc->reset_in_progress = 0; retval = -1; mpi3mr_flush_cmds_for_unrecovered_controller(mrioc); } mrioc->prev_reset_result = retval; mutex_unlock(&mrioc->reset_mutex); ioc_info(mrioc, "controller reset is %s\n", ((retval == 0) ? "successful" : "failed")); return retval; } /** * mpi3mr_free_config_dma_memory - free memory for config page * @mrioc: Adapter instance reference * @mem_desc: memory descriptor structure * * Check whether the size of the buffer specified by the memory * descriptor is greater than the default page size if so then * free the memory pointed by the descriptor. * * Return: Nothing. */ static void mpi3mr_free_config_dma_memory(struct mpi3mr_ioc *mrioc, struct dma_memory_desc *mem_desc) { if ((mem_desc->size > mrioc->cfg_page_sz) && mem_desc->addr) { dma_free_coherent(&mrioc->pdev->dev, mem_desc->size, mem_desc->addr, mem_desc->dma_addr); mem_desc->addr = NULL; } } /** * mpi3mr_alloc_config_dma_memory - Alloc memory for config page * @mrioc: Adapter instance reference * @mem_desc: Memory descriptor to hold dma memory info * * This function allocates new dmaable memory or provides the * default config page dmaable memory based on the memory size * described by the descriptor. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_alloc_config_dma_memory(struct mpi3mr_ioc *mrioc, struct dma_memory_desc *mem_desc) { if (mem_desc->size > mrioc->cfg_page_sz) { mem_desc->addr = dma_alloc_coherent(&mrioc->pdev->dev, mem_desc->size, &mem_desc->dma_addr, GFP_KERNEL); if (!mem_desc->addr) return -ENOMEM; } else { mem_desc->addr = mrioc->cfg_page; mem_desc->dma_addr = mrioc->cfg_page_dma; memset(mem_desc->addr, 0, mrioc->cfg_page_sz); } return 0; } /** * mpi3mr_post_cfg_req - Issue config requests and wait * @mrioc: Adapter instance reference * @cfg_req: Configuration request * @timeout: Timeout in seconds * @ioc_status: Pointer to return ioc status * * A generic function for posting MPI3 configuration request to * the firmware. This blocks for the completion of request for * timeout seconds and if the request times out this function * faults the controller with proper reason code. * * On successful completion of the request this function returns * appropriate ioc status from the firmware back to the caller. * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_post_cfg_req(struct mpi3mr_ioc *mrioc, struct mpi3_config_request *cfg_req, int timeout, u16 *ioc_status) { int retval = 0; mutex_lock(&mrioc->cfg_cmds.mutex); if (mrioc->cfg_cmds.state & MPI3MR_CMD_PENDING) { retval = -1; ioc_err(mrioc, "sending config request failed due to command in use\n"); mutex_unlock(&mrioc->cfg_cmds.mutex); goto out; } mrioc->cfg_cmds.state = MPI3MR_CMD_PENDING; mrioc->cfg_cmds.is_waiting = 1; mrioc->cfg_cmds.callback = NULL; mrioc->cfg_cmds.ioc_status = 0; mrioc->cfg_cmds.ioc_loginfo = 0; cfg_req->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_CFG_CMDS); cfg_req->function = MPI3_FUNCTION_CONFIG; init_completion(&mrioc->cfg_cmds.done); dprint_cfg_info(mrioc, "posting config request\n"); if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO) dprint_dump(cfg_req, sizeof(struct mpi3_config_request), "mpi3_cfg_req"); retval = mpi3mr_admin_request_post(mrioc, cfg_req, sizeof(*cfg_req), 1); if (retval) { ioc_err(mrioc, "posting config request failed\n"); goto out_unlock; } wait_for_completion_timeout(&mrioc->cfg_cmds.done, (timeout * HZ)); if (!(mrioc->cfg_cmds.state & MPI3MR_CMD_COMPLETE)) { mpi3mr_check_rh_fault_ioc(mrioc, MPI3MR_RESET_FROM_CFG_REQ_TIMEOUT); ioc_err(mrioc, "config request timed out\n"); retval = -1; goto out_unlock; } *ioc_status = mrioc->cfg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK; if ((*ioc_status) != MPI3_IOCSTATUS_SUCCESS) dprint_cfg_err(mrioc, "cfg_page request returned with ioc_status(0x%04x), log_info(0x%08x)\n", *ioc_status, mrioc->cfg_cmds.ioc_loginfo); out_unlock: mrioc->cfg_cmds.state = MPI3MR_CMD_NOTUSED; mutex_unlock(&mrioc->cfg_cmds.mutex); out: return retval; } /** * mpi3mr_process_cfg_req - config page request processor * @mrioc: Adapter instance reference * @cfg_req: Configuration request * @cfg_hdr: Configuration page header * @timeout: Timeout in seconds * @ioc_status: Pointer to return ioc status * @cfg_buf: Memory pointer to copy config page or header * @cfg_buf_sz: Size of the memory to get config page or header * * This is handler for config page read, write and config page * header read operations. * * This function expects the cfg_req to be populated with page * type, page number, action for the header read and with page * address for all other operations. * * The cfg_hdr can be passed as null for reading required header * details for read/write pages the cfg_hdr should point valid * configuration page header. * * This allocates dmaable memory based on the size of the config * buffer and set the SGE of the cfg_req. * * For write actions, the config page data has to be passed in * the cfg_buf and size of the data has to be mentioned in the * cfg_buf_sz. * * For read/header actions, on successful completion of the * request with successful ioc_status the data will be copied * into the cfg_buf limited to a minimum of actual page size and * cfg_buf_sz * * * Return: 0 on success, non-zero on failure. */ static int mpi3mr_process_cfg_req(struct mpi3mr_ioc *mrioc, struct mpi3_config_request *cfg_req, struct mpi3_config_page_header *cfg_hdr, int timeout, u16 *ioc_status, void *cfg_buf, u32 cfg_buf_sz) { struct dma_memory_desc mem_desc; int retval = -1; u8 invalid_action = 0; u8 sgl_flags = MPI3MR_SGEFLAGS_SYSTEM_SIMPLE_END_OF_LIST; memset(&mem_desc, 0, sizeof(struct dma_memory_desc)); if (cfg_req->action == MPI3_CONFIG_ACTION_PAGE_HEADER) mem_desc.size = sizeof(struct mpi3_config_page_header); else { if (!cfg_hdr) { ioc_err(mrioc, "null config header passed for config action(%d), page_type(0x%02x), page_num(%d)\n", cfg_req->action, cfg_req->page_type, cfg_req->page_number); goto out; } switch (cfg_hdr->page_attribute & MPI3_CONFIG_PAGEATTR_MASK) { case MPI3_CONFIG_PAGEATTR_READ_ONLY: if (cfg_req->action != MPI3_CONFIG_ACTION_READ_CURRENT) invalid_action = 1; break; case MPI3_CONFIG_PAGEATTR_CHANGEABLE: if ((cfg_req->action == MPI3_CONFIG_ACTION_READ_PERSISTENT) || (cfg_req->action == MPI3_CONFIG_ACTION_WRITE_PERSISTENT)) invalid_action = 1; break; case MPI3_CONFIG_PAGEATTR_PERSISTENT: default: break; } if (invalid_action) { ioc_err(mrioc, "config action(%d) is not allowed for page_type(0x%02x), page_num(%d) with page_attribute(0x%02x)\n", cfg_req->action, cfg_req->page_type, cfg_req->page_number, cfg_hdr->page_attribute); goto out; } mem_desc.size = le16_to_cpu(cfg_hdr->page_length) * 4; cfg_req->page_length = cfg_hdr->page_length; cfg_req->page_version = cfg_hdr->page_version; } if (mpi3mr_alloc_config_dma_memory(mrioc, &mem_desc)) goto out; mpi3mr_add_sg_single(&cfg_req->sgl, sgl_flags, mem_desc.size, mem_desc.dma_addr); if ((cfg_req->action == MPI3_CONFIG_ACTION_WRITE_PERSISTENT) || (cfg_req->action == MPI3_CONFIG_ACTION_WRITE_CURRENT)) { memcpy(mem_desc.addr, cfg_buf, min_t(u16, mem_desc.size, cfg_buf_sz)); dprint_cfg_info(mrioc, "config buffer to be written\n"); if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO) dprint_dump(mem_desc.addr, mem_desc.size, "cfg_buf"); } if (mpi3mr_post_cfg_req(mrioc, cfg_req, timeout, ioc_status)) goto out; retval = 0; if ((*ioc_status == MPI3_IOCSTATUS_SUCCESS) && (cfg_req->action != MPI3_CONFIG_ACTION_WRITE_PERSISTENT) && (cfg_req->action != MPI3_CONFIG_ACTION_WRITE_CURRENT)) { memcpy(cfg_buf, mem_desc.addr, min_t(u16, mem_desc.size, cfg_buf_sz)); dprint_cfg_info(mrioc, "config buffer read\n"); if (mrioc->logging_level & MPI3_DEBUG_CFG_INFO) dprint_dump(mem_desc.addr, mem_desc.size, "cfg_buf"); } out: mpi3mr_free_config_dma_memory(mrioc, &mem_desc); return retval; } /** * mpi3mr_cfg_get_dev_pg0 - Read current device page0 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @dev_pg0: Pointer to return device page 0 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like device handle * * This is handler for config page read for a specific device * page0. The ioc_status has the controller returned ioc_status. * This routine doesn't check ioc_status to decide whether the * page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_dev_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_device_page0 *dev_pg0, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(dev_pg0, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_DEVICE; cfg_req.page_number = 0; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "device page0 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "device page0 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_DEVICE_PGAD_FORM_MASK) | (form_spec & MPI3_DEVICE_PGAD_HANDLE_MASK)); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, dev_pg0, pg_sz)) { ioc_err(mrioc, "device page0 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_phy_pg0 - Read current SAS Phy page0 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @phy_pg0: Pointer to return SAS Phy page 0 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like phy number * * This is handler for config page read for a specific SAS Phy * page0. The ioc_status has the controller returned ioc_status. * This routine doesn't check ioc_status to decide whether the * page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_phy_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_sas_phy_page0 *phy_pg0, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(phy_pg0, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_PHY; cfg_req.page_number = 0; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "sas phy page0 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas phy page0 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_SAS_PHY_PGAD_FORM_MASK) | (form_spec & MPI3_SAS_PHY_PGAD_PHY_NUMBER_MASK)); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, phy_pg0, pg_sz)) { ioc_err(mrioc, "sas phy page0 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_phy_pg1 - Read current SAS Phy page1 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @phy_pg1: Pointer to return SAS Phy page 1 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like phy number * * This is handler for config page read for a specific SAS Phy * page1. The ioc_status has the controller returned ioc_status. * This routine doesn't check ioc_status to decide whether the * page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_phy_pg1(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_sas_phy_page1 *phy_pg1, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(phy_pg1, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_PHY; cfg_req.page_number = 1; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "sas phy page1 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas phy page1 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_SAS_PHY_PGAD_FORM_MASK) | (form_spec & MPI3_SAS_PHY_PGAD_PHY_NUMBER_MASK)); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, phy_pg1, pg_sz)) { ioc_err(mrioc, "sas phy page1 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_exp_pg0 - Read current SAS Expander page0 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @exp_pg0: Pointer to return SAS Expander page 0 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like device handle * * This is handler for config page read for a specific SAS * Expander page0. The ioc_status has the controller returned * ioc_status. This routine doesn't check ioc_status to decide * whether the page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_exp_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_sas_expander_page0 *exp_pg0, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(exp_pg0, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_EXPANDER; cfg_req.page_number = 0; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "expander page0 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "expander page0 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_SAS_EXPAND_PGAD_FORM_MASK) | (form_spec & (MPI3_SAS_EXPAND_PGAD_PHYNUM_MASK | MPI3_SAS_EXPAND_PGAD_HANDLE_MASK))); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, exp_pg0, pg_sz)) { ioc_err(mrioc, "expander page0 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_exp_pg1 - Read current SAS Expander page1 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @exp_pg1: Pointer to return SAS Expander page 1 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like phy number * * This is handler for config page read for a specific SAS * Expander page1. The ioc_status has the controller returned * ioc_status. This routine doesn't check ioc_status to decide * whether the page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_exp_pg1(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_sas_expander_page1 *exp_pg1, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(exp_pg1, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_EXPANDER; cfg_req.page_number = 1; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "expander page1 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "expander page1 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_SAS_EXPAND_PGAD_FORM_MASK) | (form_spec & (MPI3_SAS_EXPAND_PGAD_PHYNUM_MASK | MPI3_SAS_EXPAND_PGAD_HANDLE_MASK))); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, exp_pg1, pg_sz)) { ioc_err(mrioc, "expander page1 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_enclosure_pg0 - Read current Enclosure page0 * @mrioc: Adapter instance reference * @ioc_status: Pointer to return ioc status * @encl_pg0: Pointer to return Enclosure page 0 * @pg_sz: Size of the memory allocated to the page pointer * @form: The form to be used for addressing the page * @form_spec: Form specific information like device handle * * This is handler for config page read for a specific Enclosure * page0. The ioc_status has the controller returned ioc_status. * This routine doesn't check ioc_status to decide whether the * page read is success or not and it is the callers * responsibility. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_enclosure_pg0(struct mpi3mr_ioc *mrioc, u16 *ioc_status, struct mpi3_enclosure_page0 *encl_pg0, u16 pg_sz, u32 form, u32 form_spec) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u32 page_address; memset(encl_pg0, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_ENCLOSURE; cfg_req.page_number = 0; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "enclosure page0 header read failed\n"); goto out_failed; } if (*ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "enclosure page0 header read failed with ioc_status(0x%04x)\n", *ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; page_address = ((form & MPI3_ENCLOS_PGAD_FORM_MASK) | (form_spec & MPI3_ENCLOS_PGAD_HANDLE_MASK)); cfg_req.page_address = cpu_to_le32(page_address); if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, ioc_status, encl_pg0, pg_sz)) { ioc_err(mrioc, "enclosure page0 read failed\n"); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_io_unit_pg0 - Read current SASIOUnit page0 * @mrioc: Adapter instance reference * @sas_io_unit_pg0: Pointer to return SAS IO Unit page 0 * @pg_sz: Size of the memory allocated to the page pointer * * This is handler for config page read for the SAS IO Unit * page0. This routine checks ioc_status to decide whether the * page read is success or not. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_io_unit_pg0(struct mpi3mr_ioc *mrioc, struct mpi3_sas_io_unit_page0 *sas_io_unit_pg0, u16 pg_sz) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u16 ioc_status = 0; memset(sas_io_unit_pg0, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT; cfg_req.page_number = 0; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "sas io unit page0 header read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page0 header read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg0, pg_sz)) { ioc_err(mrioc, "sas io unit page0 read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page0 read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_sas_io_unit_pg1 - Read current SASIOUnit page1 * @mrioc: Adapter instance reference * @sas_io_unit_pg1: Pointer to return SAS IO Unit page 1 * @pg_sz: Size of the memory allocated to the page pointer * * This is handler for config page read for the SAS IO Unit * page1. This routine checks ioc_status to decide whether the * page read is success or not. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_sas_io_unit_pg1(struct mpi3mr_ioc *mrioc, struct mpi3_sas_io_unit_page1 *sas_io_unit_pg1, u16 pg_sz) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u16 ioc_status = 0; memset(sas_io_unit_pg1, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT; cfg_req.page_number = 1; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "sas io unit page1 header read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page1 header read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) { ioc_err(mrioc, "sas io unit page1 read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page1 read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_set_sas_io_unit_pg1 - Write SASIOUnit page1 * @mrioc: Adapter instance reference * @sas_io_unit_pg1: Pointer to the SAS IO Unit page 1 to write * @pg_sz: Size of the memory allocated to the page pointer * * This is handler for config page write for the SAS IO Unit * page1. This routine checks ioc_status to decide whether the * page read is success or not. This will modify both current * and persistent page. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_set_sas_io_unit_pg1(struct mpi3mr_ioc *mrioc, struct mpi3_sas_io_unit_page1 *sas_io_unit_pg1, u16 pg_sz) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u16 ioc_status = 0; memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_SAS_IO_UNIT; cfg_req.page_number = 1; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "sas io unit page1 header read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page1 header read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_WRITE_CURRENT; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) { ioc_err(mrioc, "sas io unit page1 write current failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page1 write current failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_WRITE_PERSISTENT; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, sas_io_unit_pg1, pg_sz)) { ioc_err(mrioc, "sas io unit page1 write persistent failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "sas io unit page1 write persistent failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } return 0; out_failed: return -1; } /** * mpi3mr_cfg_get_driver_pg1 - Read current Driver page1 * @mrioc: Adapter instance reference * @driver_pg1: Pointer to return Driver page 1 * @pg_sz: Size of the memory allocated to the page pointer * * This is handler for config page read for the Driver page1. * This routine checks ioc_status to decide whether the page * read is success or not. * * Return: 0 on success, non-zero on failure. */ int mpi3mr_cfg_get_driver_pg1(struct mpi3mr_ioc *mrioc, struct mpi3_driver_page1 *driver_pg1, u16 pg_sz) { struct mpi3_config_page_header cfg_hdr; struct mpi3_config_request cfg_req; u16 ioc_status = 0; memset(driver_pg1, 0, pg_sz); memset(&cfg_hdr, 0, sizeof(cfg_hdr)); memset(&cfg_req, 0, sizeof(cfg_req)); cfg_req.function = MPI3_FUNCTION_CONFIG; cfg_req.action = MPI3_CONFIG_ACTION_PAGE_HEADER; cfg_req.page_type = MPI3_CONFIG_PAGETYPE_DRIVER; cfg_req.page_number = 1; cfg_req.page_address = 0; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, NULL, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, &cfg_hdr, sizeof(cfg_hdr))) { ioc_err(mrioc, "driver page1 header read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "driver page1 header read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } cfg_req.action = MPI3_CONFIG_ACTION_READ_CURRENT; if (mpi3mr_process_cfg_req(mrioc, &cfg_req, &cfg_hdr, MPI3MR_INTADMCMD_TIMEOUT, &ioc_status, driver_pg1, pg_sz)) { ioc_err(mrioc, "driver page1 read failed\n"); goto out_failed; } if (ioc_status != MPI3_IOCSTATUS_SUCCESS) { ioc_err(mrioc, "driver page1 read failed with ioc_status(0x%04x)\n", ioc_status); goto out_failed; } return 0; out_failed: return -1; }