// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2003-2013 LSI Corporation * Copyright (c) 2013-2016 Avago Technologies * Copyright (c) 2016-2018 Broadcom Inc. * * Authors: Broadcom Inc. * Sreenivas Bagalkote * Sumant Patro * Bo Yang * Adam Radford * Kashyap Desai * Sumit Saxena * * Send feedback to: megaraidlinux.pdl@broadcom.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "megaraid_sas_fusion.h" #include "megaraid_sas.h" /* * Number of sectors per IO command * Will be set in megasas_init_mfi if user does not provide */ static unsigned int max_sectors; module_param_named(max_sectors, max_sectors, int, 0444); MODULE_PARM_DESC(max_sectors, "Maximum number of sectors per IO command"); static int msix_disable; module_param(msix_disable, int, 0444); MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0"); static unsigned int msix_vectors; module_param(msix_vectors, int, 0444); MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW"); static int allow_vf_ioctls; module_param(allow_vf_ioctls, int, 0444); MODULE_PARM_DESC(allow_vf_ioctls, "Allow ioctls in SR-IOV VF mode. Default: 0"); static unsigned int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; module_param(throttlequeuedepth, int, 0444); MODULE_PARM_DESC(throttlequeuedepth, "Adapter queue depth when throttled due to I/O timeout. Default: 16"); unsigned int resetwaittime = MEGASAS_RESET_WAIT_TIME; module_param(resetwaittime, int, 0444); MODULE_PARM_DESC(resetwaittime, "Wait time in (1-180s) after I/O timeout before resetting adapter. Default: 180s"); static int smp_affinity_enable = 1; module_param(smp_affinity_enable, int, 0444); MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); static int rdpq_enable = 1; module_param(rdpq_enable, int, 0444); MODULE_PARM_DESC(rdpq_enable, "Allocate reply queue in chunks for large queue depth enable/disable Default: enable(1)"); unsigned int dual_qdepth_disable; module_param(dual_qdepth_disable, int, 0444); MODULE_PARM_DESC(dual_qdepth_disable, "Disable dual queue depth feature. Default: 0"); static unsigned int scmd_timeout = MEGASAS_DEFAULT_CMD_TIMEOUT; module_param(scmd_timeout, int, 0444); MODULE_PARM_DESC(scmd_timeout, "scsi command timeout (10-90s), default 90s. See megasas_reset_timer."); int perf_mode = -1; module_param(perf_mode, int, 0444); MODULE_PARM_DESC(perf_mode, "Performance mode (only for Aero adapters), options:\n\t\t" "0 - balanced: High iops and low latency queues are allocated &\n\t\t" "interrupt coalescing is enabled only on high iops queues\n\t\t" "1 - iops: High iops queues are not allocated &\n\t\t" "interrupt coalescing is enabled on all queues\n\t\t" "2 - latency: High iops queues are not allocated &\n\t\t" "interrupt coalescing is disabled on all queues\n\t\t" "default mode is 'balanced'" ); int event_log_level = MFI_EVT_CLASS_CRITICAL; module_param(event_log_level, int, 0644); MODULE_PARM_DESC(event_log_level, "Asynchronous event logging level- range is: -2(CLASS_DEBUG) to 4(CLASS_DEAD), Default: 2(CLASS_CRITICAL)"); unsigned int enable_sdev_max_qd; module_param(enable_sdev_max_qd, int, 0444); MODULE_PARM_DESC(enable_sdev_max_qd, "Enable sdev max qd as can_queue. Default: 0"); int poll_queues; module_param(poll_queues, int, 0444); MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t" "This parameter is effective only if host_tagset_enable=1 &\n\t\t" "It is not applicable for MFI_SERIES. &\n\t\t" "Driver will work in latency mode. &\n\t\t" "High iops queues are not allocated &\n\t\t" ); int host_tagset_enable = 1; module_param(host_tagset_enable, int, 0444); MODULE_PARM_DESC(host_tagset_enable, "Shared host tagset enable/disable Default: enable(1)"); MODULE_LICENSE("GPL"); MODULE_VERSION(MEGASAS_VERSION); MODULE_AUTHOR("megaraidlinux.pdl@broadcom.com"); MODULE_DESCRIPTION("Broadcom MegaRAID SAS Driver"); int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); static int megasas_get_pd_list(struct megasas_instance *instance); static int megasas_ld_list_query(struct megasas_instance *instance, u8 query_type); static int megasas_issue_init_mfi(struct megasas_instance *instance); static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word); static void megasas_get_pd_info(struct megasas_instance *instance, struct scsi_device *sdev); static void megasas_set_ld_removed_by_fw(struct megasas_instance *instance); /* * PCI ID table for all supported controllers */ static struct pci_device_id megasas_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, /* xscale IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, /* xscale IOP, vega */ {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, /* xscale IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)}, /* Fusion */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_PLASMA)}, /* Plasma */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)}, /* Invader */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)}, /* Fury */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INTRUDER)}, /* Intruder */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INTRUDER_24)}, /* Intruder 24 port*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CUTLASS_52)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CUTLASS_53)}, /* VENTURA */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VENTURA)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CRUSADER)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_HARPOON)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_TOMCAT)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VENTURA_4PORT)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_CRUSADER_4PORT)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E1)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E2)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E5)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E6)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E0)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E3)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E4)}, {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_AERO_10E7)}, {} }; MODULE_DEVICE_TABLE(pci, megasas_pci_table); static int megasas_mgmt_majorno; struct megasas_mgmt_info megasas_mgmt_info; static struct fasync_struct *megasas_async_queue; static DEFINE_MUTEX(megasas_async_queue_mutex); static int megasas_poll_wait_aen; static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); static u32 support_poll_for_event; u32 megasas_dbg_lvl; static u32 support_device_change; static bool support_nvme_encapsulation; static bool support_pci_lane_margining; /* define lock for aen poll */ static DEFINE_SPINLOCK(poll_aen_lock); extern struct dentry *megasas_debugfs_root; extern int megasas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num); void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status); static u32 megasas_read_fw_status_reg_gen2(struct megasas_instance *instance); static int megasas_adp_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *reg_set); static irqreturn_t megasas_isr(int irq, void *devp); static u32 megasas_init_adapter_mfi(struct megasas_instance *instance); u32 megasas_build_and_issue_cmd(struct megasas_instance *instance, struct scsi_cmnd *scmd); static void megasas_complete_cmd_dpc(unsigned long instance_addr); int wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd, int seconds); void megasas_fusion_ocr_wq(struct work_struct *work); static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance, int initial); static int megasas_set_dma_mask(struct megasas_instance *instance); static int megasas_alloc_ctrl_mem(struct megasas_instance *instance); static inline void megasas_free_ctrl_mem(struct megasas_instance *instance); static inline int megasas_alloc_ctrl_dma_buffers(struct megasas_instance *instance); static inline void megasas_free_ctrl_dma_buffers(struct megasas_instance *instance); static inline void megasas_init_ctrl_params(struct megasas_instance *instance); u32 megasas_readl(struct megasas_instance *instance, const volatile void __iomem *addr) { u32 i = 0, ret_val; /* * Due to a HW errata in Aero controllers, reads to certain * Fusion registers could intermittently return all zeroes. * This behavior is transient in nature and subsequent reads will * return valid value. As a workaround in driver, retry readl for * upto three times until a non-zero value is read. */ if (instance->adapter_type == AERO_SERIES) { do { ret_val = readl(addr); i++; } while (ret_val == 0 && i < 3); return ret_val; } else { return readl(addr); } } /** * megasas_set_dma_settings - Populate DMA address, length and flags for DCMDs * @instance: Adapter soft state * @dcmd: DCMD frame inside MFI command * @dma_addr: DMA address of buffer to be passed to FW * @dma_len: Length of DMA buffer to be passed to FW * @return: void */ void megasas_set_dma_settings(struct megasas_instance *instance, struct megasas_dcmd_frame *dcmd, dma_addr_t dma_addr, u32 dma_len) { if (instance->consistent_mask_64bit) { dcmd->sgl.sge64[0].phys_addr = cpu_to_le64(dma_addr); dcmd->sgl.sge64[0].length = cpu_to_le32(dma_len); dcmd->flags = cpu_to_le16(dcmd->flags | MFI_FRAME_SGL64); } else { dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(lower_32_bits(dma_addr)); dcmd->sgl.sge32[0].length = cpu_to_le32(dma_len); dcmd->flags = cpu_to_le16(dcmd->flags); } } static void megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); return; } /** * megasas_get_cmd - Get a command from the free pool * @instance: Adapter soft state * * Returns a free command from the pool */ struct megasas_cmd *megasas_get_cmd(struct megasas_instance *instance) { unsigned long flags; struct megasas_cmd *cmd = NULL; spin_lock_irqsave(&instance->mfi_pool_lock, flags); if (!list_empty(&instance->cmd_pool)) { cmd = list_entry((&instance->cmd_pool)->next, struct megasas_cmd, list); list_del_init(&cmd->list); } else { dev_err(&instance->pdev->dev, "Command pool empty!\n"); } spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); return cmd; } /** * megasas_return_cmd - Return a cmd to free command pool * @instance: Adapter soft state * @cmd: Command packet to be returned to free command pool */ void megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; u32 blk_tags; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion = instance->ctrl_context; /* This flag is used only for fusion adapter. * Wait for Interrupt for Polled mode DCMD */ if (cmd->flags & DRV_DCMD_POLLED_MODE) return; spin_lock_irqsave(&instance->mfi_pool_lock, flags); if (fusion) { blk_tags = instance->max_scsi_cmds + cmd->index; cmd_fusion = fusion->cmd_list[blk_tags]; megasas_return_cmd_fusion(instance, cmd_fusion); } cmd->scmd = NULL; cmd->frame_count = 0; cmd->flags = 0; memset(cmd->frame, 0, instance->mfi_frame_size); cmd->frame->io.context = cpu_to_le32(cmd->index); if (!fusion && reset_devices) cmd->frame->hdr.cmd = MFI_CMD_INVALID; list_add(&cmd->list, (&instance->cmd_pool)->next); spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); } static const char * format_timestamp(uint32_t timestamp) { static char buffer[32]; if ((timestamp & 0xff000000) == 0xff000000) snprintf(buffer, sizeof(buffer), "boot + %us", timestamp & 0x00ffffff); else snprintf(buffer, sizeof(buffer), "%us", timestamp); return buffer; } static const char * format_class(int8_t class) { static char buffer[6]; switch (class) { case MFI_EVT_CLASS_DEBUG: return "debug"; case MFI_EVT_CLASS_PROGRESS: return "progress"; case MFI_EVT_CLASS_INFO: return "info"; case MFI_EVT_CLASS_WARNING: return "WARN"; case MFI_EVT_CLASS_CRITICAL: return "CRIT"; case MFI_EVT_CLASS_FATAL: return "FATAL"; case MFI_EVT_CLASS_DEAD: return "DEAD"; default: snprintf(buffer, sizeof(buffer), "%d", class); return buffer; } } /** * megasas_decode_evt: Decode FW AEN event and print critical event * for information. * @instance: Adapter soft state */ static void megasas_decode_evt(struct megasas_instance *instance) { struct megasas_evt_detail *evt_detail = instance->evt_detail; union megasas_evt_class_locale class_locale; class_locale.word = le32_to_cpu(evt_detail->cl.word); if ((event_log_level < MFI_EVT_CLASS_DEBUG) || (event_log_level > MFI_EVT_CLASS_DEAD)) { printk(KERN_WARNING "megaraid_sas: provided event log level is out of range, setting it to default 2(CLASS_CRITICAL), permissible range is: -2 to 4\n"); event_log_level = MFI_EVT_CLASS_CRITICAL; } if (class_locale.members.class >= event_log_level) dev_info(&instance->pdev->dev, "%d (%s/0x%04x/%s) - %s\n", le32_to_cpu(evt_detail->seq_num), format_timestamp(le32_to_cpu(evt_detail->time_stamp)), (class_locale.members.locale), format_class(class_locale.members.class), evt_detail->description); if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "evt_detail.args.ld.target_id/index %d/%d\n", evt_detail->args.ld.target_id, evt_detail->args.ld.ld_index); } /* * The following functions are defined for xscale * (deviceid : 1064R, PERC5) controllers */ /** * megasas_enable_intr_xscale - Enables interrupts * @instance: Adapter soft state */ static inline void megasas_enable_intr_xscale(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_xscale -Disables interrupt * @instance: Adapter soft state */ static inline void megasas_disable_intr_xscale(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0x1f; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_xscale - returns the current FW status value * @instance: Adapter soft state */ static u32 megasas_read_fw_status_reg_xscale(struct megasas_instance *instance) { return readl(&instance->reg_set->outbound_msg_0); } /** * megasas_clear_intr_xscale - Check & clear interrupt * @instance: Adapter soft state */ static int megasas_clear_intr_xscale(struct megasas_instance *instance) { u32 status; u32 mfiStatus = 0; struct megasas_register_set __iomem *regs; regs = instance->reg_set; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_OB_INTR_STATUS_MASK) mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_intr_status); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_xscale - Sends command to the FW * @instance: Adapter soft state * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_xscale(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr >> 3)|(frame_count), &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_xscale - For controller reset * @instance: Adapter soft state * @regs: MFI register set */ static int megasas_adp_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { u32 i; u32 pcidata; writel(MFI_ADP_RESET, ®s->inbound_doorbell); for (i = 0; i < 3; i++) msleep(1000); /* sleep for 3 secs */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); dev_notice(&instance->pdev->dev, "pcidata = %x\n", pcidata); if (pcidata & 0x2) { dev_notice(&instance->pdev->dev, "mfi 1068 offset read=%x\n", pcidata); pcidata &= ~0x2; pci_write_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, pcidata); for (i = 0; i < 2; i++) msleep(1000); /* need to wait 2 secs again */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); dev_notice(&instance->pdev->dev, "1068 offset handshake read=%x\n", pcidata); if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { dev_notice(&instance->pdev->dev, "1068 offset pcidt=%x\n", pcidata); pcidata = 0; pci_write_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); } } return 0; } /** * megasas_check_reset_xscale - For controller reset check * @instance: Adapter soft state * @regs: MFI register set */ static int megasas_check_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if ((atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) && (le32_to_cpu(*instance->consumer) == MEGASAS_ADPRESET_INPROG_SIGN)) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_xscale = { .fire_cmd = megasas_fire_cmd_xscale, .enable_intr = megasas_enable_intr_xscale, .disable_intr = megasas_disable_intr_xscale, .clear_intr = megasas_clear_intr_xscale, .read_fw_status_reg = megasas_read_fw_status_reg_xscale, .adp_reset = megasas_adp_reset_xscale, .check_reset = megasas_check_reset_xscale, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /* * This is the end of set of functions & definitions specific * to xscale (deviceid : 1064R, PERC5) controllers */ /* * The following functions are defined for ppc (deviceid : 0x60) * controllers */ /** * megasas_enable_intr_ppc - Enables interrupts * @instance: Adapter soft state */ static inline void megasas_enable_intr_ppc(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); writel(~0x80000000, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_ppc - Disable interrupt * @instance: Adapter soft state */ static inline void megasas_disable_intr_ppc(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_ppc - returns the current FW status value * @instance: Adapter soft state */ static u32 megasas_read_fw_status_reg_ppc(struct megasas_instance *instance) { return readl(&instance->reg_set->outbound_scratch_pad_0); } /** * megasas_clear_intr_ppc - Check & clear interrupt * @instance: Adapter soft state */ static int megasas_clear_intr_ppc(struct megasas_instance *instance) { u32 status, mfiStatus = 0; struct megasas_register_set __iomem *regs; regs = instance->reg_set; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT) mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_doorbell_clear); return mfiStatus; } /** * megasas_fire_cmd_ppc - Sends command to the FW * @instance: Adapter soft state * @frame_phys_addr: Physical address of cmd * @frame_count: Number of frames for the command * @regs: MFI register set */ static inline void megasas_fire_cmd_ppc(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_check_reset_ppc - For controller reset check * @instance: Adapter soft state * @regs: MFI register set */ static int megasas_check_reset_ppc(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_ppc = { .fire_cmd = megasas_fire_cmd_ppc, .enable_intr = megasas_enable_intr_ppc, .disable_intr = megasas_disable_intr_ppc, .clear_intr = megasas_clear_intr_ppc, .read_fw_status_reg = megasas_read_fw_status_reg_ppc, .adp_reset = megasas_adp_reset_xscale, .check_reset = megasas_check_reset_ppc, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /** * megasas_enable_intr_skinny - Enables interrupts * @instance: Adapter soft state */ static inline void megasas_enable_intr_skinny(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_skinny - Disables interrupt * @instance: Adapter soft state */ static inline void megasas_disable_intr_skinny(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_skinny - returns the current FW status value * @instance: Adapter soft state */ static u32 megasas_read_fw_status_reg_skinny(struct megasas_instance *instance) { return readl(&instance->reg_set->outbound_scratch_pad_0); } /** * megasas_clear_intr_skinny - Check & clear interrupt * @instance: Adapter soft state */ static int megasas_clear_intr_skinny(struct megasas_instance *instance) { u32 status; u32 mfiStatus = 0; struct megasas_register_set __iomem *regs; regs = instance->reg_set; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { return 0; } /* * Check if it is our interrupt */ if ((megasas_read_fw_status_reg_skinny(instance) & MFI_STATE_MASK) == MFI_STATE_FAULT) { mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; } else mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_intr_status); /* * dummy read to flush PCI */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_skinny - Sends command to the FW * @instance: Adapter soft state * @frame_phys_addr: Physical address of cmd * @frame_count: Number of frames for the command * @regs: MFI register set */ static inline void megasas_fire_cmd_skinny(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel(upper_32_bits(frame_phys_addr), &(regs)->inbound_high_queue_port); writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1, &(regs)->inbound_low_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_check_reset_skinny - For controller reset check * @instance: Adapter soft state * @regs: MFI register set */ static int megasas_check_reset_skinny(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_skinny = { .fire_cmd = megasas_fire_cmd_skinny, .enable_intr = megasas_enable_intr_skinny, .disable_intr = megasas_disable_intr_skinny, .clear_intr = megasas_clear_intr_skinny, .read_fw_status_reg = megasas_read_fw_status_reg_skinny, .adp_reset = megasas_adp_reset_gen2, .check_reset = megasas_check_reset_skinny, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /* * The following functions are defined for gen2 (deviceid : 0x78 0x79) * controllers */ /** * megasas_enable_intr_gen2 - Enables interrupts * @instance: Adapter soft state */ static inline void megasas_enable_intr_gen2(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); /* write ~0x00000005 (4 & 1) to the intr mask*/ writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_gen2 - Disables interrupt * @instance: Adapter soft state */ static inline void megasas_disable_intr_gen2(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; u32 mask = 0xFFFFFFFF; regs = instance->reg_set; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_gen2 - returns the current FW status value * @instance: Adapter soft state */ static u32 megasas_read_fw_status_reg_gen2(struct megasas_instance *instance) { return readl(&instance->reg_set->outbound_scratch_pad_0); } /** * megasas_clear_intr_gen2 - Check & clear interrupt * @instance: Adapter soft state */ static int megasas_clear_intr_gen2(struct megasas_instance *instance) { u32 status; u32 mfiStatus = 0; struct megasas_register_set __iomem *regs; regs = instance->reg_set; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_INTR_FLAG_REPLY_MESSAGE) { mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; } if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; } /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_gen2 - Sends command to the FW * @instance: Adapter soft state * @frame_phys_addr: Physical address of cmd * @frame_count: Number of frames for the command * @regs: MFI register set */ static inline void megasas_fire_cmd_gen2(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_gen2 - For controller reset * @instance: Adapter soft state * @reg_set: MFI register set */ static int megasas_adp_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *reg_set) { u32 retry = 0 ; u32 HostDiag; u32 __iomem *seq_offset = ®_set->seq_offset; u32 __iomem *hostdiag_offset = ®_set->host_diag; if (instance->instancet == &megasas_instance_template_skinny) { seq_offset = ®_set->fusion_seq_offset; hostdiag_offset = ®_set->fusion_host_diag; } writel(0, seq_offset); writel(4, seq_offset); writel(0xb, seq_offset); writel(2, seq_offset); writel(7, seq_offset); writel(0xd, seq_offset); msleep(1000); HostDiag = (u32)readl(hostdiag_offset); while (!(HostDiag & DIAG_WRITE_ENABLE)) { msleep(100); HostDiag = (u32)readl(hostdiag_offset); dev_notice(&instance->pdev->dev, "RESETGEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 100) return 1; } dev_notice(&instance->pdev->dev, "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset); ssleep(10); HostDiag = (u32)readl(hostdiag_offset); while (HostDiag & DIAG_RESET_ADAPTER) { msleep(100); HostDiag = (u32)readl(hostdiag_offset); dev_notice(&instance->pdev->dev, "RESET_GEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 1000) return 1; } return 0; } /** * megasas_check_reset_gen2 - For controller reset check * @instance: Adapter soft state * @regs: MFI register set */ static int megasas_check_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) return 1; return 0; } static struct megasas_instance_template megasas_instance_template_gen2 = { .fire_cmd = megasas_fire_cmd_gen2, .enable_intr = megasas_enable_intr_gen2, .disable_intr = megasas_disable_intr_gen2, .clear_intr = megasas_clear_intr_gen2, .read_fw_status_reg = megasas_read_fw_status_reg_gen2, .adp_reset = megasas_adp_reset_gen2, .check_reset = megasas_check_reset_gen2, .service_isr = megasas_isr, .tasklet = megasas_complete_cmd_dpc, .init_adapter = megasas_init_adapter_mfi, .build_and_issue_cmd = megasas_build_and_issue_cmd, .issue_dcmd = megasas_issue_dcmd, }; /* * This is the end of set of functions & definitions * specific to gen2 (deviceid : 0x78, 0x79) controllers */ /* * Template added for TB (Fusion) */ extern struct megasas_instance_template megasas_instance_template_fusion; /** * megasas_issue_polled - Issues a polling command * @instance: Adapter soft state * @cmd: Command packet to be issued * * For polling, MFI requires the cmd_status to be set to MFI_STAT_INVALID_STATUS before posting. */ int megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) { struct megasas_header *frame_hdr = &cmd->frame->hdr; frame_hdr->cmd_status = MFI_STAT_INVALID_STATUS; frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return DCMD_INIT; } instance->instancet->issue_dcmd(instance, cmd); return wait_and_poll(instance, cmd, instance->requestorId ? MEGASAS_ROUTINE_WAIT_TIME_VF : MFI_IO_TIMEOUT_SECS); } /** * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds * @instance: Adapter soft state * @cmd: Command to be issued * @timeout: Timeout in seconds * * This function waits on an event for the command to be returned from ISR. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs * Used to issue ioctl commands. */ int megasas_issue_blocked_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, int timeout) { int ret = 0; cmd->cmd_status_drv = DCMD_INIT; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return DCMD_INIT; } instance->instancet->issue_dcmd(instance, cmd); if (timeout) { ret = wait_event_timeout(instance->int_cmd_wait_q, cmd->cmd_status_drv != DCMD_INIT, timeout * HZ); if (!ret) { dev_err(&instance->pdev->dev, "DCMD(opcode: 0x%x) is timed out, func:%s\n", cmd->frame->dcmd.opcode, __func__); return DCMD_TIMEOUT; } } else wait_event(instance->int_cmd_wait_q, cmd->cmd_status_drv != DCMD_INIT); return cmd->cmd_status_drv; } /** * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd * @instance: Adapter soft state * @cmd_to_abort: Previously issued cmd to be aborted * @timeout: Timeout in seconds * * MFI firmware can abort previously issued AEN comamnd (automatic event * notification). The megasas_issue_blocked_abort_cmd() issues such abort * cmd and waits for return status. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs */ static int megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd_to_abort, int timeout) { struct megasas_cmd *cmd; struct megasas_abort_frame *abort_fr; int ret = 0; u32 opcode; cmd = megasas_get_cmd(instance); if (!cmd) return -1; abort_fr = &cmd->frame->abort; /* * Prepare and issue the abort frame */ abort_fr->cmd = MFI_CMD_ABORT; abort_fr->cmd_status = MFI_STAT_INVALID_STATUS; abort_fr->flags = cpu_to_le16(0); abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index); abort_fr->abort_mfi_phys_addr_lo = cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr)); abort_fr->abort_mfi_phys_addr_hi = cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr)); cmd->sync_cmd = 1; cmd->cmd_status_drv = DCMD_INIT; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return DCMD_INIT; } instance->instancet->issue_dcmd(instance, cmd); if (timeout) { ret = wait_event_timeout(instance->abort_cmd_wait_q, cmd->cmd_status_drv != DCMD_INIT, timeout * HZ); if (!ret) { opcode = cmd_to_abort->frame->dcmd.opcode; dev_err(&instance->pdev->dev, "Abort(to be aborted DCMD opcode: 0x%x) is timed out func:%s\n", opcode, __func__); return DCMD_TIMEOUT; } } else wait_event(instance->abort_cmd_wait_q, cmd->cmd_status_drv != DCMD_INIT); cmd->sync_cmd = 0; megasas_return_cmd(instance, cmd); return cmd->cmd_status_drv; } /** * megasas_make_sgl32 - Prepares 32-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl)); } } return sge_count; } /** * megasas_make_sgl64 - Prepares 64-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); } } return sge_count; } /** * megasas_make_sgl_skinny - Prepares IEEE SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl_skinny(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge_skinny[i].length = cpu_to_le32(sg_dma_len(os_sgl)); mfi_sgl->sge_skinny[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl)); mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0); } } return sge_count; } /** * megasas_get_frame_count - Computes the number of frames * @frame_type : type of frame- io or pthru frame * @sge_count : number of sg elements * * Returns the number of frames required for numnber of sge's (sge_count) */ static u32 megasas_get_frame_count(struct megasas_instance *instance, u8 sge_count, u8 frame_type) { int num_cnt; int sge_bytes; u32 sge_sz; u32 frame_count = 0; sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : sizeof(struct megasas_sge32); if (instance->flag_ieee) { sge_sz = sizeof(struct megasas_sge_skinny); } /* * Main frame can contain 2 SGEs for 64-bit SGLs and * 3 SGEs for 32-bit SGLs for ldio & * 1 SGEs for 64-bit SGLs and * 2 SGEs for 32-bit SGLs for pthru frame */ if (unlikely(frame_type == PTHRU_FRAME)) { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 1; else num_cnt = sge_count - 2; } else { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 2; else num_cnt = sge_count - 3; } if (num_cnt > 0) { sge_bytes = sge_sz * num_cnt; frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; } /* Main frame */ frame_count += 1; if (frame_count > 7) frame_count = 8; return frame_count; } /** * megasas_build_dcdb - Prepares a direct cdb (DCDB) command * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared in * * This function prepares CDB commands. These are typcially pass-through * commands to the devices. */ static int megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 is_logical; u32 device_id; u16 flags = 0; struct megasas_pthru_frame *pthru; is_logical = MEGASAS_IS_LOGICAL(scp->device); device_id = MEGASAS_DEV_INDEX(scp); pthru = (struct megasas_pthru_frame *)cmd->frame; if (scp->sc_data_direction == DMA_TO_DEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == DMA_FROM_DEVICE) flags = MFI_FRAME_DIR_READ; else if (scp->sc_data_direction == DMA_NONE) flags = MFI_FRAME_DIR_NONE; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the DCDB frame */ pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; pthru->cmd_status = 0x0; pthru->scsi_status = 0x0; pthru->target_id = device_id; pthru->lun = scp->device->lun; pthru->cdb_len = scp->cmd_len; pthru->timeout = 0; pthru->pad_0 = 0; pthru->flags = cpu_to_le16(flags); pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp)); memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); /* * If the command is for the tape device, set the * pthru timeout to the os layer timeout value. */ if (scp->device->type == TYPE_TAPE) { if (scsi_cmd_to_rq(scp)->timeout / HZ > 0xFFFF) pthru->timeout = cpu_to_le16(0xFFFF); else pthru->timeout = cpu_to_le16(scsi_cmd_to_rq(scp)->timeout / HZ); } /* * Construct SGL */ if (instance->flag_ieee == 1) { pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); pthru->sge_count = megasas_make_sgl_skinny(instance, scp, &pthru->sgl); } else if (IS_DMA64) { pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64); pthru->sge_count = megasas_make_sgl64(instance, scp, &pthru->sgl); } else pthru->sge_count = megasas_make_sgl32(instance, scp, &pthru->sgl); if (pthru->sge_count > instance->max_num_sge) { dev_err(&instance->pdev->dev, "DCDB too many SGE NUM=%x\n", pthru->sge_count); return 0; } /* * Sense info specific */ pthru->sense_len = SCSI_SENSE_BUFFERSIZE; pthru->sense_buf_phys_addr_hi = cpu_to_le32(upper_32_bits(cmd->sense_phys_addr)); pthru->sense_buf_phys_addr_lo = cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, PTHRU_FRAME); return cmd->frame_count; } /** * megasas_build_ldio - Prepares IOs to logical devices * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared * * Frames (and accompanying SGLs) for regular SCSI IOs use this function. */ static int megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 device_id; u8 sc = scp->cmnd[0]; u16 flags = 0; struct megasas_io_frame *ldio; device_id = MEGASAS_DEV_INDEX(scp); ldio = (struct megasas_io_frame *)cmd->frame; if (scp->sc_data_direction == DMA_TO_DEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == DMA_FROM_DEVICE) flags = MFI_FRAME_DIR_READ; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the Logical IO frame: 2nd bit is zero for all read cmds */ ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; ldio->cmd_status = 0x0; ldio->scsi_status = 0x0; ldio->target_id = device_id; ldio->timeout = 0; ldio->reserved_0 = 0; ldio->pad_0 = 0; ldio->flags = cpu_to_le16(flags); ldio->start_lba_hi = 0; ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if (scp->cmd_len == 6) { ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) | ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3]); ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF); } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ else if (scp->cmd_len == 10) { ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] | ((u32) scp->cmnd[7] << 8)); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ else if (scp->cmd_len == 12) { ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * 16-byte READ(0x88) or WRITE(0x8A) cdb */ else if (scp->cmd_len == 16) { ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) | ((u32) scp->cmnd[11] << 16) | ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13]); ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]); ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]); } /* * Construct SGL */ if (instance->flag_ieee) { ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); ldio->sge_count = megasas_make_sgl_skinny(instance, scp, &ldio->sgl); } else if (IS_DMA64) { ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64); ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); } else ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); if (ldio->sge_count > instance->max_num_sge) { dev_err(&instance->pdev->dev, "build_ld_io: sge_count = %x\n", ldio->sge_count); return 0; } /* * Sense info specific */ ldio->sense_len = SCSI_SENSE_BUFFERSIZE; ldio->sense_buf_phys_addr_hi = 0; ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr); /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, ldio->sge_count, IO_FRAME); return cmd->frame_count; } /** * megasas_cmd_type - Checks if the cmd is for logical drive/sysPD * and whether it's RW or non RW * @cmd: SCSI command * */ inline int megasas_cmd_type(struct scsi_cmnd *cmd) { int ret; switch (cmd->cmnd[0]) { case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_6: case WRITE_6: case READ_16: case WRITE_16: ret = (MEGASAS_IS_LOGICAL(cmd->device)) ? READ_WRITE_LDIO : READ_WRITE_SYSPDIO; break; default: ret = (MEGASAS_IS_LOGICAL(cmd->device)) ? NON_READ_WRITE_LDIO : NON_READ_WRITE_SYSPDIO; } return ret; } /** * megasas_dump_pending_frames - Dumps the frame address of all pending cmds * in FW * @instance: Adapter soft state */ static inline void megasas_dump_pending_frames(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i,n; union megasas_sgl *mfi_sgl; struct megasas_io_frame *ldio; struct megasas_pthru_frame *pthru; u32 sgcount; u16 max_cmd = instance->max_fw_cmds; dev_err(&instance->pdev->dev, "[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); dev_err(&instance->pdev->dev, "[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); if (IS_DMA64) dev_err(&instance->pdev->dev, "[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); else dev_err(&instance->pdev->dev, "[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); dev_err(&instance->pdev->dev, "[%d]: Pending OS cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (!cmd->scmd) continue; dev_err(&instance->pdev->dev, "[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); if (megasas_cmd_type(cmd->scmd) == READ_WRITE_LDIO) { ldio = (struct megasas_io_frame *)cmd->frame; mfi_sgl = &ldio->sgl; sgcount = ldio->sge_count; dev_err(&instance->pdev->dev, "[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x," " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id, le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi), le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount); } else { pthru = (struct megasas_pthru_frame *) cmd->frame; mfi_sgl = &pthru->sgl; sgcount = pthru->sge_count; dev_err(&instance->pdev->dev, "[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, " "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n", instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id, pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len), le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount); } if (megasas_dbg_lvl & MEGASAS_DBG_LVL) { for (n = 0; n < sgcount; n++) { if (IS_DMA64) dev_err(&instance->pdev->dev, "sgl len : 0x%x, sgl addr : 0x%llx\n", le32_to_cpu(mfi_sgl->sge64[n].length), le64_to_cpu(mfi_sgl->sge64[n].phys_addr)); else dev_err(&instance->pdev->dev, "sgl len : 0x%x, sgl addr : 0x%x\n", le32_to_cpu(mfi_sgl->sge32[n].length), le32_to_cpu(mfi_sgl->sge32[n].phys_addr)); } } } /*for max_cmd*/ dev_err(&instance->pdev->dev, "[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->sync_cmd == 1) dev_err(&instance->pdev->dev, "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); } dev_err(&instance->pdev->dev, "[%d]: Dumping Done\n\n",instance->host->host_no); } u32 megasas_build_and_issue_cmd(struct megasas_instance *instance, struct scsi_cmnd *scmd) { struct megasas_cmd *cmd; u32 frame_count; cmd = megasas_get_cmd(instance); if (!cmd) return SCSI_MLQUEUE_HOST_BUSY; /* * Logical drive command */ if (megasas_cmd_type(scmd) == READ_WRITE_LDIO) frame_count = megasas_build_ldio(instance, scmd, cmd); else frame_count = megasas_build_dcdb(instance, scmd, cmd); if (!frame_count) goto out_return_cmd; cmd->scmd = scmd; megasas_priv(scmd)->cmd_priv = cmd; /* * Issue the command to the FW */ atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); return 0; out_return_cmd: megasas_return_cmd(instance, cmd); return SCSI_MLQUEUE_HOST_BUSY; } /** * megasas_queue_command - Queue entry point * @shost: adapter SCSI host * @scmd: SCSI command to be queued */ static int megasas_queue_command(struct Scsi_Host *shost, struct scsi_cmnd *scmd) { struct megasas_instance *instance; struct MR_PRIV_DEVICE *mr_device_priv_data; u32 ld_tgt_id; instance = (struct megasas_instance *) scmd->device->host->hostdata; if (instance->unload == 1) { scmd->result = DID_NO_CONNECT << 16; scsi_done(scmd); return 0; } if (instance->issuepend_done == 0) return SCSI_MLQUEUE_HOST_BUSY; /* Check for an mpio path and adjust behavior */ if (atomic_read(&instance->adprecovery) == MEGASAS_ADPRESET_SM_INFAULT) { if (megasas_check_mpio_paths(instance, scmd) == (DID_REQUEUE << 16)) { return SCSI_MLQUEUE_HOST_BUSY; } else { scmd->result = DID_NO_CONNECT << 16; scsi_done(scmd); return 0; } } mr_device_priv_data = scmd->device->hostdata; if (!mr_device_priv_data || (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR)) { scmd->result = DID_NO_CONNECT << 16; scsi_done(scmd); return 0; } if (MEGASAS_IS_LOGICAL(scmd->device)) { ld_tgt_id = MEGASAS_TARGET_ID(scmd->device); if (instance->ld_tgtid_status[ld_tgt_id] == LD_TARGET_ID_DELETED) { scmd->result = DID_NO_CONNECT << 16; scsi_done(scmd); return 0; } } if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) return SCSI_MLQUEUE_HOST_BUSY; if (mr_device_priv_data->tm_busy) return SCSI_MLQUEUE_DEVICE_BUSY; scmd->result = 0; if (MEGASAS_IS_LOGICAL(scmd->device) && (scmd->device->id >= instance->fw_supported_vd_count || scmd->device->lun)) { scmd->result = DID_BAD_TARGET << 16; goto out_done; } if ((scmd->cmnd[0] == SYNCHRONIZE_CACHE) && MEGASAS_IS_LOGICAL(scmd->device) && (!instance->fw_sync_cache_support)) { scmd->result = DID_OK << 16; goto out_done; } return instance->instancet->build_and_issue_cmd(instance, scmd); out_done: scsi_done(scmd); return 0; } static struct megasas_instance *megasas_lookup_instance(u16 host_no) { int i; for (i = 0; i < megasas_mgmt_info.max_index; i++) { if ((megasas_mgmt_info.instance[i]) && (megasas_mgmt_info.instance[i]->host->host_no == host_no)) return megasas_mgmt_info.instance[i]; } return NULL; } /* * megasas_set_dynamic_target_properties - * Device property set by driver may not be static and it is required to be * updated after OCR * * set tm_capable. * set dma alignment (only for eedp protection enable vd). * * @sdev: OS provided scsi device * * Returns void */ void megasas_set_dynamic_target_properties(struct scsi_device *sdev, bool is_target_prop) { u16 pd_index = 0, ld; u32 device_id; struct megasas_instance *instance; struct fusion_context *fusion; struct MR_PRIV_DEVICE *mr_device_priv_data; struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync; struct MR_LD_RAID *raid; struct MR_DRV_RAID_MAP_ALL *local_map_ptr; instance = megasas_lookup_instance(sdev->host->host_no); fusion = instance->ctrl_context; mr_device_priv_data = sdev->hostdata; if (!fusion || !mr_device_priv_data) return; if (MEGASAS_IS_LOGICAL(sdev)) { device_id = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)]; ld = MR_TargetIdToLdGet(device_id, local_map_ptr); if (ld >= instance->fw_supported_vd_count) return; raid = MR_LdRaidGet(ld, local_map_ptr); if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) blk_queue_update_dma_alignment(sdev->request_queue, 0x7); mr_device_priv_data->is_tm_capable = raid->capability.tmCapable; if (!raid->flags.isEPD) sdev->no_write_same = 1; } else if (instance->use_seqnum_jbod_fp) { pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; pd_sync = (void *)fusion->pd_seq_sync [(instance->pd_seq_map_id - 1) & 1]; mr_device_priv_data->is_tm_capable = pd_sync->seq[pd_index].capability.tmCapable; } if (is_target_prop && instance->tgt_prop->reset_tmo) { /* * If FW provides a target reset timeout value, driver will use * it. If not set, fallback to default values. */ mr_device_priv_data->target_reset_tmo = min_t(u8, instance->max_reset_tmo, instance->tgt_prop->reset_tmo); mr_device_priv_data->task_abort_tmo = instance->task_abort_tmo; } else { mr_device_priv_data->target_reset_tmo = MEGASAS_DEFAULT_TM_TIMEOUT; mr_device_priv_data->task_abort_tmo = MEGASAS_DEFAULT_TM_TIMEOUT; } } /* * megasas_set_nvme_device_properties - * set nomerges=2 * set virtual page boundary = 4K (current mr_nvme_pg_size is 4K). * set maximum io transfer = MDTS of NVME device provided by MR firmware. * * MR firmware provides value in KB. Caller of this function converts * kb into bytes. * * e.a MDTS=5 means 2^5 * nvme page size. (In case of 4K page size, * MR firmware provides value 128 as (32 * 4K) = 128K. * * @sdev: scsi device * @max_io_size: maximum io transfer size * */ static inline void megasas_set_nvme_device_properties(struct scsi_device *sdev, u32 max_io_size) { struct megasas_instance *instance; u32 mr_nvme_pg_size; instance = (struct megasas_instance *)sdev->host->hostdata; mr_nvme_pg_size = max_t(u32, instance->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE); blk_queue_max_hw_sectors(sdev->request_queue, (max_io_size / 512)); blk_queue_flag_set(QUEUE_FLAG_NOMERGES, sdev->request_queue); blk_queue_virt_boundary(sdev->request_queue, mr_nvme_pg_size - 1); } /* * megasas_set_fw_assisted_qd - * set device queue depth to can_queue * set device queue depth to fw assisted qd * * @sdev: scsi device * @is_target_prop true, if fw provided target properties. */ static void megasas_set_fw_assisted_qd(struct scsi_device *sdev, bool is_target_prop) { u8 interface_type; u32 device_qd = MEGASAS_DEFAULT_CMD_PER_LUN; u32 tgt_device_qd; struct megasas_instance *instance; struct MR_PRIV_DEVICE *mr_device_priv_data; instance = megasas_lookup_instance(sdev->host->host_no); mr_device_priv_data = sdev->hostdata; interface_type = mr_device_priv_data->interface_type; switch (interface_type) { case SAS_PD: device_qd = MEGASAS_SAS_QD; break; case SATA_PD: device_qd = MEGASAS_SATA_QD; break; case NVME_PD: device_qd = MEGASAS_NVME_QD; break; } if (is_target_prop) { tgt_device_qd = le32_to_cpu(instance->tgt_prop->device_qdepth); if (tgt_device_qd) device_qd = min(instance->host->can_queue, (int)tgt_device_qd); } if (instance->enable_sdev_max_qd && interface_type != UNKNOWN_DRIVE) device_qd = instance->host->can_queue; scsi_change_queue_depth(sdev, device_qd); } /* * megasas_set_static_target_properties - * Device property set by driver are static and it is not required to be * updated after OCR. * * set io timeout * set device queue depth * set nvme device properties. see - megasas_set_nvme_device_properties * * @sdev: scsi device * @is_target_prop true, if fw provided target properties. */ static void megasas_set_static_target_properties(struct scsi_device *sdev, bool is_target_prop) { u32 max_io_size_kb = MR_DEFAULT_NVME_MDTS_KB; struct megasas_instance *instance; instance = megasas_lookup_instance(sdev->host->host_no); /* * The RAID firmware may require extended timeouts. */ blk_queue_rq_timeout(sdev->request_queue, scmd_timeout * HZ); /* max_io_size_kb will be set to non zero for * nvme based vd and syspd. */ if (is_target_prop) max_io_size_kb = le32_to_cpu(instance->tgt_prop->max_io_size_kb); if (instance->nvme_page_size && max_io_size_kb) megasas_set_nvme_device_properties(sdev, (max_io_size_kb << 10)); megasas_set_fw_assisted_qd(sdev, is_target_prop); } static int megasas_slave_configure(struct scsi_device *sdev) { u16 pd_index = 0; struct megasas_instance *instance; int ret_target_prop = DCMD_FAILED; bool is_target_prop = false; instance = megasas_lookup_instance(sdev->host->host_no); if (instance->pd_list_not_supported) { if (!MEGASAS_IS_LOGICAL(sdev) && sdev->type == TYPE_DISK) { pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; if (instance->pd_list[pd_index].driveState != MR_PD_STATE_SYSTEM) return -ENXIO; } } mutex_lock(&instance->reset_mutex); /* Send DCMD to Firmware and cache the information */ if ((instance->pd_info) && !MEGASAS_IS_LOGICAL(sdev)) megasas_get_pd_info(instance, sdev); /* Some ventura firmware may not have instance->nvme_page_size set. * Do not send MR_DCMD_DRV_GET_TARGET_PROP */ if ((instance->tgt_prop) && (instance->nvme_page_size)) ret_target_prop = megasas_get_target_prop(instance, sdev); is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false; megasas_set_static_target_properties(sdev, is_target_prop); /* This sdev property may change post OCR */ megasas_set_dynamic_target_properties(sdev, is_target_prop); mutex_unlock(&instance->reset_mutex); return 0; } static int megasas_slave_alloc(struct scsi_device *sdev) { u16 pd_index = 0, ld_tgt_id; struct megasas_instance *instance ; struct MR_PRIV_DEVICE *mr_device_priv_data; instance = megasas_lookup_instance(sdev->host->host_no); if (!MEGASAS_IS_LOGICAL(sdev)) { /* * Open the OS scan to the SYSTEM PD */ pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; if ((instance->pd_list_not_supported || instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM)) { goto scan_target; } return -ENXIO; } else if (!MEGASAS_IS_LUN_VALID(sdev)) { sdev_printk(KERN_INFO, sdev, "%s: invalid LUN\n", __func__); return -ENXIO; } scan_target: mr_device_priv_data = kzalloc(sizeof(*mr_device_priv_data), GFP_KERNEL); if (!mr_device_priv_data) return -ENOMEM; if (MEGASAS_IS_LOGICAL(sdev)) { ld_tgt_id = MEGASAS_TARGET_ID(sdev); instance->ld_tgtid_status[ld_tgt_id] = LD_TARGET_ID_ACTIVE; if (megasas_dbg_lvl & LD_PD_DEBUG) sdev_printk(KERN_INFO, sdev, "LD target ID %d created.\n", ld_tgt_id); } sdev->hostdata = mr_device_priv_data; atomic_set(&mr_device_priv_data->r1_ldio_hint, instance->r1_ldio_hint_default); return 0; } static void megasas_slave_destroy(struct scsi_device *sdev) { u16 ld_tgt_id; struct megasas_instance *instance; instance = megasas_lookup_instance(sdev->host->host_no); if (MEGASAS_IS_LOGICAL(sdev)) { if (!MEGASAS_IS_LUN_VALID(sdev)) { sdev_printk(KERN_INFO, sdev, "%s: invalid LUN\n", __func__); return; } ld_tgt_id = MEGASAS_TARGET_ID(sdev); instance->ld_tgtid_status[ld_tgt_id] = LD_TARGET_ID_DELETED; if (megasas_dbg_lvl & LD_PD_DEBUG) sdev_printk(KERN_INFO, sdev, "LD target ID %d removed from OS stack\n", ld_tgt_id); } kfree(sdev->hostdata); sdev->hostdata = NULL; } /* * megasas_complete_outstanding_ioctls - Complete outstanding ioctls after a * kill adapter * @instance: Adapter soft state * */ static void megasas_complete_outstanding_ioctls(struct megasas_instance *instance) { int i; struct megasas_cmd *cmd_mfi; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion = instance->ctrl_context; /* Find all outstanding ioctls */ if (fusion) { for (i = 0; i < instance->max_fw_cmds; i++) { cmd_fusion = fusion->cmd_list[i]; if (cmd_fusion->sync_cmd_idx != (u32)ULONG_MAX) { cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx]; if (cmd_mfi->sync_cmd && (cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT)) { cmd_mfi->frame->hdr.cmd_status = MFI_STAT_WRONG_STATE; megasas_complete_cmd(instance, cmd_mfi, DID_OK); } } } } else { for (i = 0; i < instance->max_fw_cmds; i++) { cmd_mfi = instance->cmd_list[i]; if (cmd_mfi->sync_cmd && cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT) megasas_complete_cmd(instance, cmd_mfi, DID_OK); } } } void megaraid_sas_kill_hba(struct megasas_instance *instance) { if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_warn(&instance->pdev->dev, "Adapter already dead, skipping kill HBA\n"); return; } /* Set critical error to block I/O & ioctls in case caller didn't */ atomic_set(&instance->adprecovery, MEGASAS_HW_CRITICAL_ERROR); /* Wait 1 second to ensure IO or ioctls in build have posted */ msleep(1000); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->adapter_type != MFI_SERIES)) { if (!instance->requestorId) { writel(MFI_STOP_ADP, &instance->reg_set->doorbell); /* Flush */ readl(&instance->reg_set->doorbell); } if (instance->requestorId && instance->peerIsPresent) memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); } else { writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); } /* Complete outstanding ioctls when adapter is killed */ megasas_complete_outstanding_ioctls(instance); } /** * megasas_check_and_restore_queue_depth - Check if queue depth needs to be * restored to max value * @instance: Adapter soft state * */ void megasas_check_and_restore_queue_depth(struct megasas_instance *instance) { unsigned long flags; if (instance->flag & MEGASAS_FW_BUSY && time_after(jiffies, instance->last_time + 5 * HZ) && atomic_read(&instance->fw_outstanding) < instance->throttlequeuedepth + 1) { spin_lock_irqsave(instance->host->host_lock, flags); instance->flag &= ~MEGASAS_FW_BUSY; instance->host->can_queue = instance->cur_can_queue; spin_unlock_irqrestore(instance->host->host_lock, flags); } } /** * megasas_complete_cmd_dpc - Returns FW's controller structure * @instance_addr: Address of adapter soft state * * Tasklet to complete cmds */ static void megasas_complete_cmd_dpc(unsigned long instance_addr) { u32 producer; u32 consumer; u32 context; struct megasas_cmd *cmd; struct megasas_instance *instance = (struct megasas_instance *)instance_addr; unsigned long flags; /* If we have already declared adapter dead, donot complete cmds */ if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) return; spin_lock_irqsave(&instance->completion_lock, flags); producer = le32_to_cpu(*instance->producer); consumer = le32_to_cpu(*instance->consumer); while (consumer != producer) { context = le32_to_cpu(instance->reply_queue[consumer]); if (context >= instance->max_fw_cmds) { dev_err(&instance->pdev->dev, "Unexpected context value %x\n", context); BUG(); } cmd = instance->cmd_list[context]; megasas_complete_cmd(instance, cmd, DID_OK); consumer++; if (consumer == (instance->max_fw_cmds + 1)) { consumer = 0; } } *instance->consumer = cpu_to_le32(producer); spin_unlock_irqrestore(&instance->completion_lock, flags); /* * Check if we can restore can_queue */ megasas_check_and_restore_queue_depth(instance); } static void megasas_sriov_heartbeat_handler(struct timer_list *t); /** * megasas_start_timer - Initializes sriov heartbeat timer object * @instance: Adapter soft state * */ void megasas_start_timer(struct megasas_instance *instance) { struct timer_list *timer = &instance->sriov_heartbeat_timer; timer_setup(timer, megasas_sriov_heartbeat_handler, 0); timer->expires = jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF; add_timer(timer); } static void megasas_internal_reset_defer_cmds(struct megasas_instance *instance); static void process_fw_state_change_wq(struct work_struct *work); static void megasas_do_ocr(struct megasas_instance *instance) { if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); } instance->instancet->disable_intr(instance); atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT); instance->issuepend_done = 0; atomic_set(&instance->fw_outstanding, 0); megasas_internal_reset_defer_cmds(instance); process_fw_state_change_wq(&instance->work_init); } static int megasas_get_ld_vf_affiliation_111(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_VF_AFFILIATION_111 *new_affiliation_111 = NULL; dma_addr_t new_affiliation_111_h; int ld, retval = 0; u8 thisVf; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_vf_affiliation_111:" "Failed to get cmd for scsi%d\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (!instance->vf_affiliation_111) { dev_warn(&instance->pdev->dev, "SR-IOV: Couldn't get LD/VF " "affiliation for scsi%d\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } if (initial) memset(instance->vf_affiliation_111, 0, sizeof(struct MR_LD_VF_AFFILIATION_111)); else { new_affiliation_111 = dma_alloc_coherent(&instance->pdev->dev, sizeof(struct MR_LD_VF_AFFILIATION_111), &new_affiliation_111_h, GFP_KERNEL); if (!new_affiliation_111) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate " "memory for new affiliation for scsi%d\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_VF_AFFILIATION_111)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111); if (initial) dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->vf_affiliation_111_h); else dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(new_affiliation_111_h); dcmd->sgl.sge32[0].length = cpu_to_le32( sizeof(struct MR_LD_VF_AFFILIATION_111)); dev_warn(&instance->pdev->dev, "SR-IOV: Getting LD/VF affiliation for " "scsi%d\n", instance->host->host_no); if (megasas_issue_blocked_cmd(instance, cmd, 0) != DCMD_SUCCESS) { dev_warn(&instance->pdev->dev, "SR-IOV: LD/VF affiliation DCMD" " failed with status 0x%x for scsi%d\n", dcmd->cmd_status, instance->host->host_no); retval = 1; /* Do a scan if we couldn't get affiliation */ goto out; } if (!initial) { thisVf = new_affiliation_111->thisVf; for (ld = 0 ; ld < new_affiliation_111->vdCount; ld++) if (instance->vf_affiliation_111->map[ld].policy[thisVf] != new_affiliation_111->map[ld].policy[thisVf]) { dev_warn(&instance->pdev->dev, "SR-IOV: " "Got new LD/VF affiliation for scsi%d\n", instance->host->host_no); memcpy(instance->vf_affiliation_111, new_affiliation_111, sizeof(struct MR_LD_VF_AFFILIATION_111)); retval = 1; goto out; } } out: if (new_affiliation_111) { dma_free_coherent(&instance->pdev->dev, sizeof(struct MR_LD_VF_AFFILIATION_111), new_affiliation_111, new_affiliation_111_h); } megasas_return_cmd(instance, cmd); return retval; } static int megasas_get_ld_vf_affiliation_12(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_VF_AFFILIATION *new_affiliation = NULL; struct MR_LD_VF_MAP *newmap = NULL, *savedmap = NULL; dma_addr_t new_affiliation_h; int i, j, retval = 0, found = 0, doscan = 0; u8 thisVf; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_vf_affiliation12: " "Failed to get cmd for scsi%d\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (!instance->vf_affiliation) { dev_warn(&instance->pdev->dev, "SR-IOV: Couldn't get LD/VF " "affiliation for scsi%d\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } if (initial) memset(instance->vf_affiliation, 0, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION)); else { new_affiliation = dma_alloc_coherent(&instance->pdev->dev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), &new_affiliation_h, GFP_KERNEL); if (!new_affiliation) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate " "memory for new affiliation for scsi%d\n", instance->host->host_no); megasas_return_cmd(instance, cmd); return -ENOMEM; } } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32((MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_VF_MAP_GET_ALL_LDS); if (initial) dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->vf_affiliation_h); else dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(new_affiliation_h); dcmd->sgl.sge32[0].length = cpu_to_le32((MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION)); dev_warn(&instance->pdev->dev, "SR-IOV: Getting LD/VF affiliation for " "scsi%d\n", instance->host->host_no); if (megasas_issue_blocked_cmd(instance, cmd, 0) != DCMD_SUCCESS) { dev_warn(&instance->pdev->dev, "SR-IOV: LD/VF affiliation DCMD" " failed with status 0x%x for scsi%d\n", dcmd->cmd_status, instance->host->host_no); retval = 1; /* Do a scan if we couldn't get affiliation */ goto out; } if (!initial) { if (!new_affiliation->ldCount) { dev_warn(&instance->pdev->dev, "SR-IOV: Got new LD/VF " "affiliation for passive path for scsi%d\n", instance->host->host_no); retval = 1; goto out; } newmap = new_affiliation->map; savedmap = instance->vf_affiliation->map; thisVf = new_affiliation->thisVf; for (i = 0 ; i < new_affiliation->ldCount; i++) { found = 0; for (j = 0; j < instance->vf_affiliation->ldCount; j++) { if (newmap->ref.targetId == savedmap->ref.targetId) { found = 1; if (newmap->policy[thisVf] != savedmap->policy[thisVf]) { doscan = 1; goto out; } } savedmap = (struct MR_LD_VF_MAP *) ((unsigned char *)savedmap + savedmap->size); } if (!found && newmap->policy[thisVf] != MR_LD_ACCESS_HIDDEN) { doscan = 1; goto out; } newmap = (struct MR_LD_VF_MAP *) ((unsigned char *)newmap + newmap->size); } newmap = new_affiliation->map; savedmap = instance->vf_affiliation->map; for (i = 0 ; i < instance->vf_affiliation->ldCount; i++) { found = 0; for (j = 0 ; j < new_affiliation->ldCount; j++) { if (savedmap->ref.targetId == newmap->ref.targetId) { found = 1; if (savedmap->policy[thisVf] != newmap->policy[thisVf]) { doscan = 1; goto out; } } newmap = (struct MR_LD_VF_MAP *) ((unsigned char *)newmap + newmap->size); } if (!found && savedmap->policy[thisVf] != MR_LD_ACCESS_HIDDEN) { doscan = 1; goto out; } savedmap = (struct MR_LD_VF_MAP *) ((unsigned char *)savedmap + savedmap->size); } } out: if (doscan) { dev_warn(&instance->pdev->dev, "SR-IOV: Got new LD/VF " "affiliation for scsi%d\n", instance->host->host_no); memcpy(instance->vf_affiliation, new_affiliation, new_affiliation->size); retval = 1; } if (new_affiliation) dma_free_coherent(&instance->pdev->dev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), new_affiliation, new_affiliation_h); megasas_return_cmd(instance, cmd); return retval; } /* This function will get the current SR-IOV LD/VF affiliation */ static int megasas_get_ld_vf_affiliation(struct megasas_instance *instance, int initial) { int retval; if (instance->PlasmaFW111) retval = megasas_get_ld_vf_affiliation_111(instance, initial); else retval = megasas_get_ld_vf_affiliation_12(instance, initial); return retval; } /* This function will tell FW to start the SR-IOV heartbeat */ int megasas_sriov_start_heartbeat(struct megasas_instance *instance, int initial) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; int retval = 0; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_sriov_start_heartbeat: " "Failed to get cmd for scsi%d\n", instance->host->host_no); return -ENOMEM; } dcmd = &cmd->frame->dcmd; if (initial) { instance->hb_host_mem = dma_alloc_coherent(&instance->pdev->dev, sizeof(struct MR_CTRL_HB_HOST_MEM), &instance->hb_host_mem_h, GFP_KERNEL); if (!instance->hb_host_mem) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "SR-IOV: Couldn't allocate" " memory for heartbeat host memory for scsi%d\n", instance->host->host_no); retval = -ENOMEM; goto out; } } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.s[0] = cpu_to_le16(sizeof(struct MR_CTRL_HB_HOST_MEM)); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_BOTH); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_CTRL_HB_HOST_MEM)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC); megasas_set_dma_settings(instance, dcmd, instance->hb_host_mem_h, sizeof(struct MR_CTRL_HB_HOST_MEM)); dev_warn(&instance->pdev->dev, "SR-IOV: Starting heartbeat for scsi%d\n", instance->host->host_no); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) retval = megasas_issue_blocked_cmd(instance, cmd, MEGASAS_ROUTINE_WAIT_TIME_VF); else retval = megasas_issue_polled(instance, cmd); if (retval) { dev_warn(&instance->pdev->dev, "SR-IOV: MR_DCMD_CTRL_SHARED_HOST" "_MEM_ALLOC DCMD %s for scsi%d\n", (dcmd->cmd_status == MFI_STAT_INVALID_STATUS) ? "timed out" : "failed", instance->host->host_no); retval = 1; } out: megasas_return_cmd(instance, cmd); return retval; } /* Handler for SR-IOV heartbeat */ static void megasas_sriov_heartbeat_handler(struct timer_list *t) { struct megasas_instance *instance = from_timer(instance, t, sriov_heartbeat_timer); if (instance->hb_host_mem->HB.fwCounter != instance->hb_host_mem->HB.driverCounter) { instance->hb_host_mem->HB.driverCounter = instance->hb_host_mem->HB.fwCounter; mod_timer(&instance->sriov_heartbeat_timer, jiffies + MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF); } else { dev_warn(&instance->pdev->dev, "SR-IOV: Heartbeat never " "completed for scsi%d\n", instance->host->host_no); schedule_work(&instance->work_init); } } /** * megasas_wait_for_outstanding - Wait for all outstanding cmds * @instance: Adapter soft state * * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to * complete all its outstanding commands. Returns error if one or more IOs * are pending after this time period. It also marks the controller dead. */ static int megasas_wait_for_outstanding(struct megasas_instance *instance) { int i, sl, outstanding; u32 reset_index; u32 wait_time = MEGASAS_RESET_WAIT_TIME; unsigned long flags; struct list_head clist_local; struct megasas_cmd *reset_cmd; u32 fw_state; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_info(&instance->pdev->dev, "%s:%d HBA is killed.\n", __func__, __LINE__); return FAILED; } if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) { INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); dev_notice(&instance->pdev->dev, "HBA reset wait ...\n"); for (i = 0; i < wait_time; i++) { msleep(1000); if (atomic_read(&instance->adprecovery) == MEGASAS_HBA_OPERATIONAL) break; } if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) { dev_notice(&instance->pdev->dev, "reset: Stopping HBA.\n"); atomic_set(&instance->adprecovery, MEGASAS_HW_CRITICAL_ERROR); return FAILED; } reset_index = 0; while (!list_empty(&clist_local)) { reset_cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&reset_cmd->list); if (reset_cmd->scmd) { reset_cmd->scmd->result = DID_REQUEUE << 16; dev_notice(&instance->pdev->dev, "%d:%p reset [%02x]\n", reset_index, reset_cmd, reset_cmd->scmd->cmnd[0]); scsi_done(reset_cmd->scmd); megasas_return_cmd(instance, reset_cmd); } else if (reset_cmd->sync_cmd) { dev_notice(&instance->pdev->dev, "%p synch cmds" "reset queue\n", reset_cmd); reset_cmd->cmd_status_drv = DCMD_INIT; instance->instancet->fire_cmd(instance, reset_cmd->frame_phys_addr, 0, instance->reg_set); } else { dev_notice(&instance->pdev->dev, "%p unexpected" "cmds lst\n", reset_cmd); } reset_index++; } return SUCCESS; } for (i = 0; i < resetwaittime; i++) { outstanding = atomic_read(&instance->fw_outstanding); if (!outstanding) break; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { dev_notice(&instance->pdev->dev, "[%2d]waiting for %d " "commands to complete\n",i,outstanding); /* * Call cmd completion routine. Cmd to be * be completed directly without depending on isr. */ megasas_complete_cmd_dpc((unsigned long)instance); } msleep(1000); } i = 0; outstanding = atomic_read(&instance->fw_outstanding); fw_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK; if ((!outstanding && (fw_state == MFI_STATE_OPERATIONAL))) goto no_outstanding; if (instance->disableOnlineCtrlReset) goto kill_hba_and_failed; do { if ((fw_state == MFI_STATE_FAULT) || atomic_read(&instance->fw_outstanding)) { dev_info(&instance->pdev->dev, "%s:%d waiting_for_outstanding: before issue OCR. FW state = 0x%x, outstanding 0x%x\n", __func__, __LINE__, fw_state, atomic_read(&instance->fw_outstanding)); if (i == 3) goto kill_hba_and_failed; megasas_do_ocr(instance); if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_info(&instance->pdev->dev, "%s:%d OCR failed and HBA is killed.\n", __func__, __LINE__); return FAILED; } dev_info(&instance->pdev->dev, "%s:%d waiting_for_outstanding: after issue OCR.\n", __func__, __LINE__); for (sl = 0; sl < 10; sl++) msleep(500); outstanding = atomic_read(&instance->fw_outstanding); fw_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK; if ((!outstanding && (fw_state == MFI_STATE_OPERATIONAL))) goto no_outstanding; } i++; } while (i <= 3); no_outstanding: dev_info(&instance->pdev->dev, "%s:%d no more pending commands remain after reset handling.\n", __func__, __LINE__); return SUCCESS; kill_hba_and_failed: /* Reset not supported, kill adapter */ dev_info(&instance->pdev->dev, "%s:%d killing adapter scsi%d" " disableOnlineCtrlReset %d fw_outstanding %d \n", __func__, __LINE__, instance->host->host_no, instance->disableOnlineCtrlReset, atomic_read(&instance->fw_outstanding)); megasas_dump_pending_frames(instance); megaraid_sas_kill_hba(instance); return FAILED; } /** * megasas_generic_reset - Generic reset routine * @scmd: Mid-layer SCSI command * * This routine implements a generic reset handler for device, bus and host * reset requests. Device, bus and host specific reset handlers can use this * function after they do their specific tasks. */ static int megasas_generic_reset(struct scsi_cmnd *scmd) { int ret_val; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n", scmd->cmnd[0], scmd->retries); if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_err(&instance->pdev->dev, "cannot recover from previous reset failures\n"); return FAILED; } ret_val = megasas_wait_for_outstanding(instance); if (ret_val == SUCCESS) dev_notice(&instance->pdev->dev, "reset successful\n"); else dev_err(&instance->pdev->dev, "failed to do reset\n"); return ret_val; } /** * megasas_reset_timer - quiesce the adapter if required * @scmd: scsi cmnd * * Sets the FW busy flag and reduces the host->can_queue if the * cmd has not been completed within the timeout period. */ static enum scsi_timeout_action megasas_reset_timer(struct scsi_cmnd *scmd) { struct megasas_instance *instance; unsigned long flags; if (time_after(jiffies, scmd->jiffies_at_alloc + (scmd_timeout * 2) * HZ)) { return SCSI_EH_NOT_HANDLED; } instance = (struct megasas_instance *)scmd->device->host->hostdata; if (!(instance->flag & MEGASAS_FW_BUSY)) { /* FW is busy, throttle IO */ spin_lock_irqsave(instance->host->host_lock, flags); instance->host->can_queue = instance->throttlequeuedepth; instance->last_time = jiffies; instance->flag |= MEGASAS_FW_BUSY; spin_unlock_irqrestore(instance->host->host_lock, flags); } return SCSI_EH_RESET_TIMER; } /** * megasas_dump - This function will print hexdump of provided buffer. * @buf: Buffer to be dumped * @sz: Size in bytes * @format: Different formats of dumping e.g. format=n will * cause only 'n' 32 bit words to be dumped in a single * line. */ inline void megasas_dump(void *buf, int sz, int format) { int i; __le32 *buf_loc = (__le32 *)buf; for (i = 0; i < (sz / sizeof(__le32)); i++) { if ((i % format) == 0) { if (i != 0) printk(KERN_CONT "\n"); printk(KERN_CONT "%08x: ", (i * 4)); } printk(KERN_CONT "%08x ", le32_to_cpu(buf_loc[i])); } printk(KERN_CONT "\n"); } /** * megasas_dump_reg_set - This function will print hexdump of register set * @reg_set: Register set to be dumped */ inline void megasas_dump_reg_set(void __iomem *reg_set) { unsigned int i, sz = 256; u32 __iomem *reg = (u32 __iomem *)reg_set; for (i = 0; i < (sz / sizeof(u32)); i++) printk("%08x: %08x\n", (i * 4), readl(®[i])); } /** * megasas_dump_fusion_io - This function will print key details * of SCSI IO * @scmd: SCSI command pointer of SCSI IO */ void megasas_dump_fusion_io(struct scsi_cmnd *scmd) { struct megasas_cmd_fusion *cmd = megasas_priv(scmd)->cmd_priv; union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; scmd_printk(KERN_INFO, scmd, "scmd: (0x%p) retries: 0x%x allowed: 0x%x\n", scmd, scmd->retries, scmd->allowed); scsi_print_command(scmd); if (cmd) { req_desc = (union MEGASAS_REQUEST_DESCRIPTOR_UNION *)cmd->request_desc; scmd_printk(KERN_INFO, scmd, "Request descriptor details:\n"); scmd_printk(KERN_INFO, scmd, "RequestFlags:0x%x MSIxIndex:0x%x SMID:0x%x LMID:0x%x DevHandle:0x%x\n", req_desc->SCSIIO.RequestFlags, req_desc->SCSIIO.MSIxIndex, req_desc->SCSIIO.SMID, req_desc->SCSIIO.LMID, req_desc->SCSIIO.DevHandle); printk(KERN_INFO "IO request frame:\n"); megasas_dump(cmd->io_request, MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE, 8); printk(KERN_INFO "Chain frame:\n"); megasas_dump(cmd->sg_frame, instance->max_chain_frame_sz, 8); } } /* * megasas_dump_sys_regs - This function will dump system registers through * sysfs. * @reg_set: Pointer to System register set. * @buf: Buffer to which output is to be written. * @return: Number of bytes written to buffer. */ static inline ssize_t megasas_dump_sys_regs(void __iomem *reg_set, char *buf) { unsigned int i, sz = 256; int bytes_wrote = 0; char *loc = (char *)buf; u32 __iomem *reg = (u32 __iomem *)reg_set; for (i = 0; i < sz / sizeof(u32); i++) { bytes_wrote += scnprintf(loc + bytes_wrote, PAGE_SIZE - bytes_wrote, "%08x: %08x\n", (i * 4), readl(®[i])); } return bytes_wrote; } /** * megasas_reset_bus_host - Bus & host reset handler entry point * @scmd: Mid-layer SCSI command */ static int megasas_reset_bus_host(struct scsi_cmnd *scmd) { int ret; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; scmd_printk(KERN_INFO, scmd, "OCR is requested due to IO timeout!!\n"); scmd_printk(KERN_INFO, scmd, "SCSI host state: %d SCSI host busy: %d FW outstanding: %d\n", scmd->device->host->shost_state, scsi_host_busy(scmd->device->host), atomic_read(&instance->fw_outstanding)); /* * First wait for all commands to complete */ if (instance->adapter_type == MFI_SERIES) { ret = megasas_generic_reset(scmd); } else { megasas_dump_fusion_io(scmd); ret = megasas_reset_fusion(scmd->device->host, SCSIIO_TIMEOUT_OCR); } return ret; } /** * megasas_task_abort - Issues task abort request to firmware * (supported only for fusion adapters) * @scmd: SCSI command pointer */ static int megasas_task_abort(struct scsi_cmnd *scmd) { int ret; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; if (instance->adapter_type != MFI_SERIES) ret = megasas_task_abort_fusion(scmd); else { sdev_printk(KERN_NOTICE, scmd->device, "TASK ABORT not supported\n"); ret = FAILED; } return ret; } /** * megasas_reset_target: Issues target reset request to firmware * (supported only for fusion adapters) * @scmd: SCSI command pointer */ static int megasas_reset_target(struct scsi_cmnd *scmd) { int ret; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; if (instance->adapter_type != MFI_SERIES) ret = megasas_reset_target_fusion(scmd); else { sdev_printk(KERN_NOTICE, scmd->device, "TARGET RESET not supported\n"); ret = FAILED; } return ret; } /** * megasas_bios_param - Returns disk geometry for a disk * @sdev: device handle * @bdev: block device * @capacity: drive capacity * @geom: geometry parameters */ static int megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { int heads; int sectors; sector_t cylinders; unsigned long tmp; /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; tmp = heads * sectors; cylinders = capacity; sector_div(cylinders, tmp); /* * Handle extended translation size for logical drives > 1Gb */ if (capacity >= 0x200000) { heads = 255; sectors = 63; tmp = heads*sectors; cylinders = capacity; sector_div(cylinders, tmp); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return 0; } static void megasas_map_queues(struct Scsi_Host *shost) { struct megasas_instance *instance; int qoff = 0, offset; struct blk_mq_queue_map *map; instance = (struct megasas_instance *)shost->hostdata; if (shost->nr_hw_queues == 1) return; offset = instance->low_latency_index_start; /* Setup Default hctx */ map = &shost->tag_set.map[HCTX_TYPE_DEFAULT]; map->nr_queues = instance->msix_vectors - offset; map->queue_offset = 0; blk_mq_pci_map_queues(map, instance->pdev, offset); qoff += map->nr_queues; offset += map->nr_queues; /* we never use READ queue, so can't cheat blk-mq */ shost->tag_set.map[HCTX_TYPE_READ].nr_queues = 0; /* Setup Poll hctx */ map = &shost->tag_set.map[HCTX_TYPE_POLL]; map->nr_queues = instance->iopoll_q_count; if (map->nr_queues) { /* * The poll queue(s) doesn't have an IRQ (and hence IRQ * affinity), so use the regular blk-mq cpu mapping */ map->queue_offset = qoff; blk_mq_map_queues(map); } } static void megasas_aen_polling(struct work_struct *work); /** * megasas_service_aen - Processes an event notification * @instance: Adapter soft state * @cmd: AEN command completed by the ISR * * For AEN, driver sends a command down to FW that is held by the FW till an * event occurs. When an event of interest occurs, FW completes the command * that it was previously holding. * * This routines sends SIGIO signal to processes that have registered with the * driver for AEN. */ static void megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; /* * Don't signal app if it is just an aborted previously registered aen */ if ((!cmd->abort_aen) && (instance->unload == 0)) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 1; spin_unlock_irqrestore(&poll_aen_lock, flags); wake_up(&megasas_poll_wait); kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); } else cmd->abort_aen = 0; instance->aen_cmd = NULL; megasas_return_cmd(instance, cmd); if ((instance->unload == 0) && ((instance->issuepend_done == 1))) { struct megasas_aen_event *ev; ev = kzalloc(sizeof(*ev), GFP_ATOMIC); if (!ev) { dev_err(&instance->pdev->dev, "megasas_service_aen: out of memory\n"); } else { ev->instance = instance; instance->ev = ev; INIT_DELAYED_WORK(&ev->hotplug_work, megasas_aen_polling); schedule_delayed_work(&ev->hotplug_work, 0); } } } static ssize_t fw_crash_buffer_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; int val = 0; unsigned long flags; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; spin_lock_irqsave(&instance->crashdump_lock, flags); instance->fw_crash_buffer_offset = val; spin_unlock_irqrestore(&instance->crashdump_lock, flags); return strlen(buf); } static ssize_t fw_crash_buffer_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; u32 size; unsigned long dmachunk = CRASH_DMA_BUF_SIZE; unsigned long chunk_left_bytes; unsigned long src_addr; unsigned long flags; u32 buff_offset; spin_lock_irqsave(&instance->crashdump_lock, flags); buff_offset = instance->fw_crash_buffer_offset; if (!instance->crash_dump_buf && !((instance->fw_crash_state == AVAILABLE) || (instance->fw_crash_state == COPYING))) { dev_err(&instance->pdev->dev, "Firmware crash dump is not available\n"); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return -EINVAL; } if (buff_offset > (instance->fw_crash_buffer_size * dmachunk)) { dev_err(&instance->pdev->dev, "Firmware crash dump offset is out of range\n"); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return 0; } size = (instance->fw_crash_buffer_size * dmachunk) - buff_offset; chunk_left_bytes = dmachunk - (buff_offset % dmachunk); size = (size > chunk_left_bytes) ? chunk_left_bytes : size; size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; src_addr = (unsigned long)instance->crash_buf[buff_offset / dmachunk] + (buff_offset % dmachunk); memcpy(buf, (void *)src_addr, size); spin_unlock_irqrestore(&instance->crashdump_lock, flags); return size; } static ssize_t fw_crash_buffer_size_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long) ((instance->fw_crash_buffer_size) * 1024 * 1024)/PAGE_SIZE); } static ssize_t fw_crash_state_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; int val = 0; unsigned long flags; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; if ((val <= AVAILABLE || val > COPY_ERROR)) { dev_err(&instance->pdev->dev, "application updates invalid " "firmware crash state\n"); return -EINVAL; } instance->fw_crash_state = val; if ((val == COPIED) || (val == COPY_ERROR)) { spin_lock_irqsave(&instance->crashdump_lock, flags); megasas_free_host_crash_buffer(instance); spin_unlock_irqrestore(&instance->crashdump_lock, flags); if (val == COPY_ERROR) dev_info(&instance->pdev->dev, "application failed to " "copy Firmware crash dump\n"); else dev_info(&instance->pdev->dev, "Firmware crash dump " "copied successfully\n"); } return strlen(buf); } static ssize_t fw_crash_state_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *) shost->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", instance->fw_crash_state); } static ssize_t page_size_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long)PAGE_SIZE - 1); } static ssize_t ldio_outstanding_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&instance->ldio_outstanding)); } static ssize_t fw_cmds_outstanding_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", atomic_read(&instance->fw_outstanding)); } static ssize_t enable_sdev_max_qd_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", instance->enable_sdev_max_qd); } static ssize_t enable_sdev_max_qd_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; u32 val = 0; bool is_target_prop; int ret_target_prop = DCMD_FAILED; struct scsi_device *sdev; if (kstrtou32(buf, 0, &val) != 0) { pr_err("megasas: could not set enable_sdev_max_qd\n"); return -EINVAL; } mutex_lock(&instance->reset_mutex); if (val) instance->enable_sdev_max_qd = true; else instance->enable_sdev_max_qd = false; shost_for_each_device(sdev, shost) { ret_target_prop = megasas_get_target_prop(instance, sdev); is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false; megasas_set_fw_assisted_qd(sdev, is_target_prop); } mutex_unlock(&instance->reset_mutex); return strlen(buf); } static ssize_t dump_system_regs_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; return megasas_dump_sys_regs(instance->reg_set, buf); } static ssize_t raid_map_id_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct megasas_instance *instance = (struct megasas_instance *)shost->hostdata; return snprintf(buf, PAGE_SIZE, "%ld\n", (unsigned long)instance->map_id); } static DEVICE_ATTR_RW(fw_crash_buffer); static DEVICE_ATTR_RO(fw_crash_buffer_size); static DEVICE_ATTR_RW(fw_crash_state); static DEVICE_ATTR_RO(page_size); static DEVICE_ATTR_RO(ldio_outstanding); static DEVICE_ATTR_RO(fw_cmds_outstanding); static DEVICE_ATTR_RW(enable_sdev_max_qd); static DEVICE_ATTR_RO(dump_system_regs); static DEVICE_ATTR_RO(raid_map_id); static struct attribute *megaraid_host_attrs[] = { &dev_attr_fw_crash_buffer_size.attr, &dev_attr_fw_crash_buffer.attr, &dev_attr_fw_crash_state.attr, &dev_attr_page_size.attr, &dev_attr_ldio_outstanding.attr, &dev_attr_fw_cmds_outstanding.attr, &dev_attr_enable_sdev_max_qd.attr, &dev_attr_dump_system_regs.attr, &dev_attr_raid_map_id.attr, NULL, }; ATTRIBUTE_GROUPS(megaraid_host); /* * Scsi host template for megaraid_sas driver */ static const struct scsi_host_template megasas_template = { .module = THIS_MODULE, .name = "Avago SAS based MegaRAID driver", .proc_name = "megaraid_sas", .slave_configure = megasas_slave_configure, .slave_alloc = megasas_slave_alloc, .slave_destroy = megasas_slave_destroy, .queuecommand = megasas_queue_command, .eh_target_reset_handler = megasas_reset_target, .eh_abort_handler = megasas_task_abort, .eh_host_reset_handler = megasas_reset_bus_host, .eh_timed_out = megasas_reset_timer, .shost_groups = megaraid_host_groups, .bios_param = megasas_bios_param, .map_queues = megasas_map_queues, .mq_poll = megasas_blk_mq_poll, .change_queue_depth = scsi_change_queue_depth, .max_segment_size = 0xffffffff, .cmd_size = sizeof(struct megasas_cmd_priv), }; /** * megasas_complete_int_cmd - Completes an internal command * @instance: Adapter soft state * @cmd: Command to be completed * * The megasas_issue_blocked_cmd() function waits for a command to complete * after it issues a command. This function wakes up that waiting routine by * calling wake_up() on the wait queue. */ static void megasas_complete_int_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { if (cmd->cmd_status_drv == DCMD_INIT) cmd->cmd_status_drv = (cmd->frame->io.cmd_status == MFI_STAT_OK) ? DCMD_SUCCESS : DCMD_FAILED; wake_up(&instance->int_cmd_wait_q); } /** * megasas_complete_abort - Completes aborting a command * @instance: Adapter soft state * @cmd: Cmd that was issued to abort another cmd * * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q * after it issues an abort on a previously issued command. This function * wakes up all functions waiting on the same wait queue. */ static void megasas_complete_abort(struct megasas_instance *instance, struct megasas_cmd *cmd) { if (cmd->sync_cmd) { cmd->sync_cmd = 0; cmd->cmd_status_drv = DCMD_SUCCESS; wake_up(&instance->abort_cmd_wait_q); } } static void megasas_set_ld_removed_by_fw(struct megasas_instance *instance) { uint i; for (i = 0; (i < MEGASAS_MAX_LD_IDS); i++) { if (instance->ld_ids_prev[i] != 0xff && instance->ld_ids_from_raidmap[i] == 0xff) { if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "LD target ID %d removed from RAID map\n", i); instance->ld_tgtid_status[i] = LD_TARGET_ID_DELETED; } } } /** * megasas_complete_cmd - Completes a command * @instance: Adapter soft state * @cmd: Command to be completed * @alt_status: If non-zero, use this value as status to * SCSI mid-layer instead of the value returned * by the FW. This should be used if caller wants * an alternate status (as in the case of aborted * commands) */ void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status) { int exception = 0; struct megasas_header *hdr = &cmd->frame->hdr; unsigned long flags; struct fusion_context *fusion = instance->ctrl_context; u32 opcode, status; /* flag for the retry reset */ cmd->retry_for_fw_reset = 0; if (cmd->scmd) megasas_priv(cmd->scmd)->cmd_priv = NULL; switch (hdr->cmd) { case MFI_CMD_INVALID: /* Some older 1068 controller FW may keep a pended MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel when booting the kdump kernel. Ignore this command to prevent a kernel panic on shutdown of the kdump kernel. */ dev_warn(&instance->pdev->dev, "MFI_CMD_INVALID command " "completed\n"); dev_warn(&instance->pdev->dev, "If you have a controller " "other than PERC5, please upgrade your firmware\n"); break; case MFI_CMD_PD_SCSI_IO: case MFI_CMD_LD_SCSI_IO: /* * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been * issued either through an IO path or an IOCTL path. If it * was via IOCTL, we will send it to internal completion. */ if (cmd->sync_cmd) { cmd->sync_cmd = 0; megasas_complete_int_cmd(instance, cmd); break; } fallthrough; case MFI_CMD_LD_READ: case MFI_CMD_LD_WRITE: if (alt_status) { cmd->scmd->result = alt_status << 16; exception = 1; } if (exception) { atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; } switch (hdr->cmd_status) { case MFI_STAT_OK: cmd->scmd->result = DID_OK << 16; break; case MFI_STAT_SCSI_IO_FAILED: case MFI_STAT_LD_INIT_IN_PROGRESS: cmd->scmd->result = (DID_ERROR << 16) | hdr->scsi_status; break; case MFI_STAT_SCSI_DONE_WITH_ERROR: cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { memset(cmd->scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(cmd->scmd->sense_buffer, cmd->sense, hdr->sense_len); } break; case MFI_STAT_LD_OFFLINE: case MFI_STAT_DEVICE_NOT_FOUND: cmd->scmd->result = DID_BAD_TARGET << 16; break; default: dev_printk(KERN_DEBUG, &instance->pdev->dev, "MFI FW status %#x\n", hdr->cmd_status); cmd->scmd->result = DID_ERROR << 16; break; } atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; case MFI_CMD_SMP: case MFI_CMD_STP: case MFI_CMD_NVME: case MFI_CMD_TOOLBOX: megasas_complete_int_cmd(instance, cmd); break; case MFI_CMD_DCMD: opcode = le32_to_cpu(cmd->frame->dcmd.opcode); /* Check for LD map update */ if ((opcode == MR_DCMD_LD_MAP_GET_INFO) && (cmd->frame->dcmd.mbox.b[1] == 1)) { fusion->fast_path_io = 0; spin_lock_irqsave(instance->host->host_lock, flags); status = cmd->frame->hdr.cmd_status; instance->map_update_cmd = NULL; if (status != MFI_STAT_OK) { if (status != MFI_STAT_NOT_FOUND) dev_warn(&instance->pdev->dev, "map syncfailed, status = 0x%x\n", cmd->frame->hdr.cmd_status); else { megasas_return_cmd(instance, cmd); spin_unlock_irqrestore( instance->host->host_lock, flags); break; } } megasas_return_cmd(instance, cmd); /* * Set fast path IO to ZERO. * Validate Map will set proper value. * Meanwhile all IOs will go as LD IO. */ if (status == MFI_STAT_OK && (MR_ValidateMapInfo(instance, (instance->map_id + 1)))) { instance->map_id++; fusion->fast_path_io = 1; } else { fusion->fast_path_io = 0; } if (instance->adapter_type >= INVADER_SERIES) megasas_set_ld_removed_by_fw(instance); megasas_sync_map_info(instance); spin_unlock_irqrestore(instance->host->host_lock, flags); break; } if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO || opcode == MR_DCMD_CTRL_EVENT_GET) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); } /* FW has an updated PD sequence */ if ((opcode == MR_DCMD_SYSTEM_PD_MAP_GET_INFO) && (cmd->frame->dcmd.mbox.b[0] == 1)) { spin_lock_irqsave(instance->host->host_lock, flags); status = cmd->frame->hdr.cmd_status; instance->jbod_seq_cmd = NULL; megasas_return_cmd(instance, cmd); if (status == MFI_STAT_OK) { instance->pd_seq_map_id++; /* Re-register a pd sync seq num cmd */ if (megasas_sync_pd_seq_num(instance, true)) instance->use_seqnum_jbod_fp = false; } else instance->use_seqnum_jbod_fp = false; spin_unlock_irqrestore(instance->host->host_lock, flags); break; } /* * See if got an event notification */ if (opcode == MR_DCMD_CTRL_EVENT_WAIT) megasas_service_aen(instance, cmd); else megasas_complete_int_cmd(instance, cmd); break; case MFI_CMD_ABORT: /* * Cmd issued to abort another cmd returned */ megasas_complete_abort(instance, cmd); break; default: dev_info(&instance->pdev->dev, "Unknown command completed! [0x%X]\n", hdr->cmd); megasas_complete_int_cmd(instance, cmd); break; } } /** * megasas_issue_pending_cmds_again - issue all pending cmds * in FW again because of the fw reset * @instance: Adapter soft state */ static inline void megasas_issue_pending_cmds_again(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct list_head clist_local; union megasas_evt_class_locale class_locale; unsigned long flags; u32 seq_num; INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); while (!list_empty(&clist_local)) { cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&cmd->list); if (cmd->sync_cmd || cmd->scmd) { dev_notice(&instance->pdev->dev, "command %p, %p:%d" "detected to be pending while HBA reset\n", cmd, cmd->scmd, cmd->sync_cmd); cmd->retry_for_fw_reset++; if (cmd->retry_for_fw_reset == 3) { dev_notice(&instance->pdev->dev, "cmd %p, %p:%d" "was tried multiple times during reset." "Shutting down the HBA\n", cmd, cmd->scmd, cmd->sync_cmd); instance->instancet->disable_intr(instance); atomic_set(&instance->fw_reset_no_pci_access, 1); megaraid_sas_kill_hba(instance); return; } } if (cmd->sync_cmd == 1) { if (cmd->scmd) { dev_notice(&instance->pdev->dev, "unexpected" "cmd attached to internal command!\n"); } dev_notice(&instance->pdev->dev, "%p synchronous cmd" "on the internal reset queue," "issue it again.\n", cmd); cmd->cmd_status_drv = DCMD_INIT; instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); } else if (cmd->scmd) { dev_notice(&instance->pdev->dev, "%p scsi cmd [%02x]" "detected on the internal queue, issue again.\n", cmd, cmd->scmd->cmnd[0]); atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); } else { dev_notice(&instance->pdev->dev, "%p unexpected cmd on the" "internal reset defer list while re-issue!!\n", cmd); } } if (instance->aen_cmd) { dev_notice(&instance->pdev->dev, "aen_cmd in def process\n"); megasas_return_cmd(instance, instance->aen_cmd); instance->aen_cmd = NULL; } /* * Initiate AEN (Asynchronous Event Notification) */ seq_num = instance->last_seq_num; class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; megasas_register_aen(instance, seq_num, class_locale.word); } /* * Move the internal reset pending commands to a deferred queue. * * We move the commands pending at internal reset time to a * pending queue. This queue would be flushed after successful * completion of the internal reset sequence. if the internal reset * did not complete in time, the kernel reset handler would flush * these commands. */ static void megasas_internal_reset_defer_cmds(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i; u16 max_cmd = instance->max_fw_cmds; u32 defer_index; unsigned long flags; defer_index = 0; spin_lock_irqsave(&instance->mfi_pool_lock, flags); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->sync_cmd == 1 || cmd->scmd) { dev_notice(&instance->pdev->dev, "moving cmd[%d]:%p:%d:%p" "on the defer queue as internal\n", defer_index, cmd, cmd->sync_cmd, cmd->scmd); if (!list_empty(&cmd->list)) { dev_notice(&instance->pdev->dev, "ERROR while" " moving this cmd:%p, %d %p, it was" "discovered on some list?\n", cmd, cmd->sync_cmd, cmd->scmd); list_del_init(&cmd->list); } defer_index++; list_add_tail(&cmd->list, &instance->internal_reset_pending_q); } } spin_unlock_irqrestore(&instance->mfi_pool_lock, flags); } static void process_fw_state_change_wq(struct work_struct *work) { struct megasas_instance *instance = container_of(work, struct megasas_instance, work_init); u32 wait; unsigned long flags; if (atomic_read(&instance->adprecovery) != MEGASAS_ADPRESET_SM_INFAULT) { dev_notice(&instance->pdev->dev, "error, recovery st %x\n", atomic_read(&instance->adprecovery)); return ; } if (atomic_read(&instance->adprecovery) == MEGASAS_ADPRESET_SM_INFAULT) { dev_notice(&instance->pdev->dev, "FW detected to be in fault" "state, restarting it...\n"); instance->instancet->disable_intr(instance); atomic_set(&instance->fw_outstanding, 0); atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset(instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0); dev_notice(&instance->pdev->dev, "FW restarted successfully," "initiating next stage...\n"); dev_notice(&instance->pdev->dev, "HBA recovery state machine," "state 2 starting...\n"); /* waiting for about 20 second before start the second init */ for (wait = 0; wait < 30; wait++) { msleep(1000); } if (megasas_transition_to_ready(instance, 1)) { dev_notice(&instance->pdev->dev, "adapter not ready\n"); atomic_set(&instance->fw_reset_no_pci_access, 1); megaraid_sas_kill_hba(instance); return ; } if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) ) { *instance->consumer = *instance->producer; } else { *instance->consumer = 0; *instance->producer = 0; } megasas_issue_init_mfi(instance); spin_lock_irqsave(&instance->hba_lock, flags); atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL); spin_unlock_irqrestore(&instance->hba_lock, flags); instance->instancet->enable_intr(instance); megasas_issue_pending_cmds_again(instance); instance->issuepend_done = 1; } } /** * megasas_deplete_reply_queue - Processes all completed commands * @instance: Adapter soft state * @alt_status: Alternate status to be returned to * SCSI mid-layer instead of the status * returned by the FW * Note: this must be called with hba lock held */ static int megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status) { u32 mfiStatus; u32 fw_state; if (instance->instancet->check_reset(instance, instance->reg_set) == 1) return IRQ_HANDLED; mfiStatus = instance->instancet->clear_intr(instance); if (mfiStatus == 0) { /* Hardware may not set outbound_intr_status in MSI-X mode */ if (!instance->msix_vectors) return IRQ_NONE; } instance->mfiStatus = mfiStatus; if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { fw_state = instance->instancet->read_fw_status_reg( instance) & MFI_STATE_MASK; if (fw_state != MFI_STATE_FAULT) { dev_notice(&instance->pdev->dev, "fw state:%x\n", fw_state); } if ((fw_state == MFI_STATE_FAULT) && (instance->disableOnlineCtrlReset == 0)) { dev_notice(&instance->pdev->dev, "wait adp restart\n"); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN); } instance->instancet->disable_intr(instance); atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT); instance->issuepend_done = 0; atomic_set(&instance->fw_outstanding, 0); megasas_internal_reset_defer_cmds(instance); dev_notice(&instance->pdev->dev, "fwState=%x, stage:%d\n", fw_state, atomic_read(&instance->adprecovery)); schedule_work(&instance->work_init); return IRQ_HANDLED; } else { dev_notice(&instance->pdev->dev, "fwstate:%x, dis_OCR=%x\n", fw_state, instance->disableOnlineCtrlReset); } } tasklet_schedule(&instance->isr_tasklet); return IRQ_HANDLED; } /** * megasas_isr - isr entry point * @irq: IRQ number * @devp: IRQ context address */ static irqreturn_t megasas_isr(int irq, void *devp) { struct megasas_irq_context *irq_context = devp; struct megasas_instance *instance = irq_context->instance; unsigned long flags; irqreturn_t rc; if (atomic_read(&instance->fw_reset_no_pci_access)) return IRQ_HANDLED; spin_lock_irqsave(&instance->hba_lock, flags); rc = megasas_deplete_reply_queue(instance, DID_OK); spin_unlock_irqrestore(&instance->hba_lock, flags); return rc; } /** * megasas_transition_to_ready - Move the FW to READY state * @instance: Adapter soft state * @ocr: Adapter reset state * * During the initialization, FW passes can potentially be in any one of * several possible states. If the FW in operational, waiting-for-handshake * states, driver must take steps to bring it to ready state. Otherwise, it * has to wait for the ready state. */ int megasas_transition_to_ready(struct megasas_instance *instance, int ocr) { int i; u8 max_wait; u32 fw_state; u32 abs_state, curr_abs_state; abs_state = instance->instancet->read_fw_status_reg(instance); fw_state = abs_state & MFI_STATE_MASK; if (fw_state != MFI_STATE_READY) dev_info(&instance->pdev->dev, "Waiting for FW to come to ready" " state\n"); while (fw_state != MFI_STATE_READY) { switch (fw_state) { case MFI_STATE_FAULT: dev_printk(KERN_ERR, &instance->pdev->dev, "FW in FAULT state, Fault code:0x%x subcode:0x%x func:%s\n", abs_state & MFI_STATE_FAULT_CODE, abs_state & MFI_STATE_FAULT_SUBCODE, __func__); if (ocr) { max_wait = MEGASAS_RESET_WAIT_TIME; break; } else { dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n"); megasas_dump_reg_set(instance->reg_set); return -ENODEV; } case MFI_STATE_WAIT_HANDSHAKE: /* * Set the CLR bit in inbound doorbell */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->adapter_type != MFI_SERIES)) writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->doorbell); else writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_BOOT_MESSAGE_PENDING: if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->adapter_type != MFI_SERIES)) writel(MFI_INIT_HOTPLUG, &instance->reg_set->doorbell); else writel(MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_OPERATIONAL: /* * Bring it to READY state; assuming max wait 10 secs */ instance->instancet->disable_intr(instance); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->adapter_type != MFI_SERIES)) { writel(MFI_RESET_FLAGS, &instance->reg_set->doorbell); if (instance->adapter_type != MFI_SERIES) { for (i = 0; i < (10 * 1000); i += 20) { if (megasas_readl( instance, &instance-> reg_set-> doorbell) & 1) msleep(20); else break; } } } else writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_UNDEFINED: /* * This state should not last for more than 2 seconds */ max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_BB_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_FW_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_FW_INIT_2: max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_DEVICE_SCAN: max_wait = MEGASAS_RESET_WAIT_TIME; break; case MFI_STATE_FLUSH_CACHE: max_wait = MEGASAS_RESET_WAIT_TIME; break; default: dev_printk(KERN_DEBUG, &instance->pdev->dev, "Unknown state 0x%x\n", fw_state); dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n"); megasas_dump_reg_set(instance->reg_set); return -ENODEV; } /* * The cur_state should not last for more than max_wait secs */ for (i = 0; i < max_wait * 50; i++) { curr_abs_state = instance->instancet-> read_fw_status_reg(instance); if (abs_state == curr_abs_state) { msleep(20); } else break; } /* * Return error if fw_state hasn't changed after max_wait */ if (curr_abs_state == abs_state) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "FW state [%d] hasn't changed " "in %d secs\n", fw_state, max_wait); dev_printk(KERN_DEBUG, &instance->pdev->dev, "System Register set:\n"); megasas_dump_reg_set(instance->reg_set); return -ENODEV; } abs_state = curr_abs_state; fw_state = curr_abs_state & MFI_STATE_MASK; } dev_info(&instance->pdev->dev, "FW now in Ready state\n"); return 0; } /** * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool * @instance: Adapter soft state */ static void megasas_teardown_frame_pool(struct megasas_instance *instance) { int i; u16 max_cmd = instance->max_mfi_cmds; struct megasas_cmd *cmd; if (!instance->frame_dma_pool) return; /* * Return all frames to pool */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->frame) dma_pool_free(instance->frame_dma_pool, cmd->frame, cmd->frame_phys_addr); if (cmd->sense) dma_pool_free(instance->sense_dma_pool, cmd->sense, cmd->sense_phys_addr); } /* * Now destroy the pool itself */ dma_pool_destroy(instance->frame_dma_pool); dma_pool_destroy(instance->sense_dma_pool); instance->frame_dma_pool = NULL; instance->sense_dma_pool = NULL; } /** * megasas_create_frame_pool - Creates DMA pool for cmd frames * @instance: Adapter soft state * * Each command packet has an embedded DMA memory buffer that is used for * filling MFI frame and the SG list that immediately follows the frame. This * function creates those DMA memory buffers for each command packet by using * PCI pool facility. */ static int megasas_create_frame_pool(struct megasas_instance *instance) { int i; u16 max_cmd; u32 frame_count; struct megasas_cmd *cmd; max_cmd = instance->max_mfi_cmds; /* * For MFI controllers. * max_num_sge = 60 * max_sge_sz = 16 byte (sizeof megasas_sge_skinny) * Total 960 byte (15 MFI frame of 64 byte) * * Fusion adapter require only 3 extra frame. * max_num_sge = 16 (defined as MAX_IOCTL_SGE) * max_sge_sz = 12 byte (sizeof megasas_sge64) * Total 192 byte (3 MFI frame of 64 byte) */ frame_count = (instance->adapter_type == MFI_SERIES) ? (15 + 1) : (3 + 1); instance->mfi_frame_size = MEGAMFI_FRAME_SIZE * frame_count; /* * Use DMA pool facility provided by PCI layer */ instance->frame_dma_pool = dma_pool_create("megasas frame pool", &instance->pdev->dev, instance->mfi_frame_size, 256, 0); if (!instance->frame_dma_pool) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "failed to setup frame pool\n"); return -ENOMEM; } instance->sense_dma_pool = dma_pool_create("megasas sense pool", &instance->pdev->dev, 128, 4, 0); if (!instance->sense_dma_pool) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "failed to setup sense pool\n"); dma_pool_destroy(instance->frame_dma_pool); instance->frame_dma_pool = NULL; return -ENOMEM; } /* * Allocate and attach a frame to each of the commands in cmd_list. * By making cmd->index as the context instead of the &cmd, we can * always use 32bit context regardless of the architecture */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; cmd->frame = dma_pool_zalloc(instance->frame_dma_pool, GFP_KERNEL, &cmd->frame_phys_addr); cmd->sense = dma_pool_alloc(instance->sense_dma_pool, GFP_KERNEL, &cmd->sense_phys_addr); /* * megasas_teardown_frame_pool() takes care of freeing * whatever has been allocated */ if (!cmd->frame || !cmd->sense) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "dma_pool_alloc failed\n"); megasas_teardown_frame_pool(instance); return -ENOMEM; } cmd->frame->io.context = cpu_to_le32(cmd->index); cmd->frame->io.pad_0 = 0; if ((instance->adapter_type == MFI_SERIES) && reset_devices) cmd->frame->hdr.cmd = MFI_CMD_INVALID; } return 0; } /** * megasas_free_cmds - Free all the cmds in the free cmd pool * @instance: Adapter soft state */ void megasas_free_cmds(struct megasas_instance *instance) { int i; /* First free the MFI frame pool */ megasas_teardown_frame_pool(instance); /* Free all the commands in the cmd_list */ for (i = 0; i < instance->max_mfi_cmds; i++) kfree(instance->cmd_list[i]); /* Free the cmd_list buffer itself */ kfree(instance->cmd_list); instance->cmd_list = NULL; INIT_LIST_HEAD(&instance->cmd_pool); } /** * megasas_alloc_cmds - Allocates the command packets * @instance: Adapter soft state * * Each command that is issued to the FW, whether IO commands from the OS or * internal commands like IOCTLs, are wrapped in local data structure called * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to * the FW. * * Each frame has a 32-bit field called context (tag). This context is used * to get back the megasas_cmd from the frame when a frame gets completed in * the ISR. Typically the address of the megasas_cmd itself would be used as * the context. But we wanted to keep the differences between 32 and 64 bit * systems to the mininum. We always use 32 bit integers for the context. In * this driver, the 32 bit values are the indices into an array cmd_list. * This array is used only to look up the megasas_cmd given the context. The * free commands themselves are maintained in a linked list called cmd_pool. */ int megasas_alloc_cmds(struct megasas_instance *instance) { int i; int j; u16 max_cmd; struct megasas_cmd *cmd; max_cmd = instance->max_mfi_cmds; /* * instance->cmd_list is an array of struct megasas_cmd pointers. * Allocate the dynamic array first and then allocate individual * commands. */ instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); if (!instance->cmd_list) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "out of memory\n"); return -ENOMEM; } for (i = 0; i < max_cmd; i++) { instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), GFP_KERNEL); if (!instance->cmd_list[i]) { for (j = 0; j < i; j++) kfree(instance->cmd_list[j]); kfree(instance->cmd_list); instance->cmd_list = NULL; return -ENOMEM; } } for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; memset(cmd, 0, sizeof(struct megasas_cmd)); cmd->index = i; cmd->scmd = NULL; cmd->instance = instance; list_add_tail(&cmd->list, &instance->cmd_pool); } /* * Create a frame pool and assign one frame to each cmd */ if (megasas_create_frame_pool(instance)) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Error creating frame DMA pool\n"); megasas_free_cmds(instance); return -ENOMEM; } return 0; } /* * dcmd_timeout_ocr_possible - Check if OCR is possible based on Driver/FW state. * @instance: Adapter soft state * * Return 0 for only Fusion adapter, if driver load/unload is not in progress * or FW is not under OCR. */ inline int dcmd_timeout_ocr_possible(struct megasas_instance *instance) { if (instance->adapter_type == MFI_SERIES) return KILL_ADAPTER; else if (instance->unload || test_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE, &instance->reset_flags)) return IGNORE_TIMEOUT; else return INITIATE_OCR; } static void megasas_get_pd_info(struct megasas_instance *instance, struct scsi_device *sdev) { int ret; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_PRIV_DEVICE *mr_device_priv_data; u16 device_id = 0; device_id = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; cmd = megasas_get_cmd(instance); if (!cmd) { dev_err(&instance->pdev->dev, "Failed to get cmd %s\n", __func__); return; } dcmd = &cmd->frame->dcmd; memset(instance->pd_info, 0, sizeof(*instance->pd_info)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.s[0] = cpu_to_le16(device_id); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_PD_INFO)); dcmd->opcode = cpu_to_le32(MR_DCMD_PD_GET_INFO); megasas_set_dma_settings(instance, dcmd, instance->pd_info_h, sizeof(struct MR_PD_INFO)); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); switch (ret) { case DCMD_SUCCESS: mr_device_priv_data = sdev->hostdata; le16_to_cpus((u16 *)&instance->pd_info->state.ddf.pdType); mr_device_priv_data->interface_type = instance->pd_info->state.ddf.pdType.intf; break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return; } /* * megasas_get_pd_list_info - Returns FW's pd_list structure * @instance: Adapter soft state * @pd_list: pd_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_pd_list(struct megasas_instance *instance) { int ret = 0, pd_index = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_PD_LIST *ci; struct MR_PD_ADDRESS *pd_addr; if (instance->pd_list_not_supported) { dev_info(&instance->pdev->dev, "MR_DCMD_PD_LIST_QUERY " "not supported by firmware\n"); return ret; } ci = instance->pd_list_buf; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "(get_pd_list): Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; dcmd->mbox.b[1] = 0; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY); megasas_set_dma_settings(instance, dcmd, instance->pd_list_buf_h, (MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST))); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); switch (ret) { case DCMD_FAILED: dev_info(&instance->pdev->dev, "MR_DCMD_PD_LIST_QUERY " "failed/not supported by firmware\n"); if (instance->adapter_type != MFI_SERIES) megaraid_sas_kill_hba(instance); else instance->pd_list_not_supported = 1; break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; /* * DCMD failed from AEN path. * AEN path already hold reset_mutex to avoid PCI access * while OCR is in progress. */ mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d \n", __func__, __LINE__); break; } break; case DCMD_SUCCESS: pd_addr = ci->addr; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "%s, sysPD count: 0x%x\n", __func__, le32_to_cpu(ci->count)); if ((le32_to_cpu(ci->count) > (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) break; memset(instance->local_pd_list, 0, MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) { instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid = le16_to_cpu(pd_addr->deviceId); instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType = pd_addr->scsiDevType; instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState = MR_PD_STATE_SYSTEM; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "PD%d: targetID: 0x%03x deviceType:0x%x\n", pd_index, le16_to_cpu(pd_addr->deviceId), pd_addr->scsiDevType); pd_addr++; } memcpy(instance->pd_list, instance->local_pd_list, sizeof(instance->pd_list)); break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return ret; } /* * megasas_get_ld_list_info - Returns FW's ld_list structure * @instance: Adapter soft state * @ld_list: ld_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_ld_list(struct megasas_instance *instance) { int ret = 0, ld_index = 0, ids = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_LIST *ci; dma_addr_t ci_h = 0; u32 ld_count; ci = instance->ld_list_buf; ci_h = instance->ld_list_buf_h; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "megasas_get_ld_list: Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); if (instance->supportmax256vd) dcmd->mbox.b[0] = 1; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST); dcmd->pad_0 = 0; megasas_set_dma_settings(instance, dcmd, ci_h, sizeof(struct MR_LD_LIST)); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); ld_count = le32_to_cpu(ci->ldCount); switch (ret) { case DCMD_FAILED: megaraid_sas_kill_hba(instance); break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; /* * DCMD failed from AEN path. * AEN path already hold reset_mutex to avoid PCI access * while OCR is in progress. */ mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; case DCMD_SUCCESS: if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "%s, LD count: 0x%x\n", __func__, ld_count); if (ld_count > instance->fw_supported_vd_count) break; memset(instance->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT); for (ld_index = 0; ld_index < ld_count; ld_index++) { if (ci->ldList[ld_index].state != 0) { ids = ci->ldList[ld_index].ref.targetId; instance->ld_ids[ids] = ci->ldList[ld_index].ref.targetId; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "LD%d: targetID: 0x%03x\n", ld_index, ids); } } break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return ret; } /** * megasas_ld_list_query - Returns FW's ld_list structure * @instance: Adapter soft state * @query_type: ld_list structure type * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_ld_list_query(struct megasas_instance *instance, u8 query_type) { int ret = 0, ld_index = 0, ids = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_TARGETID_LIST *ci; dma_addr_t ci_h = 0; u32 tgtid_count; ci = instance->ld_targetid_list_buf; ci_h = instance->ld_targetid_list_buf_h; cmd = megasas_get_cmd(instance); if (!cmd) { dev_warn(&instance->pdev->dev, "megasas_ld_list_query: Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = query_type; if (instance->supportmax256vd) dcmd->mbox.b[2] = 1; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST)); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY); dcmd->pad_0 = 0; megasas_set_dma_settings(instance, dcmd, ci_h, sizeof(struct MR_LD_TARGETID_LIST)); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); switch (ret) { case DCMD_FAILED: dev_info(&instance->pdev->dev, "DCMD not supported by firmware - %s %d\n", __func__, __LINE__); ret = megasas_get_ld_list(instance); break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; /* * DCMD failed from AEN path. * AEN path already hold reset_mutex to avoid PCI access * while OCR is in progress. */ mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; case DCMD_SUCCESS: tgtid_count = le32_to_cpu(ci->count); if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "%s, LD count: 0x%x\n", __func__, tgtid_count); if ((tgtid_count > (instance->fw_supported_vd_count))) break; memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); for (ld_index = 0; ld_index < tgtid_count; ld_index++) { ids = ci->targetId[ld_index]; instance->ld_ids[ids] = ci->targetId[ld_index]; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "LD%d: targetID: 0x%03x\n", ld_index, ci->targetId[ld_index]); } break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return ret; } /** * megasas_host_device_list_query * dcmd.opcode - MR_DCMD_CTRL_DEVICE_LIST_GET * dcmd.mbox - reserved * dcmd.sge IN - ptr to return MR_HOST_DEVICE_LIST structure * Desc: This DCMD will return the combined device list * Status: MFI_STAT_OK - List returned successfully * MFI_STAT_INVALID_CMD - Firmware support for the feature has been * disabled * @instance: Adapter soft state * @is_probe: Driver probe check * Return: 0 if DCMD succeeded * non-zero if failed */ static int megasas_host_device_list_query(struct megasas_instance *instance, bool is_probe) { int ret, i, target_id; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_HOST_DEVICE_LIST *ci; u32 count; dma_addr_t ci_h; ci = instance->host_device_list_buf; ci_h = instance->host_device_list_buf_h; cmd = megasas_get_cmd(instance); if (!cmd) { dev_warn(&instance->pdev->dev, "%s: failed to get cmd\n", __func__); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = is_probe ? 0 : 1; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(HOST_DEVICE_LIST_SZ); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_DEVICE_LIST_GET); megasas_set_dma_settings(instance, dcmd, ci_h, HOST_DEVICE_LIST_SZ); if (!instance->mask_interrupts) { ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); } else { ret = megasas_issue_polled(instance, cmd); cmd->flags |= DRV_DCMD_SKIP_REFIRE; } switch (ret) { case DCMD_SUCCESS: /* Fill the internal pd_list and ld_ids array based on * targetIds returned by FW */ count = le32_to_cpu(ci->count); if (count > (MEGASAS_MAX_PD + MAX_LOGICAL_DRIVES_EXT)) break; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "%s, Device count: 0x%x\n", __func__, count); memset(instance->local_pd_list, 0, MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); memset(instance->ld_ids, 0xff, MAX_LOGICAL_DRIVES_EXT); for (i = 0; i < count; i++) { target_id = le16_to_cpu(ci->host_device_list[i].target_id); if (ci->host_device_list[i].flags.u.bits.is_sys_pd) { instance->local_pd_list[target_id].tid = target_id; instance->local_pd_list[target_id].driveType = ci->host_device_list[i].scsi_type; instance->local_pd_list[target_id].driveState = MR_PD_STATE_SYSTEM; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "Device %d: PD targetID: 0x%03x deviceType:0x%x\n", i, target_id, ci->host_device_list[i].scsi_type); } else { instance->ld_ids[target_id] = target_id; if (megasas_dbg_lvl & LD_PD_DEBUG) dev_info(&instance->pdev->dev, "Device %d: LD targetID: 0x%03x\n", i, target_id); } } memcpy(instance->pd_list, instance->local_pd_list, sizeof(instance->pd_list)); break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; case DCMD_FAILED: dev_err(&instance->pdev->dev, "%s: MR_DCMD_CTRL_DEVICE_LIST_GET failed\n", __func__); break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return ret; } /* * megasas_update_ext_vd_details : Update details w.r.t Extended VD * instance : Controller's instance */ static void megasas_update_ext_vd_details(struct megasas_instance *instance) { struct fusion_context *fusion; u32 ventura_map_sz = 0; fusion = instance->ctrl_context; /* For MFI based controllers return dummy success */ if (!fusion) return; instance->supportmax256vd = instance->ctrl_info_buf->adapterOperations3.supportMaxExtLDs; /* Below is additional check to address future FW enhancement */ if (instance->ctrl_info_buf->max_lds > 64) instance->supportmax256vd = 1; instance->drv_supported_vd_count = MEGASAS_MAX_LD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL; instance->drv_supported_pd_count = MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL; if (instance->supportmax256vd) { instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES_EXT; instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES; } else { instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES; instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES; } dev_info(&instance->pdev->dev, "FW provided supportMaxExtLDs: %d\tmax_lds: %d\n", instance->ctrl_info_buf->adapterOperations3.supportMaxExtLDs ? 1 : 0, instance->ctrl_info_buf->max_lds); if (instance->max_raid_mapsize) { ventura_map_sz = instance->max_raid_mapsize * MR_MIN_MAP_SIZE; /* 64k */ fusion->current_map_sz = ventura_map_sz; fusion->max_map_sz = ventura_map_sz; } else { fusion->old_map_sz = struct_size((struct MR_FW_RAID_MAP *)0, ldSpanMap, instance->fw_supported_vd_count); fusion->new_map_sz = sizeof(struct MR_FW_RAID_MAP_EXT); fusion->max_map_sz = max(fusion->old_map_sz, fusion->new_map_sz); if (instance->supportmax256vd) fusion->current_map_sz = fusion->new_map_sz; else fusion->current_map_sz = fusion->old_map_sz; } /* irrespective of FW raid maps, driver raid map is constant */ fusion->drv_map_sz = sizeof(struct MR_DRV_RAID_MAP_ALL); } /* * dcmd.opcode - MR_DCMD_CTRL_SNAPDUMP_GET_PROPERTIES * dcmd.hdr.length - number of bytes to read * dcmd.sge - Ptr to MR_SNAPDUMP_PROPERTIES * Desc: Fill in snapdump properties * Status: MFI_STAT_OK- Command successful */ void megasas_get_snapdump_properties(struct megasas_instance *instance) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_SNAPDUMP_PROPERTIES *ci; dma_addr_t ci_h = 0; ci = instance->snapdump_prop; ci_h = instance->snapdump_prop_h; if (!ci) return; cmd = megasas_get_cmd(instance); if (!cmd) { dev_dbg(&instance->pdev->dev, "Failed to get a free cmd\n"); return; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_SNAPDUMP_PROPERTIES)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SNAPDUMP_GET_PROPERTIES); megasas_set_dma_settings(instance, dcmd, ci_h, sizeof(struct MR_SNAPDUMP_PROPERTIES)); if (!instance->mask_interrupts) { ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); } else { ret = megasas_issue_polled(instance, cmd); cmd->flags |= DRV_DCMD_SKIP_REFIRE; } switch (ret) { case DCMD_SUCCESS: instance->snapdump_wait_time = min_t(u8, ci->trigger_min_num_sec_before_ocr, MEGASAS_MAX_SNAP_DUMP_WAIT_TIME); break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); } /** * megasas_get_ctrl_info - Returns FW's controller structure * @instance: Adapter soft state * * Issues an internal command (DCMD) to get the FW's controller structure. * This information is mainly used to find out the maximum IO transfer per * command supported by the FW. */ int megasas_get_ctrl_info(struct megasas_instance *instance) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_ctrl_info *ci; dma_addr_t ci_h = 0; ci = instance->ctrl_info_buf; ci_h = instance->ctrl_info_buf_h; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get a free cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO); dcmd->mbox.b[0] = 1; megasas_set_dma_settings(instance, dcmd, ci_h, sizeof(struct megasas_ctrl_info)); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) { ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); } else { ret = megasas_issue_polled(instance, cmd); cmd->flags |= DRV_DCMD_SKIP_REFIRE; } switch (ret) { case DCMD_SUCCESS: /* Save required controller information in * CPU endianness format. */ le32_to_cpus((u32 *)&ci->properties.OnOffProperties); le16_to_cpus((u16 *)&ci->properties.on_off_properties2); le32_to_cpus((u32 *)&ci->adapterOperations2); le32_to_cpus((u32 *)&ci->adapterOperations3); le16_to_cpus((u16 *)&ci->adapter_operations4); le32_to_cpus((u32 *)&ci->adapter_operations5); /* Update the latest Ext VD info. * From Init path, store current firmware details. * From OCR path, detect any firmware properties changes. * in case of Firmware upgrade without system reboot. */ megasas_update_ext_vd_details(instance); instance->support_seqnum_jbod_fp = ci->adapterOperations3.useSeqNumJbodFP; instance->support_morethan256jbod = ci->adapter_operations4.support_pd_map_target_id; instance->support_nvme_passthru = ci->adapter_operations4.support_nvme_passthru; instance->support_pci_lane_margining = ci->adapter_operations5.support_pci_lane_margining; instance->task_abort_tmo = ci->TaskAbortTO; instance->max_reset_tmo = ci->MaxResetTO; /*Check whether controller is iMR or MR */ instance->is_imr = (ci->memory_size ? 0 : 1); instance->snapdump_wait_time = (ci->properties.on_off_properties2.enable_snap_dump ? MEGASAS_DEFAULT_SNAP_DUMP_WAIT_TIME : 0); instance->enable_fw_dev_list = ci->properties.on_off_properties2.enable_fw_dev_list; dev_info(&instance->pdev->dev, "controller type\t: %s(%dMB)\n", instance->is_imr ? "iMR" : "MR", le16_to_cpu(ci->memory_size)); instance->disableOnlineCtrlReset = ci->properties.OnOffProperties.disableOnlineCtrlReset; instance->secure_jbod_support = ci->adapterOperations3.supportSecurityonJBOD; dev_info(&instance->pdev->dev, "Online Controller Reset(OCR)\t: %s\n", instance->disableOnlineCtrlReset ? "Disabled" : "Enabled"); dev_info(&instance->pdev->dev, "Secure JBOD support\t: %s\n", instance->secure_jbod_support ? "Yes" : "No"); dev_info(&instance->pdev->dev, "NVMe passthru support\t: %s\n", instance->support_nvme_passthru ? "Yes" : "No"); dev_info(&instance->pdev->dev, "FW provided TM TaskAbort/Reset timeout\t: %d secs/%d secs\n", instance->task_abort_tmo, instance->max_reset_tmo); dev_info(&instance->pdev->dev, "JBOD sequence map support\t: %s\n", instance->support_seqnum_jbod_fp ? "Yes" : "No"); dev_info(&instance->pdev->dev, "PCI Lane Margining support\t: %s\n", instance->support_pci_lane_margining ? "Yes" : "No"); break; case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; case DCMD_FAILED: megaraid_sas_kill_hba(instance); break; } if (ret != DCMD_TIMEOUT) megasas_return_cmd(instance, cmd); return ret; } /* * megasas_set_crash_dump_params - Sends address of crash dump DMA buffer * to firmware * * @instance: Adapter soft state * @crash_buf_state - tell FW to turn ON/OFF crash dump feature MR_CRASH_BUF_TURN_OFF = 0 MR_CRASH_BUF_TURN_ON = 1 * @return 0 on success non-zero on failure. * Issues an internal command (DCMD) to set parameters for crash dump feature. * Driver will send address of crash dump DMA buffer and set mbox to tell FW * that driver supports crash dump feature. This DCMD will be sent only if * crash dump feature is supported by the FW. * */ int megasas_set_crash_dump_params(struct megasas_instance *instance, u8 crash_buf_state) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; cmd = megasas_get_cmd(instance); if (!cmd) { dev_err(&instance->pdev->dev, "Failed to get a free cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = crash_buf_state; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = MFI_STAT_INVALID_STATUS; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_NONE; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(CRASH_DMA_BUF_SIZE); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_SET_CRASH_DUMP_PARAMS); megasas_set_dma_settings(instance, dcmd, instance->crash_dump_h, CRASH_DMA_BUF_SIZE); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); if (ret == DCMD_TIMEOUT) { switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } } else megasas_return_cmd(instance, cmd); return ret; } /** * megasas_issue_init_mfi - Initializes the FW * @instance: Adapter soft state * * Issues the INIT MFI cmd */ static int megasas_issue_init_mfi(struct megasas_instance *instance) { __le32 context; struct megasas_cmd *cmd; struct megasas_init_frame *init_frame; struct megasas_init_queue_info *initq_info; dma_addr_t init_frame_h; dma_addr_t initq_info_h; /* * Prepare a init frame. Note the init frame points to queue info * structure. Each frame has SGL allocated after first 64 bytes. For * this frame - since we don't need any SGL - we use SGL's space as * queue info structure * * We will not get a NULL command below. We just created the pool. */ cmd = megasas_get_cmd(instance); init_frame = (struct megasas_init_frame *)cmd->frame; initq_info = (struct megasas_init_queue_info *) ((unsigned long)init_frame + 64); init_frame_h = cmd->frame_phys_addr; initq_info_h = init_frame_h + 64; context = init_frame->context; memset(init_frame, 0, MEGAMFI_FRAME_SIZE); memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); init_frame->context = context; initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1); initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h); initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h); initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h); init_frame->cmd = MFI_CMD_INIT; init_frame->cmd_status = MFI_STAT_INVALID_STATUS; init_frame->queue_info_new_phys_addr_lo = cpu_to_le32(lower_32_bits(initq_info_h)); init_frame->queue_info_new_phys_addr_hi = cpu_to_le32(upper_32_bits(initq_info_h)); init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info)); /* * disable the intr before firing the init frame to FW */ instance->instancet->disable_intr(instance); /* * Issue the init frame in polled mode */ if (megasas_issue_polled(instance, cmd)) { dev_err(&instance->pdev->dev, "Failed to init firmware\n"); megasas_return_cmd(instance, cmd); goto fail_fw_init; } megasas_return_cmd(instance, cmd); return 0; fail_fw_init: return -EINVAL; } static u32 megasas_init_adapter_mfi(struct megasas_instance *instance) { u32 context_sz; u32 reply_q_sz; /* * Get various operational parameters from status register */ instance->max_fw_cmds = instance->instancet->read_fw_status_reg(instance) & 0x00FFFF; /* * Reduce the max supported cmds by 1. This is to ensure that the * reply_q_sz (1 more than the max cmd that driver may send) * does not exceed max cmds that the FW can support */ instance->max_fw_cmds = instance->max_fw_cmds-1; instance->max_mfi_cmds = instance->max_fw_cmds; instance->max_num_sge = (instance->instancet->read_fw_status_reg(instance) & 0xFF0000) >> 0x10; /* * For MFI skinny adapters, MEGASAS_SKINNY_INT_CMDS commands * are reserved for IOCTL + driver's internal DCMDs. */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { instance->max_scsi_cmds = (instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS); sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); } else { instance->max_scsi_cmds = (instance->max_fw_cmds - MEGASAS_INT_CMDS); sema_init(&instance->ioctl_sem, (MEGASAS_MFI_IOCTL_CMDS)); } instance->cur_can_queue = instance->max_scsi_cmds; /* * Create a pool of commands */ if (megasas_alloc_cmds(instance)) goto fail_alloc_cmds; /* * Allocate memory for reply queue. Length of reply queue should * be _one_ more than the maximum commands handled by the firmware. * * Note: When FW completes commands, it places corresponding contex * values in this circular reply queue. This circular queue is a fairly * typical producer-consumer queue. FW is the producer (of completed * commands) and the driver is the consumer. */ context_sz = sizeof(u32); reply_q_sz = context_sz * (instance->max_fw_cmds + 1); instance->reply_queue = dma_alloc_coherent(&instance->pdev->dev, reply_q_sz, &instance->reply_queue_h, GFP_KERNEL); if (!instance->reply_queue) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Out of DMA mem for reply queue\n"); goto fail_reply_queue; } if (megasas_issue_init_mfi(instance)) goto fail_fw_init; if (megasas_get_ctrl_info(instance)) { dev_err(&instance->pdev->dev, "(%d): Could get controller info " "Fail from %s %d\n", instance->unique_id, __func__, __LINE__); goto fail_fw_init; } instance->fw_support_ieee = 0; instance->fw_support_ieee = (instance->instancet->read_fw_status_reg(instance) & 0x04000000); dev_notice(&instance->pdev->dev, "megasas_init_mfi: fw_support_ieee=%d", instance->fw_support_ieee); if (instance->fw_support_ieee) instance->flag_ieee = 1; return 0; fail_fw_init: dma_free_coherent(&instance->pdev->dev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); fail_reply_queue: megasas_free_cmds(instance); fail_alloc_cmds: return 1; } static void megasas_setup_irq_poll(struct megasas_instance *instance) { struct megasas_irq_context *irq_ctx; u32 count, i; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; /* Initialize IRQ poll */ for (i = 0; i < count; i++) { irq_ctx = &instance->irq_context[i]; irq_ctx->os_irq = pci_irq_vector(instance->pdev, i); irq_ctx->irq_poll_scheduled = false; irq_poll_init(&irq_ctx->irqpoll, instance->threshold_reply_count, megasas_irqpoll); } } /* * megasas_setup_irqs_ioapic - register legacy interrupts. * @instance: Adapter soft state * * Do not enable interrupt, only setup ISRs. * * Return 0 on success. */ static int megasas_setup_irqs_ioapic(struct megasas_instance *instance) { struct pci_dev *pdev; pdev = instance->pdev; instance->irq_context[0].instance = instance; instance->irq_context[0].MSIxIndex = 0; snprintf(instance->irq_context->name, MEGASAS_MSIX_NAME_LEN, "%s%u", "megasas", instance->host->host_no); if (request_irq(pci_irq_vector(pdev, 0), instance->instancet->service_isr, IRQF_SHARED, instance->irq_context->name, &instance->irq_context[0])) { dev_err(&instance->pdev->dev, "Failed to register IRQ from %s %d\n", __func__, __LINE__); return -1; } instance->perf_mode = MR_LATENCY_PERF_MODE; instance->low_latency_index_start = 0; return 0; } /** * megasas_setup_irqs_msix - register MSI-x interrupts. * @instance: Adapter soft state * @is_probe: Driver probe check * * Do not enable interrupt, only setup ISRs. * * Return 0 on success. */ static int megasas_setup_irqs_msix(struct megasas_instance *instance, u8 is_probe) { int i, j; struct pci_dev *pdev; pdev = instance->pdev; /* Try MSI-x */ for (i = 0; i < instance->msix_vectors; i++) { instance->irq_context[i].instance = instance; instance->irq_context[i].MSIxIndex = i; snprintf(instance->irq_context[i].name, MEGASAS_MSIX_NAME_LEN, "%s%u-msix%u", "megasas", instance->host->host_no, i); if (request_irq(pci_irq_vector(pdev, i), instance->instancet->service_isr, 0, instance->irq_context[i].name, &instance->irq_context[i])) { dev_err(&instance->pdev->dev, "Failed to register IRQ for vector %d.\n", i); for (j = 0; j < i; j++) { if (j < instance->low_latency_index_start) irq_update_affinity_hint( pci_irq_vector(pdev, j), NULL); free_irq(pci_irq_vector(pdev, j), &instance->irq_context[j]); } /* Retry irq register for IO_APIC*/ instance->msix_vectors = 0; instance->msix_load_balance = false; if (is_probe) { pci_free_irq_vectors(instance->pdev); return megasas_setup_irqs_ioapic(instance); } else { return -1; } } } return 0; } /* * megasas_destroy_irqs- unregister interrupts. * @instance: Adapter soft state * return: void */ static void megasas_destroy_irqs(struct megasas_instance *instance) { int i; int count; struct megasas_irq_context *irq_ctx; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; if (instance->adapter_type != MFI_SERIES) { for (i = 0; i < count; i++) { irq_ctx = &instance->irq_context[i]; irq_poll_disable(&irq_ctx->irqpoll); } } if (instance->msix_vectors) for (i = 0; i < instance->msix_vectors; i++) { if (i < instance->low_latency_index_start) irq_update_affinity_hint( pci_irq_vector(instance->pdev, i), NULL); free_irq(pci_irq_vector(instance->pdev, i), &instance->irq_context[i]); } else free_irq(pci_irq_vector(instance->pdev, 0), &instance->irq_context[0]); } /** * megasas_setup_jbod_map - setup jbod map for FP seq_number. * @instance: Adapter soft state * * Return 0 on success. */ void megasas_setup_jbod_map(struct megasas_instance *instance) { int i; struct fusion_context *fusion = instance->ctrl_context; size_t pd_seq_map_sz; pd_seq_map_sz = struct_size((struct MR_PD_CFG_SEQ_NUM_SYNC *)0, seq, MAX_PHYSICAL_DEVICES); instance->use_seqnum_jbod_fp = instance->support_seqnum_jbod_fp; if (reset_devices || !fusion || !instance->support_seqnum_jbod_fp) { dev_info(&instance->pdev->dev, "JBOD sequence map is disabled %s %d\n", __func__, __LINE__); instance->use_seqnum_jbod_fp = false; return; } if (fusion->pd_seq_sync[0]) goto skip_alloc; for (i = 0; i < JBOD_MAPS_COUNT; i++) { fusion->pd_seq_sync[i] = dma_alloc_coherent (&instance->pdev->dev, pd_seq_map_sz, &fusion->pd_seq_phys[i], GFP_KERNEL); if (!fusion->pd_seq_sync[i]) { dev_err(&instance->pdev->dev, "Failed to allocate memory from %s %d\n", __func__, __LINE__); if (i == 1) { dma_free_coherent(&instance->pdev->dev, pd_seq_map_sz, fusion->pd_seq_sync[0], fusion->pd_seq_phys[0]); fusion->pd_seq_sync[0] = NULL; } instance->use_seqnum_jbod_fp = false; return; } } skip_alloc: if (!megasas_sync_pd_seq_num(instance, false) && !megasas_sync_pd_seq_num(instance, true)) instance->use_seqnum_jbod_fp = true; else instance->use_seqnum_jbod_fp = false; } static void megasas_setup_reply_map(struct megasas_instance *instance) { const struct cpumask *mask; unsigned int queue, cpu, low_latency_index_start; low_latency_index_start = instance->low_latency_index_start; for (queue = low_latency_index_start; queue < instance->msix_vectors; queue++) { mask = pci_irq_get_affinity(instance->pdev, queue); if (!mask) goto fallback; for_each_cpu(cpu, mask) instance->reply_map[cpu] = queue; } return; fallback: queue = low_latency_index_start; for_each_possible_cpu(cpu) { instance->reply_map[cpu] = queue; if (queue == (instance->msix_vectors - 1)) queue = low_latency_index_start; else queue++; } } /** * megasas_get_device_list - Get the PD and LD device list from FW. * @instance: Adapter soft state * @return: Success or failure * * Issue DCMDs to Firmware to get the PD and LD list. * Based on the FW support, driver sends the HOST_DEVICE_LIST or combination * of PD_LIST/LD_LIST_QUERY DCMDs to get the device list. */ static int megasas_get_device_list(struct megasas_instance *instance) { if (instance->enable_fw_dev_list) { if (megasas_host_device_list_query(instance, true)) return FAILED; } else { if (megasas_get_pd_list(instance) < 0) { dev_err(&instance->pdev->dev, "failed to get PD list\n"); return FAILED; } if (megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST)) { dev_err(&instance->pdev->dev, "failed to get LD list\n"); return FAILED; } } return SUCCESS; } /** * megasas_set_high_iops_queue_affinity_and_hint - Set affinity and hint * for high IOPS queues * @instance: Adapter soft state * return: void */ static inline void megasas_set_high_iops_queue_affinity_and_hint(struct megasas_instance *instance) { int i; unsigned int irq; const struct cpumask *mask; if (instance->perf_mode == MR_BALANCED_PERF_MODE) { mask = cpumask_of_node(dev_to_node(&instance->pdev->dev)); for (i = 0; i < instance->low_latency_index_start; i++) { irq = pci_irq_vector(instance->pdev, i); irq_set_affinity_and_hint(irq, mask); } } } static int __megasas_alloc_irq_vectors(struct megasas_instance *instance) { int i, irq_flags; struct irq_affinity desc = { .pre_vectors = instance->low_latency_index_start }; struct irq_affinity *descp = &desc; irq_flags = PCI_IRQ_MSIX; if (instance->smp_affinity_enable) irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES; else descp = NULL; /* Do not allocate msix vectors for poll_queues. * msix_vectors is always within a range of FW supported reply queue. */ i = pci_alloc_irq_vectors_affinity(instance->pdev, instance->low_latency_index_start, instance->msix_vectors - instance->iopoll_q_count, irq_flags, descp); return i; } /** * megasas_alloc_irq_vectors - Allocate IRQ vectors/enable MSI-x vectors * @instance: Adapter soft state * return: void */ static void megasas_alloc_irq_vectors(struct megasas_instance *instance) { int i; unsigned int num_msix_req; instance->iopoll_q_count = 0; if ((instance->adapter_type != MFI_SERIES) && poll_queues) { instance->perf_mode = MR_LATENCY_PERF_MODE; instance->low_latency_index_start = 1; /* reserve for default and non-mananged pre-vector. */ if (instance->msix_vectors > (poll_queues + 2)) instance->iopoll_q_count = poll_queues; else instance->iopoll_q_count = 0; num_msix_req = num_online_cpus() + instance->low_latency_index_start; instance->msix_vectors = min(num_msix_req, instance->msix_vectors); } i = __megasas_alloc_irq_vectors(instance); if (((instance->perf_mode == MR_BALANCED_PERF_MODE) || instance->iopoll_q_count) && (i != (instance->msix_vectors - instance->iopoll_q_count))) { if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); /* Disable Balanced IOPS mode and try realloc vectors */ instance->perf_mode = MR_LATENCY_PERF_MODE; instance->low_latency_index_start = 1; num_msix_req = num_online_cpus() + instance->low_latency_index_start; instance->msix_vectors = min(num_msix_req, instance->msix_vectors); instance->iopoll_q_count = 0; i = __megasas_alloc_irq_vectors(instance); } dev_info(&instance->pdev->dev, "requested/available msix %d/%d poll_queue %d\n", instance->msix_vectors - instance->iopoll_q_count, i, instance->iopoll_q_count); if (i > 0) instance->msix_vectors = i; else instance->msix_vectors = 0; if (instance->smp_affinity_enable) megasas_set_high_iops_queue_affinity_and_hint(instance); } /** * megasas_init_fw - Initializes the FW * @instance: Adapter soft state * * This is the main function for initializing firmware */ static int megasas_init_fw(struct megasas_instance *instance) { u32 max_sectors_1; u32 max_sectors_2, tmp_sectors, msix_enable; u32 scratch_pad_1, scratch_pad_2, scratch_pad_3, status_reg; resource_size_t base_addr; void *base_addr_phys; struct megasas_ctrl_info *ctrl_info = NULL; unsigned long bar_list; int i, j, loop; struct IOV_111 *iovPtr; struct fusion_context *fusion; bool intr_coalescing; unsigned int num_msix_req; u16 lnksta, speed; fusion = instance->ctrl_context; /* Find first memory bar */ bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM); instance->bar = find_first_bit(&bar_list, BITS_PER_LONG); if (pci_request_selected_regions(instance->pdev, 1<bar, "megasas: LSI")) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "IO memory region busy!\n"); return -EBUSY; } base_addr = pci_resource_start(instance->pdev, instance->bar); instance->reg_set = ioremap(base_addr, 8192); if (!instance->reg_set) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to map IO mem\n"); goto fail_ioremap; } base_addr_phys = &base_addr; dev_printk(KERN_DEBUG, &instance->pdev->dev, "BAR:0x%lx BAR's base_addr(phys):%pa mapped virt_addr:0x%p\n", instance->bar, base_addr_phys, instance->reg_set); if (instance->adapter_type != MFI_SERIES) instance->instancet = &megasas_instance_template_fusion; else { switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_SAS1078R: case PCI_DEVICE_ID_LSI_SAS1078DE: instance->instancet = &megasas_instance_template_ppc; break; case PCI_DEVICE_ID_LSI_SAS1078GEN2: case PCI_DEVICE_ID_LSI_SAS0079GEN2: instance->instancet = &megasas_instance_template_gen2; break; case PCI_DEVICE_ID_LSI_SAS0073SKINNY: case PCI_DEVICE_ID_LSI_SAS0071SKINNY: instance->instancet = &megasas_instance_template_skinny; break; case PCI_DEVICE_ID_LSI_SAS1064R: case PCI_DEVICE_ID_DELL_PERC5: default: instance->instancet = &megasas_instance_template_xscale; instance->pd_list_not_supported = 1; break; } } if (megasas_transition_to_ready(instance, 0)) { dev_info(&instance->pdev->dev, "Failed to transition controller to ready from %s!\n", __func__); if (instance->adapter_type != MFI_SERIES) { status_reg = instance->instancet->read_fw_status_reg( instance); if (status_reg & MFI_RESET_ADAPTER) { if (megasas_adp_reset_wait_for_ready (instance, true, 0) == FAILED) goto fail_ready_state; } else { goto fail_ready_state; } } else { atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset (instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0); /*waiting for about 30 second before retry*/ ssleep(30); if (megasas_transition_to_ready(instance, 0)) goto fail_ready_state; } dev_info(&instance->pdev->dev, "FW restarted successfully from %s!\n", __func__); } megasas_init_ctrl_params(instance); if (megasas_set_dma_mask(instance)) goto fail_ready_state; if (megasas_alloc_ctrl_mem(instance)) goto fail_alloc_dma_buf; if (megasas_alloc_ctrl_dma_buffers(instance)) goto fail_alloc_dma_buf; fusion = instance->ctrl_context; if (instance->adapter_type >= VENTURA_SERIES) { scratch_pad_2 = megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_2); instance->max_raid_mapsize = ((scratch_pad_2 >> MR_MAX_RAID_MAP_SIZE_OFFSET_SHIFT) & MR_MAX_RAID_MAP_SIZE_MASK); } instance->enable_sdev_max_qd = enable_sdev_max_qd; switch (instance->adapter_type) { case VENTURA_SERIES: fusion->pcie_bw_limitation = true; break; case AERO_SERIES: fusion->r56_div_offload = true; break; default: break; } /* Check if MSI-X is supported while in ready state */ msix_enable = (instance->instancet->read_fw_status_reg(instance) & 0x4000000) >> 0x1a; if (msix_enable && !msix_disable) { scratch_pad_1 = megasas_readl (instance, &instance->reg_set->outbound_scratch_pad_1); /* Check max MSI-X vectors */ if (fusion) { if (instance->adapter_type == THUNDERBOLT_SERIES) { /* Thunderbolt Series*/ instance->msix_vectors = (scratch_pad_1 & MR_MAX_REPLY_QUEUES_OFFSET) + 1; } else { instance->msix_vectors = ((scratch_pad_1 & MR_MAX_REPLY_QUEUES_EXT_OFFSET) >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1; /* * For Invader series, > 8 MSI-x vectors * supported by FW/HW implies combined * reply queue mode is enabled. * For Ventura series, > 16 MSI-x vectors * supported by FW/HW implies combined * reply queue mode is enabled. */ switch (instance->adapter_type) { case INVADER_SERIES: if (instance->msix_vectors > 8) instance->msix_combined = true; break; case AERO_SERIES: case VENTURA_SERIES: if (instance->msix_vectors > 16) instance->msix_combined = true; break; } if (rdpq_enable) instance->is_rdpq = (scratch_pad_1 & MR_RDPQ_MODE_OFFSET) ? 1 : 0; if (instance->adapter_type >= INVADER_SERIES && !instance->msix_combined) { instance->msix_load_balance = true; instance->smp_affinity_enable = false; } /* Save 1-15 reply post index address to local memory * Index 0 is already saved from reg offset * MPI2_REPLY_POST_HOST_INDEX_OFFSET */ for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) { instance->reply_post_host_index_addr[loop] = (u32 __iomem *) ((u8 __iomem *)instance->reg_set + MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET + (loop * 0x10)); } } dev_info(&instance->pdev->dev, "firmware supports msix\t: (%d)", instance->msix_vectors); if (msix_vectors) instance->msix_vectors = min(msix_vectors, instance->msix_vectors); } else /* MFI adapters */ instance->msix_vectors = 1; /* * For Aero (if some conditions are met), driver will configure a * few additional reply queues with interrupt coalescing enabled. * These queues with interrupt coalescing enabled are called * High IOPS queues and rest of reply queues (based on number of * logical CPUs) are termed as Low latency queues. * * Total Number of reply queues = High IOPS queues + low latency queues * * For rest of fusion adapters, 1 additional reply queue will be * reserved for management commands, rest of reply queues * (based on number of logical CPUs) will be used for IOs and * referenced as IO queues. * Total Number of reply queues = 1 + IO queues * * MFI adapters supports single MSI-x so single reply queue * will be used for IO and management commands. */ intr_coalescing = (scratch_pad_1 & MR_INTR_COALESCING_SUPPORT_OFFSET) ? true : false; if (intr_coalescing && (num_online_cpus() >= MR_HIGH_IOPS_QUEUE_COUNT) && (instance->msix_vectors == MEGASAS_MAX_MSIX_QUEUES)) instance->perf_mode = MR_BALANCED_PERF_MODE; else instance->perf_mode = MR_LATENCY_PERF_MODE; if (instance->adapter_type == AERO_SERIES) { pcie_capability_read_word(instance->pdev, PCI_EXP_LNKSTA, &lnksta); speed = lnksta & PCI_EXP_LNKSTA_CLS; /* * For Aero, if PCIe link speed is <16 GT/s, then driver should operate * in latency perf mode and enable R1 PCI bandwidth algorithm */ if (speed < 0x4) { instance->perf_mode = MR_LATENCY_PERF_MODE; fusion->pcie_bw_limitation = true; } /* * Performance mode settings provided through module parameter-perf_mode will * take affect only for: * 1. Aero family of adapters. * 2. When user sets module parameter- perf_mode in range of 0-2. */ if ((perf_mode >= MR_BALANCED_PERF_MODE) && (perf_mode <= MR_LATENCY_PERF_MODE)) instance->perf_mode = perf_mode; /* * If intr coalescing is not supported by controller FW, then IOPS * and Balanced modes are not feasible. */ if (!intr_coalescing) instance->perf_mode = MR_LATENCY_PERF_MODE; } if (instance->perf_mode == MR_BALANCED_PERF_MODE) instance->low_latency_index_start = MR_HIGH_IOPS_QUEUE_COUNT; else instance->low_latency_index_start = 1; num_msix_req = num_online_cpus() + instance->low_latency_index_start; instance->msix_vectors = min(num_msix_req, instance->msix_vectors); megasas_alloc_irq_vectors(instance); if (!instance->msix_vectors) instance->msix_load_balance = false; } /* * MSI-X host index 0 is common for all adapter. * It is used for all MPT based Adapters. */ if (instance->msix_combined) { instance->reply_post_host_index_addr[0] = (u32 *)((u8 *)instance->reg_set + MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET); } else { instance->reply_post_host_index_addr[0] = (u32 *)((u8 *)instance->reg_set + MPI2_REPLY_POST_HOST_INDEX_OFFSET); } if (!instance->msix_vectors) { i = pci_alloc_irq_vectors(instance->pdev, 1, 1, PCI_IRQ_LEGACY); if (i < 0) goto fail_init_adapter; } megasas_setup_reply_map(instance); dev_info(&instance->pdev->dev, "current msix/online cpus\t: (%d/%d)\n", instance->msix_vectors, (unsigned int)num_online_cpus()); dev_info(&instance->pdev->dev, "RDPQ mode\t: (%s)\n", instance->is_rdpq ? "enabled" : "disabled"); tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, (unsigned long)instance); /* * Below are default value for legacy Firmware. * non-fusion based controllers */ instance->fw_supported_vd_count = MAX_LOGICAL_DRIVES; instance->fw_supported_pd_count = MAX_PHYSICAL_DEVICES; /* Get operational params, sge flags, send init cmd to controller */ if (instance->instancet->init_adapter(instance)) goto fail_init_adapter; if (instance->adapter_type >= VENTURA_SERIES) { scratch_pad_3 = megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_3); if ((scratch_pad_3 & MR_NVME_PAGE_SIZE_MASK) >= MR_DEFAULT_NVME_PAGE_SHIFT) instance->nvme_page_size = (1 << (scratch_pad_3 & MR_NVME_PAGE_SIZE_MASK)); dev_info(&instance->pdev->dev, "NVME page size\t: (%d)\n", instance->nvme_page_size); } if (instance->msix_vectors ? megasas_setup_irqs_msix(instance, 1) : megasas_setup_irqs_ioapic(instance)) goto fail_init_adapter; if (instance->adapter_type != MFI_SERIES) megasas_setup_irq_poll(instance); instance->instancet->enable_intr(instance); dev_info(&instance->pdev->dev, "INIT adapter done\n"); megasas_setup_jbod_map(instance); if (megasas_get_device_list(instance) != SUCCESS) { dev_err(&instance->pdev->dev, "%s: megasas_get_device_list failed\n", __func__); goto fail_get_ld_pd_list; } /* stream detection initialization */ if (instance->adapter_type >= VENTURA_SERIES) { fusion->stream_detect_by_ld = kcalloc(MAX_LOGICAL_DRIVES_EXT, sizeof(struct LD_STREAM_DETECT *), GFP_KERNEL); if (!fusion->stream_detect_by_ld) { dev_err(&instance->pdev->dev, "unable to allocate stream detection for pool of LDs\n"); goto fail_get_ld_pd_list; } for (i = 0; i < MAX_LOGICAL_DRIVES_EXT; ++i) { fusion->stream_detect_by_ld[i] = kzalloc(sizeof(struct LD_STREAM_DETECT), GFP_KERNEL); if (!fusion->stream_detect_by_ld[i]) { dev_err(&instance->pdev->dev, "unable to allocate stream detect by LD\n "); for (j = 0; j < i; ++j) kfree(fusion->stream_detect_by_ld[j]); kfree(fusion->stream_detect_by_ld); fusion->stream_detect_by_ld = NULL; goto fail_get_ld_pd_list; } fusion->stream_detect_by_ld[i]->mru_bit_map = MR_STREAM_BITMAP; } } /* * Compute the max allowed sectors per IO: The controller info has two * limits on max sectors. Driver should use the minimum of these two. * * 1 << stripe_sz_ops.min = max sectors per strip * * Note that older firmwares ( < FW ver 30) didn't report information * to calculate max_sectors_1. So the number ended up as zero always. */ tmp_sectors = 0; ctrl_info = instance->ctrl_info_buf; max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * le16_to_cpu(ctrl_info->max_strips_per_io); max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size); tmp_sectors = min_t(u32, max_sectors_1, max_sectors_2); instance->peerIsPresent = ctrl_info->cluster.peerIsPresent; instance->passive = ctrl_info->cluster.passive; memcpy(instance->clusterId, ctrl_info->clusterId, sizeof(instance->clusterId)); instance->UnevenSpanSupport = ctrl_info->adapterOperations2.supportUnevenSpans; if (instance->UnevenSpanSupport) { struct fusion_context *fusion = instance->ctrl_context; if (MR_ValidateMapInfo(instance, instance->map_id)) fusion->fast_path_io = 1; else fusion->fast_path_io = 0; } if (ctrl_info->host_interface.SRIOV) { instance->requestorId = ctrl_info->iov.requestorId; if (instance->pdev->device == PCI_DEVICE_ID_LSI_PLASMA) { if (!ctrl_info->adapterOperations2.activePassive) instance->PlasmaFW111 = 1; dev_info(&instance->pdev->dev, "SR-IOV: firmware type: %s\n", instance->PlasmaFW111 ? "1.11" : "new"); if (instance->PlasmaFW111) { iovPtr = (struct IOV_111 *) ((unsigned char *)ctrl_info + IOV_111_OFFSET); instance->requestorId = iovPtr->requestorId; } } dev_info(&instance->pdev->dev, "SRIOV: VF requestorId %d\n", instance->requestorId); } instance->crash_dump_fw_support = ctrl_info->adapterOperations3.supportCrashDump; instance->crash_dump_drv_support = (instance->crash_dump_fw_support && instance->crash_dump_buf); if (instance->crash_dump_drv_support) megasas_set_crash_dump_params(instance, MR_CRASH_BUF_TURN_OFF); else { if (instance->crash_dump_buf) dma_free_coherent(&instance->pdev->dev, CRASH_DMA_BUF_SIZE, instance->crash_dump_buf, instance->crash_dump_h); instance->crash_dump_buf = NULL; } if (instance->snapdump_wait_time) { megasas_get_snapdump_properties(instance); dev_info(&instance->pdev->dev, "Snap dump wait time\t: %d\n", instance->snapdump_wait_time); } dev_info(&instance->pdev->dev, "pci id\t\t: (0x%04x)/(0x%04x)/(0x%04x)/(0x%04x)\n", le16_to_cpu(ctrl_info->pci.vendor_id), le16_to_cpu(ctrl_info->pci.device_id), le16_to_cpu(ctrl_info->pci.sub_vendor_id), le16_to_cpu(ctrl_info->pci.sub_device_id)); dev_info(&instance->pdev->dev, "unevenspan support : %s\n", instance->UnevenSpanSupport ? "yes" : "no"); dev_info(&instance->pdev->dev, "firmware crash dump : %s\n", instance->crash_dump_drv_support ? "yes" : "no"); dev_info(&instance->pdev->dev, "JBOD sequence map : %s\n", instance->use_seqnum_jbod_fp ? "enabled" : "disabled"); instance->max_sectors_per_req = instance->max_num_sge * SGE_BUFFER_SIZE / 512; if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) instance->max_sectors_per_req = tmp_sectors; /* Check for valid throttlequeuedepth module parameter */ if (throttlequeuedepth && throttlequeuedepth <= instance->max_scsi_cmds) instance->throttlequeuedepth = throttlequeuedepth; else instance->throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH; if ((resetwaittime < 1) || (resetwaittime > MEGASAS_RESET_WAIT_TIME)) resetwaittime = MEGASAS_RESET_WAIT_TIME; if ((scmd_timeout < 10) || (scmd_timeout > MEGASAS_DEFAULT_CMD_TIMEOUT)) scmd_timeout = MEGASAS_DEFAULT_CMD_TIMEOUT; /* Launch SR-IOV heartbeat timer */ if (instance->requestorId) { if (!megasas_sriov_start_heartbeat(instance, 1)) { megasas_start_timer(instance); } else { instance->skip_heartbeat_timer_del = 1; goto fail_get_ld_pd_list; } } /* * Create and start watchdog thread which will monitor * controller state every 1 sec and trigger OCR when * it enters fault state */ if (instance->adapter_type != MFI_SERIES) if (megasas_fusion_start_watchdog(instance) != SUCCESS) goto fail_start_watchdog; return 0; fail_start_watchdog: if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); fail_get_ld_pd_list: instance->instancet->disable_intr(instance); megasas_destroy_irqs(instance); fail_init_adapter: if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); instance->msix_vectors = 0; fail_alloc_dma_buf: megasas_free_ctrl_dma_buffers(instance); megasas_free_ctrl_mem(instance); fail_ready_state: iounmap(instance->reg_set); fail_ioremap: pci_release_selected_regions(instance->pdev, 1<bar); dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -EINVAL; } /** * megasas_release_mfi - Reverses the FW initialization * @instance: Adapter soft state */ static void megasas_release_mfi(struct megasas_instance *instance) { u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1); if (instance->reply_queue) dma_free_coherent(&instance->pdev->dev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); megasas_free_cmds(instance); iounmap(instance->reg_set); pci_release_selected_regions(instance->pdev, 1<bar); } /** * megasas_get_seq_num - Gets latest event sequence numbers * @instance: Adapter soft state * @eli: FW event log sequence numbers information * * FW maintains a log of all events in a non-volatile area. Upper layers would * usually find out the latest sequence number of the events, the seq number at * the boot etc. They would "read" all the events below the latest seq number * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq * number), they would subsribe to AEN (asynchronous event notification) and * wait for the events to happen. */ static int megasas_get_seq_num(struct megasas_instance *instance, struct megasas_evt_log_info *eli) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_evt_log_info *el_info; dma_addr_t el_info_h = 0; int ret; cmd = megasas_get_cmd(instance); if (!cmd) { return -ENOMEM; } dcmd = &cmd->frame->dcmd; el_info = dma_alloc_coherent(&instance->pdev->dev, sizeof(struct megasas_evt_log_info), &el_info_h, GFP_KERNEL); if (!el_info) { megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO); megasas_set_dma_settings(instance, dcmd, el_info_h, sizeof(struct megasas_evt_log_info)); ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); if (ret != DCMD_SUCCESS) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); goto dcmd_failed; } /* * Copy the data back into callers buffer */ eli->newest_seq_num = el_info->newest_seq_num; eli->oldest_seq_num = el_info->oldest_seq_num; eli->clear_seq_num = el_info->clear_seq_num; eli->shutdown_seq_num = el_info->shutdown_seq_num; eli->boot_seq_num = el_info->boot_seq_num; dcmd_failed: dma_free_coherent(&instance->pdev->dev, sizeof(struct megasas_evt_log_info), el_info, el_info_h); megasas_return_cmd(instance, cmd); return ret; } /** * megasas_register_aen - Registers for asynchronous event notification * @instance: Adapter soft state * @seq_num: The starting sequence number * @class_locale_word: Class of the event * * This function subscribes for AEN for events beyond the @seq_num. It requests * to be notified if and only if the event is of type @class_locale */ static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word) { int ret_val; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; union megasas_evt_class_locale curr_aen; union megasas_evt_class_locale prev_aen; /* * If there an AEN pending already (aen_cmd), check if the * class_locale of that pending AEN is inclusive of the new * AEN request we currently have. If it is, then we don't have * to do anything. In other words, whichever events the current * AEN request is subscribing to, have already been subscribed * to. * * If the old_cmd is _not_ inclusive, then we have to abort * that command, form a class_locale that is superset of both * old and current and re-issue to the FW */ curr_aen.word = class_locale_word; if (instance->aen_cmd) { prev_aen.word = le32_to_cpu(instance->aen_cmd->frame->dcmd.mbox.w[1]); if ((curr_aen.members.class < MFI_EVT_CLASS_DEBUG) || (curr_aen.members.class > MFI_EVT_CLASS_DEAD)) { dev_info(&instance->pdev->dev, "%s %d out of range class %d send by application\n", __func__, __LINE__, curr_aen.members.class); return 0; } /* * A class whose enum value is smaller is inclusive of all * higher values. If a PROGRESS (= -1) was previously * registered, then a new registration requests for higher * classes need not be sent to FW. They are automatically * included. * * Locale numbers don't have such hierarchy. They are bitmap * values */ if ((prev_aen.members.class <= curr_aen.members.class) && !((prev_aen.members.locale & curr_aen.members.locale) ^ curr_aen.members.locale)) { /* * Previously issued event registration includes * current request. Nothing to do. */ return 0; } else { curr_aen.members.locale |= prev_aen.members.locale; if (prev_aen.members.class < curr_aen.members.class) curr_aen.members.class = prev_aen.members.class; instance->aen_cmd->abort_aen = 1; ret_val = megasas_issue_blocked_abort_cmd(instance, instance-> aen_cmd, 30); if (ret_val) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to abort " "previous AEN command\n"); return ret_val; } } } cmd = megasas_get_cmd(instance); if (!cmd) return -ENOMEM; dcmd = &cmd->frame->dcmd; memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); /* * Prepare DCMD for aen registration */ memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail)); dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT); dcmd->mbox.w[0] = cpu_to_le32(seq_num); instance->last_seq_num = seq_num; dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word); megasas_set_dma_settings(instance, dcmd, instance->evt_detail_h, sizeof(struct megasas_evt_detail)); if (instance->aen_cmd != NULL) { megasas_return_cmd(instance, cmd); return 0; } /* * Store reference to the cmd used to register for AEN. When an * application wants us to register for AEN, we have to abort this * cmd and re-register with a new EVENT LOCALE supplied by that app */ instance->aen_cmd = cmd; /* * Issue the aen registration frame */ instance->instancet->issue_dcmd(instance, cmd); return 0; } /* megasas_get_target_prop - Send DCMD with below details to firmware. * * This DCMD will fetch few properties of LD/system PD defined * in MR_TARGET_DEV_PROPERTIES. eg. Queue Depth, MDTS value. * * DCMD send by drivers whenever new target is added to the OS. * * dcmd.opcode - MR_DCMD_DEV_GET_TARGET_PROP * dcmd.mbox.b[0] - DCMD is to be fired for LD or system PD. * 0 = system PD, 1 = LD. * dcmd.mbox.s[1] - TargetID for LD/system PD. * dcmd.sge IN - Pointer to return MR_TARGET_DEV_PROPERTIES. * * @instance: Adapter soft state * @sdev: OS provided scsi device * * Returns 0 on success non-zero on failure. */ int megasas_get_target_prop(struct megasas_instance *instance, struct scsi_device *sdev) { int ret; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; u16 targetId = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; cmd = megasas_get_cmd(instance); if (!cmd) { dev_err(&instance->pdev->dev, "Failed to get cmd %s\n", __func__); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(instance->tgt_prop, 0, sizeof(*instance->tgt_prop)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = MEGASAS_IS_LOGICAL(sdev); dcmd->mbox.s[1] = cpu_to_le16(targetId); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_TARGET_PROPERTIES)); dcmd->opcode = cpu_to_le32(MR_DCMD_DRV_GET_TARGET_PROP); megasas_set_dma_settings(instance, dcmd, instance->tgt_prop_h, sizeof(struct MR_TARGET_PROPERTIES)); if ((instance->adapter_type != MFI_SERIES) && !instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); switch (ret) { case DCMD_TIMEOUT: switch (dcmd_timeout_ocr_possible(instance)) { case INITIATE_OCR: cmd->flags |= DRV_DCMD_SKIP_REFIRE; mutex_unlock(&instance->reset_mutex); megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); break; case KILL_ADAPTER: megaraid_sas_kill_hba(instance); break; case IGNORE_TIMEOUT: dev_info(&instance->pdev->dev, "Ignore DCMD timeout: %s %d\n", __func__, __LINE__); break; } break; default: megasas_return_cmd(instance, cmd); } if (ret != DCMD_SUCCESS) dev_err(&instance->pdev->dev, "return from %s %d return value %d\n", __func__, __LINE__, ret); return ret; } /** * megasas_start_aen - Subscribes to AEN during driver load time * @instance: Adapter soft state */ static int megasas_start_aen(struct megasas_instance *instance) { struct megasas_evt_log_info eli; union megasas_evt_class_locale class_locale; /* * Get the latest sequence number from FW */ memset(&eli, 0, sizeof(eli)); if (megasas_get_seq_num(instance, &eli)) return -1; /* * Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; return megasas_register_aen(instance, le32_to_cpu(eli.newest_seq_num) + 1, class_locale.word); } /** * megasas_io_attach - Attaches this driver to SCSI mid-layer * @instance: Adapter soft state */ static int megasas_io_attach(struct megasas_instance *instance) { struct Scsi_Host *host = instance->host; /* * Export parameters required by SCSI mid-layer */ host->unique_id = instance->unique_id; host->can_queue = instance->max_scsi_cmds; host->this_id = instance->init_id; host->sg_tablesize = instance->max_num_sge; if (instance->fw_support_ieee) instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE; /* * Check if the module parameter value for max_sectors can be used */ if (max_sectors && max_sectors < instance->max_sectors_per_req) instance->max_sectors_per_req = max_sectors; else { if (max_sectors) { if (((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) && (max_sectors <= MEGASAS_MAX_SECTORS)) { instance->max_sectors_per_req = max_sectors; } else { dev_info(&instance->pdev->dev, "max_sectors should be > 0" "and <= %d (or < 1MB for GEN2 controller)\n", instance->max_sectors_per_req); } } } host->max_sectors = instance->max_sectors_per_req; host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN; host->max_channel = MEGASAS_MAX_CHANNELS - 1; host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; host->max_lun = MEGASAS_MAX_LUN; host->max_cmd_len = 16; /* Use shared host tagset only for fusion adaptors * if there are managed interrupts (smp affinity enabled case). * Single msix_vectors in kdump, so shared host tag is also disabled. */ host->host_tagset = 0; host->nr_hw_queues = 1; if ((instance->adapter_type != MFI_SERIES) && (instance->msix_vectors > instance->low_latency_index_start) && host_tagset_enable && instance->smp_affinity_enable) { host->host_tagset = 1; host->nr_hw_queues = instance->msix_vectors - instance->low_latency_index_start + instance->iopoll_q_count; if (instance->iopoll_q_count) host->nr_maps = 3; } else { instance->iopoll_q_count = 0; } dev_info(&instance->pdev->dev, "Max firmware commands: %d shared with default " "hw_queues = %d poll_queues %d\n", instance->max_fw_cmds, host->nr_hw_queues - instance->iopoll_q_count, instance->iopoll_q_count); /* * Notify the mid-layer about the new controller */ if (scsi_add_host(host, &instance->pdev->dev)) { dev_err(&instance->pdev->dev, "Failed to add host from %s %d\n", __func__, __LINE__); return -ENODEV; } return 0; } /** * megasas_set_dma_mask - Set DMA mask for supported controllers * * @instance: Adapter soft state * Description: * * For Ventura, driver/FW will operate in 63bit DMA addresses. * * For invader- * By default, driver/FW will operate in 32bit DMA addresses * for consistent DMA mapping but if 32 bit consistent * DMA mask fails, driver will try with 63 bit consistent * mask provided FW is true 63bit DMA capable * * For older controllers(Thunderbolt and MFI based adapters)- * driver/FW will operate in 32 bit consistent DMA addresses. */ static int megasas_set_dma_mask(struct megasas_instance *instance) { u64 consistent_mask; struct pci_dev *pdev; u32 scratch_pad_1; pdev = instance->pdev; consistent_mask = (instance->adapter_type >= VENTURA_SERIES) ? DMA_BIT_MASK(63) : DMA_BIT_MASK(32); if (IS_DMA64) { if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(63)) && dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) goto fail_set_dma_mask; if ((*pdev->dev.dma_mask == DMA_BIT_MASK(63)) && (dma_set_coherent_mask(&pdev->dev, consistent_mask) && dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))) { /* * If 32 bit DMA mask fails, then try for 64 bit mask * for FW capable of handling 64 bit DMA. */ scratch_pad_1 = megasas_readl (instance, &instance->reg_set->outbound_scratch_pad_1); if (!(scratch_pad_1 & MR_CAN_HANDLE_64_BIT_DMA_OFFSET)) goto fail_set_dma_mask; else if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(63))) goto fail_set_dma_mask; } } else if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) goto fail_set_dma_mask; if (pdev->dev.coherent_dma_mask == DMA_BIT_MASK(32)) instance->consistent_mask_64bit = false; else instance->consistent_mask_64bit = true; dev_info(&pdev->dev, "%s bit DMA mask and %s bit consistent mask\n", ((*pdev->dev.dma_mask == DMA_BIT_MASK(63)) ? "63" : "32"), (instance->consistent_mask_64bit ? "63" : "32")); return 0; fail_set_dma_mask: dev_err(&pdev->dev, "Failed to set DMA mask\n"); return -1; } /* * megasas_set_adapter_type - Set adapter type. * Supported controllers can be divided in * different categories- * enum MR_ADAPTER_TYPE { * MFI_SERIES = 1, * THUNDERBOLT_SERIES = 2, * INVADER_SERIES = 3, * VENTURA_SERIES = 4, * AERO_SERIES = 5, * }; * @instance: Adapter soft state * return: void */ static inline void megasas_set_adapter_type(struct megasas_instance *instance) { if ((instance->pdev->vendor == PCI_VENDOR_ID_DELL) && (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5)) { instance->adapter_type = MFI_SERIES; } else { switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_AERO_10E1: case PCI_DEVICE_ID_LSI_AERO_10E2: case PCI_DEVICE_ID_LSI_AERO_10E5: case PCI_DEVICE_ID_LSI_AERO_10E6: instance->adapter_type = AERO_SERIES; break; case PCI_DEVICE_ID_LSI_VENTURA: case PCI_DEVICE_ID_LSI_CRUSADER: case PCI_DEVICE_ID_LSI_HARPOON: case PCI_DEVICE_ID_LSI_TOMCAT: case PCI_DEVICE_ID_LSI_VENTURA_4PORT: case PCI_DEVICE_ID_LSI_CRUSADER_4PORT: instance->adapter_type = VENTURA_SERIES; break; case PCI_DEVICE_ID_LSI_FUSION: case PCI_DEVICE_ID_LSI_PLASMA: instance->adapter_type = THUNDERBOLT_SERIES; break; case PCI_DEVICE_ID_LSI_INVADER: case PCI_DEVICE_ID_LSI_INTRUDER: case PCI_DEVICE_ID_LSI_INTRUDER_24: case PCI_DEVICE_ID_LSI_CUTLASS_52: case PCI_DEVICE_ID_LSI_CUTLASS_53: case PCI_DEVICE_ID_LSI_FURY: instance->adapter_type = INVADER_SERIES; break; default: /* For all other supported controllers */ instance->adapter_type = MFI_SERIES; break; } } } static inline int megasas_alloc_mfi_ctrl_mem(struct megasas_instance *instance) { instance->producer = dma_alloc_coherent(&instance->pdev->dev, sizeof(u32), &instance->producer_h, GFP_KERNEL); instance->consumer = dma_alloc_coherent(&instance->pdev->dev, sizeof(u32), &instance->consumer_h, GFP_KERNEL); if (!instance->producer || !instance->consumer) { dev_err(&instance->pdev->dev, "Failed to allocate memory for producer, consumer\n"); return -1; } *instance->producer = 0; *instance->consumer = 0; return 0; } /** * megasas_alloc_ctrl_mem - Allocate per controller memory for core data * structures which are not common across MFI * adapters and fusion adapters. * For MFI based adapters, allocate producer and * consumer buffers. For fusion adapters, allocate * memory for fusion context. * @instance: Adapter soft state * return: 0 for SUCCESS */ static int megasas_alloc_ctrl_mem(struct megasas_instance *instance) { instance->reply_map = kcalloc(nr_cpu_ids, sizeof(unsigned int), GFP_KERNEL); if (!instance->reply_map) return -ENOMEM; switch (instance->adapter_type) { case MFI_SERIES: if (megasas_alloc_mfi_ctrl_mem(instance)) return -ENOMEM; break; case AERO_SERIES: case VENTURA_SERIES: case THUNDERBOLT_SERIES: case INVADER_SERIES: if (megasas_alloc_fusion_context(instance)) return -ENOMEM; break; } return 0; } /* * megasas_free_ctrl_mem - Free fusion context for fusion adapters and * producer, consumer buffers for MFI adapters * * @instance - Adapter soft instance * */ static inline void megasas_free_ctrl_mem(struct megasas_instance *instance) { kfree(instance->reply_map); if (instance->adapter_type == MFI_SERIES) { if (instance->producer) dma_free_coherent(&instance->pdev->dev, sizeof(u32), instance->producer, instance->producer_h); if (instance->consumer) dma_free_coherent(&instance->pdev->dev, sizeof(u32), instance->consumer, instance->consumer_h); } else { megasas_free_fusion_context(instance); } } /** * megasas_alloc_ctrl_dma_buffers - Allocate consistent DMA buffers during * driver load time * * @instance: Adapter soft instance * * @return: O for SUCCESS */ static inline int megasas_alloc_ctrl_dma_buffers(struct megasas_instance *instance) { struct pci_dev *pdev = instance->pdev; struct fusion_context *fusion = instance->ctrl_context; instance->evt_detail = dma_alloc_coherent(&pdev->dev, sizeof(struct megasas_evt_detail), &instance->evt_detail_h, GFP_KERNEL); if (!instance->evt_detail) { dev_err(&instance->pdev->dev, "Failed to allocate event detail buffer\n"); return -ENOMEM; } if (fusion) { fusion->ioc_init_request = dma_alloc_coherent(&pdev->dev, sizeof(struct MPI2_IOC_INIT_REQUEST), &fusion->ioc_init_request_phys, GFP_KERNEL); if (!fusion->ioc_init_request) { dev_err(&pdev->dev, "Failed to allocate ioc init request\n"); return -ENOMEM; } instance->snapdump_prop = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_SNAPDUMP_PROPERTIES), &instance->snapdump_prop_h, GFP_KERNEL); if (!instance->snapdump_prop) dev_err(&pdev->dev, "Failed to allocate snapdump properties buffer\n"); instance->host_device_list_buf = dma_alloc_coherent(&pdev->dev, HOST_DEVICE_LIST_SZ, &instance->host_device_list_buf_h, GFP_KERNEL); if (!instance->host_device_list_buf) { dev_err(&pdev->dev, "Failed to allocate targetid list buffer\n"); return -ENOMEM; } } instance->pd_list_buf = dma_alloc_coherent(&pdev->dev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &instance->pd_list_buf_h, GFP_KERNEL); if (!instance->pd_list_buf) { dev_err(&pdev->dev, "Failed to allocate PD list buffer\n"); return -ENOMEM; } instance->ctrl_info_buf = dma_alloc_coherent(&pdev->dev, sizeof(struct megasas_ctrl_info), &instance->ctrl_info_buf_h, GFP_KERNEL); if (!instance->ctrl_info_buf) { dev_err(&pdev->dev, "Failed to allocate controller info buffer\n"); return -ENOMEM; } instance->ld_list_buf = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_LD_LIST), &instance->ld_list_buf_h, GFP_KERNEL); if (!instance->ld_list_buf) { dev_err(&pdev->dev, "Failed to allocate LD list buffer\n"); return -ENOMEM; } instance->ld_targetid_list_buf = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_LD_TARGETID_LIST), &instance->ld_targetid_list_buf_h, GFP_KERNEL); if (!instance->ld_targetid_list_buf) { dev_err(&pdev->dev, "Failed to allocate LD targetid list buffer\n"); return -ENOMEM; } if (!reset_devices) { instance->system_info_buf = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_DRV_SYSTEM_INFO), &instance->system_info_h, GFP_KERNEL); instance->pd_info = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_PD_INFO), &instance->pd_info_h, GFP_KERNEL); instance->tgt_prop = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_TARGET_PROPERTIES), &instance->tgt_prop_h, GFP_KERNEL); instance->crash_dump_buf = dma_alloc_coherent(&pdev->dev, CRASH_DMA_BUF_SIZE, &instance->crash_dump_h, GFP_KERNEL); if (!instance->system_info_buf) dev_err(&instance->pdev->dev, "Failed to allocate system info buffer\n"); if (!instance->pd_info) dev_err(&instance->pdev->dev, "Failed to allocate pd_info buffer\n"); if (!instance->tgt_prop) dev_err(&instance->pdev->dev, "Failed to allocate tgt_prop buffer\n"); if (!instance->crash_dump_buf) dev_err(&instance->pdev->dev, "Failed to allocate crash dump buffer\n"); } return 0; } /* * megasas_free_ctrl_dma_buffers - Free consistent DMA buffers allocated * during driver load time * * @instance- Adapter soft instance * */ static inline void megasas_free_ctrl_dma_buffers(struct megasas_instance *instance) { struct pci_dev *pdev = instance->pdev; struct fusion_context *fusion = instance->ctrl_context; if (instance->evt_detail) dma_free_coherent(&pdev->dev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (fusion && fusion->ioc_init_request) dma_free_coherent(&pdev->dev, sizeof(struct MPI2_IOC_INIT_REQUEST), fusion->ioc_init_request, fusion->ioc_init_request_phys); if (instance->pd_list_buf) dma_free_coherent(&pdev->dev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), instance->pd_list_buf, instance->pd_list_buf_h); if (instance->ld_list_buf) dma_free_coherent(&pdev->dev, sizeof(struct MR_LD_LIST), instance->ld_list_buf, instance->ld_list_buf_h); if (instance->ld_targetid_list_buf) dma_free_coherent(&pdev->dev, sizeof(struct MR_LD_TARGETID_LIST), instance->ld_targetid_list_buf, instance->ld_targetid_list_buf_h); if (instance->ctrl_info_buf) dma_free_coherent(&pdev->dev, sizeof(struct megasas_ctrl_info), instance->ctrl_info_buf, instance->ctrl_info_buf_h); if (instance->system_info_buf) dma_free_coherent(&pdev->dev, sizeof(struct MR_DRV_SYSTEM_INFO), instance->system_info_buf, instance->system_info_h); if (instance->pd_info) dma_free_coherent(&pdev->dev, sizeof(struct MR_PD_INFO), instance->pd_info, instance->pd_info_h); if (instance->tgt_prop) dma_free_coherent(&pdev->dev, sizeof(struct MR_TARGET_PROPERTIES), instance->tgt_prop, instance->tgt_prop_h); if (instance->crash_dump_buf) dma_free_coherent(&pdev->dev, CRASH_DMA_BUF_SIZE, instance->crash_dump_buf, instance->crash_dump_h); if (instance->snapdump_prop) dma_free_coherent(&pdev->dev, sizeof(struct MR_SNAPDUMP_PROPERTIES), instance->snapdump_prop, instance->snapdump_prop_h); if (instance->host_device_list_buf) dma_free_coherent(&pdev->dev, HOST_DEVICE_LIST_SZ, instance->host_device_list_buf, instance->host_device_list_buf_h); } /* * megasas_init_ctrl_params - Initialize controller's instance * parameters before FW init * @instance - Adapter soft instance * @return - void */ static inline void megasas_init_ctrl_params(struct megasas_instance *instance) { instance->fw_crash_state = UNAVAILABLE; megasas_poll_wait_aen = 0; instance->issuepend_done = 1; atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL); /* * Initialize locks and queues */ INIT_LIST_HEAD(&instance->cmd_pool); INIT_LIST_HEAD(&instance->internal_reset_pending_q); atomic_set(&instance->fw_outstanding, 0); atomic64_set(&instance->total_io_count, 0); init_waitqueue_head(&instance->int_cmd_wait_q); init_waitqueue_head(&instance->abort_cmd_wait_q); spin_lock_init(&instance->crashdump_lock); spin_lock_init(&instance->mfi_pool_lock); spin_lock_init(&instance->hba_lock); spin_lock_init(&instance->stream_lock); spin_lock_init(&instance->completion_lock); mutex_init(&instance->reset_mutex); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) instance->flag_ieee = 1; instance->flag = 0; instance->unload = 1; instance->last_time = 0; instance->disableOnlineCtrlReset = 1; instance->UnevenSpanSupport = 0; instance->smp_affinity_enable = smp_affinity_enable ? true : false; instance->msix_load_balance = false; if (instance->adapter_type != MFI_SERIES) INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq); else INIT_WORK(&instance->work_init, process_fw_state_change_wq); } /** * megasas_probe_one - PCI hotplug entry point * @pdev: PCI device structure * @id: PCI ids of supported hotplugged adapter */ static int megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rval, pos; struct Scsi_Host *host; struct megasas_instance *instance; u16 control = 0; switch (pdev->device) { case PCI_DEVICE_ID_LSI_AERO_10E0: case PCI_DEVICE_ID_LSI_AERO_10E3: case PCI_DEVICE_ID_LSI_AERO_10E4: case PCI_DEVICE_ID_LSI_AERO_10E7: dev_err(&pdev->dev, "Adapter is in non secure mode\n"); return 1; case PCI_DEVICE_ID_LSI_AERO_10E1: case PCI_DEVICE_ID_LSI_AERO_10E5: dev_info(&pdev->dev, "Adapter is in configurable secure mode\n"); break; } /* Reset MSI-X in the kdump kernel */ if (reset_devices) { pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (pos) { pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &control); if (control & PCI_MSIX_FLAGS_ENABLE) { dev_info(&pdev->dev, "resetting MSI-X\n"); pci_write_config_word(pdev, pos + PCI_MSIX_FLAGS, control & ~PCI_MSIX_FLAGS_ENABLE); } } } /* * PCI prepping: enable device set bus mastering and dma mask */ rval = pci_enable_device_mem(pdev); if (rval) { return rval; } pci_set_master(pdev); host = scsi_host_alloc(&megasas_template, sizeof(struct megasas_instance)); if (!host) { dev_printk(KERN_DEBUG, &pdev->dev, "scsi_host_alloc failed\n"); goto fail_alloc_instance; } instance = (struct megasas_instance *)host->hostdata; memset(instance, 0, sizeof(*instance)); atomic_set(&instance->fw_reset_no_pci_access, 0); /* * Initialize PCI related and misc parameters */ instance->pdev = pdev; instance->host = host; instance->unique_id = pdev->bus->number << 8 | pdev->devfn; instance->init_id = MEGASAS_DEFAULT_INIT_ID; megasas_set_adapter_type(instance); /* * Initialize MFI Firmware */ if (megasas_init_fw(instance)) goto fail_init_mfi; if (instance->requestorId) { if (instance->PlasmaFW111) { instance->vf_affiliation_111 = dma_alloc_coherent(&pdev->dev, sizeof(struct MR_LD_VF_AFFILIATION_111), &instance->vf_affiliation_111_h, GFP_KERNEL); if (!instance->vf_affiliation_111) dev_warn(&pdev->dev, "Can't allocate " "memory for VF affiliation buffer\n"); } else { instance->vf_affiliation = dma_alloc_coherent(&pdev->dev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), &instance->vf_affiliation_h, GFP_KERNEL); if (!instance->vf_affiliation) dev_warn(&pdev->dev, "Can't allocate " "memory for VF affiliation buffer\n"); } } /* * Store instance in PCI softstate */ pci_set_drvdata(pdev, instance); /* * Add this controller to megasas_mgmt_info structure so that it * can be exported to management applications */ megasas_mgmt_info.count++; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; megasas_mgmt_info.max_index++; /* * Register with SCSI mid-layer */ if (megasas_io_attach(instance)) goto fail_io_attach; instance->unload = 0; /* * Trigger SCSI to scan our drives */ if (!instance->enable_fw_dev_list || (instance->host_device_list_buf->count > 0)) scsi_scan_host(host); /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) { dev_printk(KERN_DEBUG, &pdev->dev, "start aen failed\n"); goto fail_start_aen; } megasas_setup_debugfs(instance); /* Get current SR-IOV LD/VF affiliation */ if (instance->requestorId) megasas_get_ld_vf_affiliation(instance, 1); return 0; fail_start_aen: instance->unload = 1; scsi_remove_host(instance->host); fail_io_attach: megasas_mgmt_info.count--; megasas_mgmt_info.max_index--; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); instance->instancet->disable_intr(instance); megasas_destroy_irqs(instance); if (instance->adapter_type != MFI_SERIES) megasas_release_fusion(instance); else megasas_release_mfi(instance); if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); instance->msix_vectors = 0; if (instance->fw_crash_state != UNAVAILABLE) megasas_free_host_crash_buffer(instance); if (instance->adapter_type != MFI_SERIES) megasas_fusion_stop_watchdog(instance); fail_init_mfi: scsi_host_put(host); fail_alloc_instance: pci_disable_device(pdev); return -ENODEV; } /** * megasas_flush_cache - Requests FW to flush all its caches * @instance: Adapter soft state */ static void megasas_flush_cache(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH); dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; if (megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS) != DCMD_SUCCESS) { dev_err(&instance->pdev->dev, "return from %s %d\n", __func__, __LINE__); return; } megasas_return_cmd(instance, cmd); } /** * megasas_shutdown_controller - Instructs FW to shutdown the controller * @instance: Adapter soft state * @opcode: Shutdown/Hibernate */ static void megasas_shutdown_controller(struct megasas_instance *instance, u32 opcode) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; if (instance->aen_cmd) megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd, MFI_IO_TIMEOUT_SECS); if (instance->map_update_cmd) megasas_issue_blocked_abort_cmd(instance, instance->map_update_cmd, MFI_IO_TIMEOUT_SECS); if (instance->jbod_seq_cmd) megasas_issue_blocked_abort_cmd(instance, instance->jbod_seq_cmd, MFI_IO_TIMEOUT_SECS); dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE); dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = cpu_to_le32(opcode); if (megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS) != DCMD_SUCCESS) { dev_err(&instance->pdev->dev, "return from %s %d\n", __func__, __LINE__); return; } megasas_return_cmd(instance, cmd); } /** * megasas_suspend - driver suspend entry point * @dev: Device structure */ static int __maybe_unused megasas_suspend(struct device *dev) { struct megasas_instance *instance; instance = dev_get_drvdata(dev); if (!instance) return 0; instance->unload = 1; dev_info(dev, "%s is called\n", __func__); /* Shutdown SR-IOV heartbeat timer */ if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); /* Stop the FW fault detection watchdog */ if (instance->adapter_type != MFI_SERIES) megasas_fusion_stop_watchdog(instance); megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); /* cancel the delayed work if this work still in queue */ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work_sync(&ev->hotplug_work); instance->ev = NULL; } tasklet_kill(&instance->isr_tasklet); pci_set_drvdata(instance->pdev, instance); instance->instancet->disable_intr(instance); megasas_destroy_irqs(instance); if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); return 0; } /** * megasas_resume- driver resume entry point * @dev: Device structure */ static int __maybe_unused megasas_resume(struct device *dev) { int rval; struct Scsi_Host *host; struct megasas_instance *instance; u32 status_reg; instance = dev_get_drvdata(dev); if (!instance) return 0; host = instance->host; dev_info(dev, "%s is called\n", __func__); /* * We expect the FW state to be READY */ if (megasas_transition_to_ready(instance, 0)) { dev_info(&instance->pdev->dev, "Failed to transition controller to ready from %s!\n", __func__); if (instance->adapter_type != MFI_SERIES) { status_reg = instance->instancet->read_fw_status_reg(instance); if (!(status_reg & MFI_RESET_ADAPTER) || ((megasas_adp_reset_wait_for_ready (instance, true, 0)) == FAILED)) goto fail_ready_state; } else { atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset (instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0); /* waiting for about 30 seconds before retry */ ssleep(30); if (megasas_transition_to_ready(instance, 0)) goto fail_ready_state; } dev_info(&instance->pdev->dev, "FW restarted successfully from %s!\n", __func__); } if (megasas_set_dma_mask(instance)) goto fail_set_dma_mask; /* * Initialize MFI Firmware */ atomic_set(&instance->fw_outstanding, 0); atomic_set(&instance->ldio_outstanding, 0); /* Now re-enable MSI-X */ if (instance->msix_vectors) megasas_alloc_irq_vectors(instance); if (!instance->msix_vectors) { rval = pci_alloc_irq_vectors(instance->pdev, 1, 1, PCI_IRQ_LEGACY); if (rval < 0) goto fail_reenable_msix; } megasas_setup_reply_map(instance); if (instance->adapter_type != MFI_SERIES) { megasas_reset_reply_desc(instance); if (megasas_ioc_init_fusion(instance)) { megasas_free_cmds(instance); megasas_free_cmds_fusion(instance); goto fail_init_mfi; } if (!megasas_get_map_info(instance)) megasas_sync_map_info(instance); } else { *instance->producer = 0; *instance->consumer = 0; if (megasas_issue_init_mfi(instance)) goto fail_init_mfi; } if (megasas_get_ctrl_info(instance) != DCMD_SUCCESS) goto fail_init_mfi; tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet, (unsigned long)instance); if (instance->msix_vectors ? megasas_setup_irqs_msix(instance, 0) : megasas_setup_irqs_ioapic(instance)) goto fail_init_mfi; if (instance->adapter_type != MFI_SERIES) megasas_setup_irq_poll(instance); /* Re-launch SR-IOV heartbeat timer */ if (instance->requestorId) { if (!megasas_sriov_start_heartbeat(instance, 0)) megasas_start_timer(instance); else { instance->skip_heartbeat_timer_del = 1; goto fail_init_mfi; } } instance->instancet->enable_intr(instance); megasas_setup_jbod_map(instance); instance->unload = 0; /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) dev_err(&instance->pdev->dev, "Start AEN failed\n"); /* Re-launch FW fault watchdog */ if (instance->adapter_type != MFI_SERIES) if (megasas_fusion_start_watchdog(instance) != SUCCESS) goto fail_start_watchdog; return 0; fail_start_watchdog: if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); fail_init_mfi: megasas_free_ctrl_dma_buffers(instance); megasas_free_ctrl_mem(instance); scsi_host_put(host); fail_reenable_msix: fail_set_dma_mask: fail_ready_state: return -ENODEV; } static inline int megasas_wait_for_adapter_operational(struct megasas_instance *instance) { int wait_time = MEGASAS_RESET_WAIT_TIME * 2; int i; u8 adp_state; for (i = 0; i < wait_time; i++) { adp_state = atomic_read(&instance->adprecovery); if ((adp_state == MEGASAS_HBA_OPERATIONAL) || (adp_state == MEGASAS_HW_CRITICAL_ERROR)) break; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) dev_notice(&instance->pdev->dev, "waiting for controller reset to finish\n"); msleep(1000); } if (adp_state != MEGASAS_HBA_OPERATIONAL) { dev_info(&instance->pdev->dev, "%s HBA failed to become operational, adp_state %d\n", __func__, adp_state); return 1; } return 0; } /** * megasas_detach_one - PCI hot"un"plug entry point * @pdev: PCI device structure */ static void megasas_detach_one(struct pci_dev *pdev) { int i; struct Scsi_Host *host; struct megasas_instance *instance; struct fusion_context *fusion; size_t pd_seq_map_sz; instance = pci_get_drvdata(pdev); if (!instance) return; host = instance->host; fusion = instance->ctrl_context; /* Shutdown SR-IOV heartbeat timer */ if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); /* Stop the FW fault detection watchdog */ if (instance->adapter_type != MFI_SERIES) megasas_fusion_stop_watchdog(instance); if (instance->fw_crash_state != UNAVAILABLE) megasas_free_host_crash_buffer(instance); scsi_remove_host(instance->host); instance->unload = 1; if (megasas_wait_for_adapter_operational(instance)) goto skip_firing_dcmds; megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); skip_firing_dcmds: /* cancel the delayed work if this work still in queue*/ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work_sync(&ev->hotplug_work); instance->ev = NULL; } /* cancel all wait events */ wake_up_all(&instance->int_cmd_wait_q); tasklet_kill(&instance->isr_tasklet); /* * Take the instance off the instance array. Note that we will not * decrement the max_index. We let this array be sparse array */ for (i = 0; i < megasas_mgmt_info.max_index; i++) { if (megasas_mgmt_info.instance[i] == instance) { megasas_mgmt_info.count--; megasas_mgmt_info.instance[i] = NULL; break; } } instance->instancet->disable_intr(instance); megasas_destroy_irqs(instance); if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); if (instance->adapter_type >= VENTURA_SERIES) { for (i = 0; i < MAX_LOGICAL_DRIVES_EXT; ++i) kfree(fusion->stream_detect_by_ld[i]); kfree(fusion->stream_detect_by_ld); fusion->stream_detect_by_ld = NULL; } if (instance->adapter_type != MFI_SERIES) { megasas_release_fusion(instance); pd_seq_map_sz = struct_size((struct MR_PD_CFG_SEQ_NUM_SYNC *)0, seq, MAX_PHYSICAL_DEVICES); for (i = 0; i < 2 ; i++) { if (fusion->ld_map[i]) dma_free_coherent(&instance->pdev->dev, fusion->max_map_sz, fusion->ld_map[i], fusion->ld_map_phys[i]); if (fusion->ld_drv_map[i]) { if (is_vmalloc_addr(fusion->ld_drv_map[i])) vfree(fusion->ld_drv_map[i]); else free_pages((ulong)fusion->ld_drv_map[i], fusion->drv_map_pages); } if (fusion->pd_seq_sync[i]) dma_free_coherent(&instance->pdev->dev, pd_seq_map_sz, fusion->pd_seq_sync[i], fusion->pd_seq_phys[i]); } } else { megasas_release_mfi(instance); } if (instance->vf_affiliation) dma_free_coherent(&pdev->dev, (MAX_LOGICAL_DRIVES + 1) * sizeof(struct MR_LD_VF_AFFILIATION), instance->vf_affiliation, instance->vf_affiliation_h); if (instance->vf_affiliation_111) dma_free_coherent(&pdev->dev, sizeof(struct MR_LD_VF_AFFILIATION_111), instance->vf_affiliation_111, instance->vf_affiliation_111_h); if (instance->hb_host_mem) dma_free_coherent(&pdev->dev, sizeof(struct MR_CTRL_HB_HOST_MEM), instance->hb_host_mem, instance->hb_host_mem_h); megasas_free_ctrl_dma_buffers(instance); megasas_free_ctrl_mem(instance); megasas_destroy_debugfs(instance); scsi_host_put(host); pci_disable_device(pdev); } /** * megasas_shutdown - Shutdown entry point * @pdev: PCI device structure */ static void megasas_shutdown(struct pci_dev *pdev) { struct megasas_instance *instance = pci_get_drvdata(pdev); if (!instance) return; instance->unload = 1; if (megasas_wait_for_adapter_operational(instance)) goto skip_firing_dcmds; megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); skip_firing_dcmds: instance->instancet->disable_intr(instance); megasas_destroy_irqs(instance); if (instance->msix_vectors) pci_free_irq_vectors(instance->pdev); } /* * megasas_mgmt_open - char node "open" entry point * @inode: char node inode * @filep: char node file */ static int megasas_mgmt_open(struct inode *inode, struct file *filep) { /* * Allow only those users with admin rights */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return 0; } /* * megasas_mgmt_fasync - Async notifier registration from applications * @fd: char node file descriptor number * @filep: char node file * @mode: notifier on/off * * This function adds the calling process to a driver global queue. When an * event occurs, SIGIO will be sent to all processes in this queue. */ static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) { int rc; mutex_lock(&megasas_async_queue_mutex); rc = fasync_helper(fd, filep, mode, &megasas_async_queue); mutex_unlock(&megasas_async_queue_mutex); if (rc >= 0) { /* For sanity check when we get ioctl */ filep->private_data = filep; return 0; } printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); return rc; } /* * megasas_mgmt_poll - char node "poll" entry point * @filep: char node file * @wait: Events to poll for */ static __poll_t megasas_mgmt_poll(struct file *file, poll_table *wait) { __poll_t mask; unsigned long flags; poll_wait(file, &megasas_poll_wait, wait); spin_lock_irqsave(&poll_aen_lock, flags); if (megasas_poll_wait_aen) mask = (EPOLLIN | EPOLLRDNORM); else mask = 0; megasas_poll_wait_aen = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); return mask; } /* * megasas_set_crash_dump_params_ioctl: * Send CRASH_DUMP_MODE DCMD to all controllers * @cmd: MFI command frame */ static int megasas_set_crash_dump_params_ioctl(struct megasas_cmd *cmd) { struct megasas_instance *local_instance; int i, error = 0; int crash_support; crash_support = cmd->frame->dcmd.mbox.w[0]; for (i = 0; i < megasas_mgmt_info.max_index; i++) { local_instance = megasas_mgmt_info.instance[i]; if (local_instance && local_instance->crash_dump_drv_support) { if ((atomic_read(&local_instance->adprecovery) == MEGASAS_HBA_OPERATIONAL) && !megasas_set_crash_dump_params(local_instance, crash_support)) { local_instance->crash_dump_app_support = crash_support; dev_info(&local_instance->pdev->dev, "Application firmware crash " "dump mode set success\n"); error = 0; } else { dev_info(&local_instance->pdev->dev, "Application firmware crash " "dump mode set failed\n"); error = -1; } } } return error; } /** * megasas_mgmt_fw_ioctl - Issues management ioctls to FW * @instance: Adapter soft state * @user_ioc: User's ioctl packet * @ioc: ioctl packet */ static int megasas_mgmt_fw_ioctl(struct megasas_instance *instance, struct megasas_iocpacket __user * user_ioc, struct megasas_iocpacket *ioc) { struct megasas_sge64 *kern_sge64 = NULL; struct megasas_sge32 *kern_sge32 = NULL; struct megasas_cmd *cmd; void *kbuff_arr[MAX_IOCTL_SGE]; dma_addr_t buf_handle = 0; int error = 0, i; void *sense = NULL; dma_addr_t sense_handle; void *sense_ptr; u32 opcode = 0; int ret = DCMD_SUCCESS; memset(kbuff_arr, 0, sizeof(kbuff_arr)); if (ioc->sge_count > MAX_IOCTL_SGE) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "SGE count [%d] > max limit [%d]\n", ioc->sge_count, MAX_IOCTL_SGE); return -EINVAL; } if ((ioc->frame.hdr.cmd >= MFI_CMD_OP_COUNT) || ((ioc->frame.hdr.cmd == MFI_CMD_NVME) && !instance->support_nvme_passthru) || ((ioc->frame.hdr.cmd == MFI_CMD_TOOLBOX) && !instance->support_pci_lane_margining)) { dev_err(&instance->pdev->dev, "Received invalid ioctl command 0x%x\n", ioc->frame.hdr.cmd); return -ENOTSUPP; } cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get a cmd packet\n"); return -ENOMEM; } /* * User's IOCTL packet has 2 frames (maximum). Copy those two * frames into our cmd's frames. cmd->frame's context will get * overwritten when we copy from user's frames. So set that value * alone separately */ memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); cmd->frame->hdr.context = cpu_to_le32(cmd->index); cmd->frame->hdr.pad_0 = 0; cmd->frame->hdr.flags &= (~MFI_FRAME_IEEE); if (instance->consistent_mask_64bit) cmd->frame->hdr.flags |= cpu_to_le16((MFI_FRAME_SGL64 | MFI_FRAME_SENSE64)); else cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_SGL64 | MFI_FRAME_SENSE64)); if (cmd->frame->hdr.cmd == MFI_CMD_DCMD) opcode = le32_to_cpu(cmd->frame->dcmd.opcode); if (opcode == MR_DCMD_CTRL_SHUTDOWN) { mutex_lock(&instance->reset_mutex); if (megasas_get_ctrl_info(instance) != DCMD_SUCCESS) { megasas_return_cmd(instance, cmd); mutex_unlock(&instance->reset_mutex); return -1; } mutex_unlock(&instance->reset_mutex); } if (opcode == MR_DRIVER_SET_APP_CRASHDUMP_MODE) { error = megasas_set_crash_dump_params_ioctl(cmd); megasas_return_cmd(instance, cmd); return error; } /* * The management interface between applications and the fw uses * MFI frames. E.g, RAID configuration changes, LD property changes * etc are accomplishes through different kinds of MFI frames. The * driver needs to care only about substituting user buffers with * kernel buffers in SGLs. The location of SGL is embedded in the * struct iocpacket itself. */ if (instance->consistent_mask_64bit) kern_sge64 = (struct megasas_sge64 *) ((unsigned long)cmd->frame + ioc->sgl_off); else kern_sge32 = (struct megasas_sge32 *) ((unsigned long)cmd->frame + ioc->sgl_off); /* * For each user buffer, create a mirror buffer and copy in */ for (i = 0; i < ioc->sge_count; i++) { if (!ioc->sgl[i].iov_len) continue; kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, ioc->sgl[i].iov_len, &buf_handle, GFP_KERNEL); if (!kbuff_arr[i]) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to alloc " "kernel SGL buffer for IOCTL\n"); error = -ENOMEM; goto out; } /* * We don't change the dma_coherent_mask, so * dma_alloc_coherent only returns 32bit addresses */ if (instance->consistent_mask_64bit) { kern_sge64[i].phys_addr = cpu_to_le64(buf_handle); kern_sge64[i].length = cpu_to_le32(ioc->sgl[i].iov_len); } else { kern_sge32[i].phys_addr = cpu_to_le32(buf_handle); kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len); } /* * We created a kernel buffer corresponding to the * user buffer. Now copy in from the user buffer */ if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, (u32) (ioc->sgl[i].iov_len))) { error = -EFAULT; goto out; } } if (ioc->sense_len) { /* make sure the pointer is part of the frame */ if (ioc->sense_off > (sizeof(union megasas_frame) - sizeof(__le64))) { error = -EINVAL; goto out; } sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, &sense_handle, GFP_KERNEL); if (!sense) { error = -ENOMEM; goto out; } /* always store 64 bits regardless of addressing */ sense_ptr = (void *)cmd->frame + ioc->sense_off; put_unaligned_le64(sense_handle, sense_ptr); } /* * Set the sync_cmd flag so that the ISR knows not to complete this * cmd to the SCSI mid-layer */ cmd->sync_cmd = 1; ret = megasas_issue_blocked_cmd(instance, cmd, 0); switch (ret) { case DCMD_INIT: case DCMD_BUSY: cmd->sync_cmd = 0; dev_err(&instance->pdev->dev, "return -EBUSY from %s %d cmd 0x%x opcode 0x%x cmd->cmd_status_drv 0x%x\n", __func__, __LINE__, cmd->frame->hdr.cmd, opcode, cmd->cmd_status_drv); error = -EBUSY; goto out; } cmd->sync_cmd = 0; if (instance->unload == 1) { dev_info(&instance->pdev->dev, "Driver unload is in progress " "don't submit data to application\n"); goto out; } /* * copy out the kernel buffers to user buffers */ for (i = 0; i < ioc->sge_count; i++) { if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], ioc->sgl[i].iov_len)) { error = -EFAULT; goto out; } } /* * copy out the sense */ if (ioc->sense_len) { void __user *uptr; /* * sense_ptr points to the location that has the user * sense buffer address */ sense_ptr = (void *)ioc->frame.raw + ioc->sense_off; if (in_compat_syscall()) uptr = compat_ptr(get_unaligned((compat_uptr_t *) sense_ptr)); else uptr = get_unaligned((void __user **)sense_ptr); if (copy_to_user(uptr, sense, ioc->sense_len)) { dev_err(&instance->pdev->dev, "Failed to copy out to user " "sense data\n"); error = -EFAULT; goto out; } } /* * copy the status codes returned by the fw */ if (copy_to_user(&user_ioc->frame.hdr.cmd_status, &cmd->frame->hdr.cmd_status, sizeof(u8))) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Error copying out cmd_status\n"); error = -EFAULT; } out: if (sense) { dma_free_coherent(&instance->pdev->dev, ioc->sense_len, sense, sense_handle); } for (i = 0; i < ioc->sge_count; i++) { if (kbuff_arr[i]) { if (instance->consistent_mask_64bit) dma_free_coherent(&instance->pdev->dev, le32_to_cpu(kern_sge64[i].length), kbuff_arr[i], le64_to_cpu(kern_sge64[i].phys_addr)); else dma_free_coherent(&instance->pdev->dev, le32_to_cpu(kern_sge32[i].length), kbuff_arr[i], le32_to_cpu(kern_sge32[i].phys_addr)); kbuff_arr[i] = NULL; } } megasas_return_cmd(instance, cmd); return error; } static struct megasas_iocpacket * megasas_compat_iocpacket_get_user(void __user *arg) { struct megasas_iocpacket *ioc; struct compat_megasas_iocpacket __user *cioc = arg; size_t size; int err = -EFAULT; int i; ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) return ERR_PTR(-ENOMEM); size = offsetof(struct megasas_iocpacket, frame) + sizeof(ioc->frame); if (copy_from_user(ioc, arg, size)) goto out; for (i = 0; i < MAX_IOCTL_SGE; i++) { compat_uptr_t iov_base; if (get_user(iov_base, &cioc->sgl[i].iov_base) || get_user(ioc->sgl[i].iov_len, &cioc->sgl[i].iov_len)) goto out; ioc->sgl[i].iov_base = compat_ptr(iov_base); } return ioc; out: kfree(ioc); return ERR_PTR(err); } static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) { struct megasas_iocpacket __user *user_ioc = (struct megasas_iocpacket __user *)arg; struct megasas_iocpacket *ioc; struct megasas_instance *instance; int error; if (in_compat_syscall()) ioc = megasas_compat_iocpacket_get_user(user_ioc); else ioc = memdup_user(user_ioc, sizeof(struct megasas_iocpacket)); if (IS_ERR(ioc)) return PTR_ERR(ioc); instance = megasas_lookup_instance(ioc->host_no); if (!instance) { error = -ENODEV; goto out_kfree_ioc; } /* Block ioctls in VF mode */ if (instance->requestorId && !allow_vf_ioctls) { error = -ENODEV; goto out_kfree_ioc; } if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_err(&instance->pdev->dev, "Controller in crit error\n"); error = -ENODEV; goto out_kfree_ioc; } if (instance->unload == 1) { error = -ENODEV; goto out_kfree_ioc; } if (down_interruptible(&instance->ioctl_sem)) { error = -ERESTARTSYS; goto out_kfree_ioc; } if (megasas_wait_for_adapter_operational(instance)) { error = -ENODEV; goto out_up; } error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); out_up: up(&instance->ioctl_sem); out_kfree_ioc: kfree(ioc); return error; } static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) { struct megasas_instance *instance; struct megasas_aen aen; int error; if (file->private_data != file) { printk(KERN_DEBUG "megasas: fasync_helper was not " "called first\n"); return -EINVAL; } if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) return -EFAULT; instance = megasas_lookup_instance(aen.host_no); if (!instance) return -ENODEV; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { return -ENODEV; } if (instance->unload == 1) { return -ENODEV; } if (megasas_wait_for_adapter_operational(instance)) return -ENODEV; mutex_lock(&instance->reset_mutex); error = megasas_register_aen(instance, aen.seq_num, aen.class_locale_word); mutex_unlock(&instance->reset_mutex); return error; } /** * megasas_mgmt_ioctl - char node ioctl entry point * @file: char device file pointer * @cmd: ioctl command * @arg: ioctl command arguments address */ static long megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE: return megasas_mgmt_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #ifdef CONFIG_COMPAT static long megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE32: return megasas_mgmt_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #endif /* * File operations structure for management interface */ static const struct file_operations megasas_mgmt_fops = { .owner = THIS_MODULE, .open = megasas_mgmt_open, .fasync = megasas_mgmt_fasync, .unlocked_ioctl = megasas_mgmt_ioctl, .poll = megasas_mgmt_poll, #ifdef CONFIG_COMPAT .compat_ioctl = megasas_mgmt_compat_ioctl, #endif .llseek = noop_llseek, }; static SIMPLE_DEV_PM_OPS(megasas_pm_ops, megasas_suspend, megasas_resume); /* * PCI hotplug support registration structure */ static struct pci_driver megasas_pci_driver = { .name = "megaraid_sas", .id_table = megasas_pci_table, .probe = megasas_probe_one, .remove = megasas_detach_one, .driver.pm = &megasas_pm_ops, .shutdown = megasas_shutdown, }; /* * Sysfs driver attributes */ static ssize_t version_show(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", MEGASAS_VERSION); } static DRIVER_ATTR_RO(version); static ssize_t release_date_show(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", MEGASAS_RELDATE); } static DRIVER_ATTR_RO(release_date); static ssize_t support_poll_for_event_show(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_poll_for_event); } static DRIVER_ATTR_RO(support_poll_for_event); static ssize_t support_device_change_show(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_device_change); } static DRIVER_ATTR_RO(support_device_change); static ssize_t dbg_lvl_show(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", megasas_dbg_lvl); } static ssize_t dbg_lvl_store(struct device_driver *dd, const char *buf, size_t count) { int retval = count; if (sscanf(buf, "%u", &megasas_dbg_lvl) < 1) { printk(KERN_ERR "megasas: could not set dbg_lvl\n"); retval = -EINVAL; } return retval; } static DRIVER_ATTR_RW(dbg_lvl); static ssize_t support_nvme_encapsulation_show(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_nvme_encapsulation); } static DRIVER_ATTR_RO(support_nvme_encapsulation); static ssize_t support_pci_lane_margining_show(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_pci_lane_margining); } static DRIVER_ATTR_RO(support_pci_lane_margining); static inline void megasas_remove_scsi_device(struct scsi_device *sdev) { sdev_printk(KERN_INFO, sdev, "SCSI device is removed\n"); scsi_remove_device(sdev); scsi_device_put(sdev); } /** * megasas_update_device_list - Update the PD and LD device list from FW * after an AEN event notification * @instance: Adapter soft state * @event_type: Indicates type of event (PD or LD event) * * @return: Success or failure * * Issue DCMDs to Firmware to update the internal device list in driver. * Based on the FW support, driver sends the HOST_DEVICE_LIST or combination * of PD_LIST/LD_LIST_QUERY DCMDs to get the device list. */ static int megasas_update_device_list(struct megasas_instance *instance, int event_type) { int dcmd_ret; if (instance->enable_fw_dev_list) { return megasas_host_device_list_query(instance, false); } else { if (event_type & SCAN_PD_CHANNEL) { dcmd_ret = megasas_get_pd_list(instance); if (dcmd_ret != DCMD_SUCCESS) return dcmd_ret; } if (event_type & SCAN_VD_CHANNEL) { if (!instance->requestorId || megasas_get_ld_vf_affiliation(instance, 0)) { return megasas_ld_list_query(instance, MR_LD_QUERY_TYPE_EXPOSED_TO_HOST); } } } return DCMD_SUCCESS; } /** * megasas_add_remove_devices - Add/remove devices to SCSI mid-layer * after an AEN event notification * @instance: Adapter soft state * @scan_type: Indicates type of devices (PD/LD) to add * @return void */ static void megasas_add_remove_devices(struct megasas_instance *instance, int scan_type) { int i, j; u16 pd_index = 0; u16 ld_index = 0; u16 channel = 0, id = 0; struct Scsi_Host *host; struct scsi_device *sdev1; struct MR_HOST_DEVICE_LIST *targetid_list = NULL; struct MR_HOST_DEVICE_LIST_ENTRY *targetid_entry = NULL; host = instance->host; if (instance->enable_fw_dev_list) { targetid_list = instance->host_device_list_buf; for (i = 0; i < targetid_list->count; i++) { targetid_entry = &targetid_list->host_device_list[i]; if (targetid_entry->flags.u.bits.is_sys_pd) { channel = le16_to_cpu(targetid_entry->target_id) / MEGASAS_MAX_DEV_PER_CHANNEL; id = le16_to_cpu(targetid_entry->target_id) % MEGASAS_MAX_DEV_PER_CHANNEL; } else { channel = MEGASAS_MAX_PD_CHANNELS + (le16_to_cpu(targetid_entry->target_id) / MEGASAS_MAX_DEV_PER_CHANNEL); id = le16_to_cpu(targetid_entry->target_id) % MEGASAS_MAX_DEV_PER_CHANNEL; } sdev1 = scsi_device_lookup(host, channel, id, 0); if (!sdev1) { scsi_add_device(host, channel, id, 0); } else { scsi_device_put(sdev1); } } } if (scan_type & SCAN_PD_CHANNEL) { for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = i * MEGASAS_MAX_DEV_PER_CHANNEL + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (!sdev1) scsi_add_device(host, i, j, 0); else scsi_device_put(sdev1); } else { if (sdev1) megasas_remove_scsi_device(sdev1); } } } } if (scan_type & SCAN_VD_CHANNEL) { for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (!sdev1) scsi_add_device(host, MEGASAS_MAX_PD_CHANNELS + i, j, 0); else scsi_device_put(sdev1); } else { if (sdev1) megasas_remove_scsi_device(sdev1); } } } } } static void megasas_aen_polling(struct work_struct *work) { struct megasas_aen_event *ev = container_of(work, struct megasas_aen_event, hotplug_work.work); struct megasas_instance *instance = ev->instance; union megasas_evt_class_locale class_locale; int event_type = 0; u32 seq_num; u16 ld_target_id; int error; u8 dcmd_ret = DCMD_SUCCESS; struct scsi_device *sdev1; if (!instance) { printk(KERN_ERR "invalid instance!\n"); kfree(ev); return; } /* Don't run the event workqueue thread if OCR is running */ mutex_lock(&instance->reset_mutex); instance->ev = NULL; if (instance->evt_detail) { megasas_decode_evt(instance); switch (le32_to_cpu(instance->evt_detail->code)) { case MR_EVT_PD_INSERTED: case MR_EVT_PD_REMOVED: event_type = SCAN_PD_CHANNEL; break; case MR_EVT_LD_OFFLINE: case MR_EVT_LD_DELETED: ld_target_id = instance->evt_detail->args.ld.target_id; sdev1 = scsi_device_lookup(instance->host, MEGASAS_MAX_PD_CHANNELS + (ld_target_id / MEGASAS_MAX_DEV_PER_CHANNEL), (ld_target_id % MEGASAS_MAX_DEV_PER_CHANNEL), 0); if (sdev1) megasas_remove_scsi_device(sdev1); event_type = SCAN_VD_CHANNEL; break; case MR_EVT_LD_CREATED: event_type = SCAN_VD_CHANNEL; break; case MR_EVT_CFG_CLEARED: case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: case MR_EVT_FOREIGN_CFG_IMPORTED: case MR_EVT_LD_STATE_CHANGE: event_type = SCAN_PD_CHANNEL | SCAN_VD_CHANNEL; dev_info(&instance->pdev->dev, "scanning for scsi%d...\n", instance->host->host_no); break; case MR_EVT_CTRL_PROP_CHANGED: dcmd_ret = megasas_get_ctrl_info(instance); if (dcmd_ret == DCMD_SUCCESS && instance->snapdump_wait_time) { megasas_get_snapdump_properties(instance); dev_info(&instance->pdev->dev, "Snap dump wait time\t: %d\n", instance->snapdump_wait_time); } break; default: event_type = 0; break; } } else { dev_err(&instance->pdev->dev, "invalid evt_detail!\n"); mutex_unlock(&instance->reset_mutex); kfree(ev); return; } if (event_type) dcmd_ret = megasas_update_device_list(instance, event_type); mutex_unlock(&instance->reset_mutex); if (event_type && dcmd_ret == DCMD_SUCCESS) megasas_add_remove_devices(instance, event_type); if (dcmd_ret == DCMD_SUCCESS) seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1; else seq_num = instance->last_seq_num; /* Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; if (instance->aen_cmd != NULL) { kfree(ev); return; } mutex_lock(&instance->reset_mutex); error = megasas_register_aen(instance, seq_num, class_locale.word); if (error) dev_err(&instance->pdev->dev, "register aen failed error %x\n", error); mutex_unlock(&instance->reset_mutex); kfree(ev); } /** * megasas_init - Driver load entry point */ static int __init megasas_init(void) { int rval; /* * Booted in kdump kernel, minimize memory footprints by * disabling few features */ if (reset_devices) { msix_vectors = 1; rdpq_enable = 0; dual_qdepth_disable = 1; poll_queues = 0; } /* * Announce driver version and other information */ pr_info("megasas: %s\n", MEGASAS_VERSION); megasas_dbg_lvl = 0; support_poll_for_event = 2; support_device_change = 1; support_nvme_encapsulation = true; support_pci_lane_margining = true; memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); /* * Register character device node */ rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); if (rval < 0) { printk(KERN_DEBUG "megasas: failed to open device node\n"); return rval; } megasas_mgmt_majorno = rval; megasas_init_debugfs(); /* * Register ourselves as PCI hotplug module */ rval = pci_register_driver(&megasas_pci_driver); if (rval) { printk(KERN_DEBUG "megasas: PCI hotplug registration failed \n"); goto err_pcidrv; } if ((event_log_level < MFI_EVT_CLASS_DEBUG) || (event_log_level > MFI_EVT_CLASS_DEAD)) { pr_warn("megaraid_sas: provided event log level is out of range, setting it to default 2(CLASS_CRITICAL), permissible range is: -2 to 4\n"); event_log_level = MFI_EVT_CLASS_CRITICAL; } rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_version); if (rval) goto err_dcf_attr_ver; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_release_date); if (rval) goto err_dcf_rel_date; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); if (rval) goto err_dcf_support_poll_for_event; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); if (rval) goto err_dcf_dbg_lvl; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); if (rval) goto err_dcf_support_device_change; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_nvme_encapsulation); if (rval) goto err_dcf_support_nvme_encapsulation; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_pci_lane_margining); if (rval) goto err_dcf_support_pci_lane_margining; return rval; err_dcf_support_pci_lane_margining: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_nvme_encapsulation); err_dcf_support_nvme_encapsulation: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); err_dcf_support_device_change: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); err_dcf_dbg_lvl: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); err_dcf_support_poll_for_event: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); err_dcf_rel_date: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); err_dcf_attr_ver: pci_unregister_driver(&megasas_pci_driver); err_pcidrv: megasas_exit_debugfs(); unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); return rval; } /** * megasas_exit - Driver unload entry point */ static void __exit megasas_exit(void) { driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_nvme_encapsulation); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_pci_lane_margining); pci_unregister_driver(&megasas_pci_driver); megasas_exit_debugfs(); unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); } module_init(megasas_init); module_exit(megasas_exit);