// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski * Horst Hummel * Carsten Otte * Martin Schwidefsky * Bugreports.to..: * Copyright IBM Corp. 1999, 2009 * EMC Symmetrix ioctl Copyright EMC Corporation, 2008 * Author.........: Nigel Hislop */ #define KMSG_COMPONENT "dasd-eckd" #include #include #include #include /* HDIO_GETGEO */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dasd_int.h" #include "dasd_eckd.h" #ifdef PRINTK_HEADER #undef PRINTK_HEADER #endif /* PRINTK_HEADER */ #define PRINTK_HEADER "dasd(eckd):" /* * raw track access always map to 64k in memory * so it maps to 16 blocks of 4k per track */ #define DASD_RAW_BLOCK_PER_TRACK 16 #define DASD_RAW_BLOCKSIZE 4096 /* 64k are 128 x 512 byte sectors */ #define DASD_RAW_SECTORS_PER_TRACK 128 MODULE_LICENSE("GPL"); static struct dasd_discipline dasd_eckd_discipline; /* The ccw bus type uses this table to find devices that it sends to * dasd_eckd_probe */ static struct ccw_device_id dasd_eckd_ids[] = { { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3390, 0), .driver_info = 0x1}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3390, 0), .driver_info = 0x2}, { CCW_DEVICE_DEVTYPE (0x3880, 0, 0x3380, 0), .driver_info = 0x3}, { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3380, 0), .driver_info = 0x4}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3380, 0), .driver_info = 0x5}, { CCW_DEVICE_DEVTYPE (0x9343, 0, 0x9345, 0), .driver_info = 0x6}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3390, 0), .driver_info = 0x7}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3380, 0), .driver_info = 0x8}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3390, 0), .driver_info = 0x9}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3380, 0), .driver_info = 0xa}, { /* end of list */ }, }; MODULE_DEVICE_TABLE(ccw, dasd_eckd_ids); static struct ccw_driver dasd_eckd_driver; /* see below */ static void *rawpadpage; #define INIT_CQR_OK 0 #define INIT_CQR_UNFORMATTED 1 #define INIT_CQR_ERROR 2 /* emergency request for reserve/release */ static struct { struct dasd_ccw_req cqr; struct ccw1 ccw; char data[32]; } *dasd_reserve_req; static DEFINE_MUTEX(dasd_reserve_mutex); static struct { struct dasd_ccw_req cqr; struct ccw1 ccw[2]; char data[40]; } *dasd_vol_info_req; static DEFINE_MUTEX(dasd_vol_info_mutex); struct ext_pool_exhaust_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_device *base; }; /* definitions for the path verification worker */ struct pe_handler_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_ccw_req cqr; struct ccw1 ccw; __u8 rcd_buffer[DASD_ECKD_RCD_DATA_SIZE]; int isglobal; __u8 tbvpm; __u8 fcsecpm; }; static struct pe_handler_work_data *pe_handler_worker; static DEFINE_MUTEX(dasd_pe_handler_mutex); struct check_attention_work_data { struct work_struct worker; struct dasd_device *device; __u8 lpum; }; static int dasd_eckd_ext_pool_id(struct dasd_device *); static int prepare_itcw(struct itcw *, unsigned int, unsigned int, int, struct dasd_device *, struct dasd_device *, unsigned int, int, unsigned int, unsigned int, unsigned int, unsigned int); /* initial attempt at a probe function. this can be simplified once * the other detection code is gone */ static int dasd_eckd_probe (struct ccw_device *cdev) { int ret; /* set ECKD specific ccw-device options */ ret = ccw_device_set_options(cdev, CCWDEV_ALLOW_FORCE | CCWDEV_DO_PATHGROUP | CCWDEV_DO_MULTIPATH); if (ret) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s", "dasd_eckd_probe: could not set " "ccw-device options"); return ret; } ret = dasd_generic_probe(cdev); return ret; } static int dasd_eckd_set_online(struct ccw_device *cdev) { return dasd_generic_set_online(cdev, &dasd_eckd_discipline); } static const int sizes_trk0[] = { 28, 148, 84 }; #define LABEL_SIZE 140 /* head and record addresses of count_area read in analysis ccw */ static const int count_area_head[] = { 0, 0, 0, 0, 1 }; static const int count_area_rec[] = { 1, 2, 3, 4, 1 }; static inline unsigned int ceil_quot(unsigned int d1, unsigned int d2) { return (d1 + (d2 - 1)) / d2; } static unsigned int recs_per_track(struct dasd_eckd_characteristics * rdc, unsigned int kl, unsigned int dl) { int dn, kn; switch (rdc->dev_type) { case 0x3380: if (kl) return 1499 / (15 + 7 + ceil_quot(kl + 12, 32) + ceil_quot(dl + 12, 32)); else return 1499 / (15 + ceil_quot(dl + 12, 32)); case 0x3390: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1729 / (10 + 9 + ceil_quot(kl + 6 * kn, 34) + 9 + ceil_quot(dl + 6 * dn, 34)); } else return 1729 / (10 + 9 + ceil_quot(dl + 6 * dn, 34)); case 0x9345: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1420 / (18 + 7 + ceil_quot(kl + 6 * kn, 34) + ceil_quot(dl + 6 * dn, 34)); } else return 1420 / (18 + 7 + ceil_quot(dl + 6 * dn, 34)); } return 0; } static void set_ch_t(struct ch_t *geo, __u32 cyl, __u8 head) { geo->cyl = (__u16) cyl; geo->head = cyl >> 16; geo->head <<= 4; geo->head |= head; } /* * calculate failing track from sense data depending if * it is an EAV device or not */ static int dasd_eckd_track_from_irb(struct irb *irb, struct dasd_device *device, sector_t *track) { struct dasd_eckd_private *private = device->private; u8 *sense = NULL; u32 cyl; u8 head; sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no sense data\n"); return -EINVAL; } if (!(sense[27] & DASD_SENSE_BIT_2)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no valid track data\n"); return -EINVAL; } if (sense[27] & DASD_SENSE_BIT_3) { /* enhanced addressing */ cyl = sense[30] << 20; cyl |= (sense[31] & 0xF0) << 12; cyl |= sense[28] << 8; cyl |= sense[29]; } else { cyl = sense[29] << 8; cyl |= sense[30]; } head = sense[31] & 0x0F; *track = cyl * private->rdc_data.trk_per_cyl + head; return 0; } static int set_timestamp(struct ccw1 *ccw, struct DE_eckd_data *data, struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = get_phys_clock(&data->ep_sys_time); /* * Ignore return code if XRC is not supported or * sync clock is switched off */ if ((rc && !private->rdc_data.facilities.XRC_supported) || rc == -EOPNOTSUPP || rc == -EACCES) return 0; /* switch on System Time Stamp - needed for XRC Support */ data->ga_extended |= 0x08; /* switch on 'Time Stamp Valid' */ data->ga_extended |= 0x02; /* switch on 'Extended Parameter' */ if (ccw) { ccw->count = sizeof(struct DE_eckd_data); ccw->flags |= CCW_FLAG_SLI; } return rc; } static int define_extent(struct ccw1 *ccw, struct DE_eckd_data *data, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *device, int blksize) { struct dasd_eckd_private *private = device->private; u16 heads, beghead, endhead; u32 begcyl, endcyl; int rc = 0; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_DEFINE_EXTENT; ccw->flags = 0; ccw->count = 16; ccw->cda = (__u32)__pa(data); } memset(data, 0, sizeof(struct DE_eckd_data)); switch (cmd) { case DASD_ECKD_CCW_READ_HOME_ADDRESS: case DASD_ECKD_CCW_READ_RECORD_ZERO: case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; break; case DASD_ECKD_CCW_READ_COUNT: data->mask.perm = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; break; case DASD_ECKD_CCW_READ_TRACK: case DASD_ECKD_CCW_READ_TRACK_DATA: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_ERASE: case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->mask.perm = 0x3; data->mask.auth = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->mask.perm = 0x03; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; data->blk_size = blksize; rc = set_timestamp(ccw, data, device); break; default: dev_err(&device->cdev->dev, "0x%x is not a known command\n", cmd); break; } data->attributes.mode = 0x3; /* ECKD */ if ((private->rdc_data.cu_type == 0x2105 || private->rdc_data.cu_type == 0x2107 || private->rdc_data.cu_type == 0x1750) && !(private->uses_cdl && trk < 2)) data->ga_extended |= 0x40; /* Regular Data Format Mode */ heads = private->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (data->attributes.operation == DASD_SEQ_PRESTAGE || data->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + private->attrib.nr_cyl < private->real_cyl) endcyl += private->attrib.nr_cyl; else endcyl = (private->real_cyl - 1); } set_ch_t(&data->beg_ext, begcyl, beghead); set_ch_t(&data->end_ext, endcyl, endhead); return rc; } static void locate_record_ext(struct ccw1 *ccw, struct LRE_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int count, int cmd, struct dasd_device *device, unsigned int reclen, unsigned int tlf) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD_EXT; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) ccw->count = 22; else ccw->count = 20; ccw->cda = (__u32)__pa(data); } memset(data, 0, sizeof(*data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; /* note: meaning of count depends on the operation * for record based I/O it's the number of records, but for * track based I/O it's the number of tracks */ data->count = count; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->operation.orientation = 0x0; data->operation.operation = 0x3F; data->extended_operation = 0x11; data->length = 0; data->extended_parameter_length = 0x02; if (data->count > 8) { data->extended_parameter[0] = 0xFF; data->extended_parameter[1] = 0xFF; data->extended_parameter[1] <<= (16 - count); } else { data->extended_parameter[0] = 0xFF; data->extended_parameter[0] <<= (8 - count); data->extended_parameter[1] = 0x00; } data->sector = 0xFF; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = reclen; /* not tlf, as one might think */ data->operation.operation = 0x3F; data->extended_operation = 0x23; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_TRACK: data->operation.orientation = 0x1; data->operation.operation = 0x0C; data->extended_parameter_length = 0; data->sector = 0xFF; break; case DASD_ECKD_CCW_READ_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = tlf; data->operation.operation = 0x0C; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.length_valid = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "fill LRE unknown opcode 0x%x", cmd); BUG(); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } static int prefix_LRE(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int format, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int tlf) { struct dasd_eckd_private *basepriv, *startpriv; struct LRE_eckd_data *lredata; struct DE_eckd_data *dedata; int rc = 0; basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata->define_extent; lredata = &pfxdata->locate_record; ccw->cmd_code = DASD_ECKD_CCW_PFX; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) { ccw->count = sizeof(*pfxdata) + 2; ccw->cda = (__u32) __pa(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata) + 2); } else { ccw->count = sizeof(*pfxdata); ccw->cda = (__u32) __pa(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata)); } /* prefix data */ if (format > 1) { DBF_DEV_EVENT(DBF_ERR, basedev, "PFX LRE unknown format 0x%x", format); BUG(); return -EINVAL; } pfxdata->format = format; pfxdata->base_address = basepriv->ned->unit_addr; pfxdata->base_lss = basepriv->ned->ID; pfxdata->validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata->validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata->validity.verify_base = 1; pfxdata->validity.hyper_pav = 1; } rc = define_extent(NULL, dedata, trk, totrk, cmd, basedev, blksize); /* * For some commands the System Time Stamp is set in the define extent * data when XRC is supported. The validity of the time stamp must be * reflected in the prefix data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata->validity.time_stamp = 1; /* 'Time Stamp Valid' */ if (format == 1) { locate_record_ext(NULL, lredata, trk, rec_on_trk, count, cmd, basedev, blksize, tlf); } return rc; } static int prefix(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev) { return prefix_LRE(ccw, pfxdata, trk, totrk, cmd, basedev, startdev, 0, 0, 0, 0, 0); } static void locate_record(struct ccw1 *ccw, struct LO_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int no_rec, int cmd, struct dasd_device * device, int reclen) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; DBF_DEV_EVENT(DBF_INFO, device, "Locate: trk %d, rec %d, no_rec %d, cmd %d, reclen %d", trk, rec_on_trk, no_rec, cmd, reclen); ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD; ccw->flags = 0; ccw->count = 16; ccw->cda = (__u32) __pa(data); memset(data, 0, sizeof(struct LO_eckd_data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; data->count = no_rec; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.last_bytes_used = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "unknown locate record " "opcode 0x%x", cmd); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } /* * Returns 1 if the block is one of the special blocks that needs * to get read/written with the KD variant of the command. * That is DASD_ECKD_READ_KD_MT instead of DASD_ECKD_READ_MT and * DASD_ECKD_WRITE_KD_MT instead of DASD_ECKD_WRITE_MT. * Luckily the KD variants differ only by one bit (0x08) from the * normal variant. So don't wonder about code like: * if (dasd_eckd_cdl_special(blk_per_trk, recid)) * ccw->cmd_code |= 0x8; */ static inline int dasd_eckd_cdl_special(int blk_per_trk, int recid) { if (recid < 3) return 1; if (recid < blk_per_trk) return 0; if (recid < 2 * blk_per_trk) return 1; return 0; } /* * Returns the record size for the special blocks of the cdl format. * Only returns something useful if dasd_eckd_cdl_special is true * for the recid. */ static inline int dasd_eckd_cdl_reclen(int recid) { if (recid < 3) return sizes_trk0[recid]; return LABEL_SIZE; } /* create unique id from private structure. */ static void create_uid(struct dasd_eckd_private *private) { int count; struct dasd_uid *uid; uid = &private->uid; memset(uid, 0, sizeof(struct dasd_uid)); memcpy(uid->vendor, private->ned->HDA_manufacturer, sizeof(uid->vendor) - 1); EBCASC(uid->vendor, sizeof(uid->vendor) - 1); memcpy(uid->serial, &private->ned->serial, sizeof(uid->serial) - 1); EBCASC(uid->serial, sizeof(uid->serial) - 1); uid->ssid = private->gneq->subsystemID; uid->real_unit_addr = private->ned->unit_addr; if (private->sneq) { uid->type = private->sneq->sua_flags; if (uid->type == UA_BASE_PAV_ALIAS) uid->base_unit_addr = private->sneq->base_unit_addr; } else { uid->type = UA_BASE_DEVICE; } if (private->vdsneq) { for (count = 0; count < 16; count++) { sprintf(uid->vduit+2*count, "%02x", private->vdsneq->uit[count]); } } } /* * Generate device unique id that specifies the physical device. */ static int dasd_eckd_generate_uid(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private) return -ENODEV; if (!private->ned || !private->gneq) return -ENODEV; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); create_uid(private); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } static int dasd_eckd_get_uid(struct dasd_device *device, struct dasd_uid *uid) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (private) { spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); *uid = private->uid; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } return -EINVAL; } /* * compare device UID with data of a given dasd_eckd_private structure * return 0 for match */ static int dasd_eckd_compare_path_uid(struct dasd_device *device, struct dasd_eckd_private *private) { struct dasd_uid device_uid; create_uid(private); dasd_eckd_get_uid(device, &device_uid); return memcmp(&device_uid, &private->uid, sizeof(struct dasd_uid)); } static void dasd_eckd_fill_rcd_cqr(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ccw1 *ccw; /* * buffer has to start with EBCDIC "V1.0" to show * support for virtual device SNEQ */ rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RCD; ccw->flags = 0; ccw->cda = (__u32)(addr_t)rcd_buffer; ccw->count = DASD_ECKD_RCD_DATA_SIZE; cqr->magic = DASD_ECKD_MAGIC; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10*HZ; cqr->lpm = lpm; cqr->retries = 256; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); } /* * Wakeup helper for read_conf * if the cqr is not done and needs some error recovery * the buffer has to be re-initialized with the EBCDIC "V1.0" * to show support for virtual device SNEQ */ static void read_conf_cb(struct dasd_ccw_req *cqr, void *data) { struct ccw1 *ccw; __u8 *rcd_buffer; if (cqr->status != DASD_CQR_DONE) { ccw = cqr->cpaddr; rcd_buffer = (__u8 *)((addr_t) ccw->cda); memset(rcd_buffer, 0, sizeof(*rcd_buffer)); rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; } dasd_wakeup_cb(cqr, data); } static int dasd_eckd_read_conf_immediately(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ciw *ciw; int rc; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) return -EOPNOTSUPP; dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buffer, lpm); clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->callback = read_conf_cb; rc = dasd_sleep_on_immediatly(cqr); return rc; } static int dasd_eckd_read_conf_lpm(struct dasd_device *device, void **rcd_buffer, int *rcd_buffer_size, __u8 lpm) { struct ciw *ciw; char *rcd_buf = NULL; int ret; struct dasd_ccw_req *cqr; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) { ret = -EOPNOTSUPP; goto out_error; } rcd_buf = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL | GFP_DMA); if (!rcd_buf) { ret = -ENOMEM; goto out_error; } cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* RCD */, 0, /* use rcd_buf as data ara */ device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate RCD request"); ret = -ENOMEM; goto out_error; } dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buf, lpm); cqr->callback = read_conf_cb; ret = dasd_sleep_on(cqr); /* * on success we update the user input parms */ dasd_sfree_request(cqr, cqr->memdev); if (ret) goto out_error; *rcd_buffer_size = DASD_ECKD_RCD_DATA_SIZE; *rcd_buffer = rcd_buf; return 0; out_error: kfree(rcd_buf); *rcd_buffer = NULL; *rcd_buffer_size = 0; return ret; } static int dasd_eckd_identify_conf_parts(struct dasd_eckd_private *private) { struct dasd_sneq *sneq; int i, count; private->ned = NULL; private->sneq = NULL; private->vdsneq = NULL; private->gneq = NULL; count = private->conf_len / sizeof(struct dasd_sneq); sneq = (struct dasd_sneq *)private->conf_data; for (i = 0; i < count; ++i) { if (sneq->flags.identifier == 1 && sneq->format == 1) private->sneq = sneq; else if (sneq->flags.identifier == 1 && sneq->format == 4) private->vdsneq = (struct vd_sneq *)sneq; else if (sneq->flags.identifier == 2) private->gneq = (struct dasd_gneq *)sneq; else if (sneq->flags.identifier == 3 && sneq->res1 == 1) private->ned = (struct dasd_ned *)sneq; sneq++; } if (!private->ned || !private->gneq) { private->ned = NULL; private->sneq = NULL; private->vdsneq = NULL; private->gneq = NULL; return -EINVAL; } return 0; }; static unsigned char dasd_eckd_path_access(void *conf_data, int conf_len) { struct dasd_gneq *gneq; int i, count, found; count = conf_len / sizeof(*gneq); gneq = (struct dasd_gneq *)conf_data; found = 0; for (i = 0; i < count; ++i) { if (gneq->flags.identifier == 2) { found = 1; break; } gneq++; } if (found) return ((char *)gneq)[18] & 0x07; else return 0; } static void dasd_eckd_store_conf_data(struct dasd_device *device, struct dasd_conf_data *conf_data, int chp) { struct dasd_eckd_private *private = device->private; struct channel_path_desc_fmt0 *chp_desc; struct subchannel_id sch_id; void *cdp; /* * path handling and read_conf allocate data * free it before replacing the pointer * also replace the old private->conf_data pointer * with the new one if this points to the same data */ cdp = device->path[chp].conf_data; if (private->conf_data == cdp) { private->conf_data = (void *)conf_data; dasd_eckd_identify_conf_parts(private); } ccw_device_get_schid(device->cdev, &sch_id); device->path[chp].conf_data = conf_data; device->path[chp].cssid = sch_id.cssid; device->path[chp].ssid = sch_id.ssid; chp_desc = ccw_device_get_chp_desc(device->cdev, chp); if (chp_desc) device->path[chp].chpid = chp_desc->chpid; kfree(chp_desc); kfree(cdp); } static void dasd_eckd_clear_conf_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int i; private->conf_data = NULL; private->conf_len = 0; for (i = 0; i < 8; i++) { kfree(device->path[i].conf_data); device->path[i].conf_data = NULL; device->path[i].cssid = 0; device->path[i].ssid = 0; device->path[i].chpid = 0; dasd_path_notoper(device, i); } } static void dasd_eckd_read_fc_security(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; u8 esm_valid; u8 esm[8]; int chp; int rc; rc = chsc_scud(private->uid.ssid, (u64 *)esm, &esm_valid); if (rc) { for (chp = 0; chp < 8; chp++) device->path[chp].fc_security = 0; return; } for (chp = 0; chp < 8; chp++) { if (esm_valid & (0x80 >> chp)) device->path[chp].fc_security = esm[chp]; else device->path[chp].fc_security = 0; } } static int dasd_eckd_read_conf(struct dasd_device *device) { void *conf_data; int conf_len, conf_data_saved; int rc, path_err, pos; __u8 lpm, opm; struct dasd_eckd_private *private, path_private; struct dasd_uid *uid; char print_path_uid[60], print_device_uid[60]; private = device->private; opm = ccw_device_get_path_mask(device->cdev); conf_data_saved = 0; path_err = 0; /* get configuration data per operational path */ for (lpm = 0x80; lpm; lpm>>= 1) { if (!(lpm & opm)) continue; rc = dasd_eckd_read_conf_lpm(device, &conf_data, &conf_len, lpm); if (rc && rc != -EOPNOTSUPP) { /* -EOPNOTSUPP is ok */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data returned " "error %d", rc); return rc; } if (conf_data == NULL) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "No configuration data " "retrieved"); /* no further analysis possible */ dasd_path_add_opm(device, opm); continue; /* no error */ } /* save first valid configuration data */ if (!conf_data_saved) { /* initially clear previously stored conf_data */ dasd_eckd_clear_conf_data(device); private->conf_data = conf_data; private->conf_len = conf_len; if (dasd_eckd_identify_conf_parts(private)) { private->conf_data = NULL; private->conf_len = 0; kfree(conf_data); continue; } /* * build device UID that other path data * can be compared to it */ dasd_eckd_generate_uid(device); conf_data_saved++; } else { path_private.conf_data = conf_data; path_private.conf_len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts( &path_private)) { path_private.conf_data = NULL; path_private.conf_len = 0; kfree(conf_data); continue; } if (dasd_eckd_compare_path_uid( device, &path_private)) { uid = &path_private.uid; if (strlen(uid->vduit) > 0) snprintf(print_path_uid, sizeof(print_path_uid), "%s.%s.%04x.%02x.%s", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr, uid->vduit); else snprintf(print_path_uid, sizeof(print_path_uid), "%s.%s.%04x.%02x", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr); uid = &private->uid; if (strlen(uid->vduit) > 0) snprintf(print_device_uid, sizeof(print_device_uid), "%s.%s.%04x.%02x.%s", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr, uid->vduit); else snprintf(print_device_uid, sizeof(print_device_uid), "%s.%s.%04x.%02x", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr); dev_err(&device->cdev->dev, "Not all channel paths lead to " "the same device, path %02X leads to " "device %s instead of %s\n", lpm, print_path_uid, print_device_uid); path_err = -EINVAL; dasd_path_add_cablepm(device, lpm); continue; } path_private.conf_data = NULL; path_private.conf_len = 0; } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); switch (dasd_eckd_path_access(conf_data, conf_len)) { case 0x02: dasd_path_add_nppm(device, lpm); break; case 0x03: dasd_path_add_ppm(device, lpm); break; } if (!dasd_path_get_opm(device)) { dasd_path_set_opm(device, lpm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, lpm); } } dasd_eckd_read_fc_security(device); return path_err; } static u32 get_fcx_max_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int fcx_in_css, fcx_in_gneq, fcx_in_features; unsigned int mdc; int tpm; if (dasd_nofcx) return 0; /* is transport mode supported? */ fcx_in_css = css_general_characteristics.fcx; fcx_in_gneq = private->gneq->reserved2[7] & 0x04; fcx_in_features = private->features.feature[40] & 0x80; tpm = fcx_in_css && fcx_in_gneq && fcx_in_features; if (!tpm) return 0; mdc = ccw_device_get_mdc(device->cdev, 0); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum supported data size for zHPF requests failed\n"); return 0; } else { return (u32)mdc * FCX_MAX_DATA_FACTOR; } } static int verify_fcx_max_data(struct dasd_device *device, __u8 lpm) { struct dasd_eckd_private *private = device->private; unsigned int mdc; u32 fcx_max_data; if (private->fcx_max_data) { mdc = ccw_device_get_mdc(device->cdev, lpm); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum data size for zHPF " "requests failed (rc=%d) for a new path %x\n", mdc, lpm); return mdc; } fcx_max_data = (u32)mdc * FCX_MAX_DATA_FACTOR; if (fcx_max_data < private->fcx_max_data) { dev_warn(&device->cdev->dev, "The maximum data size for zHPF requests %u " "on a new path %x is below the active maximum " "%u\n", fcx_max_data, lpm, private->fcx_max_data); return -EACCES; } } return 0; } static int rebuild_device_uid(struct dasd_device *device, struct pe_handler_work_data *data) { struct dasd_eckd_private *private = device->private; __u8 lpm, opm = dasd_path_get_opm(device); int rc = -ENODEV; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & opm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (rc) { if (rc == -EOPNOTSUPP) /* -EOPNOTSUPP is ok */ continue; DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data " "returned error %d", rc); break; } memcpy(private->conf_data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); if (dasd_eckd_identify_conf_parts(private)) { rc = -ENODEV; } else /* first valid path is enough */ break; } if (!rc) rc = dasd_eckd_generate_uid(device); return rc; } static void dasd_eckd_path_available_action(struct dasd_device *device, struct pe_handler_work_data *data) { struct dasd_eckd_private path_private; struct dasd_uid *uid; __u8 path_rcd_buf[DASD_ECKD_RCD_DATA_SIZE]; __u8 lpm, opm, npm, ppm, epm, hpfpm, cablepm; struct dasd_conf_data *conf_data; unsigned long flags; char print_uid[60]; int rc, pos; opm = 0; npm = 0; ppm = 0; epm = 0; hpfpm = 0; cablepm = 0; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & data->tbvpm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (!rc) { switch (dasd_eckd_path_access(data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE) ) { case 0x02: npm |= lpm; break; case 0x03: ppm |= lpm; break; } opm |= lpm; } else if (rc == -EOPNOTSUPP) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: No configuration " "data retrieved"); opm |= lpm; } else if (rc == -EAGAIN) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: device is stopped," " try again later"); epm |= lpm; } else { dev_warn(&device->cdev->dev, "Reading device feature codes failed " "(rc=%d) for new path %x\n", rc, lpm); continue; } if (verify_fcx_max_data(device, lpm)) { opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; hpfpm |= lpm; continue; } /* * save conf_data for comparison after * rebuild_device_uid may have changed * the original data */ memcpy(&path_rcd_buf, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); path_private.conf_data = (void *) &path_rcd_buf; path_private.conf_len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts(&path_private)) { path_private.conf_data = NULL; path_private.conf_len = 0; continue; } /* * compare path UID with device UID only if at least * one valid path is left * in other case the device UID may have changed and * the first working path UID will be used as device UID */ if (dasd_path_get_opm(device) && dasd_eckd_compare_path_uid(device, &path_private)) { /* * the comparison was not successful * rebuild the device UID with at least one * known path in case a z/VM hyperswap command * has changed the device * * after this compare again * * if either the rebuild or the recompare fails * the path can not be used */ if (rebuild_device_uid(device, data) || dasd_eckd_compare_path_uid( device, &path_private)) { uid = &path_private.uid; if (strlen(uid->vduit) > 0) snprintf(print_uid, sizeof(print_uid), "%s.%s.%04x.%02x.%s", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr, uid->vduit); else snprintf(print_uid, sizeof(print_uid), "%s.%s.%04x.%02x", uid->vendor, uid->serial, uid->ssid, uid->real_unit_addr); dev_err(&device->cdev->dev, "The newly added channel path %02X " "will not be used because it leads " "to a different device %s\n", lpm, print_uid); opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; cablepm |= lpm; continue; } } conf_data = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL); if (conf_data) { memcpy(conf_data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); /* * There is a small chance that a path is lost again between * above path verification and the following modification of * the device opm mask. We could avoid that race here by using * yet another path mask, but we rather deal with this unlikely * situation in dasd_start_IO. */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); if (!dasd_path_get_opm(device) && opm) { dasd_path_set_opm(device, opm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, opm); } dasd_path_add_nppm(device, npm); dasd_path_add_ppm(device, ppm); dasd_path_add_tbvpm(device, epm); dasd_path_add_cablepm(device, cablepm); dasd_path_add_nohpfpm(device, hpfpm); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); dasd_path_create_kobj(device, pos); } } static void do_pe_handler_work(struct work_struct *work) { struct pe_handler_work_data *data; struct dasd_device *device; data = container_of(work, struct pe_handler_work_data, worker); device = data->device; /* delay path verification until device was resumed */ if (test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { schedule_work(work); return; } /* check if path verification already running and delay if so */ if (test_and_set_bit(DASD_FLAG_PATH_VERIFY, &device->flags)) { schedule_work(work); return; } if (data->tbvpm) dasd_eckd_path_available_action(device, data); if (data->fcsecpm) dasd_eckd_read_fc_security(device); clear_bit(DASD_FLAG_PATH_VERIFY, &device->flags); dasd_put_device(device); if (data->isglobal) mutex_unlock(&dasd_pe_handler_mutex); else kfree(data); } static int dasd_eckd_pe_handler(struct dasd_device *device, __u8 tbvpm, __u8 fcsecpm) { struct pe_handler_work_data *data; data = kmalloc(sizeof(*data), GFP_ATOMIC | GFP_DMA); if (!data) { if (mutex_trylock(&dasd_pe_handler_mutex)) { data = pe_handler_worker; data->isglobal = 1; } else { return -ENOMEM; } } else { memset(data, 0, sizeof(*data)); data->isglobal = 0; } INIT_WORK(&data->worker, do_pe_handler_work); dasd_get_device(device); data->device = device; data->tbvpm = tbvpm; data->fcsecpm = fcsecpm; schedule_work(&data->worker); return 0; } static void dasd_eckd_reset_path(struct dasd_device *device, __u8 pm) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private->fcx_max_data) private->fcx_max_data = get_fcx_max_data(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dasd_path_set_tbvpm(device, pm ? : dasd_path_get_notoperpm(device)); dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } static int dasd_eckd_read_features(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_features *features; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; memset(&private->features, 0, sizeof(struct dasd_rssd_features)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_features)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not " "allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x41; /* Read Feature Codes */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)(addr_t) prssdp; /* Read Subsystem Data - feature codes */ features = (struct dasd_rssd_features *) (prssdp + 1); memset(features, 0, sizeof(struct dasd_rssd_features)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_features); ccw->cda = (__u32)(addr_t) features; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; features = (struct dasd_rssd_features *) (prssdp + 1); memcpy(&private->features, features, sizeof(struct dasd_rssd_features)); } else dev_warn(&device->cdev->dev, "Reading device feature codes" " failed with rc=%d\n", rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* Read Volume Information - Volume Storage Query */ static int dasd_eckd_read_vol_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_vsq *vsq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int useglobal; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*vsq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); mutex_lock(&dasd_vol_info_mutex); useglobal = 1; cqr = &dasd_vol_info_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(dasd_vol_info_req, 0, sizeof(*dasd_vol_info_req)); cqr->cpaddr = &dasd_vol_info_req->ccw; cqr->data = &dasd_vol_info_req->data; cqr->magic = DASD_ECKD_MAGIC; } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_VSQ; /* Volume Storage Query */ prssdp->lss = private->ned->ID; prssdp->volume = private->ned->unit_addr; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)(addr_t)prssdp; /* Read Subsystem Data - Volume Storage Query */ vsq = (struct dasd_rssd_vsq *)(prssdp + 1); memset(vsq, 0, sizeof(*vsq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*vsq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t)vsq; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { memcpy(&private->vsq, vsq, sizeof(*vsq)); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the volume storage information failed with rc=%d", rc); } if (useglobal) mutex_unlock(&dasd_vol_info_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_is_ese(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.vol_info.ese; } static int dasd_eckd_ext_pool_id(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.extent_pool_id; } /* * This value represents the total amount of available space. As more space is * allocated by ESE volumes, this value will decrease. * The data for this value is therefore updated on any call. */ static int dasd_eckd_space_configured(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_configured; } /* * The value of space allocated by an ESE volume may have changed and is * therefore updated on any call. */ static int dasd_eckd_space_allocated(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_allocated; } static int dasd_eckd_logical_capacity(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.logical_capacity; } static void dasd_eckd_ext_pool_exhaust_work(struct work_struct *work) { struct ext_pool_exhaust_work_data *data; struct dasd_device *device; struct dasd_device *base; data = container_of(work, struct ext_pool_exhaust_work_data, worker); device = data->device; base = data->base; if (!base) base = device; if (dasd_eckd_space_configured(base) != 0) { dasd_generic_space_avail(device); } else { dev_warn(&device->cdev->dev, "No space left in the extent pool\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "out of space"); } dasd_put_device(device); kfree(data); } static int dasd_eckd_ext_pool_exhaust(struct dasd_device *device, struct dasd_ccw_req *cqr) { struct ext_pool_exhaust_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_ext_pool_exhaust_work); dasd_get_device(device); data->device = device; if (cqr->block) data->base = cqr->block->base; else if (cqr->basedev) data->base = cqr->basedev; else data->base = NULL; schedule_work(&data->worker); return 0; } static void dasd_eckd_cpy_ext_pool_data(struct dasd_device *device, struct dasd_rssd_lcq *lcq) { struct dasd_eckd_private *private = device->private; int pool_id = dasd_eckd_ext_pool_id(device); struct dasd_ext_pool_sum eps; int i; for (i = 0; i < lcq->pool_count; i++) { eps = lcq->ext_pool_sum[i]; if (eps.pool_id == pool_id) { memcpy(&private->eps, &eps, sizeof(struct dasd_ext_pool_sum)); } } } /* Read Extent Pool Information - Logical Configuration Query */ static int dasd_eckd_read_ext_pool_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_lcq *lcq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*lcq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; memset(prssdp, 0, sizeof(*prssdp)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_LCQ; /* Logical Configuration Query */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)(addr_t)prssdp; lcq = (struct dasd_rssd_lcq *)(prssdp + 1); memset(lcq, 0, sizeof(*lcq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*lcq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t)lcq; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { dasd_eckd_cpy_ext_pool_data(device, lcq); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the logical configuration failed with rc=%d", rc); } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Depending on the device type, the extent size is specified either as * cylinders per extent (CKD) or size per extent (FBA) * A 1GB size corresponds to 1113cyl, and 16MB to 21cyl. */ static int dasd_eckd_ext_size(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_ext_pool_sum eps = private->eps; if (!eps.flags.extent_size_valid) return 0; if (eps.extent_size.size_1G) return 1113; if (eps.extent_size.size_16M) return 21; return 0; } static int dasd_eckd_ext_pool_warn_thrshld(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.warn_thrshld; } static int dasd_eckd_ext_pool_cap_at_warnlevel(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.capacity_at_warnlevel; } /* * Extent Pool out of space */ static int dasd_eckd_ext_pool_oos(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.pool_oos; } /* * Build CP for Perform Subsystem Function - SSC. */ static struct dasd_ccw_req *dasd_eckd_build_psf_ssc(struct dasd_device *device, int enable_pav) { struct dasd_ccw_req *cqr; struct dasd_psf_ssc_data *psf_ssc_data; struct ccw1 *ccw; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_ssc_data), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-SSC request"); return cqr; } psf_ssc_data = (struct dasd_psf_ssc_data *)cqr->data; psf_ssc_data->order = PSF_ORDER_SSC; psf_ssc_data->suborder = 0xc0; if (enable_pav) { psf_ssc_data->suborder |= 0x08; psf_ssc_data->reserved[0] = 0x88; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = (__u32)(addr_t)psf_ssc_data; ccw->count = 66; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } /* * Perform Subsystem Function. * It is necessary to trigger CIO for channel revalidation since this * call might change behaviour of DASD devices. */ static int dasd_eckd_psf_ssc(struct dasd_device *device, int enable_pav, unsigned long flags) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_build_psf_ssc(device, enable_pav); if (IS_ERR(cqr)) return PTR_ERR(cqr); /* * set flags e.g. turn on failfast, to prevent blocking * the calling function should handle failed requests */ cqr->flags |= flags; rc = dasd_sleep_on(cqr); if (!rc) /* trigger CIO to reprobe devices */ css_schedule_reprobe(); else if (cqr->intrc == -EAGAIN) rc = -EAGAIN; dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Valide storage server of current device. */ static int dasd_eckd_validate_server(struct dasd_device *device, unsigned long flags) { struct dasd_eckd_private *private = device->private; int enable_pav, rc; if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; if (dasd_nopav || MACHINE_IS_VM) enable_pav = 0; else enable_pav = 1; rc = dasd_eckd_psf_ssc(device, enable_pav, flags); /* may be requested feature is not available on server, * therefore just report error and go ahead */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "PSF-SSC for SSID %04x " "returned rc=%d", private->uid.ssid, rc); return rc; } /* * worker to do a validate server in case of a lost pathgroup */ static void dasd_eckd_do_validate_server(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, kick_validate); unsigned long flags = 0; set_bit(DASD_CQR_FLAGS_FAILFAST, &flags); if (dasd_eckd_validate_server(device, flags) == -EAGAIN) { /* schedule worker again if failed */ schedule_work(&device->kick_validate); return; } dasd_put_device(device); } static void dasd_eckd_kick_validate_server(struct dasd_device *device) { dasd_get_device(device); /* exit if device not online or in offline processing */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || device->state < DASD_STATE_ONLINE) { dasd_put_device(device); return; } /* queue call to do_validate_server to the kernel event daemon. */ if (!schedule_work(&device->kick_validate)) dasd_put_device(device); } /* * Check device characteristics. * If the device is accessible using ECKD discipline, the device is enabled. */ static int dasd_eckd_check_characteristics(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_block *block; struct dasd_uid temp_uid; int rc, i; int readonly; unsigned long value; /* setup work queue for validate server*/ INIT_WORK(&device->kick_validate, dasd_eckd_do_validate_server); /* setup work queue for summary unit check */ INIT_WORK(&device->suc_work, dasd_alias_handle_summary_unit_check); if (!ccw_device_is_pathgroup(device->cdev)) { dev_warn(&device->cdev->dev, "A channel path group could not be established\n"); return -EIO; } if (!ccw_device_is_multipath(device->cdev)) { dev_info(&device->cdev->dev, "The DASD is not operating in multipath mode\n"); } if (!private) { private = kzalloc(sizeof(*private), GFP_KERNEL | GFP_DMA); if (!private) { dev_warn(&device->cdev->dev, "Allocating memory for private DASD data " "failed\n"); return -ENOMEM; } device->private = private; } else { memset(private, 0, sizeof(*private)); } /* Invalidate status of initial analysis. */ private->init_cqr_status = -1; /* Set default cache operations. */ private->attrib.operation = DASD_NORMAL_CACHE; private->attrib.nr_cyl = 0; /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err1; /* set some default values */ device->default_expires = DASD_EXPIRES; device->default_retries = DASD_RETRIES; device->path_thrhld = DASD_ECKD_PATH_THRHLD; device->path_interval = DASD_ECKD_PATH_INTERVAL; if (private->gneq) { value = 1; for (i = 0; i < private->gneq->timeout.value; i++) value = 10 * value; value = value * private->gneq->timeout.number; /* do not accept useless values */ if (value != 0 && value <= DASD_EXPIRES_MAX) device->default_expires = value; } dasd_eckd_get_uid(device, &temp_uid); if (temp_uid.type == UA_BASE_DEVICE) { block = dasd_alloc_block(); if (IS_ERR(block)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "could not allocate dasd " "block structure"); rc = PTR_ERR(block); goto out_err1; } device->block = block; block->base = device; } /* register lcu with alias handling, enable PAV */ rc = dasd_alias_make_device_known_to_lcu(device); if (rc) goto out_err2; dasd_eckd_validate_server(device, 0); /* device may report different configuration data after LCU setup */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err3; dasd_path_create_kobjects(device); /* Read Feature Codes */ dasd_eckd_read_features(device); /* Read Volume Information */ dasd_eckd_read_vol_info(device); /* Read Extent Pool Information */ dasd_eckd_read_ext_pool_info(device); /* Read Device Characteristics */ rc = dasd_generic_read_dev_chars(device, DASD_ECKD_MAGIC, &private->rdc_data, 64); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read device characteristic failed, rc=%d", rc); goto out_err3; } if ((device->features & DASD_FEATURE_USERAW) && !(private->rdc_data.facilities.RT_in_LR)) { dev_err(&device->cdev->dev, "The storage server does not " "support raw-track access\n"); rc = -EINVAL; goto out_err3; } /* find the valid cylinder size */ if (private->rdc_data.no_cyl == LV_COMPAT_CYL && private->rdc_data.long_no_cyl) private->real_cyl = private->rdc_data.long_no_cyl; else private->real_cyl = private->rdc_data.no_cyl; private->fcx_max_data = get_fcx_max_data(device); readonly = dasd_device_is_ro(device); if (readonly) set_bit(DASD_FLAG_DEVICE_RO, &device->flags); dev_info(&device->cdev->dev, "New DASD %04X/%02X (CU %04X/%02X) " "with %d cylinders, %d heads, %d sectors%s\n", private->rdc_data.dev_type, private->rdc_data.dev_model, private->rdc_data.cu_type, private->rdc_data.cu_model.model, private->real_cyl, private->rdc_data.trk_per_cyl, private->rdc_data.sec_per_trk, readonly ? ", read-only device" : ""); return 0; out_err3: dasd_alias_disconnect_device_from_lcu(device); out_err2: dasd_free_block(device->block); device->block = NULL; out_err1: dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); kfree(device->private); device->private = NULL; return rc; } static void dasd_eckd_uncheck_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; if (!private) return; dasd_alias_disconnect_device_from_lcu(device); private->ned = NULL; private->sneq = NULL; private->vdsneq = NULL; private->gneq = NULL; dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); } static struct dasd_ccw_req * dasd_eckd_analysis_ccw(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct eckd_count *count_data; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int cplength, datasize; int i; cplength = 8; datasize = sizeof(struct DE_eckd_data) + 2*sizeof(struct LO_eckd_data); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, device, NULL); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* Define extent for the first 2 tracks. */ define_extent(ccw++, cqr->data, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); LO_data = cqr->data + sizeof(struct DE_eckd_data); /* Locate record for the first 4 records on track 0. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 0, 0, 4, DASD_ECKD_CCW_READ_COUNT, device, 0); count_data = private->count_area; for (i = 0; i < 4; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = (__u32)(addr_t) count_data; ccw++; count_data++; } /* Locate record for the first record on track 1. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 1, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); /* Read count ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = (__u32)(addr_t) count_data; cqr->block = NULL; cqr->startdev = device; cqr->memdev = device; cqr->retries = 255; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } /* differentiate between 'no record found' and any other error */ static int dasd_eckd_analysis_evaluation(struct dasd_ccw_req *init_cqr) { char *sense; if (init_cqr->status == DASD_CQR_DONE) return INIT_CQR_OK; else if (init_cqr->status == DASD_CQR_NEED_ERP || init_cqr->status == DASD_CQR_FAILED) { sense = dasd_get_sense(&init_cqr->irb); if (sense && (sense[1] & SNS1_NO_REC_FOUND)) return INIT_CQR_UNFORMATTED; else return INIT_CQR_ERROR; } else return INIT_CQR_ERROR; } /* * This is the callback function for the init_analysis cqr. It saves * the status of the initial analysis ccw before it frees it and kicks * the device to continue the startup sequence. This will call * dasd_eckd_do_analysis again (if the devices has not been marked * for deletion in the meantime). */ static void dasd_eckd_analysis_callback(struct dasd_ccw_req *init_cqr, void *data) { struct dasd_device *device = init_cqr->startdev; struct dasd_eckd_private *private = device->private; private->init_cqr_status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); dasd_kick_device(device); } static int dasd_eckd_start_analysis(struct dasd_block *block) { struct dasd_ccw_req *init_cqr; init_cqr = dasd_eckd_analysis_ccw(block->base); if (IS_ERR(init_cqr)) return PTR_ERR(init_cqr); init_cqr->callback = dasd_eckd_analysis_callback; init_cqr->callback_data = NULL; init_cqr->expires = 5*HZ; /* first try without ERP, so we can later handle unformatted * devices as special case */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &init_cqr->flags); init_cqr->retries = 0; dasd_add_request_head(init_cqr); return -EAGAIN; } static int dasd_eckd_end_analysis(struct dasd_block *block) { struct dasd_device *device = block->base; struct dasd_eckd_private *private = device->private; struct eckd_count *count_area; unsigned int sb, blk_per_trk; int status, i; struct dasd_ccw_req *init_cqr; status = private->init_cqr_status; private->init_cqr_status = -1; if (status == INIT_CQR_ERROR) { /* try again, this time with full ERP */ init_cqr = dasd_eckd_analysis_ccw(device); dasd_sleep_on(init_cqr); status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); } if (device->features & DASD_FEATURE_USERAW) { block->bp_block = DASD_RAW_BLOCKSIZE; blk_per_trk = DASD_RAW_BLOCK_PER_TRACK; block->s2b_shift = 3; goto raw; } if (status == INIT_CQR_UNFORMATTED) { dev_warn(&device->cdev->dev, "The DASD is not formatted\n"); return -EMEDIUMTYPE; } else if (status == INIT_CQR_ERROR) { dev_err(&device->cdev->dev, "Detecting the DASD disk layout failed because " "of an I/O error\n"); return -EIO; } private->uses_cdl = 1; /* Check Track 0 for Compatible Disk Layout */ count_area = NULL; for (i = 0; i < 3; i++) { if (private->count_area[i].kl != 4 || private->count_area[i].dl != dasd_eckd_cdl_reclen(i) - 4 || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) { private->uses_cdl = 0; break; } } if (i == 3) count_area = &private->count_area[3]; if (private->uses_cdl == 0) { for (i = 0; i < 5; i++) { if ((private->count_area[i].kl != 0) || (private->count_area[i].dl != private->count_area[0].dl) || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) break; } if (i == 5) count_area = &private->count_area[0]; } else { if (private->count_area[3].record == 1) dev_warn(&device->cdev->dev, "Track 0 has no records following the VTOC\n"); } if (count_area != NULL && count_area->kl == 0) { /* we found notthing violating our disk layout */ if (dasd_check_blocksize(count_area->dl) == 0) block->bp_block = count_area->dl; } if (block->bp_block == 0) { dev_warn(&device->cdev->dev, "The disk layout of the DASD is not supported\n"); return -EMEDIUMTYPE; } block->s2b_shift = 0; /* bits to shift 512 to get a block */ for (sb = 512; sb < block->bp_block; sb = sb << 1) block->s2b_shift++; blk_per_trk = recs_per_track(&private->rdc_data, 0, block->bp_block); raw: block->blocks = ((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk); dev_info(&device->cdev->dev, "DASD with %u KB/block, %lu KB total size, %u KB/track, " "%s\n", (block->bp_block >> 10), (((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk * (block->bp_block >> 9)) >> 1), ((blk_per_trk * block->bp_block) >> 10), private->uses_cdl ? "compatible disk layout" : "linux disk layout"); return 0; } static int dasd_eckd_do_analysis(struct dasd_block *block) { struct dasd_eckd_private *private = block->base->private; if (private->init_cqr_status < 0) return dasd_eckd_start_analysis(block); else return dasd_eckd_end_analysis(block); } static int dasd_eckd_basic_to_ready(struct dasd_device *device) { return dasd_alias_add_device(device); }; static int dasd_eckd_online_to_ready(struct dasd_device *device) { if (cancel_work_sync(&device->reload_device)) dasd_put_device(device); if (cancel_work_sync(&device->kick_validate)) dasd_put_device(device); return 0; }; static int dasd_eckd_basic_to_known(struct dasd_device *device) { return dasd_alias_remove_device(device); }; static int dasd_eckd_fill_geometry(struct dasd_block *block, struct hd_geometry *geo) { struct dasd_eckd_private *private = block->base->private; if (dasd_check_blocksize(block->bp_block) == 0) { geo->sectors = recs_per_track(&private->rdc_data, 0, block->bp_block); } geo->cylinders = private->rdc_data.no_cyl; geo->heads = private->rdc_data.trk_per_cyl; return 0; } /* * Build the TCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check_tcw(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_device *startdev = NULL; struct tidaw *last_tidaw = NULL; struct dasd_ccw_req *cqr; struct itcw *itcw; int itcw_size; int count; int rc; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); /* * we're adding 'count' amount of tidaw to the itcw. * calculate the corresponding itcw_size */ itcw_size = itcw_calc_size(0, count, 0); cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; itcw = itcw_init(cqr->data, itcw_size, ITCW_OP_READ, 0, count, 0); if (IS_ERR(itcw)) { rc = -EINVAL; goto out_err; } cqr->cpaddr = itcw_get_tcw(itcw); rc = prepare_itcw(itcw, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT_MT, base, startdev, 0, count, sizeof(struct eckd_count), count * sizeof(struct eckd_count), 0, rpt); if (rc) goto out_err; for (i = 0; i < count; i++) { last_tidaw = itcw_add_tidaw(itcw, 0, fmt_buffer++, sizeof(struct eckd_count)); if (IS_ERR(last_tidaw)) { rc = -EINVAL; goto out_err; } } last_tidaw->flags |= TIDAW_FLAGS_LAST; itcw_finalize(itcw); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = startdev->default_retries; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); return cqr; out_err: dasd_sfree_request(cqr, startdev); return ERR_PTR(rc); } /* * Build the CCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_eckd_private *base_priv; struct dasd_device *startdev = NULL; struct dasd_ccw_req *cqr; struct ccw1 *ccw; void *data; int cplength, datasize; int use_prefix; int count; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1; datasize = sizeof(struct PFX_eckd_data); } else { cplength = 2; datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data); } cplength += count; cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; data = cqr->data; ccw = cqr->cpaddr; if (use_prefix) { prefix_LRE(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, base, startdev, 1, 0, count, 0, 0); } else { define_extent(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, startdev, 0); data += sizeof(struct DE_eckd_data); ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, data, fdata->start_unit, 0, count, DASD_ECKD_CCW_READ_COUNT, base, 0); } for (i = 0; i < count; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)(addr_t) fmt_buffer; ccw++; fmt_buffer++; } cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = DASD_RETRIES; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static struct dasd_ccw_req * dasd_eckd_build_format(struct dasd_device *base, struct dasd_device *startdev, struct format_data_t *fdata, int enable_pav) { struct dasd_eckd_private *base_priv; struct dasd_eckd_private *start_priv; struct dasd_ccw_req *fcp; struct eckd_count *ect; struct ch_t address; struct ccw1 *ccw; void *data; int rpt; int cplength, datasize; int i, j; int intensity = 0; int r0_perm; int nr_tracks; int use_prefix; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; rpt = recs_per_track(&base_priv->rdc_data, 0, fdata->blksize); nr_tracks = fdata->stop_unit - fdata->start_unit + 1; /* * fdata->intensity is a bit string that tells us what to do: * Bit 0: write record zero * Bit 1: write home address, currently not supported * Bit 2: invalidate tracks * Bit 3: use OS/390 compatible disk layout (cdl) * Bit 4: do not allow storage subsystem to modify record zero * Only some bit combinations do make sense. */ if (fdata->intensity & 0x10) { r0_perm = 0; intensity = fdata->intensity & ~0x10; } else { r0_perm = 1; intensity = fdata->intensity; } use_prefix = base_priv->features.feature[8] & 0x01; switch (intensity) { case 0x00: /* Normal format */ case 0x08: /* Normal format, use cdl. */ cplength = 2 + (rpt*nr_tracks); if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x01: /* Write record zero and format track. */ case 0x09: /* Write record zero and format track, use cdl. */ cplength = 2 + rpt * nr_tracks; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x04: /* Invalidate track. */ case 0x0c: /* Invalidate track, use cdl. */ cplength = 3; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); break; default: dev_warn(&startdev->cdev->dev, "An I/O control call used incorrect flags 0x%x\n", fdata->intensity); return ERR_PTR(-EINVAL); } fcp = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(fcp)) return fcp; start_priv->count++; data = fcp->data; ccw = fcp->cpaddr; switch (intensity & ~0x08) { case 0x00: /* Normal format. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct PFX_eckd_data *)data) ->define_extent.ga_extended |= 0x04; data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct DE_eckd_data *) data) ->ga_extended |= 0x04; data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt*nr_tracks, DASD_ECKD_CCW_WRITE_CKD, base, fdata->blksize); data += sizeof(struct LO_eckd_data); break; case 0x01: /* Write record zero + format track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt * nr_tracks + 1, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, base->block->bp_block); data += sizeof(struct LO_eckd_data); break; case 0x04: /* Invalidate track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, 1, DASD_ECKD_CCW_WRITE_CKD, base, 8); data += sizeof(struct LO_eckd_data); break; } for (j = 0; j < nr_tracks; j++) { /* calculate cylinder and head for the current track */ set_ch_t(&address, (fdata->start_unit + j) / base_priv->rdc_data.trk_per_cyl, (fdata->start_unit + j) % base_priv->rdc_data.trk_per_cyl); if (intensity & 0x01) { /* write record zero */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 0; ect->kl = 0; ect->dl = 8; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_RECORD_ZERO; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)(addr_t) ect; ccw++; } if ((intensity & ~0x08) & 0x04) { /* erase track */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 1; ect->kl = 0; ect->dl = 0; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)(addr_t) ect; } else { /* write remaining records */ for (i = 0; i < rpt; i++) { ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = i + 1; ect->kl = 0; ect->dl = fdata->blksize; /* * Check for special tracks 0-1 * when formatting CDL */ if ((intensity & 0x08) && address.cyl == 0 && address.head == 0) { if (i < 3) { ect->kl = 4; ect->dl = sizes_trk0[i] - 4; } } if ((intensity & 0x08) && address.cyl == 0 && address.head == 1) { ect->kl = 44; ect->dl = LABEL_SIZE - 44; } ccw[-1].flags |= CCW_FLAG_CC; if (i != 0 || j == 0) ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; else ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD_MT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)(addr_t) ect; ccw++; } } } fcp->startdev = startdev; fcp->memdev = startdev; fcp->basedev = base; fcp->retries = 256; fcp->expires = startdev->default_expires * HZ; fcp->buildclk = get_tod_clock(); fcp->status = DASD_CQR_FILLED; return fcp; } /* * Wrapper function to build a CCW request depending on input data */ static struct dasd_ccw_req * dasd_eckd_format_build_ccw_req(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt) { struct dasd_ccw_req *ccw_req; if (!fmt_buffer) { ccw_req = dasd_eckd_build_format(base, NULL, fdata, enable_pav); } else { if (tpm) ccw_req = dasd_eckd_build_check_tcw(base, fdata, enable_pav, fmt_buffer, rpt); else ccw_req = dasd_eckd_build_check(base, fdata, enable_pav, fmt_buffer, rpt); } return ccw_req; } /* * Sanity checks on format_data */ static int dasd_eckd_format_sanity_checks(struct dasd_device *base, struct format_data_t *fdata) { struct dasd_eckd_private *private = base->private; if (fdata->start_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Start track number %u used in formatting is too big\n", fdata->start_unit); return -EINVAL; } if (fdata->stop_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Stop track number %u used in formatting is too big\n", fdata->stop_unit); return -EINVAL; } if (fdata->start_unit > fdata->stop_unit) { dev_warn(&base->cdev->dev, "Start track %u used in formatting exceeds end track\n", fdata->start_unit); return -EINVAL; } if (dasd_check_blocksize(fdata->blksize) != 0) { dev_warn(&base->cdev->dev, "The DASD cannot be formatted with block size %u\n", fdata->blksize); return -EINVAL; } return 0; } /* * This function will process format_data originally coming from an IOCTL */ static int dasd_eckd_format_process_data(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt, struct irb *irb) { struct dasd_eckd_private *private = base->private; struct dasd_ccw_req *cqr, *n; struct list_head format_queue; struct dasd_device *device; char *sense = NULL; int old_start, old_stop, format_step; int step, retry; int rc; rc = dasd_eckd_format_sanity_checks(base, fdata); if (rc) return rc; INIT_LIST_HEAD(&format_queue); old_start = fdata->start_unit; old_stop = fdata->stop_unit; if (!tpm && fmt_buffer != NULL) { /* Command Mode / Format Check */ format_step = 1; } else if (tpm && fmt_buffer != NULL) { /* Transport Mode / Format Check */ format_step = DASD_CQR_MAX_CCW / rpt; } else { /* Normal Formatting */ format_step = DASD_CQR_MAX_CCW / recs_per_track(&private->rdc_data, 0, fdata->blksize); } do { retry = 0; while (fdata->start_unit <= old_stop) { step = fdata->stop_unit - fdata->start_unit + 1; if (step > format_step) { fdata->stop_unit = fdata->start_unit + format_step - 1; } cqr = dasd_eckd_format_build_ccw_req(base, fdata, enable_pav, tpm, fmt_buffer, rpt); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&format_queue)) goto out; /* * not enough memory available, start * requests retry after first requests * were finished */ retry = 1; break; } goto out_err; } list_add_tail(&cqr->blocklist, &format_queue); if (fmt_buffer) { step = fdata->stop_unit - fdata->start_unit + 1; fmt_buffer += rpt * step; } fdata->start_unit = fdata->stop_unit + 1; fdata->stop_unit = old_stop; } rc = dasd_sleep_on_queue(&format_queue); out_err: list_for_each_entry_safe(cqr, n, &format_queue, blocklist) { device = cqr->startdev; private = device->private; if (cqr->status == DASD_CQR_FAILED) { /* * Only get sense data if called by format * check */ if (fmt_buffer && irb) { sense = dasd_get_sense(&cqr->irb); memcpy(irb, &cqr->irb, sizeof(*irb)); } rc = -EIO; } list_del_init(&cqr->blocklist); dasd_ffree_request(cqr, device); private->count--; } if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * In case fewer than the expected records are on the * track, we will most likely get a 'No Record Found' * error (in command mode) or a 'File Protected' error * (in transport mode). Those particular cases shouldn't * pass the -EIO to the IOCTL, therefore reset the rc * and continue. */ if (sense && (sense[1] & SNS1_NO_REC_FOUND || sense[1] & SNS1_FILE_PROTECTED)) retry = 1; else goto out; } } while (retry); out: fdata->start_unit = old_start; fdata->stop_unit = old_stop; return rc; } static int dasd_eckd_format_device(struct dasd_device *base, struct format_data_t *fdata, int enable_pav) { return dasd_eckd_format_process_data(base, fdata, enable_pav, 0, NULL, 0, NULL); } static bool test_and_set_format_track(struct dasd_format_entry *to_format, struct dasd_block *block) { struct dasd_format_entry *format; unsigned long flags; bool rc = false; spin_lock_irqsave(&block->format_lock, flags); list_for_each_entry(format, &block->format_list, list) { if (format->track == to_format->track) { rc = true; goto out; } } list_add_tail(&to_format->list, &block->format_list); out: spin_unlock_irqrestore(&block->format_lock, flags); return rc; } static void clear_format_track(struct dasd_format_entry *format, struct dasd_block *block) { unsigned long flags; spin_lock_irqsave(&block->format_lock, flags); list_del_init(&format->list); spin_unlock_irqrestore(&block->format_lock, flags); } /* * Callback function to free ESE format requests. */ static void dasd_eckd_ese_format_cb(struct dasd_ccw_req *cqr, void *data) { struct dasd_device *device = cqr->startdev; struct dasd_eckd_private *private = device->private; struct dasd_format_entry *format = data; clear_format_track(format, cqr->basedev->block); private->count--; dasd_ffree_request(cqr, device); } static struct dasd_ccw_req * dasd_eckd_ese_format(struct dasd_device *startdev, struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; struct dasd_format_entry *format; struct format_data_t fdata; unsigned int recs_per_trk; struct dasd_ccw_req *fcqr; struct dasd_device *base; struct dasd_block *block; unsigned int blksize; struct request *req; sector_t first_trk; sector_t last_trk; sector_t curr_trk; int rc; req = cqr->callback_data; block = cqr->block; base = block->base; private = base->private; blksize = block->bp_block; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); format = &startdev->format_entry; first_trk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return ERR_PTR(rc); if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, startdev, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return ERR_PTR(-EINVAL); } format->track = curr_trk; /* test if track is already in formatting by another thread */ if (test_and_set_format_track(format, block)) return ERR_PTR(-EEXIST); fdata.start_unit = curr_trk; fdata.stop_unit = curr_trk; fdata.blksize = blksize; fdata.intensity = private->uses_cdl ? DASD_FMT_INT_COMPAT : 0; rc = dasd_eckd_format_sanity_checks(base, &fdata); if (rc) return ERR_PTR(-EINVAL); /* * We're building the request with PAV disabled as we're reusing * the former startdev. */ fcqr = dasd_eckd_build_format(base, startdev, &fdata, 0); if (IS_ERR(fcqr)) return fcqr; fcqr->callback = dasd_eckd_ese_format_cb; fcqr->callback_data = (void *) format; return fcqr; } /* * When data is read from an unformatted area of an ESE volume, this function * returns zeroed data and thereby mimics a read of zero data. * * The first unformatted track is the one that got the NRF error, the address is * encoded in the sense data. * * All tracks before have returned valid data and should not be touched. * All tracks after the unformatted track might be formatted or not. This is * currently not known, remember the processed data and return the remainder of * the request to the blocklayer in __dasd_cleanup_cqr(). */ static int dasd_eckd_ese_read(struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; sector_t first_trk, last_trk; sector_t first_blk, last_blk; unsigned int blksize, off; unsigned int recs_per_trk; struct dasd_device *base; struct req_iterator iter; struct dasd_block *block; unsigned int skip_block; unsigned int blk_count; struct request *req; struct bio_vec bv; sector_t curr_trk; sector_t end_blk; char *dst; int rc; req = (struct request *) cqr->callback_data; base = cqr->block->base; blksize = base->block->bp_block; block = cqr->block; private = base->private; skip_block = 0; blk_count = 0; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); first_trk = first_blk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = last_blk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return rc; /* sanity check if the current track from sense data is valid */ if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, base, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return -EINVAL; } /* * if not the first track got the NRF error we have to skip over valid * blocks */ if (curr_trk != first_trk) skip_block = curr_trk * recs_per_trk - first_blk; /* we have no information beyond the current track */ end_blk = (curr_trk + 1) * recs_per_trk; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { if (first_blk + blk_count >= end_blk) { cqr->proc_bytes = blk_count * blksize; return 0; } if (dst && !skip_block) { dst += off; memset(dst, 0, blksize); } else { skip_block--; } blk_count++; } } return 0; } /* * Helper function to count consecutive records of a single track. */ static int dasd_eckd_count_records(struct eckd_count *fmt_buffer, int start, int max) { int head; int i; head = fmt_buffer[start].head; /* * There are 3 conditions where we stop counting: * - if data reoccurs (same head and record may reoccur), which may * happen due to the way DASD_ECKD_CCW_READ_COUNT works * - when the head changes, because we're iterating over several tracks * then (DASD_ECKD_CCW_READ_COUNT_MT) * - when we've reached the end of sensible data in the buffer (the * record will be 0 then) */ for (i = start; i < max; i++) { if (i > start) { if ((fmt_buffer[i].head == head && fmt_buffer[i].record == 1) || fmt_buffer[i].head != head || fmt_buffer[i].record == 0) break; } } return i - start; } /* * Evaluate a given range of tracks. Data like number of records, blocksize, * record ids, and key length are compared with expected data. * * If a mismatch occurs, the corresponding error bit is set, as well as * additional information, depending on the error. */ static void dasd_eckd_format_evaluate_tracks(struct eckd_count *fmt_buffer, struct format_check_t *cdata, int rpt_max, int rpt_exp, int trk_per_cyl, int tpm) { struct ch_t geo; int max_entries; int count = 0; int trkcount; int blksize; int pos = 0; int i, j; int kl; trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; max_entries = trkcount * rpt_max; for (i = cdata->expect.start_unit; i <= cdata->expect.stop_unit; i++) { /* Calculate the correct next starting position in the buffer */ if (tpm) { while (fmt_buffer[pos].record == 0 && fmt_buffer[pos].dl == 0) { if (pos++ > max_entries) break; } } else { if (i != cdata->expect.start_unit) pos += rpt_max - count; } /* Calculate the expected geo values for the current track */ set_ch_t(&geo, i / trk_per_cyl, i % trk_per_cyl); /* Count and check number of records */ count = dasd_eckd_count_records(fmt_buffer, pos, pos + rpt_max); if (count < rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_FEW_RECORDS; break; } if (count > rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_MANY_RECORDS; break; } for (j = 0; j < count; j++, pos++) { blksize = cdata->expect.blksize; kl = 0; /* * Set special values when checking CDL formatted * devices. */ if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 0) { if (j < 3) { blksize = sizes_trk0[j] - 4; kl = 4; } } if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 1) { blksize = LABEL_SIZE - 44; kl = 44; } /* Check blocksize */ if (fmt_buffer[pos].dl != blksize) { cdata->result = DASD_FMT_ERR_BLKSIZE; goto out; } /* Check if key length is 0 */ if (fmt_buffer[pos].kl != kl) { cdata->result = DASD_FMT_ERR_KEY_LENGTH; goto out; } /* Check if record_id is correct */ if (fmt_buffer[pos].cyl != geo.cyl || fmt_buffer[pos].head != geo.head || fmt_buffer[pos].record != (j + 1)) { cdata->result = DASD_FMT_ERR_RECORD_ID; goto out; } } } out: /* * In case of no errors, we need to decrease by one * to get the correct positions. */ if (!cdata->result) { i--; pos--; } cdata->unit = i; cdata->num_records = count; cdata->rec = fmt_buffer[pos].record; cdata->blksize = fmt_buffer[pos].dl; cdata->key_length = fmt_buffer[pos].kl; } /* * Check the format of a range of tracks of a DASD. */ static int dasd_eckd_check_device_format(struct dasd_device *base, struct format_check_t *cdata, int enable_pav) { struct dasd_eckd_private *private = base->private; struct eckd_count *fmt_buffer; struct irb irb; int rpt_max, rpt_exp; int fmt_buffer_size; int trk_per_cyl; int trkcount; int tpm = 0; int rc; trk_per_cyl = private->rdc_data.trk_per_cyl; /* Get maximum and expected amount of records per track */ rpt_max = recs_per_track(&private->rdc_data, 0, 512) + 1; rpt_exp = recs_per_track(&private->rdc_data, 0, cdata->expect.blksize); trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; fmt_buffer_size = trkcount * rpt_max * sizeof(struct eckd_count); fmt_buffer = kzalloc(fmt_buffer_size, GFP_KERNEL | GFP_DMA); if (!fmt_buffer) return -ENOMEM; /* * A certain FICON feature subset is needed to operate in transport * mode. Additionally, the support for transport mode is implicitly * checked by comparing the buffer size with fcx_max_data. As long as * the buffer size is smaller we can operate in transport mode and * process multiple tracks. If not, only one track at once is being * processed using command mode. */ if ((private->features.feature[40] & 0x04) && fmt_buffer_size <= private->fcx_max_data) tpm = 1; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * If our first attempt with transport mode enabled comes back * with an incorrect length error, we're going to retry the * check with command mode. */ if (tpm && scsw_cstat(&irb.scsw) == 0x40) { tpm = 0; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc) goto out; } else { goto out; } } dasd_eckd_format_evaluate_tracks(fmt_buffer, cdata, rpt_max, rpt_exp, trk_per_cyl, tpm); out: kfree(fmt_buffer); return rc; } static void dasd_eckd_handle_terminated_request(struct dasd_ccw_req *cqr) { if (cqr->retries < 0) { cqr->status = DASD_CQR_FAILED; return; } cqr->status = DASD_CQR_FILLED; if (cqr->block && (cqr->startdev != cqr->block->base)) { dasd_eckd_reset_ccw_to_base_io(cqr); cqr->startdev = cqr->block->base; cqr->lpm = dasd_path_get_opm(cqr->block->base); } }; static dasd_erp_fn_t dasd_eckd_erp_action(struct dasd_ccw_req * cqr) { struct dasd_device *device = (struct dasd_device *) cqr->startdev; struct ccw_device *cdev = device->cdev; switch (cdev->id.cu_type) { case 0x3990: case 0x2105: case 0x2107: case 0x1750: return dasd_3990_erp_action; case 0x9343: case 0x3880: default: return dasd_default_erp_action; } } static dasd_erp_fn_t dasd_eckd_erp_postaction(struct dasd_ccw_req * cqr) { return dasd_default_erp_postaction; } static void dasd_eckd_check_for_device_change(struct dasd_device *device, struct dasd_ccw_req *cqr, struct irb *irb) { char mask; char *sense = NULL; struct dasd_eckd_private *private = device->private; /* first of all check for state change pending interrupt */ mask = DEV_STAT_ATTENTION | DEV_STAT_DEV_END | DEV_STAT_UNIT_EXCEP; if ((scsw_dstat(&irb->scsw) & mask) == mask) { /* * for alias only, not in offline processing * and only if not suspended */ if (!device->block && private->lcu && device->state == DASD_STATE_ONLINE && !test_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { /* schedule worker to reload device */ dasd_reload_device(device); } dasd_generic_handle_state_change(device); return; } sense = dasd_get_sense(irb); if (!sense) return; /* summary unit check */ if ((sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x0D) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK)) { if (test_and_set_bit(DASD_FLAG_SUC, &device->flags)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: device already notified"); return; } sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: no reason code available"); clear_bit(DASD_FLAG_SUC, &device->flags); return; } private->suc_reason = sense[8]; DBF_DEV_EVENT(DBF_NOTICE, device, "%s %x", "eckd handle summary unit check: reason", private->suc_reason); dasd_get_device(device); if (!schedule_work(&device->suc_work)) dasd_put_device(device); return; } /* service information message SIM */ if (!cqr && !(sense[27] & DASD_SENSE_BIT_0) && ((sense[6] & DASD_SIM_SENSE) == DASD_SIM_SENSE)) { dasd_3990_erp_handle_sim(device, sense); return; } /* loss of device reservation is handled via base devices only * as alias devices may be used with several bases */ if (device->block && (sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x3F) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK) && test_bit(DASD_FLAG_IS_RESERVED, &device->flags)) { if (device->features & DASD_FEATURE_FAILONSLCK) set_bit(DASD_FLAG_LOCK_STOLEN, &device->flags); clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); dev_err(&device->cdev->dev, "The device reservation was lost\n"); } } static int dasd_eckd_ras_sanity_checks(struct dasd_device *device, unsigned int first_trk, unsigned int last_trk) { struct dasd_eckd_private *private = device->private; unsigned int trks_per_vol; int rc = 0; trks_per_vol = private->real_cyl * private->rdc_data.trk_per_cyl; if (first_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Start track number %u used in the space release command is too big\n", first_trk); rc = -EINVAL; } else if (last_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Stop track number %u used in the space release command is too big\n", last_trk); rc = -EINVAL; } else if (first_trk > last_trk) { dev_warn(&device->cdev->dev, "Start track %u used in the space release command exceeds the end track\n", first_trk); rc = -EINVAL; } return rc; } /* * Helper function to count the amount of involved extents within a given range * with extent alignment in mind. */ static int count_exts(unsigned int from, unsigned int to, int trks_per_ext) { int cur_pos = 0; int count = 0; int tmp; if (from == to) return 1; /* Count first partial extent */ if (from % trks_per_ext != 0) { tmp = from + trks_per_ext - (from % trks_per_ext) - 1; if (tmp > to) tmp = to; cur_pos = tmp - from + 1; count++; } /* Count full extents */ if (to - (from + cur_pos) + 1 >= trks_per_ext) { tmp = to - ((to - trks_per_ext + 1) % trks_per_ext); count += (tmp - (from + cur_pos) + 1) / trks_per_ext; cur_pos = tmp; } /* Count last partial extent */ if (cur_pos < to) count++; return count; } /* * Release allocated space for a given range or an entire volume. */ static struct dasd_ccw_req * dasd_eckd_dso_ras(struct dasd_device *device, struct dasd_block *block, struct request *req, unsigned int first_trk, unsigned int last_trk, int by_extent) { struct dasd_eckd_private *private = device->private; struct dasd_dso_ras_ext_range *ras_range; struct dasd_rssd_features *features; struct dasd_dso_ras_data *ras_data; u16 heads, beg_head, end_head; int cur_to_trk, cur_from_trk; struct dasd_ccw_req *cqr; u32 beg_cyl, end_cyl; struct ccw1 *ccw; int trks_per_ext; size_t ras_size; size_t size; int nr_exts; void *rq; int i; if (dasd_eckd_ras_sanity_checks(device, first_trk, last_trk)) return ERR_PTR(-EINVAL); rq = req ? blk_mq_rq_to_pdu(req) : NULL; features = &private->features; trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; nr_exts = 0; if (by_extent) nr_exts = count_exts(first_trk, last_trk, trks_per_ext); ras_size = sizeof(*ras_data); size = ras_size + (nr_exts * sizeof(*ras_range)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, size, device, rq); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate RAS request"); return cqr; } ras_data = cqr->data; memset(ras_data, 0, size); ras_data->order = DSO_ORDER_RAS; ras_data->flags.vol_type = 0; /* CKD volume */ /* Release specified extents or entire volume */ ras_data->op_flags.by_extent = by_extent; /* * This bit guarantees initialisation of tracks within an extent that is * not fully specified, but is only supported with a certain feature * subset. */ ras_data->op_flags.guarantee_init = !!(features->feature[56] & 0x01); ras_data->lss = private->ned->ID; ras_data->dev_addr = private->ned->unit_addr; ras_data->nr_exts = nr_exts; if (by_extent) { heads = private->rdc_data.trk_per_cyl; cur_from_trk = first_trk; cur_to_trk = first_trk + trks_per_ext - (first_trk % trks_per_ext) - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range = (struct dasd_dso_ras_ext_range *)(cqr->data + ras_size); for (i = 0; i < nr_exts; i++) { beg_cyl = cur_from_trk / heads; beg_head = cur_from_trk % heads; end_cyl = cur_to_trk / heads; end_head = cur_to_trk % heads; set_ch_t(&ras_range->beg_ext, beg_cyl, beg_head); set_ch_t(&ras_range->end_ext, end_cyl, end_head); cur_from_trk = cur_to_trk + 1; cur_to_trk = cur_from_trk + trks_per_ext - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range++; } } ccw = cqr->cpaddr; ccw->cda = (__u32)(addr_t)cqr->data; ccw->cmd_code = DASD_ECKD_CCW_DSO; ccw->count = size; cqr->startdev = device; cqr->memdev = device; cqr->block = block; cqr->retries = 256; cqr->expires = device->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_release_space_full(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_dso_ras(device, NULL, NULL, 0, 0, 0); if (IS_ERR(cqr)) return PTR_ERR(cqr); rc = dasd_sleep_on_interruptible(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_release_space_trks(struct dasd_device *device, unsigned int from, unsigned int to) { struct dasd_eckd_private *private = device->private; struct dasd_block *block = device->block; struct dasd_ccw_req *cqr, *n; struct list_head ras_queue; unsigned int device_exts; int trks_per_ext; int stop, step; int cur_pos; int rc = 0; int retry; INIT_LIST_HEAD(&ras_queue); device_exts = private->real_cyl / dasd_eckd_ext_size(device); trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; /* Make sure device limits are not exceeded */ step = trks_per_ext * min(device_exts, DASD_ECKD_RAS_EXTS_MAX); cur_pos = from; do { retry = 0; while (cur_pos < to) { stop = cur_pos + step - ((cur_pos + step) % trks_per_ext) - 1; if (stop > to) stop = to; cqr = dasd_eckd_dso_ras(device, NULL, NULL, cur_pos, stop, 1); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&ras_queue)) goto out; retry = 1; break; } goto err_out; } spin_lock_irq(&block->queue_lock); list_add_tail(&cqr->blocklist, &ras_queue); spin_unlock_irq(&block->queue_lock); cur_pos = stop + 1; } rc = dasd_sleep_on_queue_interruptible(&ras_queue); err_out: list_for_each_entry_safe(cqr, n, &ras_queue, blocklist) { device = cqr->startdev; private = device->private; spin_lock_irq(&block->queue_lock); list_del_init(&cqr->blocklist); spin_unlock_irq(&block->queue_lock); dasd_sfree_request(cqr, device); private->count--; } } while (retry); out: return rc; } static int dasd_eckd_release_space(struct dasd_device *device, struct format_data_t *rdata) { if (rdata->intensity & DASD_FMT_INT_ESE_FULL) return dasd_eckd_release_space_full(device); else if (rdata->intensity == 0) return dasd_eckd_release_space_trks(device, rdata->start_unit, rdata->stop_unit); else return -EINVAL; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_single( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_eckd_private *private; unsigned long *idaws; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int off; int count, cidaw, cplength, datasize; sector_t recid; unsigned char cmd, rcmd; int use_prefix; struct dasd_device *basedev; basedev = block->base; private = basedev->private; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_MT; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_MT; else return ERR_PTR(-EINVAL); /* Check struct bio and count the number of blocks for the request. */ count = 0; cidaw = 0; rq_for_each_segment(bv, req, iter) { if (bv.bv_len & (blksize - 1)) /* Eckd can only do full blocks. */ return ERR_PTR(-EINVAL); count += bv.bv_len >> (block->s2b_shift + 9); if (idal_is_needed (page_address(bv.bv_page), bv.bv_len)) cidaw += bv.bv_len >> (block->s2b_shift + 9); } /* Paranoia. */ if (count != last_rec - first_rec + 1) return ERR_PTR(-EINVAL); /* use the prefix command if available */ use_prefix = private->features.feature[8] & 0x01; if (use_prefix) { /* 1x prefix + number of blocks */ cplength = 2 + count; /* 1x prefix + cidaws*sizeof(long) */ datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } else { /* 1x define extent + 1x locate record + number of blocks */ cplength = 2 + count; /* 1x define extent + 1x locate record + cidaws*sizeof(long) */ datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } /* Find out the number of additional locate record ccws for cdl. */ if (private->uses_cdl && first_rec < 2*blk_per_trk) { if (last_rec >= 2*blk_per_trk) count = 2*blk_per_trk - first_rec; cplength += count; datasize += count*sizeof(struct LO_eckd_data); } /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* First ccw is define extent or prefix. */ if (use_prefix) { if (prefix(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (unsigned long *) (cqr->data + sizeof(struct PFX_eckd_data)); } else { if (define_extent(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, 0) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (unsigned long *) (cqr->data + sizeof(struct DE_eckd_data)); } /* Build locate_record+read/write/ccws. */ LO_data = (struct LO_eckd_data *) (idaws + cidaw); recid = first_rec; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) { /* Only standard blocks so there is just one locate record. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, first_trk, first_offs + 1, last_rec - recid + 1, cmd, basedev, blksize); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); if (dasd_page_cache) { char *copy = kmem_cache_alloc(dasd_page_cache, GFP_DMA | __GFP_NOWARN); if (copy && rq_data_dir(req) == WRITE) memcpy(copy + bv.bv_offset, dst, bv.bv_len); if (copy) dst = copy + bv.bv_offset; } for (off = 0; off < bv.bv_len; off += blksize) { sector_t trkid = recid; unsigned int recoffs = sector_div(trkid, blk_per_trk); rcmd = cmd; count = blksize; /* Locate record for cdl special block ? */ if (private->uses_cdl && recid < 2*blk_per_trk) { if (dasd_eckd_cdl_special(blk_per_trk, recid)){ rcmd |= 0x8; count = dasd_eckd_cdl_reclen(recid); if (count < blksize && rq_data_dir(req) == READ) memset(dst + count, 0xe5, blksize - count); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, 1, rcmd, basedev, count); } /* Locate record for standard blocks ? */ if (private->uses_cdl && recid == 2*blk_per_trk) { ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, last_rec - recid + 1, cmd, basedev, count); } /* Read/write ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = rcmd; ccw->count = count; if (idal_is_needed(dst, blksize)) { ccw->cda = (__u32)(addr_t) idaws; ccw->flags = CCW_FLAG_IDA; idaws = idal_create_words(idaws, dst, blksize); } else { ccw->cda = (__u32)(addr_t) dst; ccw->flags = 0; } ccw++; dst += blksize; recid++; } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { unsigned long *idaws; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *idaw_dst; unsigned int cidaw, cplength, datasize; unsigned int tlf; sector_t recid; unsigned char cmd; struct dasd_device *basedev; unsigned int trkcount, count, count_to_trk_end; unsigned int idaw_len, seg_len, part_len, len_to_track_end; unsigned char new_track, end_idaw; sector_t trkid; unsigned int recoffs; basedev = block->base; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK_DATA; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; else return ERR_PTR(-EINVAL); /* Track based I/O needs IDAWs for each page, and not just for * 64 bit addresses. We need additional idals for pages * that get filled from two tracks, so we use the number * of records as upper limit. */ cidaw = last_rec - first_rec + 1; trkcount = last_trk - first_trk + 1; /* 1x prefix + one read/write ccw per track */ cplength = 1 + trkcount; datasize = sizeof(struct PFX_eckd_data) + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; if (prefix_LRE(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev, 1 /* format */, first_offs + 1, trkcount, blksize, tlf) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } /* * The translation of request into ccw programs must meet the * following conditions: * - all idaws but the first and the last must address full pages * (or 2K blocks on 31-bit) * - the scope of a ccw and it's idal ends with the track boundaries */ idaws = (unsigned long *) (cqr->data + sizeof(struct PFX_eckd_data)); recid = first_rec; new_track = 1; end_idaw = 0; len_to_track_end = 0; idaw_dst = NULL; idaw_len = 0; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; recoffs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - recoffs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; ccw->count = len_to_track_end; ccw->cda = (__u32)(addr_t)idaws; ccw->flags = CCW_FLAG_IDA; ccw++; recid += count; new_track = 0; /* first idaw for a ccw may start anywhere */ if (!idaw_dst) idaw_dst = dst; } /* If we start a new idaw, we must make sure that it * starts on an IDA_BLOCK_SIZE boundary. * If we continue an idaw, we must make sure that the * current segment begins where the so far accumulated * idaw ends */ if (!idaw_dst) { if (__pa(dst) & (IDA_BLOCK_SIZE-1)) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } else idaw_dst = dst; } if ((idaw_dst + idaw_len) != dst) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; dst += part_len; idaw_len += part_len; len_to_track_end -= part_len; /* collected memory area ends on an IDA_BLOCK border, * -> create an idaw * idal_create_words will handle cases where idaw_len * is larger then IDA_BLOCK_SIZE */ if (!(__pa(idaw_dst + idaw_len) & (IDA_BLOCK_SIZE-1))) end_idaw = 1; /* We also need to end the idaw at track end */ if (!len_to_track_end) { new_track = 1; end_idaw = 1; } if (end_idaw) { idaws = idal_create_words(idaws, idaw_dst, idaw_len); idaw_dst = NULL; idaw_len = 0; end_idaw = 0; } } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static int prepare_itcw(struct itcw *itcw, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int total_data_size, unsigned int tlf, unsigned int blk_per_trk) { struct PFX_eckd_data pfxdata; struct dasd_eckd_private *basepriv, *startpriv; struct DE_eckd_data *dedata; struct LRE_eckd_data *lredata; struct dcw *dcw; u32 begcyl, endcyl; u16 heads, beghead, endhead; u8 pfx_cmd; int rc = 0; int sector = 0; int dn, d; /* setup prefix data */ basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata.define_extent; lredata = &pfxdata.locate_record; memset(&pfxdata, 0, sizeof(pfxdata)); pfxdata.format = 1; /* PFX with LRE */ pfxdata.base_address = basepriv->ned->unit_addr; pfxdata.base_lss = basepriv->ned->ID; pfxdata.validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata.validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata.validity.verify_base = 1; pfxdata.validity.hyper_pav = 1; } switch (cmd) { case DASD_ECKD_CCW_READ_TRACK_DATA: dedata->mask.perm = 0x1; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x0C; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: dedata->mask.perm = 0x02; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; rc = set_timestamp(NULL, dedata, basedev); dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x3F; lredata->extended_operation = 0x23; lredata->auxiliary.check_bytes = 0x2; /* * If XRC is supported the System Time Stamp is set. The * validity of the time stamp must be reflected in the prefix * data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata.validity.time_stamp = 1; /* 'Time Stamp Valid' */ pfx_cmd = DASD_ECKD_CCW_PFX; break; case DASD_ECKD_CCW_READ_COUNT_MT: dedata->mask.perm = 0x1; dedata->attributes.operation = DASD_BYPASS_CACHE; dedata->ga_extended |= 0x42; dedata->blk_size = blksize; lredata->operation.orientation = 0x2; lredata->operation.operation = 0x16; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; default: DBF_DEV_EVENT(DBF_ERR, basedev, "prepare itcw, unknown opcode 0x%x", cmd); BUG(); break; } if (rc) return rc; dedata->attributes.mode = 0x3; /* ECKD */ heads = basepriv->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (dedata->attributes.operation == DASD_SEQ_PRESTAGE || dedata->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + basepriv->attrib.nr_cyl < basepriv->real_cyl) endcyl += basepriv->attrib.nr_cyl; else endcyl = (basepriv->real_cyl - 1); } set_ch_t(&dedata->beg_ext, begcyl, beghead); set_ch_t(&dedata->end_ext, endcyl, endhead); dedata->ep_format = 0x20; /* records per track is valid */ dedata->ep_rec_per_track = blk_per_trk; if (rec_on_trk) { switch (basepriv->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(blksize + 6, 232); d = 9 + ceil_quot(blksize + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(blksize + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } if (cmd == DASD_ECKD_CCW_READ_COUNT_MT) { lredata->auxiliary.length_valid = 0; lredata->auxiliary.length_scope = 0; lredata->sector = 0xff; } else { lredata->auxiliary.length_valid = 1; lredata->auxiliary.length_scope = 1; lredata->sector = sector; } lredata->auxiliary.imbedded_ccw_valid = 1; lredata->length = tlf; lredata->imbedded_ccw = cmd; lredata->count = count; set_ch_t(&lredata->seek_addr, begcyl, beghead); lredata->search_arg.cyl = lredata->seek_addr.cyl; lredata->search_arg.head = lredata->seek_addr.head; lredata->search_arg.record = rec_on_trk; dcw = itcw_add_dcw(itcw, pfx_cmd, 0, &pfxdata, sizeof(pfxdata), total_data_size); return PTR_ERR_OR_ZERO(dcw); } static struct dasd_ccw_req *dasd_eckd_build_cp_tpm_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_ccw_req *cqr; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int trkcount, ctidaw; unsigned char cmd; struct dasd_device *basedev; unsigned int tlf; struct itcw *itcw; struct tidaw *last_tidaw = NULL; int itcw_op; size_t itcw_size; u8 tidaw_flags; unsigned int seg_len, part_len, len_to_track_end; unsigned char new_track; sector_t recid, trkid; unsigned int offs; unsigned int count, count_to_trk_end; int ret; basedev = block->base; if (rq_data_dir(req) == READ) { cmd = DASD_ECKD_CCW_READ_TRACK_DATA; itcw_op = ITCW_OP_READ; } else if (rq_data_dir(req) == WRITE) { cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; itcw_op = ITCW_OP_WRITE; } else return ERR_PTR(-EINVAL); /* trackbased I/O needs address all memory via TIDAWs, * not just for 64 bit addresses. This allows us to map * each segment directly to one tidaw. * In the case of write requests, additional tidaws may * be needed when a segment crosses a track boundary. */ trkcount = last_trk - first_trk + 1; ctidaw = 0; rq_for_each_segment(bv, req, iter) { ++ctidaw; } if (rq_data_dir(req) == WRITE) ctidaw += (last_trk - first_trk); /* Allocate the ccw request. */ itcw_size = itcw_calc_size(0, ctidaw, 0); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; itcw = itcw_init(cqr->data, itcw_size, itcw_op, 0, ctidaw, 0); if (IS_ERR(itcw)) { ret = -EINVAL; goto out_error; } cqr->cpaddr = itcw_get_tcw(itcw); if (prepare_itcw(itcw, first_trk, last_trk, cmd, basedev, startdev, first_offs + 1, trkcount, blksize, (last_rec - first_rec + 1) * blksize, tlf, blk_per_trk) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ ret = -EAGAIN; goto out_error; } len_to_track_end = 0; /* * A tidaw can address 4k of memory, but must not cross page boundaries * We can let the block layer handle this by setting * blk_queue_segment_boundary to page boundaries and * blk_max_segment_size to page size when setting up the request queue. * For write requests, a TIDAW must not cross track boundaries, because * we have to set the CBC flag on the last tidaw for each track. */ if (rq_data_dir(req) == WRITE) { new_track = 1; recid = first_rec; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; offs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - offs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; recid += count; new_track = 0; } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; len_to_track_end -= part_len; /* We need to end the tidaw at track end */ if (!len_to_track_end) { new_track = 1; tidaw_flags = TIDAW_FLAGS_INSERT_CBC; } else tidaw_flags = 0; last_tidaw = itcw_add_tidaw(itcw, tidaw_flags, dst, part_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } dst += part_len; } } } else { rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); last_tidaw = itcw_add_tidaw(itcw, 0x00, dst, bv.bv_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } } } last_tidaw->flags |= TIDAW_FLAGS_LAST; last_tidaw->flags &= ~TIDAW_FLAGS_INSERT_CBC; itcw_finalize(itcw); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } return cqr; out_error: dasd_sfree_request(cqr, startdev); return ERR_PTR(ret); } static struct dasd_ccw_req *dasd_eckd_build_cp(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { int cmdrtd, cmdwtd; int use_prefix; int fcx_multitrack; struct dasd_eckd_private *private; struct dasd_device *basedev; sector_t first_rec, last_rec; sector_t first_trk, last_trk; unsigned int first_offs, last_offs; unsigned int blk_per_trk, blksize; int cdlspecial; unsigned int data_size; struct dasd_ccw_req *cqr; basedev = block->base; private = basedev->private; /* Calculate number of blocks/records per track. */ blksize = block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); if (blk_per_trk == 0) return ERR_PTR(-EINVAL); /* Calculate record id of first and last block. */ first_rec = first_trk = blk_rq_pos(req) >> block->s2b_shift; first_offs = sector_div(first_trk, blk_per_trk); last_rec = last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; last_offs = sector_div(last_trk, blk_per_trk); cdlspecial = (private->uses_cdl && first_rec < 2*blk_per_trk); fcx_multitrack = private->features.feature[40] & 0x20; data_size = blk_rq_bytes(req); if (data_size % blksize) return ERR_PTR(-EINVAL); /* tpm write request add CBC data on each track boundary */ if (rq_data_dir(req) == WRITE) data_size += (last_trk - first_trk) * 4; /* is read track data and write track data in command mode supported? */ cmdrtd = private->features.feature[9] & 0x20; cmdwtd = private->features.feature[12] & 0x40; use_prefix = private->features.feature[8] & 0x01; cqr = NULL; if (cdlspecial || dasd_page_cache) { /* do nothing, just fall through to the cmd mode single case */ } else if ((data_size <= private->fcx_max_data) && (fcx_multitrack || (first_trk == last_trk))) { cqr = dasd_eckd_build_cp_tpm_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } else if (use_prefix && (((rq_data_dir(req) == READ) && cmdrtd) || ((rq_data_dir(req) == WRITE) && cmdwtd))) { cqr = dasd_eckd_build_cp_cmd_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } if (!cqr) cqr = dasd_eckd_build_cp_cmd_single(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_raw(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { sector_t start_padding_sectors, end_sector_offset, end_padding_sectors; unsigned int seg_len, len_to_track_end; unsigned int cidaw, cplength, datasize; sector_t first_trk, last_trk, sectors; struct dasd_eckd_private *base_priv; struct dasd_device *basedev; struct req_iterator iter; struct dasd_ccw_req *cqr; unsigned int first_offs; unsigned int trkcount; unsigned long *idaws; unsigned int size; unsigned char cmd; struct bio_vec bv; struct ccw1 *ccw; int use_prefix; void *data; char *dst; /* * raw track access needs to be mutiple of 64k and on 64k boundary * For read requests we can fix an incorrect alignment by padding * the request with dummy pages. */ start_padding_sectors = blk_rq_pos(req) % DASD_RAW_SECTORS_PER_TRACK; end_sector_offset = (blk_rq_pos(req) + blk_rq_sectors(req)) % DASD_RAW_SECTORS_PER_TRACK; end_padding_sectors = (DASD_RAW_SECTORS_PER_TRACK - end_sector_offset) % DASD_RAW_SECTORS_PER_TRACK; basedev = block->base; if ((start_padding_sectors || end_padding_sectors) && (rq_data_dir(req) == WRITE)) { DBF_DEV_EVENT(DBF_ERR, basedev, "raw write not track aligned (%llu,%llu) req %p", start_padding_sectors, end_padding_sectors, req); return ERR_PTR(-EINVAL); } first_trk = blk_rq_pos(req) / DASD_RAW_SECTORS_PER_TRACK; last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) / DASD_RAW_SECTORS_PER_TRACK; trkcount = last_trk - first_trk + 1; first_offs = 0; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_FULL_TRACK; else return ERR_PTR(-EINVAL); /* * Raw track based I/O needs IDAWs for each page, * and not just for 64 bit addresses. */ cidaw = trkcount * DASD_RAW_BLOCK_PER_TRACK; /* * struct PFX_eckd_data and struct LRE_eckd_data can have up to 2 bytes * of extended parameter. This is needed for write full track. */ base_priv = basedev->private; use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1 + trkcount; size = sizeof(struct PFX_eckd_data) + 2; } else { cplength = 2 + trkcount; size = sizeof(struct DE_eckd_data) + sizeof(struct LRE_eckd_data) + 2; } size = ALIGN(size, 8); datasize = size + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; data = cqr->data; if (use_prefix) { prefix_LRE(ccw++, data, first_trk, last_trk, cmd, basedev, startdev, 1, first_offs + 1, trkcount, 0, 0); } else { define_extent(ccw++, data, first_trk, last_trk, cmd, basedev, 0); ccw[-1].flags |= CCW_FLAG_CC; data += sizeof(struct DE_eckd_data); locate_record_ext(ccw++, data, first_trk, first_offs + 1, trkcount, cmd, basedev, 0, 0); } idaws = (unsigned long *)(cqr->data + size); len_to_track_end = 0; if (start_padding_sectors) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536 - start_padding_sectors * 512; ccw->cda = (__u32)(addr_t)idaws; ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; for (sectors = 0; sectors < start_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; if (cmd == DASD_ECKD_CCW_READ_TRACK) memset(dst, 0, seg_len); if (!len_to_track_end) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536; ccw->cda = (__u32)(addr_t)idaws; ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; } len_to_track_end -= seg_len; idaws = idal_create_words(idaws, dst, seg_len); } for (sectors = 0; sectors < end_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_free_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *cda; unsigned int blksize, blk_per_trk, off; sector_t recid; int status; if (!dasd_page_cache) goto out; private = cqr->block->base->private; blksize = cqr->block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); recid = blk_rq_pos(req) >> cqr->block->s2b_shift; ccw = cqr->cpaddr; /* Skip over define extent & locate record. */ ccw++; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) ccw++; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { /* Skip locate record. */ if (private->uses_cdl && recid <= 2*blk_per_trk) ccw++; if (dst) { if (ccw->flags & CCW_FLAG_IDA) cda = *((char **)((addr_t) ccw->cda)); else cda = (char *)((addr_t) ccw->cda); if (dst != cda) { if (rq_data_dir(req) == READ) memcpy(dst, cda, bv.bv_len); kmem_cache_free(dasd_page_cache, (void *)((addr_t)cda & PAGE_MASK)); } dst = NULL; } ccw++; recid++; } } out: status = cqr->status == DASD_CQR_DONE; dasd_sfree_request(cqr, cqr->memdev); return status; } /* * Modify ccw/tcw in cqr so it can be started on a base device. * * Note that this is not enough to restart the cqr! * Either reset cqr->startdev as well (summary unit check handling) * or restart via separate cqr (as in ERP handling). */ void dasd_eckd_reset_ccw_to_base_io(struct dasd_ccw_req *cqr) { struct ccw1 *ccw; struct PFX_eckd_data *pfxdata; struct tcw *tcw; struct tccb *tccb; struct dcw *dcw; if (cqr->cpmode == 1) { tcw = cqr->cpaddr; tccb = tcw_get_tccb(tcw); dcw = (struct dcw *)&tccb->tca[0]; pfxdata = (struct PFX_eckd_data *)&dcw->cd[0]; pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } else { ccw = cqr->cpaddr; pfxdata = cqr->data; if (ccw->cmd_code == DASD_ECKD_CCW_PFX) { pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } } } #define DASD_ECKD_CHANQ_MAX_SIZE 4 static struct dasd_ccw_req *dasd_eckd_build_alias_cp(struct dasd_device *base, struct dasd_block *block, struct request *req) { struct dasd_eckd_private *private; struct dasd_device *startdev; unsigned long flags; struct dasd_ccw_req *cqr; startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; private = startdev->private; if (private->count >= DASD_ECKD_CHANQ_MAX_SIZE) return ERR_PTR(-EBUSY); spin_lock_irqsave(get_ccwdev_lock(startdev->cdev), flags); private->count++; if ((base->features & DASD_FEATURE_USERAW)) cqr = dasd_eckd_build_cp_raw(startdev, block, req); else cqr = dasd_eckd_build_cp(startdev, block, req); if (IS_ERR(cqr)) private->count--; spin_unlock_irqrestore(get_ccwdev_lock(startdev->cdev), flags); return cqr; } static int dasd_eckd_free_alias_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; unsigned long flags; spin_lock_irqsave(get_ccwdev_lock(cqr->memdev->cdev), flags); private = cqr->memdev->private; private->count--; spin_unlock_irqrestore(get_ccwdev_lock(cqr->memdev->cdev), flags); return dasd_eckd_free_cp(cqr, req); } static int dasd_eckd_fill_info(struct dasd_device * device, struct dasd_information2_t * info) { struct dasd_eckd_private *private = device->private; info->label_block = 2; info->FBA_layout = private->uses_cdl ? 0 : 1; info->format = private->uses_cdl ? DASD_FORMAT_CDL : DASD_FORMAT_LDL; info->characteristics_size = sizeof(private->rdc_data); memcpy(info->characteristics, &private->rdc_data, sizeof(private->rdc_data)); info->confdata_size = min((unsigned long)private->conf_len, sizeof(info->configuration_data)); memcpy(info->configuration_data, private->conf_data, info->confdata_size); return 0; } /* * SECTION: ioctl functions for eckd devices. */ /* * Release device ioctl. * Buils a channel programm to releases a prior reserved * (see dasd_eckd_reserve) device. */ static int dasd_eckd_release(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RELEASE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)(addr_t) cqr->data; cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Reserve device ioctl. * Options are set to 'synchronous wait for interrupt' and * 'timeout the request'. This leads to a terminate IO if * the interrupt is outstanding for a certain time. */ static int dasd_eckd_reserve(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RESERVE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)(addr_t) cqr->data; cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Steal lock ioctl - unconditional reserve device. * Buils a channel programm to break a device's reservation. * (unconditional reserve) */ static int dasd_eckd_steal_lock(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SLCK; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)(addr_t) cqr->data; cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * SNID - Sense Path Group ID * This ioctl may be used in situations where I/O is stalled due to * a reserve, so if the normal dasd_smalloc_request fails, we use the * preallocated dasd_reserve_req. */ static int dasd_eckd_snid(struct dasd_device *device, void __user *argp) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; struct dasd_snid_ioctl_data usrparm; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) return -EFAULT; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, sizeof(struct dasd_snid_data), device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SNID; ccw->flags |= CCW_FLAG_SLI; ccw->count = 12; ccw->cda = (__u32)(addr_t) cqr->data; cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->lpm = usrparm.path_mask; rc = dasd_sleep_on_immediatly(cqr); /* verify that I/O processing didn't modify the path mask */ if (!rc && usrparm.path_mask && (cqr->lpm != usrparm.path_mask)) rc = -EIO; if (!rc) { usrparm.data = *((struct dasd_snid_data *)cqr->data); if (copy_to_user(argp, &usrparm, sizeof(usrparm))) rc = -EFAULT; } if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Read performance statistics */ static int dasd_eckd_performance(struct dasd_device *device, void __user *argp) { struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_perf_stats_t *stats; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_perf_stats_t)), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->retries = 0; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x01; /* Performance Statistics */ prssdp->varies[1] = 0x01; /* Perf Statistics for the Subsystem */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)(addr_t) prssdp; /* Read Subsystem Data - Performance Statistics */ stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); memset(stats, 0, sizeof(struct dasd_rssd_perf_stats_t)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_perf_stats_t); ccw->cda = (__u32)(addr_t) stats; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); if (copy_to_user(argp, stats, sizeof(struct dasd_rssd_perf_stats_t))) rc = -EFAULT; } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Get attributes (cache operations) * Returnes the cache attributes used in Define Extend (DE). */ static int dasd_eckd_get_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib = private->attrib; int rc; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; rc = 0; if (copy_to_user(argp, (long *) &attrib, sizeof(struct attrib_data_t))) rc = -EFAULT; return rc; } /* * Set attributes (cache operations) * Stores the attributes for cache operation to be used in Define Extend (DE). */ static int dasd_eckd_set_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; if (copy_from_user(&attrib, argp, sizeof(struct attrib_data_t))) return -EFAULT; private->attrib = attrib; dev_info(&device->cdev->dev, "The DASD cache mode was set to %x (%i cylinder prestage)\n", private->attrib.operation, private->attrib.nr_cyl); return 0; } /* * Issue syscall I/O to EMC Symmetrix array. * CCWs are PSF and RSSD */ static int dasd_symm_io(struct dasd_device *device, void __user *argp) { struct dasd_symmio_parms usrparm; char *psf_data, *rssd_result; struct dasd_ccw_req *cqr; struct ccw1 *ccw; char psf0, psf1; int rc; if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RAWIO)) return -EACCES; psf0 = psf1 = 0; /* Copy parms from caller */ rc = -EFAULT; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) goto out; if (is_compat_task()) { /* Make sure pointers are sane even on 31 bit. */ rc = -EINVAL; if ((usrparm.psf_data >> 32) != 0) goto out; if ((usrparm.rssd_result >> 32) != 0) goto out; usrparm.psf_data &= 0x7fffffffULL; usrparm.rssd_result &= 0x7fffffffULL; } /* at least 2 bytes are accessed and should be allocated */ if (usrparm.psf_data_len < 2) { DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl invalid data length %d", usrparm.psf_data_len); rc = -EINVAL; goto out; } /* alloc I/O data area */ psf_data = kzalloc(usrparm.psf_data_len, GFP_KERNEL | GFP_DMA); rssd_result = kzalloc(usrparm.rssd_result_len, GFP_KERNEL | GFP_DMA); if (!psf_data || !rssd_result) { rc = -ENOMEM; goto out_free; } /* get syscall header from user space */ rc = -EFAULT; if (copy_from_user(psf_data, (void __user *)(unsigned long) usrparm.psf_data, usrparm.psf_data_len)) goto out_free; psf0 = psf_data[0]; psf1 = psf_data[1]; /* setup CCWs for PSF + RSSD */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2, 0, device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); rc = PTR_ERR(cqr); goto out_free; } cqr->startdev = device; cqr->memdev = device; cqr->retries = 3; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Build the ccws */ ccw = cqr->cpaddr; /* PSF ccw */ ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = usrparm.psf_data_len; ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)(addr_t) psf_data; ccw++; /* RSSD ccw */ ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = usrparm.rssd_result_len; ccw->flags = CCW_FLAG_SLI ; ccw->cda = (__u32)(addr_t) rssd_result; rc = dasd_sleep_on(cqr); if (rc) goto out_sfree; rc = -EFAULT; if (copy_to_user((void __user *)(unsigned long) usrparm.rssd_result, rssd_result, usrparm.rssd_result_len)) goto out_sfree; rc = 0; out_sfree: dasd_sfree_request(cqr, cqr->memdev); out_free: kfree(rssd_result); kfree(psf_data); out: DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl (0x%02x 0x%02x): rc=%d", (int) psf0, (int) psf1, rc); return rc; } static int dasd_eckd_ioctl(struct dasd_block *block, unsigned int cmd, void __user *argp) { struct dasd_device *device = block->base; switch (cmd) { case BIODASDGATTR: return dasd_eckd_get_attrib(device, argp); case BIODASDSATTR: return dasd_eckd_set_attrib(device, argp); case BIODASDPSRD: return dasd_eckd_performance(device, argp); case BIODASDRLSE: return dasd_eckd_release(device); case BIODASDRSRV: return dasd_eckd_reserve(device); case BIODASDSLCK: return dasd_eckd_steal_lock(device); case BIODASDSNID: return dasd_eckd_snid(device, argp); case BIODASDSYMMIO: return dasd_symm_io(device, argp); default: return -ENOTTY; } } /* * Dump the range of CCWs into 'page' buffer * and return number of printed chars. */ static int dasd_eckd_dump_ccw_range(struct ccw1 *from, struct ccw1 *to, char *page) { int len, count; char *datap; len = 0; while (from <= to) { len += sprintf(page + len, PRINTK_HEADER " CCW %p: %08X %08X DAT:", from, ((int *) from)[0], ((int *) from)[1]); /* get pointer to data (consider IDALs) */ if (from->flags & CCW_FLAG_IDA) datap = (char *) *((addr_t *) (addr_t) from->cda); else datap = (char *) ((addr_t) from->cda); /* dump data (max 32 bytes) */ for (count = 0; count < from->count && count < 32; count++) { if (count % 8 == 0) len += sprintf(page + len, " "); if (count % 4 == 0) len += sprintf(page + len, " "); len += sprintf(page + len, "%02x", datap[count]); } len += sprintf(page + len, "\n"); from++; } return len; } static void dasd_eckd_dump_sense_dbf(struct dasd_device *device, struct irb *irb, char *reason) { u64 *sense; u64 *stat; sense = (u64 *) dasd_get_sense(irb); stat = (u64 *) &irb->scsw; if (sense) { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : " "%016llx %016llx %016llx %016llx", reason, *stat, *((u32 *) (stat + 1)), sense[0], sense[1], sense[2], sense[3]); } else { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : %s", reason, *stat, *((u32 *) (stat + 1)), "NO VALID SENSE"); } } /* * Print sense data and related channel program. * Parts are printed because printk buffer is only 1024 bytes. */ static void dasd_eckd_dump_sense_ccw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { char *page; struct ccw1 *first, *last, *fail, *from, *to; int len, sl, sct; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to dump sense data\n"); return; } /* dump the sense data */ len = sprintf(page, PRINTK_HEADER " I/O status report for device %s:\n", dev_name(&device->cdev->dev)); len += sprintf(page + len, PRINTK_HEADER " in req: %p CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X " "CS:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), req ? req->intrc : 0); len += sprintf(page + len, PRINTK_HEADER " device %s: Failing CCW: %p\n", dev_name(&device->cdev->dev), (void *) (addr_t) irb->scsw.cmd.cpa); if (irb->esw.esw0.erw.cons) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, PRINTK_HEADER " Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", irb->ecw[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (irb->ecw[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 24 Byte: %x MSG %x, " "%s MSGb to SYSOP\n", irb->ecw[7] >> 4, irb->ecw[7] & 0x0f, irb->ecw[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 32 Byte: Format: %x " "Exception class %x\n", irb->ecw[6] & 0x0f, irb->ecw[22] >> 4); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO VALID SENSE AVAILABLE\n"); } printk(KERN_ERR "%s", page); if (req) { /* req == NULL for unsolicited interrupts */ /* dump the Channel Program (max 140 Bytes per line) */ /* Count CCW and print first CCWs (maximum 1024 % 140 = 7) */ first = req->cpaddr; for (last = first; last->flags & (CCW_FLAG_CC | CCW_FLAG_DC); last++); to = min(first + 6, last); len = sprintf(page, PRINTK_HEADER " Related CP in req: %p\n", req); dasd_eckd_dump_ccw_range(first, to, page + len); printk(KERN_ERR "%s", page); /* print failing CCW area (maximum 4) */ /* scsw->cda is either valid or zero */ len = 0; from = ++to; fail = (struct ccw1 *)(addr_t) irb->scsw.cmd.cpa; /* failing CCW */ if (from < fail - 2) { from = fail - 2; /* there is a gap - print header */ len += sprintf(page, PRINTK_HEADER "......\n"); } to = min(fail + 1, last); len += dasd_eckd_dump_ccw_range(from, to, page + len); /* print last CCWs (maximum 2) */ from = max(from, ++to); if (from < last - 1) { from = last - 1; /* there is a gap - print header */ len += sprintf(page + len, PRINTK_HEADER "......\n"); } len += dasd_eckd_dump_ccw_range(from, last, page + len); if (len > 0) printk(KERN_ERR "%s", page); } free_page((unsigned long) page); } /* * Print sense data from a tcw. */ static void dasd_eckd_dump_sense_tcw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { char *page; int len, sl, sct, residual; struct tsb *tsb; u8 *sense, *rcq; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, " %s", "No memory to dump sense data"); return; } /* dump the sense data */ len = sprintf(page, PRINTK_HEADER " I/O status report for device %s:\n", dev_name(&device->cdev->dev)); len += sprintf(page + len, PRINTK_HEADER " in req: %p CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X " "CS:%02X fcxs:%02X schxs:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), irb->scsw.tm.fcxs, (irb->scsw.tm.ifob << 7) | irb->scsw.tm.sesq, req ? req->intrc : 0); len += sprintf(page + len, PRINTK_HEADER " device %s: Failing TCW: %p\n", dev_name(&device->cdev->dev), (void *) (addr_t) irb->scsw.tm.tcw); tsb = NULL; sense = NULL; if (irb->scsw.tm.tcw && (irb->scsw.tm.fcxs & 0x01)) tsb = tcw_get_tsb( (struct tcw *)(unsigned long)irb->scsw.tm.tcw); if (tsb) { len += sprintf(page + len, PRINTK_HEADER " tsb->length %d\n", tsb->length); len += sprintf(page + len, PRINTK_HEADER " tsb->flags %x\n", tsb->flags); len += sprintf(page + len, PRINTK_HEADER " tsb->dcw_offset %d\n", tsb->dcw_offset); len += sprintf(page + len, PRINTK_HEADER " tsb->count %d\n", tsb->count); residual = tsb->count - 28; len += sprintf(page + len, PRINTK_HEADER " residual %d\n", residual); switch (tsb->flags & 0x07) { case 1: /* tsa_iostat */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_time %d\n", tsb->tsa.iostat.dev_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.def_time %d\n", tsb->tsa.iostat.def_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.queue_time %d\n", tsb->tsa.iostat.queue_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_busy_time %d\n", tsb->tsa.iostat.dev_busy_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_act_time %d\n", tsb->tsa.iostat.dev_act_time); sense = tsb->tsa.iostat.sense; break; case 2: /* ts_ddpc */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.ddpc.rc %d\n", tsb->tsa.ddpc.rc); for (sl = 0; sl < 2; sl++) { len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.ddpc.rcq %2d-%2d: ", (8 * sl), ((8 * sl) + 7)); rcq = tsb->tsa.ddpc.rcq; for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", rcq[8 * sl + sct]); } len += sprintf(page + len, "\n"); } sense = tsb->tsa.ddpc.sense; break; case 3: /* tsa_intrg */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.intrg.: not supported yet\n"); break; } if (sense) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, PRINTK_HEADER " Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", sense[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (sense[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 24 Byte: %x MSG %x, " "%s MSGb to SYSOP\n", sense[7] >> 4, sense[7] & 0x0f, sense[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 32 Byte: Format: %x " "Exception class %x\n", sense[6] & 0x0f, sense[22] >> 4); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO VALID SENSE AVAILABLE\n"); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO TSB DATA AVAILABLE\n"); } printk(KERN_ERR "%s", page); free_page((unsigned long) page); } static void dasd_eckd_dump_sense(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { u8 *sense = dasd_get_sense(irb); if (scsw_is_tm(&irb->scsw)) { /* * In some cases the 'File Protected' or 'Incorrect Length' * error might be expected and log messages shouldn't be written * then. Check if the according suppress bit is set. */ if (sense && (sense[1] & SNS1_FILE_PROTECTED) && test_bit(DASD_CQR_SUPPRESS_FP, &req->flags)) return; if (scsw_cstat(&irb->scsw) == 0x40 && test_bit(DASD_CQR_SUPPRESS_IL, &req->flags)) return; dasd_eckd_dump_sense_tcw(device, req, irb); } else { /* * In some cases the 'Command Reject' or 'No Record Found' * error might be expected and log messages shouldn't be * written then. Check if the according suppress bit is set. */ if (sense && sense[0] & SNS0_CMD_REJECT && test_bit(DASD_CQR_SUPPRESS_CR, &req->flags)) return; if (sense && sense[1] & SNS1_NO_REC_FOUND && test_bit(DASD_CQR_SUPPRESS_NRF, &req->flags)) return; dasd_eckd_dump_sense_ccw(device, req, irb); } } static int dasd_eckd_reload_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc, old_base; char print_uid[60]; struct dasd_uid uid; unsigned long flags; /* * remove device from alias handling to prevent new requests * from being scheduled on the wrong alias device */ dasd_alias_remove_device(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); old_base = private->uid.base_unit_addr; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err; rc = dasd_eckd_generate_uid(device); if (rc) goto out_err; /* * update unit address configuration and * add device to alias management */ dasd_alias_update_add_device(device); dasd_eckd_get_uid(device, &uid); if (old_base != uid.base_unit_addr) { if (strlen(uid.vduit) > 0) snprintf(print_uid, sizeof(print_uid), "%s.%s.%04x.%02x.%s", uid.vendor, uid.serial, uid.ssid, uid.base_unit_addr, uid.vduit); else snprintf(print_uid, sizeof(print_uid), "%s.%s.%04x.%02x", uid.vendor, uid.serial, uid.ssid, uid.base_unit_addr); dev_info(&device->cdev->dev, "An Alias device was reassigned to a new base device " "with UID: %s\n", print_uid); } return 0; out_err: return -1; } static int dasd_eckd_read_message_buffer(struct dasd_device *device, struct dasd_rssd_messages *messages, __u8 lpum) { struct dasd_rssd_messages *message_buf; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_messages)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } cqr->lpm = lpum; retry: cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10 * HZ; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); /* dasd_sleep_on_immediatly does not do complex error * recovery so clear erp flag and set retry counter to * do basic erp */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->retries = 256; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x03; /* Message Buffer */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t) prssdp; /* Read Subsystem Data - message buffer */ message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memset(message_buf, 0, sizeof(struct dasd_rssd_messages)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_messages); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t) message_buf; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memcpy(messages, message_buf, sizeof(struct dasd_rssd_messages)); } else if (cqr->lpm) { /* * on z/VM we might not be able to do I/O on the requested path * but instead we get the required information on any path * so retry with open path mask */ cqr->lpm = 0; goto retry; } else DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading messages failed with rc=%d\n" , rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_query_host_access(struct dasd_device *device, struct dasd_psf_query_host_access *data) { struct dasd_eckd_private *private = device->private; struct dasd_psf_query_host_access *host_access; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* not available for HYPER PAV alias devices */ if (!device->block && private->lcu->pav == HYPER_PAV) return -EOPNOTSUPP; /* may not be supported by the storage server */ if (!(private->features.feature[14] & 0x80)) return -EOPNOTSUPP; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, sizeof(struct dasd_psf_prssd_data) + 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } host_access = kzalloc(sizeof(*host_access), GFP_KERNEL | GFP_DMA); if (!host_access) { dasd_sfree_request(cqr, device); DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate host_access buffer"); return -ENOMEM; } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_QHA; /* query host access */ /* LSS and Volume that will be queried */ prssdp->lss = private->ned->ID; prssdp->volume = private->ned->unit_addr; /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t) prssdp; /* Read Subsystem Data - query host access */ ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_psf_query_host_access); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t) host_access; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* the command might not be supported, suppress error message */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { *data = *host_access; } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading host access data failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); kfree(host_access); return rc; } /* * return number of grouped devices */ static int dasd_eckd_host_access_count(struct dasd_device *device) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; int count = 0; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); if (entry->status_flags & DASD_ECKD_PG_GROUPED) count++; } kfree(access); return count; } /* * write host access information to a sequential file */ static int dasd_hosts_print(struct dasd_device *device, struct seq_file *m) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; char sysplex[9] = ""; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); /* PGID */ seq_printf(m, "pgid %*phN\n", 11, entry->pgid); /* FLAGS */ seq_printf(m, "status_flags %02x\n", entry->status_flags); /* SYSPLEX NAME */ memcpy(&sysplex, &entry->sysplex_name, sizeof(sysplex) - 1); EBCASC(sysplex, sizeof(sysplex)); seq_printf(m, "sysplex_name %8s\n", sysplex); /* SUPPORTED CYLINDER */ seq_printf(m, "supported_cylinder %d\n", entry->cylinder); /* TIMESTAMP */ seq_printf(m, "timestamp %lu\n", (unsigned long) entry->timestamp); } kfree(access); return 0; } /* * Perform Subsystem Function - CUIR response */ static int dasd_eckd_psf_cuir_response(struct dasd_device *device, int response, __u32 message_id, __u8 lpum) { struct dasd_psf_cuir_response *psf_cuir; int pos = pathmask_to_pos(lpum); struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_cuir_response), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-CUIR request"); return PTR_ERR(cqr); } psf_cuir = (struct dasd_psf_cuir_response *)cqr->data; psf_cuir->order = PSF_ORDER_CUIR_RESPONSE; psf_cuir->cc = response; psf_cuir->chpid = device->path[pos].chpid; psf_cuir->message_id = message_id; psf_cuir->cssid = device->path[pos].cssid; psf_cuir->ssid = device->path[pos].ssid; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = (__u32)(addr_t)psf_cuir; ccw->flags = CCW_FLAG_SLI; ccw->count = sizeof(struct dasd_psf_cuir_response); cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); rc = dasd_sleep_on(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * return configuration data that is referenced by record selector * if a record selector is specified or per default return the * conf_data pointer for the path specified by lpum */ static struct dasd_conf_data *dasd_eckd_get_ref_conf(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *conf_data; int path, pos; if (cuir->record_selector == 0) goto out; for (path = 0x80, pos = 0; path; path >>= 1, pos++) { conf_data = device->path[pos].conf_data; if (conf_data->gneq.record_selector == cuir->record_selector) return conf_data; } out: return device->path[pathmask_to_pos(lpum)].conf_data; } /* * This function determines the scope of a reconfiguration request by * analysing the path and device selection data provided in the CUIR request. * Returns a path mask containing CUIR affected paths for the give device. * * If the CUIR request does not contain the required information return the * path mask of the path the attention message for the CUIR request was reveived * on. */ static int dasd_eckd_cuir_scope(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *ref_conf_data; unsigned long bitmask = 0, mask = 0; struct dasd_conf_data *conf_data; unsigned int pos, path; char *ref_gneq, *gneq; char *ref_ned, *ned; int tbcpm = 0; /* if CUIR request does not specify the scope use the path the attention message was presented on */ if (!cuir->ned_map || !(cuir->neq_map[0] | cuir->neq_map[1] | cuir->neq_map[2])) return lpum; /* get reference conf data */ ref_conf_data = dasd_eckd_get_ref_conf(device, lpum, cuir); /* reference ned is determined by ned_map field */ pos = 8 - ffs(cuir->ned_map); ref_ned = (char *)&ref_conf_data->neds[pos]; ref_gneq = (char *)&ref_conf_data->gneq; /* transfer 24 bit neq_map to mask */ mask = cuir->neq_map[2]; mask |= cuir->neq_map[1] << 8; mask |= cuir->neq_map[0] << 16; for (path = 0; path < 8; path++) { /* initialise data per path */ bitmask = mask; conf_data = device->path[path].conf_data; pos = 8 - ffs(cuir->ned_map); ned = (char *) &conf_data->neds[pos]; /* compare reference ned and per path ned */ if (memcmp(ref_ned, ned, sizeof(*ned)) != 0) continue; gneq = (char *)&conf_data->gneq; /* compare reference gneq and per_path gneq under 24 bit mask where mask bit 0 equals byte 7 of the gneq and mask bit 24 equals byte 31 */ while (bitmask) { pos = ffs(bitmask) - 1; if (memcmp(&ref_gneq[31 - pos], &gneq[31 - pos], 1) != 0) break; clear_bit(pos, &bitmask); } if (bitmask) continue; /* device and path match the reference values add path to CUIR scope */ tbcpm |= 0x80 >> path; } return tbcpm; } static void dasd_eckd_cuir_notify_user(struct dasd_device *device, unsigned long paths, int action) { int pos; while (paths) { /* get position of bit in mask */ pos = 8 - ffs(paths); /* get channel path descriptor from this position */ if (action == CUIR_QUIESCE) pr_warn("Service on the storage server caused path %x.%02x to go offline", device->path[pos].cssid, device->path[pos].chpid); else if (action == CUIR_RESUME) pr_info("Path %x.%02x is back online after service on the storage server", device->path[pos].cssid, device->path[pos].chpid); clear_bit(7 - pos, &paths); } } static int dasd_eckd_cuir_remove_path(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { unsigned long tbcpm; tbcpm = dasd_eckd_cuir_scope(device, lpum, cuir); /* nothing to do if path is not in use */ if (!(dasd_path_get_opm(device) & tbcpm)) return 0; if (!(dasd_path_get_opm(device) & ~tbcpm)) { /* no path would be left if the CUIR action is taken return error */ return -EINVAL; } /* remove device from operational path mask */ dasd_path_remove_opm(device, tbcpm); dasd_path_add_cuirpm(device, tbcpm); return tbcpm; } /* * walk through all devices and build a path mask to quiesce them * return an error if the last path to a device would be removed * * if only part of the devices are quiesced and an error * occurs no onlining necessary, the storage server will * notify the already set offline devices again */ static int dasd_eckd_cuir_quiesce(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; unsigned long flags; int tbcpm; /* active devices */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* inactive devices */ list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_QUIESCE); return 0; out_err: return tbcpm; } static int dasd_eckd_cuir_resume(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; int tbcpm; /* * the path may have been added through a generic path event before * only trigger path verification if the path is not already in use */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_RESUME); return 0; } static void dasd_eckd_handle_cuir(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_cuir_message *cuir = messages; int response; DBF_DEV_EVENT(DBF_WARNING, device, "CUIR request: %016llx %016llx %016llx %08x", ((u64 *)cuir)[0], ((u64 *)cuir)[1], ((u64 *)cuir)[2], ((u32 *)cuir)[3]); if (cuir->code == CUIR_QUIESCE) { /* quiesce */ if (dasd_eckd_cuir_quiesce(device, lpum, cuir)) response = PSF_CUIR_LAST_PATH; else response = PSF_CUIR_COMPLETED; } else if (cuir->code == CUIR_RESUME) { /* resume */ dasd_eckd_cuir_resume(device, lpum, cuir); response = PSF_CUIR_COMPLETED; } else response = PSF_CUIR_NOT_SUPPORTED; dasd_eckd_psf_cuir_response(device, response, cuir->message_id, lpum); DBF_DEV_EVENT(DBF_WARNING, device, "CUIR response: %d on message ID %08x", response, cuir->message_id); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_oos_resume(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long flags; spin_lock_irqsave(&private->lcu->lock, flags); list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } } spin_unlock_irqrestore(&private->lcu->lock, flags); } static void dasd_eckd_handle_oos(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_oos_message *oos = messages; switch (oos->code) { case REPO_WARN: case POOL_WARN: dev_warn(&device->cdev->dev, "Extent pool usage has reached a critical value\n"); dasd_eckd_oos_resume(device); break; case REPO_EXHAUST: case POOL_EXHAUST: dev_warn(&device->cdev->dev, "Extent pool is exhausted\n"); break; case REPO_RELIEVE: case POOL_RELIEVE: dev_info(&device->cdev->dev, "Extent pool physical space constraint has been relieved\n"); break; } /* In any case, update related data */ dasd_eckd_read_ext_pool_info(device); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_check_attention_work(struct work_struct *work) { struct check_attention_work_data *data; struct dasd_rssd_messages *messages; struct dasd_device *device; int rc; data = container_of(work, struct check_attention_work_data, worker); device = data->device; messages = kzalloc(sizeof(*messages), GFP_KERNEL); if (!messages) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate attention message buffer"); goto out; } rc = dasd_eckd_read_message_buffer(device, messages, data->lpum); if (rc) goto out; if (messages->length == ATTENTION_LENGTH_CUIR && messages->format == ATTENTION_FORMAT_CUIR) dasd_eckd_handle_cuir(device, messages, data->lpum); if (messages->length == ATTENTION_LENGTH_OOS && messages->format == ATTENTION_FORMAT_OOS) dasd_eckd_handle_oos(device, messages, data->lpum); out: dasd_put_device(device); kfree(messages); kfree(data); } static int dasd_eckd_check_attention(struct dasd_device *device, __u8 lpum) { struct check_attention_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_check_attention_work); dasd_get_device(device); data->device = device; data->lpum = lpum; schedule_work(&data->worker); return 0; } static int dasd_eckd_disable_hpf_path(struct dasd_device *device, __u8 lpum) { if (~lpum & dasd_path_get_opm(device)) { dasd_path_add_nohpfpm(device, lpum); dasd_path_remove_opm(device, lpum); dev_err(&device->cdev->dev, "Channel path %02X lost HPF functionality and is disabled\n", lpum); return 1; } return 0; } static void dasd_eckd_disable_hpf_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; dev_err(&device->cdev->dev, "High Performance FICON disabled\n"); private->fcx_max_data = 0; } static int dasd_eckd_hpf_enabled(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->fcx_max_data ? 1 : 0; } static void dasd_eckd_handle_hpf_error(struct dasd_device *device, struct irb *irb) { struct dasd_eckd_private *private = device->private; if (!private->fcx_max_data) { /* sanity check for no HPF, the error makes no sense */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Trying to disable HPF for a non HPF device"); return; } if (irb->scsw.tm.sesq == SCSW_SESQ_DEV_NOFCX) { dasd_eckd_disable_hpf_device(device); } else if (irb->scsw.tm.sesq == SCSW_SESQ_PATH_NOFCX) { if (dasd_eckd_disable_hpf_path(device, irb->esw.esw1.lpum)) return; dasd_eckd_disable_hpf_device(device); dasd_path_set_tbvpm(device, dasd_path_get_hpfpm(device)); } /* * prevent that any new I/O ist started on the device and schedule a * requeue of existing requests */ dasd_device_set_stop_bits(device, DASD_STOPPED_NOT_ACC); dasd_schedule_requeue(device); } /* * Initialize block layer request queue. */ static void dasd_eckd_setup_blk_queue(struct dasd_block *block) { unsigned int logical_block_size = block->bp_block; struct request_queue *q = block->request_queue; struct dasd_device *device = block->base; int max; if (device->features & DASD_FEATURE_USERAW) { /* * the max_blocks value for raw_track access is 256 * it is higher than the native ECKD value because we * only need one ccw per track * so the max_hw_sectors are * 2048 x 512B = 1024kB = 16 tracks */ max = DASD_ECKD_MAX_BLOCKS_RAW << block->s2b_shift; } else { max = DASD_ECKD_MAX_BLOCKS << block->s2b_shift; } blk_queue_flag_set(QUEUE_FLAG_NONROT, q); q->limits.max_dev_sectors = max; blk_queue_logical_block_size(q, logical_block_size); blk_queue_max_hw_sectors(q, max); blk_queue_max_segments(q, USHRT_MAX); /* With page sized segments each segment can be translated into one idaw/tidaw */ blk_queue_max_segment_size(q, PAGE_SIZE); blk_queue_segment_boundary(q, PAGE_SIZE - 1); } static struct ccw_driver dasd_eckd_driver = { .driver = { .name = "dasd-eckd", .owner = THIS_MODULE, .dev_groups = dasd_dev_groups, }, .ids = dasd_eckd_ids, .probe = dasd_eckd_probe, .remove = dasd_generic_remove, .set_offline = dasd_generic_set_offline, .set_online = dasd_eckd_set_online, .notify = dasd_generic_notify, .path_event = dasd_generic_path_event, .shutdown = dasd_generic_shutdown, .uc_handler = dasd_generic_uc_handler, .int_class = IRQIO_DAS, }; static struct dasd_discipline dasd_eckd_discipline = { .owner = THIS_MODULE, .name = "ECKD", .ebcname = "ECKD", .check_device = dasd_eckd_check_characteristics, .uncheck_device = dasd_eckd_uncheck_device, .do_analysis = dasd_eckd_do_analysis, .pe_handler = dasd_eckd_pe_handler, .basic_to_ready = dasd_eckd_basic_to_ready, .online_to_ready = dasd_eckd_online_to_ready, .basic_to_known = dasd_eckd_basic_to_known, .setup_blk_queue = dasd_eckd_setup_blk_queue, .fill_geometry = dasd_eckd_fill_geometry, .start_IO = dasd_start_IO, .term_IO = dasd_term_IO, .handle_terminated_request = dasd_eckd_handle_terminated_request, .format_device = dasd_eckd_format_device, .check_device_format = dasd_eckd_check_device_format, .erp_action = dasd_eckd_erp_action, .erp_postaction = dasd_eckd_erp_postaction, .check_for_device_change = dasd_eckd_check_for_device_change, .build_cp = dasd_eckd_build_alias_cp, .free_cp = dasd_eckd_free_alias_cp, .dump_sense = dasd_eckd_dump_sense, .dump_sense_dbf = dasd_eckd_dump_sense_dbf, .fill_info = dasd_eckd_fill_info, .ioctl = dasd_eckd_ioctl, .reload = dasd_eckd_reload_device, .get_uid = dasd_eckd_get_uid, .kick_validate = dasd_eckd_kick_validate_server, .check_attention = dasd_eckd_check_attention, .host_access_count = dasd_eckd_host_access_count, .hosts_print = dasd_hosts_print, .handle_hpf_error = dasd_eckd_handle_hpf_error, .disable_hpf = dasd_eckd_disable_hpf_device, .hpf_enabled = dasd_eckd_hpf_enabled, .reset_path = dasd_eckd_reset_path, .is_ese = dasd_eckd_is_ese, .space_allocated = dasd_eckd_space_allocated, .space_configured = dasd_eckd_space_configured, .logical_capacity = dasd_eckd_logical_capacity, .release_space = dasd_eckd_release_space, .ext_pool_id = dasd_eckd_ext_pool_id, .ext_size = dasd_eckd_ext_size, .ext_pool_cap_at_warnlevel = dasd_eckd_ext_pool_cap_at_warnlevel, .ext_pool_warn_thrshld = dasd_eckd_ext_pool_warn_thrshld, .ext_pool_oos = dasd_eckd_ext_pool_oos, .ext_pool_exhaust = dasd_eckd_ext_pool_exhaust, .ese_format = dasd_eckd_ese_format, .ese_read = dasd_eckd_ese_read, }; static int __init dasd_eckd_init(void) { int ret; ASCEBC(dasd_eckd_discipline.ebcname, 4); dasd_reserve_req = kmalloc(sizeof(*dasd_reserve_req), GFP_KERNEL | GFP_DMA); if (!dasd_reserve_req) return -ENOMEM; dasd_vol_info_req = kmalloc(sizeof(*dasd_vol_info_req), GFP_KERNEL | GFP_DMA); if (!dasd_vol_info_req) return -ENOMEM; pe_handler_worker = kmalloc(sizeof(*pe_handler_worker), GFP_KERNEL | GFP_DMA); if (!pe_handler_worker) { kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } rawpadpage = (void *)__get_free_page(GFP_KERNEL); if (!rawpadpage) { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } ret = ccw_driver_register(&dasd_eckd_driver); if (!ret) wait_for_device_probe(); else { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); free_page((unsigned long)rawpadpage); } return ret; } static void __exit dasd_eckd_cleanup(void) { ccw_driver_unregister(&dasd_eckd_driver); kfree(pe_handler_worker); kfree(dasd_reserve_req); free_page((unsigned long)rawpadpage); } module_init(dasd_eckd_init); module_exit(dasd_eckd_cleanup);