/* * Freescale FlexTimer Module (FTM) PWM Driver * * Copyright 2012-2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #define FTM_SC 0x00 #define FTM_SC_CLK_MASK_SHIFT 3 #define FTM_SC_CLK_MASK (3 << FTM_SC_CLK_MASK_SHIFT) #define FTM_SC_CLK(c) (((c) + 1) << FTM_SC_CLK_MASK_SHIFT) #define FTM_SC_PS_MASK 0x7 #define FTM_CNT 0x04 #define FTM_MOD 0x08 #define FTM_CSC_BASE 0x0C #define FTM_CSC_MSB BIT(5) #define FTM_CSC_MSA BIT(4) #define FTM_CSC_ELSB BIT(3) #define FTM_CSC_ELSA BIT(2) #define FTM_CSC(_channel) (FTM_CSC_BASE + ((_channel) * 8)) #define FTM_CV_BASE 0x10 #define FTM_CV(_channel) (FTM_CV_BASE + ((_channel) * 8)) #define FTM_CNTIN 0x4C #define FTM_STATUS 0x50 #define FTM_MODE 0x54 #define FTM_MODE_FTMEN BIT(0) #define FTM_MODE_INIT BIT(2) #define FTM_MODE_PWMSYNC BIT(3) #define FTM_SYNC 0x58 #define FTM_OUTINIT 0x5C #define FTM_OUTMASK 0x60 #define FTM_COMBINE 0x64 #define FTM_DEADTIME 0x68 #define FTM_EXTTRIG 0x6C #define FTM_POL 0x70 #define FTM_FMS 0x74 #define FTM_FILTER 0x78 #define FTM_FLTCTRL 0x7C #define FTM_QDCTRL 0x80 #define FTM_CONF 0x84 #define FTM_FLTPOL 0x88 #define FTM_SYNCONF 0x8C #define FTM_INVCTRL 0x90 #define FTM_SWOCTRL 0x94 #define FTM_PWMLOAD 0x98 enum fsl_pwm_clk { FSL_PWM_CLK_SYS, FSL_PWM_CLK_FIX, FSL_PWM_CLK_EXT, FSL_PWM_CLK_CNTEN, FSL_PWM_CLK_MAX }; struct fsl_pwm_chip { struct pwm_chip chip; struct mutex lock; unsigned int cnt_select; unsigned int clk_ps; struct regmap *regmap; int period_ns; struct clk *clk[FSL_PWM_CLK_MAX]; }; static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip) { return container_of(chip, struct fsl_pwm_chip, chip); } static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); return clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]); } static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]); } static int fsl_pwm_calculate_default_ps(struct fsl_pwm_chip *fpc, enum fsl_pwm_clk index) { unsigned long sys_rate, cnt_rate; unsigned long long ratio; sys_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_SYS]); if (!sys_rate) return -EINVAL; cnt_rate = clk_get_rate(fpc->clk[fpc->cnt_select]); if (!cnt_rate) return -EINVAL; switch (index) { case FSL_PWM_CLK_SYS: fpc->clk_ps = 1; break; case FSL_PWM_CLK_FIX: ratio = 2 * cnt_rate - 1; do_div(ratio, sys_rate); fpc->clk_ps = ratio; break; case FSL_PWM_CLK_EXT: ratio = 4 * cnt_rate - 1; do_div(ratio, sys_rate); fpc->clk_ps = ratio; break; default: return -EINVAL; } return 0; } static unsigned long fsl_pwm_calculate_cycles(struct fsl_pwm_chip *fpc, unsigned long period_ns) { unsigned long long c, c0; c = clk_get_rate(fpc->clk[fpc->cnt_select]); c = c * period_ns; do_div(c, 1000000000UL); do { c0 = c; do_div(c0, (1 << fpc->clk_ps)); if (c0 <= 0xFFFF) return (unsigned long)c0; } while (++fpc->clk_ps < 8); return 0; } static unsigned long fsl_pwm_calculate_period_cycles(struct fsl_pwm_chip *fpc, unsigned long period_ns, enum fsl_pwm_clk index) { int ret; ret = fsl_pwm_calculate_default_ps(fpc, index); if (ret) { dev_err(fpc->chip.dev, "failed to calculate default prescaler: %d\n", ret); return 0; } return fsl_pwm_calculate_cycles(fpc, period_ns); } static unsigned long fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc, unsigned long period_ns) { enum fsl_pwm_clk m0, m1; unsigned long fix_rate, ext_rate, cycles; cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns, FSL_PWM_CLK_SYS); if (cycles) { fpc->cnt_select = FSL_PWM_CLK_SYS; return cycles; } fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]); ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]); if (fix_rate > ext_rate) { m0 = FSL_PWM_CLK_FIX; m1 = FSL_PWM_CLK_EXT; } else { m0 = FSL_PWM_CLK_EXT; m1 = FSL_PWM_CLK_FIX; } cycles = fsl_pwm_calculate_period_cycles(fpc, period_ns, m0); if (cycles) { fpc->cnt_select = m0; return cycles; } fpc->cnt_select = m1; return fsl_pwm_calculate_period_cycles(fpc, period_ns, m1); } static unsigned long fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc, unsigned long period_ns, unsigned long duty_ns) { unsigned long long duty; u32 val; regmap_read(fpc->regmap, FTM_MOD, &val); duty = (unsigned long long)duty_ns * (val + 1); do_div(duty, period_ns); return (unsigned long)duty; } static int fsl_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, int duty_ns, int period_ns) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); u32 period, duty; mutex_lock(&fpc->lock); /* * The Freescale FTM controller supports only a single period for * all PWM channels, therefore incompatible changes need to be * refused. */ if (fpc->period_ns && fpc->period_ns != period_ns) { dev_err(fpc->chip.dev, "conflicting period requested for PWM %u\n", pwm->hwpwm); mutex_unlock(&fpc->lock); return -EBUSY; } if (!fpc->period_ns && duty_ns) { period = fsl_pwm_calculate_period(fpc, period_ns); if (!period) { dev_err(fpc->chip.dev, "failed to calculate period\n"); mutex_unlock(&fpc->lock); return -EINVAL; } regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_PS_MASK, fpc->clk_ps); regmap_write(fpc->regmap, FTM_MOD, period - 1); fpc->period_ns = period_ns; } mutex_unlock(&fpc->lock); duty = fsl_pwm_calculate_duty(fpc, period_ns, duty_ns); regmap_write(fpc->regmap, FTM_CSC(pwm->hwpwm), FTM_CSC_MSB | FTM_CSC_ELSB); regmap_write(fpc->regmap, FTM_CV(pwm->hwpwm), duty); return 0; } static int fsl_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); u32 val; regmap_read(fpc->regmap, FTM_POL, &val); if (polarity == PWM_POLARITY_INVERSED) val |= BIT(pwm->hwpwm); else val &= ~BIT(pwm->hwpwm); regmap_write(fpc->regmap, FTM_POL, val); return 0; } static int fsl_counter_clock_enable(struct fsl_pwm_chip *fpc) { int ret; /* select counter clock source */ regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK, FTM_SC_CLK(fpc->cnt_select)); ret = clk_prepare_enable(fpc->clk[fpc->cnt_select]); if (ret) return ret; ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]); if (ret) { clk_disable_unprepare(fpc->clk[fpc->cnt_select]); return ret; } return 0; } static int fsl_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); int ret; mutex_lock(&fpc->lock); regmap_update_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm), 0); ret = fsl_counter_clock_enable(fpc); mutex_unlock(&fpc->lock); return ret; } static void fsl_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); u32 val; mutex_lock(&fpc->lock); regmap_update_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm), BIT(pwm->hwpwm)); clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); clk_disable_unprepare(fpc->clk[fpc->cnt_select]); regmap_read(fpc->regmap, FTM_OUTMASK, &val); if ((val & 0xFF) == 0xFF) fpc->period_ns = 0; mutex_unlock(&fpc->lock); } static const struct pwm_ops fsl_pwm_ops = { .request = fsl_pwm_request, .free = fsl_pwm_free, .config = fsl_pwm_config, .set_polarity = fsl_pwm_set_polarity, .enable = fsl_pwm_enable, .disable = fsl_pwm_disable, .owner = THIS_MODULE, }; static int fsl_pwm_init(struct fsl_pwm_chip *fpc) { int ret; ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]); if (ret) return ret; regmap_write(fpc->regmap, FTM_CNTIN, 0x00); regmap_write(fpc->regmap, FTM_OUTINIT, 0x00); regmap_write(fpc->regmap, FTM_OUTMASK, 0xFF); clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]); return 0; } static bool fsl_pwm_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case FTM_CNT: return true; } return false; } static const struct regmap_config fsl_pwm_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = FTM_PWMLOAD, .volatile_reg = fsl_pwm_volatile_reg, .cache_type = REGCACHE_FLAT, }; static int fsl_pwm_probe(struct platform_device *pdev) { struct fsl_pwm_chip *fpc; struct resource *res; void __iomem *base; int ret; fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL); if (!fpc) return -ENOMEM; mutex_init(&fpc->lock); fpc->chip.dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); fpc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "ftm_sys", base, &fsl_pwm_regmap_config); if (IS_ERR(fpc->regmap)) { dev_err(&pdev->dev, "regmap init failed\n"); return PTR_ERR(fpc->regmap); } fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) { dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n"); return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]); } fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]); fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]); fpc->clk[FSL_PWM_CLK_CNTEN] = devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]); fpc->chip.ops = &fsl_pwm_ops; fpc->chip.of_xlate = of_pwm_xlate_with_flags; fpc->chip.of_pwm_n_cells = 3; fpc->chip.base = -1; fpc->chip.npwm = 8; ret = pwmchip_add(&fpc->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); return ret; } platform_set_drvdata(pdev, fpc); return fsl_pwm_init(fpc); } static int fsl_pwm_remove(struct platform_device *pdev) { struct fsl_pwm_chip *fpc = platform_get_drvdata(pdev); return pwmchip_remove(&fpc->chip); } #ifdef CONFIG_PM_SLEEP static int fsl_pwm_suspend(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); int i; regcache_cache_only(fpc->regmap, true); regcache_mark_dirty(fpc->regmap); for (i = 0; i < fpc->chip.npwm; i++) { struct pwm_device *pwm = &fpc->chip.pwms[i]; if (!test_bit(PWMF_REQUESTED, &pwm->flags)) continue; clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_SYS]); if (!pwm_is_enabled(pwm)) continue; clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); clk_disable_unprepare(fpc->clk[fpc->cnt_select]); } return 0; } static int fsl_pwm_resume(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); int i; for (i = 0; i < fpc->chip.npwm; i++) { struct pwm_device *pwm = &fpc->chip.pwms[i]; if (!test_bit(PWMF_REQUESTED, &pwm->flags)) continue; clk_prepare_enable(fpc->clk[FSL_PWM_CLK_SYS]); if (!pwm_is_enabled(pwm)) continue; clk_prepare_enable(fpc->clk[fpc->cnt_select]); clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]); } /* restore all registers from cache */ regcache_cache_only(fpc->regmap, false); regcache_sync(fpc->regmap); return 0; } #endif static const struct dev_pm_ops fsl_pwm_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(fsl_pwm_suspend, fsl_pwm_resume) }; static const struct of_device_id fsl_pwm_dt_ids[] = { { .compatible = "fsl,vf610-ftm-pwm", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids); static struct platform_driver fsl_pwm_driver = { .driver = { .name = "fsl-ftm-pwm", .of_match_table = fsl_pwm_dt_ids, .pm = &fsl_pwm_pm_ops, }, .probe = fsl_pwm_probe, .remove = fsl_pwm_remove, }; module_platform_driver(fsl_pwm_driver); MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver"); MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>"); MODULE_ALIAS("platform:fsl-ftm-pwm"); MODULE_LICENSE("GPL");