// SPDX-License-Identifier: GPL-2.0-only /* * Common code for Intel Running Average Power Limit (RAPL) support. * Copyright (c) 2019, Intel Corporation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* bitmasks for RAPL MSRs, used by primitive access functions */ #define ENERGY_STATUS_MASK 0xffffffff #define POWER_LIMIT1_MASK 0x7FFF #define POWER_LIMIT1_ENABLE BIT(15) #define POWER_LIMIT1_CLAMP BIT(16) #define POWER_LIMIT2_MASK (0x7FFFULL<<32) #define POWER_LIMIT2_ENABLE BIT_ULL(47) #define POWER_LIMIT2_CLAMP BIT_ULL(48) #define POWER_HIGH_LOCK BIT_ULL(63) #define POWER_LOW_LOCK BIT(31) #define POWER_LIMIT4_MASK 0x1FFF #define TIME_WINDOW1_MASK (0x7FULL<<17) #define TIME_WINDOW2_MASK (0x7FULL<<49) #define POWER_UNIT_OFFSET 0 #define POWER_UNIT_MASK 0x0F #define ENERGY_UNIT_OFFSET 0x08 #define ENERGY_UNIT_MASK 0x1F00 #define TIME_UNIT_OFFSET 0x10 #define TIME_UNIT_MASK 0xF0000 #define POWER_INFO_MAX_MASK (0x7fffULL<<32) #define POWER_INFO_MIN_MASK (0x7fffULL<<16) #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48) #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff #define PP_POLICY_MASK 0x1F /* * SPR has different layout for Psys Domain PowerLimit registers. * There are 17 bits of PL1 and PL2 instead of 15 bits. * The Enable bits and TimeWindow bits are also shifted as a result. */ #define PSYS_POWER_LIMIT1_MASK 0x1FFFF #define PSYS_POWER_LIMIT1_ENABLE BIT(17) #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32) #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49) #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19) #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51) /* bitmasks for RAPL TPMI, used by primitive access functions */ #define TPMI_POWER_LIMIT_MASK 0x3FFFF #define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62) #define TPMI_TIME_WINDOW_MASK (0x7FULL<<18) #define TPMI_INFO_SPEC_MASK 0x3FFFF #define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18) #define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36) #define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54) /* Non HW constants */ #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */ #define RAPL_PRIMITIVE_DUMMY BIT(2) #define TIME_WINDOW_MAX_MSEC 40000 #define TIME_WINDOW_MIN_MSEC 250 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */ enum unit_type { ARBITRARY_UNIT, /* no translation */ POWER_UNIT, ENERGY_UNIT, TIME_UNIT, }; /* per domain data, some are optional */ #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2) #define DOMAIN_STATE_INACTIVE BIT(0) #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1) static const char *pl_names[NR_POWER_LIMITS] = { [POWER_LIMIT1] = "long_term", [POWER_LIMIT2] = "short_term", [POWER_LIMIT4] = "peak_power", }; enum pl_prims { PL_ENABLE, PL_CLAMP, PL_LIMIT, PL_TIME_WINDOW, PL_MAX_POWER, PL_LOCK, }; static bool is_pl_valid(struct rapl_domain *rd, int pl) { if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4) return false; return rd->rpl[pl].name ? true : false; } static int get_pl_lock_prim(struct rapl_domain *rd, int pl) { if (rd->rp->priv->type == RAPL_IF_TPMI) { if (pl == POWER_LIMIT1) return PL1_LOCK; if (pl == POWER_LIMIT2) return PL2_LOCK; if (pl == POWER_LIMIT4) return PL4_LOCK; } /* MSR/MMIO Interface doesn't have Lock bit for PL4 */ if (pl == POWER_LIMIT4) return -EINVAL; /* * Power Limit register that supports two power limits has a different * bit position for the Lock bit. */ if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2)) return FW_HIGH_LOCK; return FW_LOCK; } static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim) { switch (pl) { case POWER_LIMIT1: if (prim == PL_ENABLE) return PL1_ENABLE; if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) return PL1_CLAMP; if (prim == PL_LIMIT) return POWER_LIMIT1; if (prim == PL_TIME_WINDOW) return TIME_WINDOW1; if (prim == PL_MAX_POWER) return THERMAL_SPEC_POWER; if (prim == PL_LOCK) return get_pl_lock_prim(rd, pl); return -EINVAL; case POWER_LIMIT2: if (prim == PL_ENABLE) return PL2_ENABLE; if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI) return PL2_CLAMP; if (prim == PL_LIMIT) return POWER_LIMIT2; if (prim == PL_TIME_WINDOW) return TIME_WINDOW2; if (prim == PL_MAX_POWER) return MAX_POWER; if (prim == PL_LOCK) return get_pl_lock_prim(rd, pl); return -EINVAL; case POWER_LIMIT4: if (prim == PL_LIMIT) return POWER_LIMIT4; if (prim == PL_ENABLE) return PL4_ENABLE; /* PL4 would be around two times PL2, use same prim as PL2. */ if (prim == PL_MAX_POWER) return MAX_POWER; if (prim == PL_LOCK) return get_pl_lock_prim(rd, pl); return -EINVAL; default: return -EINVAL; } } #define power_zone_to_rapl_domain(_zone) \ container_of(_zone, struct rapl_domain, power_zone) struct rapl_defaults { u8 floor_freq_reg_addr; int (*check_unit)(struct rapl_domain *rd); void (*set_floor_freq)(struct rapl_domain *rd, bool mode); u64 (*compute_time_window)(struct rapl_domain *rd, u64 val, bool to_raw); unsigned int dram_domain_energy_unit; unsigned int psys_domain_energy_unit; bool spr_psys_bits; }; static struct rapl_defaults *defaults_msr; static const struct rapl_defaults defaults_tpmi; static struct rapl_defaults *get_defaults(struct rapl_package *rp) { return rp->priv->defaults; } /* Sideband MBI registers */ #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2) #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf) #define PACKAGE_PLN_INT_SAVED BIT(0) #define MAX_PRIM_NAME (32) /* per domain data. used to describe individual knobs such that access function * can be consolidated into one instead of many inline functions. */ struct rapl_primitive_info { const char *name; u64 mask; int shift; enum rapl_domain_reg_id id; enum unit_type unit; u32 flag; }; #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \ .name = #p, \ .mask = m, \ .shift = s, \ .id = i, \ .unit = u, \ .flag = f \ } static void rapl_init_domains(struct rapl_package *rp); static int rapl_read_data_raw(struct rapl_domain *rd, enum rapl_primitives prim, bool xlate, u64 *data); static int rapl_write_data_raw(struct rapl_domain *rd, enum rapl_primitives prim, unsigned long long value); static int rapl_read_pl_data(struct rapl_domain *rd, int pl, enum pl_prims pl_prim, bool xlate, u64 *data); static int rapl_write_pl_data(struct rapl_domain *rd, int pl, enum pl_prims pl_prim, unsigned long long value); static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type, u64 value, int to_raw); static void package_power_limit_irq_save(struct rapl_package *rp); static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */ static const char *const rapl_domain_names[] = { "package", "core", "uncore", "dram", "psys", }; static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw) { struct rapl_domain *rd; u64 energy_now; /* prevent CPU hotplug, make sure the RAPL domain does not go * away while reading the counter. */ cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) { *energy_raw = energy_now; cpus_read_unlock(); return 0; } cpus_read_unlock(); return -EIO; } static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy) { struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev); *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0); return 0; } static int release_zone(struct powercap_zone *power_zone) { struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); struct rapl_package *rp = rd->rp; /* package zone is the last zone of a package, we can free * memory here since all children has been unregistered. */ if (rd->id == RAPL_DOMAIN_PACKAGE) { kfree(rd); rp->domains = NULL; } return 0; } static int find_nr_power_limit(struct rapl_domain *rd) { int i, nr_pl = 0; for (i = 0; i < NR_POWER_LIMITS; i++) { if (is_pl_valid(rd, i)) nr_pl++; } return nr_pl; } static int set_domain_enable(struct powercap_zone *power_zone, bool mode) { struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); struct rapl_defaults *defaults = get_defaults(rd->rp); int ret; cpus_read_lock(); ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode); if (!ret && defaults->set_floor_freq) defaults->set_floor_freq(rd, mode); cpus_read_unlock(); return ret; } static int get_domain_enable(struct powercap_zone *power_zone, bool *mode) { struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone); u64 val; int ret; if (rd->rpl[POWER_LIMIT1].locked) { *mode = false; return 0; } cpus_read_lock(); ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val); if (!ret) *mode = val; cpus_read_unlock(); return ret; } /* per RAPL domain ops, in the order of rapl_domain_type */ static const struct powercap_zone_ops zone_ops[] = { /* RAPL_DOMAIN_PACKAGE */ { .get_energy_uj = get_energy_counter, .get_max_energy_range_uj = get_max_energy_counter, .release = release_zone, .set_enable = set_domain_enable, .get_enable = get_domain_enable, }, /* RAPL_DOMAIN_PP0 */ { .get_energy_uj = get_energy_counter, .get_max_energy_range_uj = get_max_energy_counter, .release = release_zone, .set_enable = set_domain_enable, .get_enable = get_domain_enable, }, /* RAPL_DOMAIN_PP1 */ { .get_energy_uj = get_energy_counter, .get_max_energy_range_uj = get_max_energy_counter, .release = release_zone, .set_enable = set_domain_enable, .get_enable = get_domain_enable, }, /* RAPL_DOMAIN_DRAM */ { .get_energy_uj = get_energy_counter, .get_max_energy_range_uj = get_max_energy_counter, .release = release_zone, .set_enable = set_domain_enable, .get_enable = get_domain_enable, }, /* RAPL_DOMAIN_PLATFORM */ { .get_energy_uj = get_energy_counter, .get_max_energy_range_uj = get_max_energy_counter, .release = release_zone, .set_enable = set_domain_enable, .get_enable = get_domain_enable, }, }; /* * Constraint index used by powercap can be different than power limit (PL) * index in that some PLs maybe missing due to non-existent MSRs. So we * need to convert here by finding the valid PLs only (name populated). */ static int contraint_to_pl(struct rapl_domain *rd, int cid) { int i, j; for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) { if (is_pl_valid(rd, i) && j++ == cid) { pr_debug("%s: index %d\n", __func__, i); return i; } } pr_err("Cannot find matching power limit for constraint %d\n", cid); return -EINVAL; } static int set_power_limit(struct powercap_zone *power_zone, int cid, u64 power_limit) { struct rapl_domain *rd; struct rapl_package *rp; int ret = 0; int id; cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); rp = rd->rp; ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit); if (!ret) package_power_limit_irq_save(rp); cpus_read_unlock(); return ret; } static int get_current_power_limit(struct powercap_zone *power_zone, int cid, u64 *data) { struct rapl_domain *rd; u64 val; int ret = 0; int id; cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val); if (!ret) *data = val; cpus_read_unlock(); return ret; } static int set_time_window(struct powercap_zone *power_zone, int cid, u64 window) { struct rapl_domain *rd; int ret = 0; int id; cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window); cpus_read_unlock(); return ret; } static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data) { struct rapl_domain *rd; u64 val; int ret = 0; int id; cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val); if (!ret) *data = val; cpus_read_unlock(); return ret; } static const char *get_constraint_name(struct powercap_zone *power_zone, int cid) { struct rapl_domain *rd; int id; rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); if (id >= 0) return rd->rpl[id].name; return NULL; } static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data) { struct rapl_domain *rd; u64 val; int ret = 0; int id; cpus_read_lock(); rd = power_zone_to_rapl_domain(power_zone); id = contraint_to_pl(rd, cid); ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val); if (!ret) *data = val; /* As a generalization rule, PL4 would be around two times PL2. */ if (id == POWER_LIMIT4) *data = *data * 2; cpus_read_unlock(); return ret; } static const struct powercap_zone_constraint_ops constraint_ops = { .set_power_limit_uw = set_power_limit, .get_power_limit_uw = get_current_power_limit, .set_time_window_us = set_time_window, .get_time_window_us = get_time_window, .get_max_power_uw = get_max_power, .get_name = get_constraint_name, }; /* Return the id used for read_raw/write_raw callback */ static int get_rid(struct rapl_package *rp) { return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id; } /* called after domain detection and package level data are set */ static void rapl_init_domains(struct rapl_package *rp) { enum rapl_domain_type i; enum rapl_domain_reg_id j; struct rapl_domain *rd = rp->domains; for (i = 0; i < RAPL_DOMAIN_MAX; i++) { unsigned int mask = rp->domain_map & (1 << i); int t; if (!mask) continue; rd->rp = rp; if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) { snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d", rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) : rp->id); } else { snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s", rapl_domain_names[i]); } rd->id = i; /* PL1 is supported by default */ rp->priv->limits[i] |= BIT(POWER_LIMIT1); for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) { if (rp->priv->limits[i] & BIT(t)) rd->rpl[t].name = pl_names[t]; } for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++) rd->regs[j] = rp->priv->regs[i][j]; rd++; } } static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type, u64 value, int to_raw) { u64 units = 1; struct rapl_defaults *defaults = get_defaults(rd->rp); u64 scale = 1; switch (type) { case POWER_UNIT: units = rd->power_unit; break; case ENERGY_UNIT: scale = ENERGY_UNIT_SCALE; units = rd->energy_unit; break; case TIME_UNIT: return defaults->compute_time_window(rd, value, to_raw); case ARBITRARY_UNIT: default: return value; } if (to_raw) return div64_u64(value, units) * scale; value *= units; return div64_u64(value, scale); } /* RAPL primitives for MSR and MMIO I/F */ static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = { /* name, mask, shift, msr index, unit divisor */ [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0, RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32, RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0, RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), [FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17, RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49, RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK, 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48, RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), [PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0, RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0), [PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0, RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), [PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32, RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), [PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19, RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), [PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51, RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), /* non-hardware */ [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT, RAPL_PRIMITIVE_DERIVED), }; /* RAPL primitives for TPMI I/F */ static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = { /* name, mask, shift, msr index, unit divisor */ [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0, RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0), [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0, RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0), [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0, RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0), [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0, RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0), [PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63, RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), [PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63, RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0), [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0), [PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62, RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0), [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18, RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0), [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18, RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0), [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0), [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54, RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0), [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0, RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0), /* non-hardware */ [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT, RAPL_PRIMITIVE_DERIVED), }; static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim) { struct rapl_primitive_info *rpi = rp->priv->rpi; if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi) return NULL; return &rpi[prim]; } static int rapl_config(struct rapl_package *rp) { switch (rp->priv->type) { /* MMIO I/F shares the same register layout as MSR registers */ case RAPL_IF_MMIO: case RAPL_IF_MSR: rp->priv->defaults = (void *)defaults_msr; rp->priv->rpi = (void *)rpi_msr; break; case RAPL_IF_TPMI: rp->priv->defaults = (void *)&defaults_tpmi; rp->priv->rpi = (void *)rpi_tpmi; break; default: return -EINVAL; } /* defaults_msr can be NULL on unsupported platforms */ if (!rp->priv->defaults || !rp->priv->rpi) return -ENODEV; return 0; } static enum rapl_primitives prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim) { struct rapl_defaults *defaults = get_defaults(rd->rp); if (!defaults->spr_psys_bits) return prim; if (rd->id != RAPL_DOMAIN_PLATFORM) return prim; switch (prim) { case POWER_LIMIT1: return PSYS_POWER_LIMIT1; case POWER_LIMIT2: return PSYS_POWER_LIMIT2; case PL1_ENABLE: return PSYS_PL1_ENABLE; case PL2_ENABLE: return PSYS_PL2_ENABLE; case TIME_WINDOW1: return PSYS_TIME_WINDOW1; case TIME_WINDOW2: return PSYS_TIME_WINDOW2; default: return prim; } } /* Read primitive data based on its related struct rapl_primitive_info. * if xlate flag is set, return translated data based on data units, i.e. * time, energy, and power. * RAPL MSRs are non-architectual and are laid out not consistently across * domains. Here we use primitive info to allow writing consolidated access * functions. * For a given primitive, it is processed by MSR mask and shift. Unit conversion * is pre-assigned based on RAPL unit MSRs read at init time. * 63-------------------------- 31--------------------------- 0 * | xxxxx (mask) | * | |<- shift ----------------| * 63-------------------------- 31--------------------------- 0 */ static int rapl_read_data_raw(struct rapl_domain *rd, enum rapl_primitives prim, bool xlate, u64 *data) { u64 value; enum rapl_primitives prim_fixed = prim_fixups(rd, prim); struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); struct reg_action ra; if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) return -EINVAL; ra.reg = rd->regs[rpi->id]; if (!ra.reg.val) return -EINVAL; /* non-hardware data are collected by the polling thread */ if (rpi->flag & RAPL_PRIMITIVE_DERIVED) { *data = rd->rdd.primitives[prim]; return 0; } ra.mask = rpi->mask; if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name); return -EIO; } value = ra.value >> rpi->shift; if (xlate) *data = rapl_unit_xlate(rd, rpi->unit, value, 0); else *data = value; return 0; } /* Similar use of primitive info in the read counterpart */ static int rapl_write_data_raw(struct rapl_domain *rd, enum rapl_primitives prim, unsigned long long value) { enum rapl_primitives prim_fixed = prim_fixups(rd, prim); struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed); u64 bits; struct reg_action ra; int ret; if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY) return -EINVAL; bits = rapl_unit_xlate(rd, rpi->unit, value, 1); bits <<= rpi->shift; bits &= rpi->mask; memset(&ra, 0, sizeof(ra)); ra.reg = rd->regs[rpi->id]; ra.mask = rpi->mask; ra.value = bits; ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra); return ret; } static int rapl_read_pl_data(struct rapl_domain *rd, int pl, enum pl_prims pl_prim, bool xlate, u64 *data) { enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); if (!is_pl_valid(rd, pl)) return -EINVAL; return rapl_read_data_raw(rd, prim, xlate, data); } static int rapl_write_pl_data(struct rapl_domain *rd, int pl, enum pl_prims pl_prim, unsigned long long value) { enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim); if (!is_pl_valid(rd, pl)) return -EINVAL; if (rd->rpl[pl].locked) { pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]); return -EACCES; } return rapl_write_data_raw(rd, prim, value); } /* * Raw RAPL data stored in MSRs are in certain scales. We need to * convert them into standard units based on the units reported in * the RAPL unit MSRs. This is specific to CPUs as the method to * calculate units differ on different CPUs. * We convert the units to below format based on CPUs. * i.e. * energy unit: picoJoules : Represented in picoJoules by default * power unit : microWatts : Represented in milliWatts by default * time unit : microseconds: Represented in seconds by default */ static int rapl_check_unit_core(struct rapl_domain *rd) { struct reg_action ra; u32 value; ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; ra.mask = ~0; if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", ra.reg.val, rd->rp->name, rd->name); return -ENODEV; } value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; rd->power_unit = 1000000 / (1 << value); value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; rd->time_unit = 1000000 / (1 << value); pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); return 0; } static int rapl_check_unit_atom(struct rapl_domain *rd) { struct reg_action ra; u32 value; ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; ra.mask = ~0; if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", ra.reg.val, rd->rp->name, rd->name); return -ENODEV; } value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET; rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value; value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET; rd->power_unit = (1 << value) * 1000; value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET; rd->time_unit = 1000000 / (1 << value); pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n", rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); return 0; } static void power_limit_irq_save_cpu(void *info) { u32 l, h = 0; struct rapl_package *rp = (struct rapl_package *)info; /* save the state of PLN irq mask bit before disabling it */ rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) { rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE; rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED; } l &= ~PACKAGE_THERM_INT_PLN_ENABLE; wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); } /* REVISIT: * When package power limit is set artificially low by RAPL, LVT * thermal interrupt for package power limit should be ignored * since we are not really exceeding the real limit. The intention * is to avoid excessive interrupts while we are trying to save power. * A useful feature might be routing the package_power_limit interrupt * to userspace via eventfd. once we have a usecase, this is simple * to do by adding an atomic notifier. */ static void package_power_limit_irq_save(struct rapl_package *rp) { if (rp->lead_cpu < 0) return; if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) return; smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1); } /* * Restore per package power limit interrupt enable state. Called from cpu * hotplug code on package removal. */ static void package_power_limit_irq_restore(struct rapl_package *rp) { u32 l, h; if (rp->lead_cpu < 0) return; if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN)) return; /* irq enable state not saved, nothing to restore */ if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) return; rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h); if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE) l |= PACKAGE_THERM_INT_PLN_ENABLE; else l &= ~PACKAGE_THERM_INT_PLN_ENABLE; wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h); } static void set_floor_freq_default(struct rapl_domain *rd, bool mode) { int i; /* always enable clamp such that p-state can go below OS requested * range. power capping priority over guranteed frequency. */ rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode); for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) { rapl_write_pl_data(rd, i, PL_ENABLE, mode); rapl_write_pl_data(rd, i, PL_CLAMP, mode); } } static void set_floor_freq_atom(struct rapl_domain *rd, bool enable) { static u32 power_ctrl_orig_val; struct rapl_defaults *defaults = get_defaults(rd->rp); u32 mdata; if (!defaults->floor_freq_reg_addr) { pr_err("Invalid floor frequency config register\n"); return; } if (!power_ctrl_orig_val) iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ, defaults->floor_freq_reg_addr, &power_ctrl_orig_val); mdata = power_ctrl_orig_val; if (enable) { mdata &= ~(0x7f << 8); mdata |= 1 << 8; } iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE, defaults->floor_freq_reg_addr, mdata); } static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value, bool to_raw) { u64 f, y; /* fraction and exp. used for time unit */ /* * Special processing based on 2^Y*(1+F/4), refer * to Intel Software Developer's manual Vol.3B: CH 14.9.3. */ if (!to_raw) { f = (value & 0x60) >> 5; y = value & 0x1f; value = (1 << y) * (4 + f) * rd->time_unit / 4; } else { if (value < rd->time_unit) return 0; do_div(value, rd->time_unit); y = ilog2(value); /* * The target hardware field is 7 bits wide, so return all ones * if the exponent is too large. */ if (y > 0x1f) return 0x7f; f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y); value = (y & 0x1f) | ((f & 0x3) << 5); } return value; } static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value, bool to_raw) { /* * Atom time unit encoding is straight forward val * time_unit, * where time_unit is default to 1 sec. Never 0. */ if (!to_raw) return (value) ? value * rd->time_unit : rd->time_unit; value = div64_u64(value, rd->time_unit); return value; } /* TPMI Unit register has different layout */ #define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET #define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK #define TPMI_ENERGY_UNIT_OFFSET 0x06 #define TPMI_ENERGY_UNIT_MASK 0x7C0 #define TPMI_TIME_UNIT_OFFSET 0x0C #define TPMI_TIME_UNIT_MASK 0xF000 static int rapl_check_unit_tpmi(struct rapl_domain *rd) { struct reg_action ra; u32 value; ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT]; ra.mask = ~0; if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) { pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n", ra.reg.val, rd->rp->name, rd->name); return -ENODEV; } value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET; rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value); value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET; rd->power_unit = 1000000 / (1 << value); value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET; rd->time_unit = 1000000 / (1 << value); pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n", rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit); return 0; } static const struct rapl_defaults defaults_tpmi = { .check_unit = rapl_check_unit_tpmi, /* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */ .set_floor_freq = set_floor_freq_default, .compute_time_window = rapl_compute_time_window_core, }; static const struct rapl_defaults rapl_defaults_core = { .floor_freq_reg_addr = 0, .check_unit = rapl_check_unit_core, .set_floor_freq = set_floor_freq_default, .compute_time_window = rapl_compute_time_window_core, }; static const struct rapl_defaults rapl_defaults_hsw_server = { .check_unit = rapl_check_unit_core, .set_floor_freq = set_floor_freq_default, .compute_time_window = rapl_compute_time_window_core, .dram_domain_energy_unit = 15300, }; static const struct rapl_defaults rapl_defaults_spr_server = { .check_unit = rapl_check_unit_core, .set_floor_freq = set_floor_freq_default, .compute_time_window = rapl_compute_time_window_core, .psys_domain_energy_unit = 1000000000, .spr_psys_bits = true, }; static const struct rapl_defaults rapl_defaults_byt = { .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT, .check_unit = rapl_check_unit_atom, .set_floor_freq = set_floor_freq_atom, .compute_time_window = rapl_compute_time_window_atom, }; static const struct rapl_defaults rapl_defaults_tng = { .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG, .check_unit = rapl_check_unit_atom, .set_floor_freq = set_floor_freq_atom, .compute_time_window = rapl_compute_time_window_atom, }; static const struct rapl_defaults rapl_defaults_ann = { .floor_freq_reg_addr = 0, .check_unit = rapl_check_unit_atom, .set_floor_freq = NULL, .compute_time_window = rapl_compute_time_window_atom, }; static const struct rapl_defaults rapl_defaults_cht = { .floor_freq_reg_addr = 0, .check_unit = rapl_check_unit_atom, .set_floor_freq = NULL, .compute_time_window = rapl_compute_time_window_atom, }; static const struct rapl_defaults rapl_defaults_amd = { .check_unit = rapl_check_unit_core, }; static const struct x86_cpu_id rapl_ids[] __initconst = { X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server), X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &rapl_defaults_spr_server), X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt), X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht), X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng), X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server), X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server), X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd), X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd), X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd), X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd), {} }; MODULE_DEVICE_TABLE(x86cpu, rapl_ids); /* Read once for all raw primitive data for domains */ static void rapl_update_domain_data(struct rapl_package *rp) { int dmn, prim; u64 val; for (dmn = 0; dmn < rp->nr_domains; dmn++) { pr_debug("update %s domain %s data\n", rp->name, rp->domains[dmn].name); /* exclude non-raw primitives */ for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) { struct rapl_primitive_info *rpi = get_rpi(rp, prim); if (!rapl_read_data_raw(&rp->domains[dmn], prim, rpi->unit, &val)) rp->domains[dmn].rdd.primitives[prim] = val; } } } static int rapl_package_register_powercap(struct rapl_package *rp) { struct rapl_domain *rd; struct powercap_zone *power_zone = NULL; int nr_pl, ret; /* Update the domain data of the new package */ rapl_update_domain_data(rp); /* first we register package domain as the parent zone */ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { if (rd->id == RAPL_DOMAIN_PACKAGE) { nr_pl = find_nr_power_limit(rd); pr_debug("register package domain %s\n", rp->name); power_zone = powercap_register_zone(&rd->power_zone, rp->priv->control_type, rp->name, NULL, &zone_ops[rd->id], nr_pl, &constraint_ops); if (IS_ERR(power_zone)) { pr_debug("failed to register power zone %s\n", rp->name); return PTR_ERR(power_zone); } /* track parent zone in per package/socket data */ rp->power_zone = power_zone; /* done, only one package domain per socket */ break; } } if (!power_zone) { pr_err("no package domain found, unknown topology!\n"); return -ENODEV; } /* now register domains as children of the socket/package */ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { struct powercap_zone *parent = rp->power_zone; if (rd->id == RAPL_DOMAIN_PACKAGE) continue; if (rd->id == RAPL_DOMAIN_PLATFORM) parent = NULL; /* number of power limits per domain varies */ nr_pl = find_nr_power_limit(rd); power_zone = powercap_register_zone(&rd->power_zone, rp->priv->control_type, rd->name, parent, &zone_ops[rd->id], nr_pl, &constraint_ops); if (IS_ERR(power_zone)) { pr_debug("failed to register power_zone, %s:%s\n", rp->name, rd->name); ret = PTR_ERR(power_zone); goto err_cleanup; } } return 0; err_cleanup: /* * Clean up previously initialized domains within the package if we * failed after the first domain setup. */ while (--rd >= rp->domains) { pr_debug("unregister %s domain %s\n", rp->name, rd->name); powercap_unregister_zone(rp->priv->control_type, &rd->power_zone); } return ret; } static int rapl_check_domain(int domain, struct rapl_package *rp) { struct reg_action ra; switch (domain) { case RAPL_DOMAIN_PACKAGE: case RAPL_DOMAIN_PP0: case RAPL_DOMAIN_PP1: case RAPL_DOMAIN_DRAM: case RAPL_DOMAIN_PLATFORM: ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS]; break; default: pr_err("invalid domain id %d\n", domain); return -EINVAL; } /* make sure domain counters are available and contains non-zero * values, otherwise skip it. */ ra.mask = ENERGY_STATUS_MASK; if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value) return -ENODEV; return 0; } /* * Get per domain energy/power/time unit. * RAPL Interfaces without per domain unit register will use the package * scope unit register to set per domain units. */ static int rapl_get_domain_unit(struct rapl_domain *rd) { struct rapl_defaults *defaults = get_defaults(rd->rp); int ret; if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) { if (!rd->rp->priv->reg_unit.val) { pr_err("No valid Unit register found\n"); return -ENODEV; } rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit; } if (!defaults->check_unit) { pr_err("missing .check_unit() callback\n"); return -ENODEV; } ret = defaults->check_unit(rd); if (ret) return ret; if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit) rd->energy_unit = defaults->dram_domain_energy_unit; if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit) rd->energy_unit = defaults->psys_domain_energy_unit; return 0; } /* * Check if power limits are available. Two cases when they are not available: * 1. Locked by BIOS, in this case we still provide read-only access so that * users can see what limit is set by the BIOS. * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not * exist at all. In this case, we do not show the constraints in powercap. * * Called after domains are detected and initialized. */ static void rapl_detect_powerlimit(struct rapl_domain *rd) { u64 val64; int i; for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) { if (val64) { rd->rpl[i].locked = true; pr_info("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[i]); } } if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64)) rd->rpl[i].name = NULL; } } /* Detect active and valid domains for the given CPU, caller must * ensure the CPU belongs to the targeted package and CPU hotlug is disabled. */ static int rapl_detect_domains(struct rapl_package *rp) { struct rapl_domain *rd; int i; for (i = 0; i < RAPL_DOMAIN_MAX; i++) { /* use physical package id to read counters */ if (!rapl_check_domain(i, rp)) { rp->domain_map |= 1 << i; pr_info("Found RAPL domain %s\n", rapl_domain_names[i]); } } rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX); if (!rp->nr_domains) { pr_debug("no valid rapl domains found in %s\n", rp->name); return -ENODEV; } pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name); rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain), GFP_KERNEL); if (!rp->domains) return -ENOMEM; rapl_init_domains(rp); for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { rapl_get_domain_unit(rd); rapl_detect_powerlimit(rd); } return 0; } /* called from CPU hotplug notifier, hotplug lock held */ void rapl_remove_package_cpuslocked(struct rapl_package *rp) { struct rapl_domain *rd, *rd_package = NULL; package_power_limit_irq_restore(rp); for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) { int i; for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { rapl_write_pl_data(rd, i, PL_ENABLE, 0); rapl_write_pl_data(rd, i, PL_CLAMP, 0); } if (rd->id == RAPL_DOMAIN_PACKAGE) { rd_package = rd; continue; } pr_debug("remove package, undo power limit on %s: %s\n", rp->name, rd->name); powercap_unregister_zone(rp->priv->control_type, &rd->power_zone); } /* do parent zone last */ powercap_unregister_zone(rp->priv->control_type, &rd_package->power_zone); list_del(&rp->plist); kfree(rp); } EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked); void rapl_remove_package(struct rapl_package *rp) { guard(cpus_read_lock)(); rapl_remove_package_cpuslocked(rp); } EXPORT_SYMBOL_GPL(rapl_remove_package); /* caller to ensure CPU hotplug lock is held */ struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu) { struct rapl_package *rp; int uid; if (id_is_cpu) uid = topology_logical_die_id(id); else uid = id; list_for_each_entry(rp, &rapl_packages, plist) { if (rp->id == uid && rp->priv->control_type == priv->control_type) return rp; } return NULL; } EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked); struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu) { guard(cpus_read_lock)(); return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu); } EXPORT_SYMBOL_GPL(rapl_find_package_domain); /* called from CPU hotplug notifier, hotplug lock held */ struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu) { struct rapl_package *rp; int ret; rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL); if (!rp) return ERR_PTR(-ENOMEM); if (id_is_cpu) { rp->id = topology_logical_die_id(id); rp->lead_cpu = id; if (topology_max_die_per_package() > 1) snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d", topology_physical_package_id(id), topology_die_id(id)); else snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", topology_physical_package_id(id)); } else { rp->id = id; rp->lead_cpu = -1; snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id); } rp->priv = priv; ret = rapl_config(rp); if (ret) goto err_free_package; /* check if the package contains valid domains */ if (rapl_detect_domains(rp)) { ret = -ENODEV; goto err_free_package; } ret = rapl_package_register_powercap(rp); if (!ret) { INIT_LIST_HEAD(&rp->plist); list_add(&rp->plist, &rapl_packages); return rp; } err_free_package: kfree(rp->domains); kfree(rp); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked); struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu) { guard(cpus_read_lock)(); return rapl_add_package_cpuslocked(id, priv, id_is_cpu); } EXPORT_SYMBOL_GPL(rapl_add_package); static void power_limit_state_save(void) { struct rapl_package *rp; struct rapl_domain *rd; int ret, i; cpus_read_lock(); list_for_each_entry(rp, &rapl_packages, plist) { if (!rp->power_zone) continue; rd = power_zone_to_rapl_domain(rp->power_zone); for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) { ret = rapl_read_pl_data(rd, i, PL_LIMIT, true, &rd->rpl[i].last_power_limit); if (ret) rd->rpl[i].last_power_limit = 0; } } cpus_read_unlock(); } static void power_limit_state_restore(void) { struct rapl_package *rp; struct rapl_domain *rd; int i; cpus_read_lock(); list_for_each_entry(rp, &rapl_packages, plist) { if (!rp->power_zone) continue; rd = power_zone_to_rapl_domain(rp->power_zone); for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) if (rd->rpl[i].last_power_limit) rapl_write_pl_data(rd, i, PL_LIMIT, rd->rpl[i].last_power_limit); } cpus_read_unlock(); } static int rapl_pm_callback(struct notifier_block *nb, unsigned long mode, void *_unused) { switch (mode) { case PM_SUSPEND_PREPARE: power_limit_state_save(); break; case PM_POST_SUSPEND: power_limit_state_restore(); break; } return NOTIFY_OK; } static struct notifier_block rapl_pm_notifier = { .notifier_call = rapl_pm_callback, }; static struct platform_device *rapl_msr_platdev; static int __init rapl_init(void) { const struct x86_cpu_id *id; int ret; id = x86_match_cpu(rapl_ids); if (id) { defaults_msr = (struct rapl_defaults *)id->driver_data; rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0); if (!rapl_msr_platdev) return -ENOMEM; ret = platform_device_add(rapl_msr_platdev); if (ret) { platform_device_put(rapl_msr_platdev); return ret; } } ret = register_pm_notifier(&rapl_pm_notifier); if (ret && rapl_msr_platdev) { platform_device_del(rapl_msr_platdev); platform_device_put(rapl_msr_platdev); } return ret; } static void __exit rapl_exit(void) { platform_device_unregister(rapl_msr_platdev); unregister_pm_notifier(&rapl_pm_notifier); } fs_initcall(rapl_init); module_exit(rapl_exit); MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code"); MODULE_AUTHOR("Jacob Pan "); MODULE_LICENSE("GPL v2");