// SPDX-License-Identifier: GPL-2.0 /* * Intel Core SoC Power Management Controller Driver * * Copyright (c) 2016, Intel Corporation. * All Rights Reserved. * * Authors: Rajneesh Bhardwaj * Vishwanath Somayaji */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" /* Maximum number of modes supported by platfoms that has low power mode capability */ const char *pmc_lpm_modes[] = { "S0i2.0", "S0i2.1", "S0i2.2", "S0i3.0", "S0i3.1", "S0i3.2", "S0i3.3", "S0i3.4", NULL }; /* PKGC MSRs are common across Intel Core SoCs */ const struct pmc_bit_map msr_map[] = { {"Package C2", MSR_PKG_C2_RESIDENCY}, {"Package C3", MSR_PKG_C3_RESIDENCY}, {"Package C6", MSR_PKG_C6_RESIDENCY}, {"Package C7", MSR_PKG_C7_RESIDENCY}, {"Package C8", MSR_PKG_C8_RESIDENCY}, {"Package C9", MSR_PKG_C9_RESIDENCY}, {"Package C10", MSR_PKG_C10_RESIDENCY}, {} }; static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset) { return readl(pmc->regbase + reg_offset); } static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset, u32 val) { writel(val, pmc->regbase + reg_offset); } static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value) { /* * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are * used as a workaround which uses 30.5 usec tick. All other client * programs have the legacy SLP_S0 residency counter that is using the 122 * usec tick. */ const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2; if (pmc->map == &adl_reg_map) return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2); else return (u64)value * pmc->map->slp_s0_res_counter_step; } static int set_etr3(struct pmc_dev *pmcdev) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; int err; if (!map->etr3_offset) return -EOPNOTSUPP; mutex_lock(&pmcdev->lock); /* check if CF9 is locked */ reg = pmc_core_reg_read(pmc, map->etr3_offset); if (reg & ETR3_CF9LOCK) { err = -EACCES; goto out_unlock; } /* write CF9 global reset bit */ reg |= ETR3_CF9GR; pmc_core_reg_write(pmc, map->etr3_offset, reg); reg = pmc_core_reg_read(pmc, map->etr3_offset); if (!(reg & ETR3_CF9GR)) { err = -EIO; goto out_unlock; } err = 0; out_unlock: mutex_unlock(&pmcdev->lock); return err; } static umode_t etr3_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->etr3_offset); mutex_unlock(&pmcdev->lock); return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode; } static ssize_t etr3_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 reg; if (!map->etr3_offset) return -EOPNOTSUPP; mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->etr3_offset); reg &= ETR3_CF9GR | ETR3_CF9LOCK; mutex_unlock(&pmcdev->lock); return sysfs_emit(buf, "0x%08x", reg); } static ssize_t etr3_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); int err; u32 reg; err = kstrtouint(buf, 16, ®); if (err) return err; /* allow only CF9 writes */ if (reg != ETR3_CF9GR) return -EINVAL; err = set_etr3(pmcdev); if (err) return err; return len; } static DEVICE_ATTR_RW(etr3); static struct attribute *pmc_attrs[] = { &dev_attr_etr3.attr, NULL }; static const struct attribute_group pmc_attr_group = { .attrs = pmc_attrs, .is_visible = etr3_is_visible, }; static const struct attribute_group *pmc_dev_groups[] = { &pmc_attr_group, NULL }; static int pmc_core_dev_state_get(void *data, u64 *val) { struct pmc *pmc = data; const struct pmc_reg_map *map = pmc->map; u32 value; value = pmc_core_reg_read(pmc, map->slp_s0_offset); *val = pmc_core_adjust_slp_s0_step(pmc, value); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n"); static int pmc_core_check_read_lock_bit(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset); return value & BIT(pmc->map->pm_read_disable_bit); } static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev, struct seq_file *s) { const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps; const struct pmc_bit_map *map; int offset = pmc->map->slps0_dbg_offset; u32 data; while (*maps) { map = *maps; data = pmc_core_reg_read(pmc, offset); offset += 4; while (map->name) { if (dev) dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n", map->name, data & map->bit_mask ? "Yes" : "No"); if (s) seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n", map->name, data & map->bit_mask ? "Yes" : "No"); ++map; } ++maps; } } static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps) { int idx; for (idx = 0; maps[idx]; idx++) ;/* Nothing */ return idx; } static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev, struct seq_file *s, u32 offset, int pmc_index, const char *str, const struct pmc_bit_map **maps) { int index, idx, len = 32, bit_mask, arr_size; u32 *lpm_regs; arr_size = pmc_core_lpm_get_arr_size(maps); lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL); if (!lpm_regs) return; for (index = 0; index < arr_size; index++) { lpm_regs[index] = pmc_core_reg_read(pmc, offset); offset += 4; } for (idx = 0; idx < arr_size; idx++) { if (dev) dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx, lpm_regs[idx]); if (s) seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx, lpm_regs[idx]); for (index = 0; maps[idx][index].name && index < len; index++) { bit_mask = maps[idx][index].bit_mask; if (dev) dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index, maps[idx][index].name, lpm_regs[idx] & bit_mask ? 1 : 0); if (s) seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index, maps[idx][index].name, lpm_regs[idx] & bit_mask ? 1 : 0); } } kfree(lpm_regs); } static bool slps0_dbg_latch; static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset) { return readb(pmc->regbase + offset); } static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip, int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map) { seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n", pmc_index, ip, pf_map[idx][index].name, pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On"); } static int pmc_core_ppfear_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES]; int index, iter, idx, ip = 0; if (!pmc) continue; maps = pmc->map->pfear_sts; iter = pmc->map->ppfear0_offset; for (index = 0; index < pmc->map->ppfear_buckets && index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++) pf_regs[index] = pmc_core_reg_read_byte(pmc, iter); for (idx = 0; maps[idx]; idx++) { for (index = 0; maps[idx][index].name && index < pmc->map->ppfear_buckets * 8; ip++, index++) pmc_core_display_map(s, index, idx, ip, i, pf_regs[index / 8], maps); } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear); /* This function should return link status, 0 means ready */ static int pmc_core_mtpmc_link_status(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET); return value & BIT(SPT_PMC_MSG_FULL_STS_BIT); } static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram) { u32 dest; int timeout; for (timeout = NUM_RETRIES; timeout > 0; timeout--) { if (pmc_core_mtpmc_link_status(pmc) == 0) break; msleep(5); } if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc)) return -EBUSY; dest = (*addr_xram & MTPMC_MASK) | (1U << 1); pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest); return 0; } static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map *map = pmc->map->mphy_sts; u32 mphy_core_reg_low, mphy_core_reg_high; u32 val_low, val_high; int index, err = 0; if (pmcdev->pmc_xram_read_bit) { seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS."); return 0; } mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16); mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16); mutex_lock(&pmcdev->lock); if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) { err = -EBUSY; goto out_unlock; } msleep(10); val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) { err = -EBUSY; goto out_unlock; } msleep(10); val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); for (index = 0; index < 8 && map[index].name; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val_low ? "Not power gated" : "Power gated"); } for (index = 8; map[index].name; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val_high ? "Not power gated" : "Power gated"); } out_unlock: mutex_unlock(&pmcdev->lock); return err; } DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg); static int pmc_core_pll_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map *map = pmc->map->pll_sts; u32 mphy_common_reg, val; int index, err = 0; if (pmcdev->pmc_xram_read_bit) { seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS."); return 0; } mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16); mutex_lock(&pmcdev->lock); if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) { err = -EBUSY; goto out_unlock; } /* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */ msleep(10); val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET); for (index = 0; map[index].name ; index++) { seq_printf(s, "%-32s\tState: %s\n", map[index].name, map[index].bit_mask & val ? "Active" : "Idle"); } out_unlock: mutex_unlock(&pmcdev->lock); return err; } DEFINE_SHOW_ATTRIBUTE(pmc_core_pll); int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore) { struct pmc *pmc; const struct pmc_reg_map *map; u32 reg; int pmc_index, ltr_index; ltr_index = value; /* For platforms with multiple pmcs, ltr index value given by user * is based on the contiguous indexes from ltr_show output. * pmc index and ltr index needs to be calculated from it. */ for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_index++) { pmc = pmcdev->pmcs[pmc_index]; if (!pmc) continue; map = pmc->map; if (ltr_index <= map->ltr_ignore_max) break; /* Along with IP names, ltr_show map includes CURRENT_PLATFORM * and AGGREGATED_SYSTEM values per PMC. Take these two index * values into account in ltr_index calculation. Also, to start * ltr index from zero for next pmc, subtract it by 1. */ ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1; } if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0) return -EINVAL; pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index); mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset); if (ignore) reg |= BIT(ltr_index); else reg &= ~BIT(ltr_index); pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg); mutex_unlock(&pmcdev->lock); return 0; } static ssize_t pmc_core_ltr_ignore_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct pmc_dev *pmcdev = s->private; u32 buf_size, value; int err; buf_size = min_t(u32, count, 64); err = kstrtou32_from_user(userbuf, buf_size, 10, &value); if (err) return err; err = pmc_core_send_ltr_ignore(pmcdev, value, 1); return err == 0 ? count : err; } static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused) { return 0; } static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file) { return single_open(file, pmc_core_ltr_ignore_show, inode->i_private); } static const struct file_operations pmc_core_ltr_ignore_ops = { .open = pmc_core_ltr_ignore_open, .read = seq_read, .write = pmc_core_ltr_ignore_write, .llseek = seq_lseek, .release = single_release, }; static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset) { struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_reg_map *map = pmc->map; u32 fd; mutex_lock(&pmcdev->lock); if (!reset && !slps0_dbg_latch) goto out_unlock; fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset); if (reset) fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS; else fd |= CNP_PMC_LATCH_SLPS0_EVENTS; pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd); slps0_dbg_latch = false; out_unlock: mutex_unlock(&pmcdev->lock); } static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; pmc_core_slps0_dbg_latch(pmcdev, false); pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s); pmc_core_slps0_dbg_latch(pmcdev, true); return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg); static u32 convert_ltr_scale(u32 val) { /* * As per PCIE specification supporting document * ECN_LatencyTolnReporting_14Aug08.pdf the Latency * Tolerance Reporting data payload is encoded in a * 3 bit scale and 10 bit value fields. Values are * multiplied by the indicated scale to yield an absolute time * value, expressible in a range from 1 nanosecond to * 2^25*(2^10-1) = 34,326,183,936 nanoseconds. * * scale encoding is as follows: * * ---------------------------------------------- * |scale factor | Multiplier (ns) | * ---------------------------------------------- * | 0 | 1 | * | 1 | 32 | * | 2 | 1024 | * | 3 | 32768 | * | 4 | 1048576 | * | 5 | 33554432 | * | 6 | Invalid | * | 7 | Invalid | * ---------------------------------------------- */ if (val > 5) { pr_warn("Invalid LTR scale factor.\n"); return 0; } return 1U << (5 * val); } static int pmc_core_ltr_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; u64 decoded_snoop_ltr, decoded_non_snoop_ltr; u32 ltr_raw_data, scale, val; u16 snoop_ltr, nonsnoop_ltr; int i, index, ltr_index = 0; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map *map; if (!pmc) continue; map = pmc->map->ltr_show_sts; for (index = 0; map[index].name; index++) { decoded_snoop_ltr = decoded_non_snoop_ltr = 0; ltr_raw_data = pmc_core_reg_read(pmc, map[index].bit_mask); snoop_ltr = ltr_raw_data & ~MTPMC_MASK; nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK; if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) { scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr); val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr); decoded_non_snoop_ltr = val * convert_ltr_scale(scale); } if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) { scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr); val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr); decoded_snoop_ltr = val * convert_ltr_scale(scale); } seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n", ltr_index, i, map[index].name, ltr_raw_data, decoded_non_snoop_ltr, decoded_snoop_ltr); ltr_index++; } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr); static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset, const int lpm_adj_x2) { u64 lpm_res = pmc_core_reg_read(pmc, offset); return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res); } static int pmc_core_substate_res_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2; u32 offset = pmc->map->lpm_residency_offset; int i, mode; seq_printf(s, "%-10s %-15s\n", "Substate", "Residency"); pmc_for_each_mode(i, mode, pmcdev) { seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode], adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2)); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res); static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u32 offset; if (!pmc) continue; maps = pmc->map->lpm_sts; offset = pmc->map->lpm_status_offset; pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs); static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; const struct pmc_bit_map **maps; u32 offset; if (!pmc) continue; maps = pmc->map->lpm_sts; offset = pmc->map->lpm_live_status_offset; pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs); static void pmc_core_substate_req_header_show(struct seq_file *s) { struct pmc_dev *pmcdev = s->private; int i, mode; seq_printf(s, "%30s |", "Element"); pmc_for_each_mode(i, mode, pmcdev) seq_printf(s, " %9s |", pmc_lpm_modes[mode]); seq_printf(s, " %9s |\n", "Status"); } static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map **maps = pmc->map->lpm_sts; const struct pmc_bit_map *map; const int num_maps = pmc->map->lpm_num_maps; u32 sts_offset = pmc->map->lpm_status_offset; u32 *lpm_req_regs = pmc->lpm_req_regs; int mp; /* Display the header */ pmc_core_substate_req_header_show(s); /* Loop over maps */ for (mp = 0; mp < num_maps; mp++) { u32 req_mask = 0; u32 lpm_status; int mode, idx, i, len = 32; /* * Capture the requirements and create a mask so that we only * show an element if it's required for at least one of the * enabled low power modes */ pmc_for_each_mode(idx, mode, pmcdev) req_mask |= lpm_req_regs[mp + (mode * num_maps)]; /* Get the last latched status for this map */ lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4)); /* Loop over elements in this map */ map = maps[mp]; for (i = 0; map[i].name && i < len; i++) { u32 bit_mask = map[i].bit_mask; if (!(bit_mask & req_mask)) /* * Not required for any enabled states * so don't display */ continue; /* Display the element name in the first column */ seq_printf(s, "%30s |", map[i].name); /* Loop over the enabled states and display if required */ pmc_for_each_mode(idx, mode, pmcdev) { if (lpm_req_regs[mp + (mode * num_maps)] & bit_mask) seq_printf(s, " %9s |", "Required"); else seq_printf(s, " %9s |", " "); } /* In Status column, show the last captured state of this agent */ if (lpm_status & bit_mask) seq_printf(s, " %9s |", "Yes"); else seq_printf(s, " %9s |", " "); seq_puts(s, "\n"); } } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs); static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused) { struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; bool c10; u32 reg; int idx, mode; reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset); if (reg & LPM_STS_LATCH_MODE) { seq_puts(s, "c10"); c10 = false; } else { seq_puts(s, "[c10]"); c10 = true; } pmc_for_each_mode(idx, mode, pmcdev) { if ((BIT(mode) & reg) && !c10) seq_printf(s, " [%s]", pmc_lpm_modes[mode]); else seq_printf(s, " %s", pmc_lpm_modes[mode]); } seq_puts(s, " clear\n"); return 0; } static ssize_t pmc_core_lpm_latch_mode_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct pmc_dev *pmcdev = s->private; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; bool clear = false, c10 = false; unsigned char buf[8]; int idx, m, mode; u32 reg; if (count > sizeof(buf) - 1) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[count] = '\0'; /* * Allowed strings are: * Any enabled substate, e.g. 'S0i2.0' * 'c10' * 'clear' */ mode = sysfs_match_string(pmc_lpm_modes, buf); /* Check string matches enabled mode */ pmc_for_each_mode(idx, m, pmcdev) if (mode == m) break; if (mode != m || mode < 0) { if (sysfs_streq(buf, "clear")) clear = true; else if (sysfs_streq(buf, "c10")) c10 = true; else return -EINVAL; } if (clear) { mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset); reg |= ETR3_CLEAR_LPM_EVENTS; pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg); mutex_unlock(&pmcdev->lock); return count; } if (c10) { mutex_lock(&pmcdev->lock); reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset); reg &= ~LPM_STS_LATCH_MODE; pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg); mutex_unlock(&pmcdev->lock); return count; } /* * For LPM mode latching we set the latch enable bit and selected mode * and clear everything else. */ reg = LPM_STS_LATCH_MODE | BIT(mode); mutex_lock(&pmcdev->lock); pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg); mutex_unlock(&pmcdev->lock); return count; } DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode); static int pmc_core_pkgc_show(struct seq_file *s, void *unused) { struct pmc *pmc = s->private; const struct pmc_bit_map *map = pmc->map->msr_sts; u64 pcstate_count; int index; for (index = 0; map[index].name ; index++) { if (rdmsrl_safe(map[index].bit_mask, &pcstate_count)) continue; pcstate_count *= 1000; do_div(pcstate_count, tsc_khz); seq_printf(s, "%-8s : %llu\n", map[index].name, pcstate_count); } return 0; } DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc); static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order) { int i, j; if (!lpm_pri) return false; /* * Each byte contains the priority level for 2 modes (7:4 and 3:0). * In a 32 bit register this allows for describing 8 modes. Store the * levels and look for values out of range. */ for (i = 0; i < 8; i++) { int level = lpm_pri & GENMASK(3, 0); if (level >= LPM_MAX_NUM_MODES) return false; mode_order[i] = level; lpm_pri >>= 4; } /* Check that we have unique values */ for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++) for (j = i + 1; j < LPM_MAX_NUM_MODES; j++) if (mode_order[i] == mode_order[j]) return false; return true; } static void pmc_core_get_low_power_modes(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI; u8 mode_order[LPM_MAX_NUM_MODES]; u32 lpm_pri; u32 lpm_en; int mode, i, p; /* Use LPM Maps to indicate support for substates */ if (!pmc->map->lpm_num_maps) return; lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset); /* For MTL, BIT 31 is not an lpm mode but a enable bit. * Lower byte is enough to cover the number of lpm modes for all * platforms and hence mask the upper 3 bytes. */ pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF); /* Read 32 bit LPM_PRI register */ lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset); /* * If lpm_pri value passes verification, then override the default * modes here. Otherwise stick with the default. */ if (pmc_core_pri_verify(lpm_pri, mode_order)) /* Get list of modes in priority order */ for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++) pri_order[mode_order[mode]] = mode; else dev_warn(&pdev->dev, "Assuming a default substate order for this platform\n"); /* * Loop through all modes from lowest to highest priority, * and capture all enabled modes in order */ i = 0; for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) { int mode = pri_order[p]; if (!(BIT(mode) & lpm_en)) continue; pmcdev->lpm_en_modes[i++] = mode; } } int get_primary_reg_base(struct pmc *pmc) { u64 slp_s0_addr; if (lpit_read_residency_count_address(&slp_s0_addr)) { pmc->base_addr = PMC_BASE_ADDR_DEFAULT; if (page_is_ram(PHYS_PFN(pmc->base_addr))) return -ENODEV; } else { pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset; } pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length); if (!pmc->regbase) return -ENOMEM; return 0; } static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev) { debugfs_remove_recursive(pmcdev->dbgfs_dir); } static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev) { struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN]; struct dentry *dir; dir = debugfs_create_dir("pmc_core", NULL); pmcdev->dbgfs_dir = dir; debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc, &pmc_core_dev_state); if (primary_pmc->map->pfear_sts) debugfs_create_file("pch_ip_power_gating_status", 0444, dir, pmcdev, &pmc_core_ppfear_fops); debugfs_create_file("ltr_ignore", 0644, dir, pmcdev, &pmc_core_ltr_ignore_ops); debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops); debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc, &pmc_core_pkgc_fops); if (primary_pmc->map->pll_sts) debugfs_create_file("pll_status", 0444, dir, pmcdev, &pmc_core_pll_fops); if (primary_pmc->map->mphy_sts) debugfs_create_file("mphy_core_lanes_power_gating_status", 0444, dir, pmcdev, &pmc_core_mphy_pg_fops); if (primary_pmc->map->slps0_dbg_maps) { debugfs_create_file("slp_s0_debug_status", 0444, dir, pmcdev, &pmc_core_slps0_dbg_fops); debugfs_create_bool("slp_s0_dbg_latch", 0644, dir, &slps0_dbg_latch); } if (primary_pmc->map->lpm_en_offset) { debugfs_create_file("substate_residencies", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_res_fops); } if (primary_pmc->map->lpm_status_offset) { debugfs_create_file("substate_status_registers", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_sts_regs_fops); debugfs_create_file("substate_live_status_registers", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_l_sts_regs_fops); debugfs_create_file("lpm_latch_mode", 0644, pmcdev->dbgfs_dir, pmcdev, &pmc_core_lpm_latch_mode_fops); } if (primary_pmc->lpm_req_regs) { debugfs_create_file("substate_requirements", 0444, pmcdev->dbgfs_dir, pmcdev, &pmc_core_substate_req_regs_fops); } } static const struct x86_cpu_id intel_pmc_core_ids[] = { X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, spt_core_init), X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, cnp_core_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, icl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, tgl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, adl_core_init), X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, mtl_core_init), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids); static const struct pci_device_id pmc_pci_ids[] = { { PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) }, { } }; /* * This quirk can be used on those platforms where * the platform BIOS enforces 24Mhz crystal to shutdown * before PMC can assert SLP_S0#. */ static bool xtal_ignore; static int quirk_xtal_ignore(const struct dmi_system_id *id) { xtal_ignore = true; return 0; } static void pmc_core_xtal_ignore(struct pmc *pmc) { u32 value; value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset); /* 24MHz Crystal Shutdown Qualification Disable */ value |= SPT_PMC_VRIC1_XTALSDQDIS; /* Low Voltage Mode Enable */ value &= ~SPT_PMC_VRIC1_SLPS0LVEN; pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value); } static const struct dmi_system_id pmc_core_dmi_table[] = { { .callback = quirk_xtal_ignore, .ident = "HP Elite x2 1013 G3", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "HP"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"), }, }, {} }; static void pmc_core_do_dmi_quirks(struct pmc *pmc) { dmi_check_system(pmc_core_dmi_table); if (xtal_ignore) pmc_core_xtal_ignore(pmc); } static void pmc_core_clean_structure(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; if (pmc) iounmap(pmc->regbase); } if (pmcdev->ssram_pcidev) { pci_dev_put(pmcdev->ssram_pcidev); pci_disable_device(pmcdev->ssram_pcidev); } platform_set_drvdata(pdev, NULL); mutex_destroy(&pmcdev->lock); } static int pmc_core_probe(struct platform_device *pdev) { static bool device_initialized; struct pmc_dev *pmcdev; const struct x86_cpu_id *cpu_id; int (*core_init)(struct pmc_dev *pmcdev); struct pmc *primary_pmc; int ret; if (device_initialized) return -ENODEV; pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL); if (!pmcdev) return -ENOMEM; platform_set_drvdata(pdev, pmcdev); pmcdev->pdev = pdev; cpu_id = x86_match_cpu(intel_pmc_core_ids); if (!cpu_id) return -ENODEV; core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data; /* Primary PMC */ primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL); if (!primary_pmc) return -ENOMEM; pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc; /* * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap * in this case. */ if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids)) core_init = cnp_core_init; mutex_init(&pmcdev->lock); ret = core_init(pmcdev); if (ret) { pmc_core_clean_structure(pdev); return ret; } pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc); pmc_core_get_low_power_modes(pdev); pmc_core_do_dmi_quirks(primary_pmc); pmc_core_dbgfs_register(pmcdev); pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) * pmc_core_adjust_slp_s0_step(primary_pmc, 1)); device_initialized = true; dev_info(&pdev->dev, " initialized\n"); return 0; } static void pmc_core_remove(struct platform_device *pdev) { struct pmc_dev *pmcdev = platform_get_drvdata(pdev); pmc_core_dbgfs_unregister(pmcdev); pmc_core_clean_structure(pdev); } static bool warn_on_s0ix_failures; module_param(warn_on_s0ix_failures, bool, 0644); MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures"); static __maybe_unused int pmc_core_suspend(struct device *dev) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; if (pmcdev->suspend) pmcdev->suspend(pmcdev); /* Check if the syspend will actually use S0ix */ if (pm_suspend_via_firmware()) return 0; /* Save PC10 residency for checking later */ if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pmcdev->pc10_counter)) return -EIO; /* Save S0ix residency for checking later */ if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter)) return -EIO; return 0; } static inline bool pmc_core_is_pc10_failed(struct pmc_dev *pmcdev) { u64 pc10_counter; if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pc10_counter)) return false; if (pc10_counter == pmcdev->pc10_counter) return true; return false; } static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev) { u64 s0ix_counter; if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter)) return false; pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter)); if (s0ix_counter == pmcdev->s0ix_counter) return true; return false; } int pmc_core_resume_common(struct pmc_dev *pmcdev) { struct device *dev = &pmcdev->pdev->dev; struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN]; const struct pmc_bit_map **maps = pmc->map->lpm_sts; int offset = pmc->map->lpm_status_offset; int i; /* Check if the syspend used S0ix */ if (pm_suspend_via_firmware()) return 0; if (!pmc_core_is_s0ix_failed(pmcdev)) return 0; if (!warn_on_s0ix_failures) return 0; if (pmc_core_is_pc10_failed(pmcdev)) { /* S0ix failed because of PC10 entry failure */ dev_info(dev, "CPU did not enter PC10!!! (PC10 cnt=0x%llx)\n", pmcdev->pc10_counter); return 0; } /* The real interesting case - S0ix failed - lets ask PMC why. */ dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n", pmcdev->s0ix_counter); if (pmc->map->slps0_dbg_maps) pmc_core_slps0_display(pmc, dev, NULL); for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) { struct pmc *pmc = pmcdev->pmcs[i]; if (!pmc) continue; if (pmc->map->lpm_sts) pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps); } return 0; } static __maybe_unused int pmc_core_resume(struct device *dev) { struct pmc_dev *pmcdev = dev_get_drvdata(dev); if (pmcdev->resume) return pmcdev->resume(pmcdev); return pmc_core_resume_common(pmcdev); } static const struct dev_pm_ops pmc_core_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume) }; static const struct acpi_device_id pmc_core_acpi_ids[] = { {"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/ { } }; MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids); static struct platform_driver pmc_core_driver = { .driver = { .name = "intel_pmc_core", .acpi_match_table = ACPI_PTR(pmc_core_acpi_ids), .pm = &pmc_core_pm_ops, .dev_groups = pmc_dev_groups, }, .probe = pmc_core_probe, .remove_new = pmc_core_remove, }; module_platform_driver(pmc_core_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel PMC Core Driver");