// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. */ #include #include #include #include #include #include #include "ifs.h" /* * Note all code and data in this file is protected by * ifs_sem. On HT systems all threads on a core will * execute together, but only the first thread on the * core will update results of the test. */ #define CREATE_TRACE_POINTS #include /* Max retries on the same chunk */ #define MAX_IFS_RETRIES 5 /* * Number of TSC cycles that a logical CPU will wait for the other * logical CPU on the core in the WRMSR(ACTIVATE_SCAN). */ #define IFS_THREAD_WAIT 100000 enum ifs_status_err_code { IFS_NO_ERROR = 0, IFS_OTHER_THREAD_COULD_NOT_JOIN = 1, IFS_INTERRUPTED_BEFORE_RENDEZVOUS = 2, IFS_POWER_MGMT_INADEQUATE_FOR_SCAN = 3, IFS_INVALID_CHUNK_RANGE = 4, IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS = 5, IFS_CORE_NOT_CAPABLE_CURRENTLY = 6, IFS_UNASSIGNED_ERROR_CODE = 7, IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT = 8, IFS_INTERRUPTED_DURING_EXECUTION = 9, }; static const char * const scan_test_status[] = { [IFS_NO_ERROR] = "SCAN no error", [IFS_OTHER_THREAD_COULD_NOT_JOIN] = "Other thread could not join.", [IFS_INTERRUPTED_BEFORE_RENDEZVOUS] = "Interrupt occurred prior to SCAN coordination.", [IFS_POWER_MGMT_INADEQUATE_FOR_SCAN] = "Core Abort SCAN Response due to power management condition.", [IFS_INVALID_CHUNK_RANGE] = "Non valid chunks in the range", [IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS] = "Mismatch in arguments between threads T0/T1.", [IFS_CORE_NOT_CAPABLE_CURRENTLY] = "Core not capable of performing SCAN currently", [IFS_UNASSIGNED_ERROR_CODE] = "Unassigned error code 0x7", [IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT] = "Exceeded number of Logical Processors (LP) allowed to run Scan-At-Field concurrently", [IFS_INTERRUPTED_DURING_EXECUTION] = "Interrupt occurred prior to SCAN start", }; static void message_not_tested(struct device *dev, int cpu, union ifs_status status) { if (status.error_code < ARRAY_SIZE(scan_test_status)) { dev_info(dev, "CPU(s) %*pbl: SCAN operation did not start. %s\n", cpumask_pr_args(cpu_smt_mask(cpu)), scan_test_status[status.error_code]); } else if (status.error_code == IFS_SW_TIMEOUT) { dev_info(dev, "CPU(s) %*pbl: software timeout during scan\n", cpumask_pr_args(cpu_smt_mask(cpu))); } else if (status.error_code == IFS_SW_PARTIAL_COMPLETION) { dev_info(dev, "CPU(s) %*pbl: %s\n", cpumask_pr_args(cpu_smt_mask(cpu)), "Not all scan chunks were executed. Maximum forward progress retries exceeded"); } else { dev_info(dev, "CPU(s) %*pbl: SCAN unknown status %llx\n", cpumask_pr_args(cpu_smt_mask(cpu)), status.data); } } static void message_fail(struct device *dev, int cpu, union ifs_status status) { struct ifs_data *ifsd = ifs_get_data(dev); /* * control_error is set when the microcode runs into a problem * loading the image from the reserved BIOS memory, or it has * been corrupted. Reloading the image may fix this issue. */ if (status.control_error) { dev_err(dev, "CPU(s) %*pbl: could not execute from loaded scan image. Batch: %02x version: 0x%x\n", cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version); } /* * signature_error is set when the output from the scan chains does not * match the expected signature. This might be a transient problem (e.g. * due to a bit flip from an alpha particle or neutron). If the problem * repeats on a subsequent test, then it indicates an actual problem in * the core being tested. */ if (status.signature_error) { dev_err(dev, "CPU(s) %*pbl: test signature incorrect. Batch: %02x version: 0x%x\n", cpumask_pr_args(cpu_smt_mask(cpu)), ifsd->cur_batch, ifsd->loaded_version); } } static bool can_restart(union ifs_status status) { enum ifs_status_err_code err_code = status.error_code; /* Signature for chunk is bad, or scan test failed */ if (status.signature_error || status.control_error) return false; switch (err_code) { case IFS_NO_ERROR: case IFS_OTHER_THREAD_COULD_NOT_JOIN: case IFS_INTERRUPTED_BEFORE_RENDEZVOUS: case IFS_POWER_MGMT_INADEQUATE_FOR_SCAN: case IFS_EXCEED_NUMBER_OF_THREADS_CONCURRENT: case IFS_INTERRUPTED_DURING_EXECUTION: return true; case IFS_INVALID_CHUNK_RANGE: case IFS_MISMATCH_ARGUMENTS_BETWEEN_THREADS: case IFS_CORE_NOT_CAPABLE_CURRENTLY: case IFS_UNASSIGNED_ERROR_CODE: break; } return false; } /* * Execute the scan. Called "simultaneously" on all threads of a core * at high priority using the stop_cpus mechanism. */ static int doscan(void *data) { int cpu = smp_processor_id(); u64 *msrs = data; int first; /* Only the first logical CPU on a core reports result */ first = cpumask_first(cpu_smt_mask(cpu)); /* * This WRMSR will wait for other HT threads to also write * to this MSR (at most for activate.delay cycles). Then it * starts scan of each requested chunk. The core scan happens * during the "execution" of the WRMSR. This instruction can * take up to 200 milliseconds (in the case where all chunks * are processed in a single pass) before it retires. */ wrmsrl(MSR_ACTIVATE_SCAN, msrs[0]); if (cpu == first) { /* Pass back the result of the scan */ rdmsrl(MSR_SCAN_STATUS, msrs[1]); } return 0; } /* * Use stop_core_cpuslocked() to synchronize writing to MSR_ACTIVATE_SCAN * on all threads of the core to be tested. Loop if necessary to complete * run of all chunks. Include some defensive tests to make sure forward * progress is made, and that the whole test completes in a reasonable time. */ static void ifs_test_core(int cpu, struct device *dev) { union ifs_scan activate; union ifs_status status; unsigned long timeout; struct ifs_data *ifsd; u64 msrvals[2]; int retries; ifsd = ifs_get_data(dev); activate.rsvd = 0; activate.delay = IFS_THREAD_WAIT; activate.sigmce = 0; activate.start = 0; activate.stop = ifsd->valid_chunks - 1; timeout = jiffies + HZ / 2; retries = MAX_IFS_RETRIES; while (activate.start <= activate.stop) { if (time_after(jiffies, timeout)) { status.error_code = IFS_SW_TIMEOUT; break; } msrvals[0] = activate.data; stop_core_cpuslocked(cpu, doscan, msrvals); status.data = msrvals[1]; trace_ifs_status(cpu, activate, status); /* Some cases can be retried, give up for others */ if (!can_restart(status)) break; if (status.chunk_num == activate.start) { /* Check for forward progress */ if (--retries == 0) { if (status.error_code == IFS_NO_ERROR) status.error_code = IFS_SW_PARTIAL_COMPLETION; break; } } else { retries = MAX_IFS_RETRIES; activate.start = status.chunk_num; } } /* Update status for this core */ ifsd->scan_details = status.data; if (status.control_error || status.signature_error) { ifsd->status = SCAN_TEST_FAIL; message_fail(dev, cpu, status); } else if (status.error_code) { ifsd->status = SCAN_NOT_TESTED; message_not_tested(dev, cpu, status); } else { ifsd->status = SCAN_TEST_PASS; } } #define SPINUNIT 100 /* 100 nsec */ static atomic_t array_cpus_out; /* * Simplified cpu sibling rendezvous loop based on microcode loader __wait_for_cpus() */ static void wait_for_sibling_cpu(atomic_t *t, long long timeout) { int cpu = smp_processor_id(); const struct cpumask *smt_mask = cpu_smt_mask(cpu); int all_cpus = cpumask_weight(smt_mask); atomic_inc(t); while (atomic_read(t) < all_cpus) { if (timeout < SPINUNIT) return; ndelay(SPINUNIT); timeout -= SPINUNIT; touch_nmi_watchdog(); } } static int do_array_test(void *data) { union ifs_array *command = data; int cpu = smp_processor_id(); int first; /* * Only one logical CPU on a core needs to trigger the Array test via MSR write. */ first = cpumask_first(cpu_smt_mask(cpu)); if (cpu == first) { wrmsrl(MSR_ARRAY_BIST, command->data); /* Pass back the result of the test */ rdmsrl(MSR_ARRAY_BIST, command->data); } /* Tests complete faster if the sibling is spinning here */ wait_for_sibling_cpu(&array_cpus_out, NSEC_PER_SEC); return 0; } static void ifs_array_test_core(int cpu, struct device *dev) { union ifs_array command = {}; bool timed_out = false; struct ifs_data *ifsd; unsigned long timeout; ifsd = ifs_get_data(dev); command.array_bitmask = ~0U; timeout = jiffies + HZ / 2; do { if (time_after(jiffies, timeout)) { timed_out = true; break; } atomic_set(&array_cpus_out, 0); stop_core_cpuslocked(cpu, do_array_test, &command); if (command.ctrl_result) break; } while (command.array_bitmask); ifsd->scan_details = command.data; if (command.ctrl_result) ifsd->status = SCAN_TEST_FAIL; else if (timed_out || command.array_bitmask) ifsd->status = SCAN_NOT_TESTED; else ifsd->status = SCAN_TEST_PASS; } /* * Initiate per core test. It wakes up work queue threads on the target cpu and * its sibling cpu. Once all sibling threads wake up, the scan test gets executed and * wait for all sibling threads to finish the scan test. */ int do_core_test(int cpu, struct device *dev) { const struct ifs_test_caps *test = ifs_get_test_caps(dev); struct ifs_data *ifsd = ifs_get_data(dev); int ret = 0; /* Prevent CPUs from being taken offline during the scan test */ cpus_read_lock(); if (!cpu_online(cpu)) { dev_info(dev, "cannot test on the offline cpu %d\n", cpu); ret = -EINVAL; goto out; } switch (test->test_num) { case IFS_TYPE_SAF: if (!ifsd->loaded) return -EPERM; ifs_test_core(cpu, dev); break; case IFS_TYPE_ARRAY_BIST: ifs_array_test_core(cpu, dev); break; default: return -EINVAL; } out: cpus_read_unlock(); return ret; }