// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2016-2020 Arm Limited // CMN-600 Coherent Mesh Network PMU driver #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Common register stuff */ #define CMN_NODE_INFO 0x0000 #define CMN_NI_NODE_TYPE GENMASK_ULL(15, 0) #define CMN_NI_NODE_ID GENMASK_ULL(31, 16) #define CMN_NI_LOGICAL_ID GENMASK_ULL(47, 32) #define CMN_NODEID_DEVID(reg) ((reg) & 3) #define CMN_NODEID_EXT_DEVID(reg) ((reg) & 1) #define CMN_NODEID_PID(reg) (((reg) >> 2) & 1) #define CMN_NODEID_EXT_PID(reg) (((reg) >> 1) & 3) #define CMN_NODEID_1x1_PID(reg) (((reg) >> 2) & 7) #define CMN_NODEID_X(reg, bits) ((reg) >> (3 + (bits))) #define CMN_NODEID_Y(reg, bits) (((reg) >> 3) & ((1U << (bits)) - 1)) #define CMN_CHILD_INFO 0x0080 #define CMN_CI_CHILD_COUNT GENMASK_ULL(15, 0) #define CMN_CI_CHILD_PTR_OFFSET GENMASK_ULL(31, 16) #define CMN_CHILD_NODE_ADDR GENMASK(29, 0) #define CMN_CHILD_NODE_EXTERNAL BIT(31) #define CMN_MAX_DIMENSION 12 #define CMN_MAX_XPS (CMN_MAX_DIMENSION * CMN_MAX_DIMENSION) #define CMN_MAX_DTMS (CMN_MAX_XPS + (CMN_MAX_DIMENSION - 1) * 4) /* The CFG node has various info besides the discovery tree */ #define CMN_CFGM_PERIPH_ID_01 0x0008 #define CMN_CFGM_PID0_PART_0 GENMASK_ULL(7, 0) #define CMN_CFGM_PID1_PART_1 GENMASK_ULL(35, 32) #define CMN_CFGM_PERIPH_ID_23 0x0010 #define CMN_CFGM_PID2_REVISION GENMASK_ULL(7, 4) #define CMN_CFGM_INFO_GLOBAL 0x900 #define CMN_INFO_MULTIPLE_DTM_EN BIT_ULL(63) #define CMN_INFO_RSP_VC_NUM GENMASK_ULL(53, 52) #define CMN_INFO_DAT_VC_NUM GENMASK_ULL(51, 50) #define CMN_CFGM_INFO_GLOBAL_1 0x908 #define CMN_INFO_SNP_VC_NUM GENMASK_ULL(3, 2) #define CMN_INFO_REQ_VC_NUM GENMASK_ULL(1, 0) /* XPs also have some local topology info which has uses too */ #define CMN_MXP__CONNECT_INFO(p) (0x0008 + 8 * (p)) #define CMN__CONNECT_INFO_DEVICE_TYPE GENMASK_ULL(4, 0) #define CMN_MAX_PORTS 6 #define CI700_CONNECT_INFO_P2_5_OFFSET 0x10 /* PMU registers occupy the 3rd 4KB page of each node's region */ #define CMN_PMU_OFFSET 0x2000 /* For most nodes, this is all there is */ #define CMN_PMU_EVENT_SEL 0x000 #define CMN__PMU_CBUSY_SNTHROTTLE_SEL GENMASK_ULL(44, 42) #define CMN__PMU_SN_HOME_SEL GENMASK_ULL(40, 39) #define CMN__PMU_HBT_LBT_SEL GENMASK_ULL(38, 37) #define CMN__PMU_CLASS_OCCUP_ID GENMASK_ULL(36, 35) /* Technically this is 4 bits wide on DNs, but we only use 2 there anyway */ #define CMN__PMU_OCCUP1_ID GENMASK_ULL(34, 32) /* HN-Ps are weird... */ #define CMN_HNP_PMU_EVENT_SEL 0x008 /* DTMs live in the PMU space of XP registers */ #define CMN_DTM_WPn(n) (0x1A0 + (n) * 0x18) #define CMN_DTM_WPn_CONFIG(n) (CMN_DTM_WPn(n) + 0x00) #define CMN_DTM_WPn_CONFIG_WP_CHN_NUM GENMASK_ULL(20, 19) #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2 GENMASK_ULL(18, 17) #define CMN_DTM_WPn_CONFIG_WP_COMBINE BIT(9) #define CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE BIT(8) #define CMN600_WPn_CONFIG_WP_COMBINE BIT(6) #define CMN600_WPn_CONFIG_WP_EXCLUSIVE BIT(5) #define CMN_DTM_WPn_CONFIG_WP_GRP GENMASK_ULL(5, 4) #define CMN_DTM_WPn_CONFIG_WP_CHN_SEL GENMASK_ULL(3, 1) #define CMN_DTM_WPn_CONFIG_WP_DEV_SEL BIT(0) #define CMN_DTM_WPn_VAL(n) (CMN_DTM_WPn(n) + 0x08) #define CMN_DTM_WPn_MASK(n) (CMN_DTM_WPn(n) + 0x10) #define CMN_DTM_PMU_CONFIG 0x210 #define CMN__PMEVCNT0_INPUT_SEL GENMASK_ULL(37, 32) #define CMN__PMEVCNT0_INPUT_SEL_WP 0x00 #define CMN__PMEVCNT0_INPUT_SEL_XP 0x04 #define CMN__PMEVCNT0_INPUT_SEL_DEV 0x10 #define CMN__PMEVCNT0_GLOBAL_NUM GENMASK_ULL(18, 16) #define CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(n) ((n) * 4) #define CMN__PMEVCNT_PAIRED(n) BIT(4 + (n)) #define CMN__PMEVCNT23_COMBINED BIT(2) #define CMN__PMEVCNT01_COMBINED BIT(1) #define CMN_DTM_PMU_CONFIG_PMU_EN BIT(0) #define CMN_DTM_PMEVCNT 0x220 #define CMN_DTM_PMEVCNTSR 0x240 #define CMN650_DTM_UNIT_INFO 0x0910 #define CMN_DTM_UNIT_INFO 0x0960 #define CMN_DTM_UNIT_INFO_DTC_DOMAIN GENMASK_ULL(1, 0) #define CMN_DTM_NUM_COUNTERS 4 /* Want more local counters? Why not replicate the whole DTM! Ugh... */ #define CMN_DTM_OFFSET(n) ((n) * 0x200) /* The DTC node is where the magic happens */ #define CMN_DT_DTC_CTL 0x0a00 #define CMN_DT_DTC_CTL_DT_EN BIT(0) /* DTC counters are paired in 64-bit registers on a 16-byte stride. Yuck */ #define _CMN_DT_CNT_REG(n) ((((n) / 2) * 4 + (n) % 2) * 4) #define CMN_DT_PMEVCNT(n) (CMN_PMU_OFFSET + _CMN_DT_CNT_REG(n)) #define CMN_DT_PMCCNTR (CMN_PMU_OFFSET + 0x40) #define CMN_DT_PMEVCNTSR(n) (CMN_PMU_OFFSET + 0x50 + _CMN_DT_CNT_REG(n)) #define CMN_DT_PMCCNTRSR (CMN_PMU_OFFSET + 0x90) #define CMN_DT_PMCR (CMN_PMU_OFFSET + 0x100) #define CMN_DT_PMCR_PMU_EN BIT(0) #define CMN_DT_PMCR_CNTR_RST BIT(5) #define CMN_DT_PMCR_OVFL_INTR_EN BIT(6) #define CMN_DT_PMOVSR (CMN_PMU_OFFSET + 0x118) #define CMN_DT_PMOVSR_CLR (CMN_PMU_OFFSET + 0x120) #define CMN_DT_PMSSR (CMN_PMU_OFFSET + 0x128) #define CMN_DT_PMSSR_SS_STATUS(n) BIT(n) #define CMN_DT_PMSRR (CMN_PMU_OFFSET + 0x130) #define CMN_DT_PMSRR_SS_REQ BIT(0) #define CMN_DT_NUM_COUNTERS 8 #define CMN_MAX_DTCS 4 /* * Even in the worst case a DTC counter can't wrap in fewer than 2^42 cycles, * so throwing away one bit to make overflow handling easy is no big deal. */ #define CMN_COUNTER_INIT 0x80000000 /* Similarly for the 40-bit cycle counter */ #define CMN_CC_INIT 0x8000000000ULL /* Event attributes */ #define CMN_CONFIG_TYPE GENMASK_ULL(15, 0) #define CMN_CONFIG_EVENTID GENMASK_ULL(26, 16) #define CMN_CONFIG_OCCUPID GENMASK_ULL(30, 27) #define CMN_CONFIG_BYNODEID BIT_ULL(31) #define CMN_CONFIG_NODEID GENMASK_ULL(47, 32) #define CMN_EVENT_TYPE(event) FIELD_GET(CMN_CONFIG_TYPE, (event)->attr.config) #define CMN_EVENT_EVENTID(event) FIELD_GET(CMN_CONFIG_EVENTID, (event)->attr.config) #define CMN_EVENT_OCCUPID(event) FIELD_GET(CMN_CONFIG_OCCUPID, (event)->attr.config) #define CMN_EVENT_BYNODEID(event) FIELD_GET(CMN_CONFIG_BYNODEID, (event)->attr.config) #define CMN_EVENT_NODEID(event) FIELD_GET(CMN_CONFIG_NODEID, (event)->attr.config) #define CMN_CONFIG_WP_COMBINE GENMASK_ULL(30, 27) #define CMN_CONFIG_WP_DEV_SEL GENMASK_ULL(50, 48) #define CMN_CONFIG_WP_CHN_SEL GENMASK_ULL(55, 51) /* Note that we don't yet support the tertiary match group on newer IPs */ #define CMN_CONFIG_WP_GRP BIT_ULL(56) #define CMN_CONFIG_WP_EXCLUSIVE BIT_ULL(57) #define CMN_CONFIG1_WP_VAL GENMASK_ULL(63, 0) #define CMN_CONFIG2_WP_MASK GENMASK_ULL(63, 0) #define CMN_EVENT_WP_COMBINE(event) FIELD_GET(CMN_CONFIG_WP_COMBINE, (event)->attr.config) #define CMN_EVENT_WP_DEV_SEL(event) FIELD_GET(CMN_CONFIG_WP_DEV_SEL, (event)->attr.config) #define CMN_EVENT_WP_CHN_SEL(event) FIELD_GET(CMN_CONFIG_WP_CHN_SEL, (event)->attr.config) #define CMN_EVENT_WP_GRP(event) FIELD_GET(CMN_CONFIG_WP_GRP, (event)->attr.config) #define CMN_EVENT_WP_EXCLUSIVE(event) FIELD_GET(CMN_CONFIG_WP_EXCLUSIVE, (event)->attr.config) #define CMN_EVENT_WP_VAL(event) FIELD_GET(CMN_CONFIG1_WP_VAL, (event)->attr.config1) #define CMN_EVENT_WP_MASK(event) FIELD_GET(CMN_CONFIG2_WP_MASK, (event)->attr.config2) /* Made-up event IDs for watchpoint direction */ #define CMN_WP_UP 0 #define CMN_WP_DOWN 2 /* Internal values for encoding event support */ enum cmn_model { CMN600 = 1, CMN650 = 2, CMN700 = 4, CI700 = 8, /* ...and then we can use bitmap tricks for commonality */ CMN_ANY = -1, NOT_CMN600 = -2, CMN_650ON = CMN650 | CMN700, }; /* Actual part numbers and revision IDs defined by the hardware */ enum cmn_part { PART_CMN600 = 0x434, PART_CMN650 = 0x436, PART_CMN700 = 0x43c, PART_CI700 = 0x43a, }; /* CMN-600 r0px shouldn't exist in silicon, thankfully */ enum cmn_revision { REV_CMN600_R1P0, REV_CMN600_R1P1, REV_CMN600_R1P2, REV_CMN600_R1P3, REV_CMN600_R2P0, REV_CMN600_R3P0, REV_CMN600_R3P1, REV_CMN650_R0P0 = 0, REV_CMN650_R1P0, REV_CMN650_R1P1, REV_CMN650_R2P0, REV_CMN650_R1P2, REV_CMN700_R0P0 = 0, REV_CMN700_R1P0, REV_CMN700_R2P0, REV_CMN700_R3P0, REV_CI700_R0P0 = 0, REV_CI700_R1P0, REV_CI700_R2P0, }; enum cmn_node_type { CMN_TYPE_INVALID, CMN_TYPE_DVM, CMN_TYPE_CFG, CMN_TYPE_DTC, CMN_TYPE_HNI, CMN_TYPE_HNF, CMN_TYPE_XP, CMN_TYPE_SBSX, CMN_TYPE_MPAM_S, CMN_TYPE_MPAM_NS, CMN_TYPE_RNI, CMN_TYPE_RND = 0xd, CMN_TYPE_RNSAM = 0xf, CMN_TYPE_MTSX, CMN_TYPE_HNP, CMN_TYPE_CXRA = 0x100, CMN_TYPE_CXHA, CMN_TYPE_CXLA, CMN_TYPE_CCRA, CMN_TYPE_CCHA, CMN_TYPE_CCLA, CMN_TYPE_CCLA_RNI, CMN_TYPE_HNS = 0x200, CMN_TYPE_HNS_MPAM_S, CMN_TYPE_HNS_MPAM_NS, /* Not a real node type */ CMN_TYPE_WP = 0x7770 }; enum cmn_filter_select { SEL_NONE = -1, SEL_OCCUP1ID, SEL_CLASS_OCCUP_ID, SEL_CBUSY_SNTHROTTLE_SEL, SEL_HBT_LBT_SEL, SEL_SN_HOME_SEL, SEL_MAX }; struct arm_cmn_node { void __iomem *pmu_base; u16 id, logid; enum cmn_node_type type; int dtm; union { /* DN/HN-F/CXHA */ struct { u8 val : 4; u8 count : 4; } occupid[SEL_MAX]; /* XP */ u8 dtc; }; union { u8 event[4]; __le32 event_sel; u16 event_w[4]; __le64 event_sel_w; }; }; struct arm_cmn_dtm { void __iomem *base; u32 pmu_config_low; union { u8 input_sel[4]; __le32 pmu_config_high; }; s8 wp_event[4]; }; struct arm_cmn_dtc { void __iomem *base; int irq; int irq_friend; bool cc_active; struct perf_event *counters[CMN_DT_NUM_COUNTERS]; struct perf_event *cycles; }; #define CMN_STATE_DISABLED BIT(0) #define CMN_STATE_TXN BIT(1) struct arm_cmn { struct device *dev; void __iomem *base; unsigned int state; enum cmn_revision rev; enum cmn_part part; u8 mesh_x; u8 mesh_y; u16 num_xps; u16 num_dns; bool multi_dtm; u8 ports_used; struct { unsigned int rsp_vc_num : 2; unsigned int dat_vc_num : 2; unsigned int snp_vc_num : 2; unsigned int req_vc_num : 2; }; struct arm_cmn_node *xps; struct arm_cmn_node *dns; struct arm_cmn_dtm *dtms; struct arm_cmn_dtc *dtc; unsigned int num_dtcs; int cpu; struct hlist_node cpuhp_node; struct pmu pmu; struct dentry *debug; }; #define to_cmn(p) container_of(p, struct arm_cmn, pmu) static int arm_cmn_hp_state; struct arm_cmn_nodeid { u8 x; u8 y; u8 port; u8 dev; }; static int arm_cmn_xyidbits(const struct arm_cmn *cmn) { return fls((cmn->mesh_x - 1) | (cmn->mesh_y - 1) | 2); } static struct arm_cmn_nodeid arm_cmn_nid(const struct arm_cmn *cmn, u16 id) { struct arm_cmn_nodeid nid; if (cmn->num_xps == 1) { nid.x = 0; nid.y = 0; nid.port = CMN_NODEID_1x1_PID(id); nid.dev = CMN_NODEID_DEVID(id); } else { int bits = arm_cmn_xyidbits(cmn); nid.x = CMN_NODEID_X(id, bits); nid.y = CMN_NODEID_Y(id, bits); if (cmn->ports_used & 0xc) { nid.port = CMN_NODEID_EXT_PID(id); nid.dev = CMN_NODEID_EXT_DEVID(id); } else { nid.port = CMN_NODEID_PID(id); nid.dev = CMN_NODEID_DEVID(id); } } return nid; } static struct arm_cmn_node *arm_cmn_node_to_xp(const struct arm_cmn *cmn, const struct arm_cmn_node *dn) { struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); int xp_idx = cmn->mesh_x * nid.y + nid.x; return cmn->xps + xp_idx; } static struct arm_cmn_node *arm_cmn_node(const struct arm_cmn *cmn, enum cmn_node_type type) { struct arm_cmn_node *dn; for (dn = cmn->dns; dn->type; dn++) if (dn->type == type) return dn; return NULL; } static enum cmn_model arm_cmn_model(const struct arm_cmn *cmn) { switch (cmn->part) { case PART_CMN600: return CMN600; case PART_CMN650: return CMN650; case PART_CMN700: return CMN700; case PART_CI700: return CI700; default: return 0; }; } static u32 arm_cmn_device_connect_info(const struct arm_cmn *cmn, const struct arm_cmn_node *xp, int port) { int offset = CMN_MXP__CONNECT_INFO(port); if (port >= 2) { if (cmn->part == PART_CMN600 || cmn->part == PART_CMN650) return 0; /* * CI-700 may have extra ports, but still has the * mesh_port_connect_info registers in the way. */ if (cmn->part == PART_CI700) offset += CI700_CONNECT_INFO_P2_5_OFFSET; } return readl_relaxed(xp->pmu_base - CMN_PMU_OFFSET + offset); } static struct dentry *arm_cmn_debugfs; #ifdef CONFIG_DEBUG_FS static const char *arm_cmn_device_type(u8 type) { switch(FIELD_GET(CMN__CONNECT_INFO_DEVICE_TYPE, type)) { case 0x00: return " |"; case 0x01: return " RN-I |"; case 0x02: return " RN-D |"; case 0x04: return " RN-F_B |"; case 0x05: return "RN-F_B_E|"; case 0x06: return " RN-F_A |"; case 0x07: return "RN-F_A_E|"; case 0x08: return " HN-T |"; case 0x09: return " HN-I |"; case 0x0a: return " HN-D |"; case 0x0b: return " HN-P |"; case 0x0c: return " SN-F |"; case 0x0d: return " SBSX |"; case 0x0e: return " HN-F |"; case 0x0f: return " SN-F_E |"; case 0x10: return " SN-F_D |"; case 0x11: return " CXHA |"; case 0x12: return " CXRA |"; case 0x13: return " CXRH |"; case 0x14: return " RN-F_D |"; case 0x15: return "RN-F_D_E|"; case 0x16: return " RN-F_C |"; case 0x17: return "RN-F_C_E|"; case 0x18: return " RN-F_E |"; case 0x19: return "RN-F_E_E|"; case 0x1c: return " MTSX |"; case 0x1d: return " HN-V |"; case 0x1e: return " CCG |"; default: return " ???? |"; } } static void arm_cmn_show_logid(struct seq_file *s, int x, int y, int p, int d) { struct arm_cmn *cmn = s->private; struct arm_cmn_node *dn; for (dn = cmn->dns; dn->type; dn++) { struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); if (dn->type == CMN_TYPE_XP) continue; /* Ignore the extra components that will overlap on some ports */ if (dn->type < CMN_TYPE_HNI) continue; if (nid.x != x || nid.y != y || nid.port != p || nid.dev != d) continue; seq_printf(s, " #%-2d |", dn->logid); return; } seq_puts(s, " |"); } static int arm_cmn_map_show(struct seq_file *s, void *data) { struct arm_cmn *cmn = s->private; int x, y, p, pmax = fls(cmn->ports_used); seq_puts(s, " X"); for (x = 0; x < cmn->mesh_x; x++) seq_printf(s, " %d ", x); seq_puts(s, "\nY P D+"); y = cmn->mesh_y; while (y--) { int xp_base = cmn->mesh_x * y; u8 port[CMN_MAX_PORTS][CMN_MAX_DIMENSION]; for (x = 0; x < cmn->mesh_x; x++) seq_puts(s, "--------+"); seq_printf(s, "\n%d |", y); for (x = 0; x < cmn->mesh_x; x++) { struct arm_cmn_node *xp = cmn->xps + xp_base + x; for (p = 0; p < CMN_MAX_PORTS; p++) port[p][x] = arm_cmn_device_connect_info(cmn, xp, p); seq_printf(s, " XP #%-2d |", xp_base + x); } seq_puts(s, "\n |"); for (x = 0; x < cmn->mesh_x; x++) { u8 dtc = cmn->xps[xp_base + x].dtc; if (dtc & (dtc - 1)) seq_puts(s, " DTC ?? |"); else seq_printf(s, " DTC %ld |", __ffs(dtc)); } seq_puts(s, "\n |"); for (x = 0; x < cmn->mesh_x; x++) seq_puts(s, "........|"); for (p = 0; p < pmax; p++) { seq_printf(s, "\n %d |", p); for (x = 0; x < cmn->mesh_x; x++) seq_puts(s, arm_cmn_device_type(port[p][x])); seq_puts(s, "\n 0|"); for (x = 0; x < cmn->mesh_x; x++) arm_cmn_show_logid(s, x, y, p, 0); seq_puts(s, "\n 1|"); for (x = 0; x < cmn->mesh_x; x++) arm_cmn_show_logid(s, x, y, p, 1); } seq_puts(s, "\n-----+"); } for (x = 0; x < cmn->mesh_x; x++) seq_puts(s, "--------+"); seq_puts(s, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(arm_cmn_map); static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) { const char *name = "map"; if (id > 0) name = devm_kasprintf(cmn->dev, GFP_KERNEL, "map_%d", id); if (!name) return; cmn->debug = debugfs_create_file(name, 0444, arm_cmn_debugfs, cmn, &arm_cmn_map_fops); } #else static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) {} #endif struct arm_cmn_hw_event { struct arm_cmn_node *dn; u64 dtm_idx[4]; unsigned int dtc_idx; u8 dtcs_used; u8 num_dns; u8 dtm_offset; bool wide_sel; enum cmn_filter_select filter_sel; }; #define for_each_hw_dn(hw, dn, i) \ for (i = 0, dn = hw->dn; i < hw->num_dns; i++, dn++) static struct arm_cmn_hw_event *to_cmn_hw(struct perf_event *event) { BUILD_BUG_ON(sizeof(struct arm_cmn_hw_event) > offsetof(struct hw_perf_event, target)); return (struct arm_cmn_hw_event *)&event->hw; } static void arm_cmn_set_index(u64 x[], unsigned int pos, unsigned int val) { x[pos / 32] |= (u64)val << ((pos % 32) * 2); } static unsigned int arm_cmn_get_index(u64 x[], unsigned int pos) { return (x[pos / 32] >> ((pos % 32) * 2)) & 3; } struct arm_cmn_event_attr { struct device_attribute attr; enum cmn_model model; enum cmn_node_type type; enum cmn_filter_select fsel; u16 eventid; u8 occupid; }; struct arm_cmn_format_attr { struct device_attribute attr; u64 field; int config; }; #define _CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid, _fsel)\ (&((struct arm_cmn_event_attr[]) {{ \ .attr = __ATTR(_name, 0444, arm_cmn_event_show, NULL), \ .model = _model, \ .type = _type, \ .eventid = _eventid, \ .occupid = _occupid, \ .fsel = _fsel, \ }})[0].attr.attr) #define CMN_EVENT_ATTR(_model, _name, _type, _eventid) \ _CMN_EVENT_ATTR(_model, _name, _type, _eventid, 0, SEL_NONE) static ssize_t arm_cmn_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_cmn_event_attr *eattr; eattr = container_of(attr, typeof(*eattr), attr); if (eattr->type == CMN_TYPE_DTC) return sysfs_emit(buf, "type=0x%x\n", eattr->type); if (eattr->type == CMN_TYPE_WP) return sysfs_emit(buf, "type=0x%x,eventid=0x%x,wp_dev_sel=?,wp_chn_sel=?,wp_grp=?,wp_val=?,wp_mask=?\n", eattr->type, eattr->eventid); if (eattr->fsel > SEL_NONE) return sysfs_emit(buf, "type=0x%x,eventid=0x%x,occupid=0x%x\n", eattr->type, eattr->eventid, eattr->occupid); return sysfs_emit(buf, "type=0x%x,eventid=0x%x\n", eattr->type, eattr->eventid); } static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); struct arm_cmn_event_attr *eattr; enum cmn_node_type type; u16 eventid; eattr = container_of(attr, typeof(*eattr), attr.attr); if (!(eattr->model & arm_cmn_model(cmn))) return 0; type = eattr->type; eventid = eattr->eventid; /* Watchpoints aren't nodes, so avoid confusion */ if (type == CMN_TYPE_WP) return attr->mode; /* Hide XP events for unused interfaces/channels */ if (type == CMN_TYPE_XP) { unsigned int intf = (eventid >> 2) & 7; unsigned int chan = eventid >> 5; if ((intf & 4) && !(cmn->ports_used & BIT(intf & 3))) return 0; if (chan == 4 && cmn->part == PART_CMN600) return 0; if ((chan == 5 && cmn->rsp_vc_num < 2) || (chan == 6 && cmn->dat_vc_num < 2) || (chan == 7 && cmn->snp_vc_num < 2) || (chan == 8 && cmn->req_vc_num < 2)) return 0; } /* Revision-specific differences */ if (cmn->part == PART_CMN600) { if (cmn->rev < REV_CMN600_R1P3) { if (type == CMN_TYPE_CXRA && eventid > 0x10) return 0; } if (cmn->rev < REV_CMN600_R1P2) { if (type == CMN_TYPE_HNF && eventid == 0x1b) return 0; if (type == CMN_TYPE_CXRA || type == CMN_TYPE_CXHA) return 0; } } else if (cmn->part == PART_CMN650) { if (cmn->rev < REV_CMN650_R2P0 || cmn->rev == REV_CMN650_R1P2) { if (type == CMN_TYPE_HNF && eventid > 0x22) return 0; if (type == CMN_TYPE_SBSX && eventid == 0x17) return 0; if (type == CMN_TYPE_RNI && eventid > 0x10) return 0; } } else if (cmn->part == PART_CMN700) { if (cmn->rev < REV_CMN700_R2P0) { if (type == CMN_TYPE_HNF && eventid > 0x2c) return 0; if (type == CMN_TYPE_CCHA && eventid > 0x74) return 0; if (type == CMN_TYPE_CCLA && eventid > 0x27) return 0; } if (cmn->rev < REV_CMN700_R1P0) { if (type == CMN_TYPE_HNF && eventid > 0x2b) return 0; } } if (!arm_cmn_node(cmn, type)) return 0; return attr->mode; } #define _CMN_EVENT_DVM(_model, _name, _event, _occup, _fsel) \ _CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup, _fsel) #define CMN_EVENT_DTC(_name) \ CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0) #define CMN_EVENT_HNF(_model, _name, _event) \ CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event) #define CMN_EVENT_HNI(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event) #define CMN_EVENT_HNP(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, hnp_##_name, CMN_TYPE_HNP, _event) #define __CMN_EVENT_XP(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event) #define CMN_EVENT_SBSX(_model, _name, _event) \ CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event) #define CMN_EVENT_RNID(_model, _name, _event) \ CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event) #define CMN_EVENT_MTSX(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event) #define CMN_EVENT_CXRA(_model, _name, _event) \ CMN_EVENT_ATTR(_model, cxra_##_name, CMN_TYPE_CXRA, _event) #define CMN_EVENT_CXHA(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, cxha_##_name, CMN_TYPE_CXHA, _event) #define CMN_EVENT_CCRA(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, ccra_##_name, CMN_TYPE_CCRA, _event) #define CMN_EVENT_CCHA(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, ccha_##_name, CMN_TYPE_CCHA, _event) #define CMN_EVENT_CCLA(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, ccla_##_name, CMN_TYPE_CCLA, _event) #define CMN_EVENT_CCLA_RNI(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, ccla_rni_##_name, CMN_TYPE_CCLA_RNI, _event) #define CMN_EVENT_HNS(_name, _event) \ CMN_EVENT_ATTR(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) #define CMN_EVENT_DVM(_model, _name, _event) \ _CMN_EVENT_DVM(_model, _name, _event, 0, SEL_NONE) #define CMN_EVENT_DVM_OCC(_model, _name, _event) \ _CMN_EVENT_DVM(_model, _name##_all, _event, 0, SEL_OCCUP1ID), \ _CMN_EVENT_DVM(_model, _name##_dvmop, _event, 1, SEL_OCCUP1ID), \ _CMN_EVENT_DVM(_model, _name##_dvmsync, _event, 2, SEL_OCCUP1ID) #define CMN_EVENT_HN_OCC(_model, _name, _type, _event) \ _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 1, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 2, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(_model, _name##_atomic, _type, _event, 3, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(_model, _name##_stash, _type, _event, 4, SEL_OCCUP1ID) #define CMN_EVENT_HN_CLS(_model, _name, _type, _event) \ _CMN_EVENT_ATTR(_model, _name##_class0, _type, _event, 0, SEL_CLASS_OCCUP_ID), \ _CMN_EVENT_ATTR(_model, _name##_class1, _type, _event, 1, SEL_CLASS_OCCUP_ID), \ _CMN_EVENT_ATTR(_model, _name##_class2, _type, _event, 2, SEL_CLASS_OCCUP_ID), \ _CMN_EVENT_ATTR(_model, _name##_class3, _type, _event, 3, SEL_CLASS_OCCUP_ID) #define CMN_EVENT_HN_SNT(_model, _name, _type, _event) \ _CMN_EVENT_ATTR(_model, _name##_all, _type, _event, 0, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_group0_read, _type, _event, 1, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_group0_write, _type, _event, 2, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_group1_read, _type, _event, 3, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_group1_write, _type, _event, 4, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_read, _type, _event, 5, SEL_CBUSY_SNTHROTTLE_SEL), \ _CMN_EVENT_ATTR(_model, _name##_write, _type, _event, 6, SEL_CBUSY_SNTHROTTLE_SEL) #define CMN_EVENT_HNF_OCC(_model, _name, _event) \ CMN_EVENT_HN_OCC(_model, hnf_##_name, CMN_TYPE_HNF, _event) #define CMN_EVENT_HNF_CLS(_model, _name, _event) \ CMN_EVENT_HN_CLS(_model, hnf_##_name, CMN_TYPE_HNF, _event) #define CMN_EVENT_HNF_SNT(_model, _name, _event) \ CMN_EVENT_HN_SNT(_model, hnf_##_name, CMN_TYPE_HNF, _event) #define CMN_EVENT_HNS_OCC(_name, _event) \ CMN_EVENT_HN_OCC(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_rxsnp, CMN_TYPE_HNS, _event, 5, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 6, SEL_OCCUP1ID), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 7, SEL_OCCUP1ID) #define CMN_EVENT_HNS_CLS( _name, _event) \ CMN_EVENT_HN_CLS(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) #define CMN_EVENT_HNS_SNT(_name, _event) \ CMN_EVENT_HN_SNT(CMN_ANY, hns_##_name, CMN_TYPE_HNS, _event) #define CMN_EVENT_HNS_HBT(_name, _event) \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_HBT_LBT_SEL), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_hbt, CMN_TYPE_HNS, _event, 1, SEL_HBT_LBT_SEL), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_lbt, CMN_TYPE_HNS, _event, 2, SEL_HBT_LBT_SEL) #define CMN_EVENT_HNS_SNH(_name, _event) \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_all, CMN_TYPE_HNS, _event, 0, SEL_SN_HOME_SEL), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_sn, CMN_TYPE_HNS, _event, 1, SEL_SN_HOME_SEL), \ _CMN_EVENT_ATTR(CMN_ANY, hns_##_name##_home, CMN_TYPE_HNS, _event, 2, SEL_SN_HOME_SEL) #define _CMN_EVENT_XP_MESH(_name, _event) \ __CMN_EVENT_XP(e_##_name, (_event) | (0 << 2)), \ __CMN_EVENT_XP(w_##_name, (_event) | (1 << 2)), \ __CMN_EVENT_XP(n_##_name, (_event) | (2 << 2)), \ __CMN_EVENT_XP(s_##_name, (_event) | (3 << 2)) #define _CMN_EVENT_XP_PORT(_name, _event) \ __CMN_EVENT_XP(p0_##_name, (_event) | (4 << 2)), \ __CMN_EVENT_XP(p1_##_name, (_event) | (5 << 2)), \ __CMN_EVENT_XP(p2_##_name, (_event) | (6 << 2)), \ __CMN_EVENT_XP(p3_##_name, (_event) | (7 << 2)) #define _CMN_EVENT_XP(_name, _event) \ _CMN_EVENT_XP_MESH(_name, _event), \ _CMN_EVENT_XP_PORT(_name, _event) /* Good thing there are only 3 fundamental XP events... */ #define CMN_EVENT_XP(_name, _event) \ _CMN_EVENT_XP(req_##_name, (_event) | (0 << 5)), \ _CMN_EVENT_XP(rsp_##_name, (_event) | (1 << 5)), \ _CMN_EVENT_XP(snp_##_name, (_event) | (2 << 5)), \ _CMN_EVENT_XP(dat_##_name, (_event) | (3 << 5)), \ _CMN_EVENT_XP(pub_##_name, (_event) | (4 << 5)), \ _CMN_EVENT_XP(rsp2_##_name, (_event) | (5 << 5)), \ _CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5)), \ _CMN_EVENT_XP(snp2_##_name, (_event) | (7 << 5)), \ _CMN_EVENT_XP(req2_##_name, (_event) | (8 << 5)) #define CMN_EVENT_XP_DAT(_name, _event) \ _CMN_EVENT_XP_PORT(dat_##_name, (_event) | (3 << 5)), \ _CMN_EVENT_XP_PORT(dat2_##_name, (_event) | (6 << 5)) static struct attribute *arm_cmn_event_attrs[] = { CMN_EVENT_DTC(cycles), /* * DVM node events conflict with HN-I events in the equivalent PMU * slot, but our lazy short-cut of using the DTM counter index for * the PMU index as well happens to avoid that by construction. */ CMN_EVENT_DVM(CMN600, rxreq_dvmop, 0x01), CMN_EVENT_DVM(CMN600, rxreq_dvmsync, 0x02), CMN_EVENT_DVM(CMN600, rxreq_dvmop_vmid_filtered, 0x03), CMN_EVENT_DVM(CMN600, rxreq_retried, 0x04), CMN_EVENT_DVM_OCC(CMN600, rxreq_trk_occupancy, 0x05), CMN_EVENT_DVM(NOT_CMN600, dvmop_tlbi, 0x01), CMN_EVENT_DVM(NOT_CMN600, dvmop_bpi, 0x02), CMN_EVENT_DVM(NOT_CMN600, dvmop_pici, 0x03), CMN_EVENT_DVM(NOT_CMN600, dvmop_vici, 0x04), CMN_EVENT_DVM(NOT_CMN600, dvmsync, 0x05), CMN_EVENT_DVM(NOT_CMN600, vmid_filtered, 0x06), CMN_EVENT_DVM(NOT_CMN600, rndop_filtered, 0x07), CMN_EVENT_DVM(NOT_CMN600, retry, 0x08), CMN_EVENT_DVM(NOT_CMN600, txsnp_flitv, 0x09), CMN_EVENT_DVM(NOT_CMN600, txsnp_stall, 0x0a), CMN_EVENT_DVM(NOT_CMN600, trkfull, 0x0b), CMN_EVENT_DVM_OCC(NOT_CMN600, trk_occupancy, 0x0c), CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_cxha, 0x0d), CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_pdn, 0x0e), CMN_EVENT_DVM(CMN700, trk_alloc, 0x0f), CMN_EVENT_DVM(CMN700, trk_cxha_alloc, 0x10), CMN_EVENT_DVM(CMN700, trk_pdn_alloc, 0x11), CMN_EVENT_DVM(CMN700, txsnp_stall_limit, 0x12), CMN_EVENT_DVM(CMN700, rxsnp_stall_starv, 0x13), CMN_EVENT_DVM(CMN700, txsnp_sync_stall_op, 0x14), CMN_EVENT_HNF(CMN_ANY, cache_miss, 0x01), CMN_EVENT_HNF(CMN_ANY, slc_sf_cache_access, 0x02), CMN_EVENT_HNF(CMN_ANY, cache_fill, 0x03), CMN_EVENT_HNF(CMN_ANY, pocq_retry, 0x04), CMN_EVENT_HNF(CMN_ANY, pocq_reqs_recvd, 0x05), CMN_EVENT_HNF(CMN_ANY, sf_hit, 0x06), CMN_EVENT_HNF(CMN_ANY, sf_evictions, 0x07), CMN_EVENT_HNF(CMN_ANY, dir_snoops_sent, 0x08), CMN_EVENT_HNF(CMN_ANY, brd_snoops_sent, 0x09), CMN_EVENT_HNF(CMN_ANY, slc_eviction, 0x0a), CMN_EVENT_HNF(CMN_ANY, slc_fill_invalid_way, 0x0b), CMN_EVENT_HNF(CMN_ANY, mc_retries, 0x0c), CMN_EVENT_HNF(CMN_ANY, mc_reqs, 0x0d), CMN_EVENT_HNF(CMN_ANY, qos_hh_retry, 0x0e), CMN_EVENT_HNF_OCC(CMN_ANY, qos_pocq_occupancy, 0x0f), CMN_EVENT_HNF(CMN_ANY, pocq_addrhaz, 0x10), CMN_EVENT_HNF(CMN_ANY, pocq_atomic_addrhaz, 0x11), CMN_EVENT_HNF(CMN_ANY, ld_st_swp_adq_full, 0x12), CMN_EVENT_HNF(CMN_ANY, cmp_adq_full, 0x13), CMN_EVENT_HNF(CMN_ANY, txdat_stall, 0x14), CMN_EVENT_HNF(CMN_ANY, txrsp_stall, 0x15), CMN_EVENT_HNF(CMN_ANY, seq_full, 0x16), CMN_EVENT_HNF(CMN_ANY, seq_hit, 0x17), CMN_EVENT_HNF(CMN_ANY, snp_sent, 0x18), CMN_EVENT_HNF(CMN_ANY, sfbi_dir_snp_sent, 0x19), CMN_EVENT_HNF(CMN_ANY, sfbi_brd_snp_sent, 0x1a), CMN_EVENT_HNF(CMN_ANY, snp_sent_untrk, 0x1b), CMN_EVENT_HNF(CMN_ANY, intv_dirty, 0x1c), CMN_EVENT_HNF(CMN_ANY, stash_snp_sent, 0x1d), CMN_EVENT_HNF(CMN_ANY, stash_data_pull, 0x1e), CMN_EVENT_HNF(CMN_ANY, snp_fwded, 0x1f), CMN_EVENT_HNF(NOT_CMN600, atomic_fwd, 0x20), CMN_EVENT_HNF(NOT_CMN600, mpam_hardlim, 0x21), CMN_EVENT_HNF(NOT_CMN600, mpam_softlim, 0x22), CMN_EVENT_HNF(CMN_650ON, snp_sent_cluster, 0x23), CMN_EVENT_HNF(CMN_650ON, sf_imprecise_evict, 0x24), CMN_EVENT_HNF(CMN_650ON, sf_evict_shared_line, 0x25), CMN_EVENT_HNF_CLS(CMN700, pocq_class_occup, 0x26), CMN_EVENT_HNF_CLS(CMN700, pocq_class_retry, 0x27), CMN_EVENT_HNF_CLS(CMN700, class_mc_reqs, 0x28), CMN_EVENT_HNF_CLS(CMN700, class_cgnt_cmin, 0x29), CMN_EVENT_HNF_SNT(CMN700, sn_throttle, 0x2a), CMN_EVENT_HNF_SNT(CMN700, sn_throttle_min, 0x2b), CMN_EVENT_HNF(CMN700, sf_precise_to_imprecise, 0x2c), CMN_EVENT_HNF(CMN700, snp_intv_cln, 0x2d), CMN_EVENT_HNF(CMN700, nc_excl, 0x2e), CMN_EVENT_HNF(CMN700, excl_mon_ovfl, 0x2f), CMN_EVENT_HNI(rrt_rd_occ_cnt_ovfl, 0x20), CMN_EVENT_HNI(rrt_wr_occ_cnt_ovfl, 0x21), CMN_EVENT_HNI(rdt_rd_occ_cnt_ovfl, 0x22), CMN_EVENT_HNI(rdt_wr_occ_cnt_ovfl, 0x23), CMN_EVENT_HNI(wdb_occ_cnt_ovfl, 0x24), CMN_EVENT_HNI(rrt_rd_alloc, 0x25), CMN_EVENT_HNI(rrt_wr_alloc, 0x26), CMN_EVENT_HNI(rdt_rd_alloc, 0x27), CMN_EVENT_HNI(rdt_wr_alloc, 0x28), CMN_EVENT_HNI(wdb_alloc, 0x29), CMN_EVENT_HNI(txrsp_retryack, 0x2a), CMN_EVENT_HNI(arvalid_no_arready, 0x2b), CMN_EVENT_HNI(arready_no_arvalid, 0x2c), CMN_EVENT_HNI(awvalid_no_awready, 0x2d), CMN_EVENT_HNI(awready_no_awvalid, 0x2e), CMN_EVENT_HNI(wvalid_no_wready, 0x2f), CMN_EVENT_HNI(txdat_stall, 0x30), CMN_EVENT_HNI(nonpcie_serialization, 0x31), CMN_EVENT_HNI(pcie_serialization, 0x32), /* * HN-P events squat on top of the HN-I similarly to DVM events, except * for being crammed into the same physical node as well. And of course * where would the fun be if the same events were in the same order... */ CMN_EVENT_HNP(rrt_wr_occ_cnt_ovfl, 0x01), CMN_EVENT_HNP(rdt_wr_occ_cnt_ovfl, 0x02), CMN_EVENT_HNP(wdb_occ_cnt_ovfl, 0x03), CMN_EVENT_HNP(rrt_wr_alloc, 0x04), CMN_EVENT_HNP(rdt_wr_alloc, 0x05), CMN_EVENT_HNP(wdb_alloc, 0x06), CMN_EVENT_HNP(awvalid_no_awready, 0x07), CMN_EVENT_HNP(awready_no_awvalid, 0x08), CMN_EVENT_HNP(wvalid_no_wready, 0x09), CMN_EVENT_HNP(rrt_rd_occ_cnt_ovfl, 0x11), CMN_EVENT_HNP(rdt_rd_occ_cnt_ovfl, 0x12), CMN_EVENT_HNP(rrt_rd_alloc, 0x13), CMN_EVENT_HNP(rdt_rd_alloc, 0x14), CMN_EVENT_HNP(arvalid_no_arready, 0x15), CMN_EVENT_HNP(arready_no_arvalid, 0x16), CMN_EVENT_XP(txflit_valid, 0x01), CMN_EVENT_XP(txflit_stall, 0x02), CMN_EVENT_XP_DAT(partial_dat_flit, 0x03), /* We treat watchpoints as a special made-up class of XP events */ CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP), CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN), CMN_EVENT_SBSX(CMN_ANY, rd_req, 0x01), CMN_EVENT_SBSX(CMN_ANY, wr_req, 0x02), CMN_EVENT_SBSX(CMN_ANY, cmo_req, 0x03), CMN_EVENT_SBSX(CMN_ANY, txrsp_retryack, 0x04), CMN_EVENT_SBSX(CMN_ANY, txdat_flitv, 0x05), CMN_EVENT_SBSX(CMN_ANY, txrsp_flitv, 0x06), CMN_EVENT_SBSX(CMN_ANY, rd_req_trkr_occ_cnt_ovfl, 0x11), CMN_EVENT_SBSX(CMN_ANY, wr_req_trkr_occ_cnt_ovfl, 0x12), CMN_EVENT_SBSX(CMN_ANY, cmo_req_trkr_occ_cnt_ovfl, 0x13), CMN_EVENT_SBSX(CMN_ANY, wdb_occ_cnt_ovfl, 0x14), CMN_EVENT_SBSX(CMN_ANY, rd_axi_trkr_occ_cnt_ovfl, 0x15), CMN_EVENT_SBSX(CMN_ANY, cmo_axi_trkr_occ_cnt_ovfl, 0x16), CMN_EVENT_SBSX(NOT_CMN600, rdb_occ_cnt_ovfl, 0x17), CMN_EVENT_SBSX(CMN_ANY, arvalid_no_arready, 0x21), CMN_EVENT_SBSX(CMN_ANY, awvalid_no_awready, 0x22), CMN_EVENT_SBSX(CMN_ANY, wvalid_no_wready, 0x23), CMN_EVENT_SBSX(CMN_ANY, txdat_stall, 0x24), CMN_EVENT_SBSX(CMN_ANY, txrsp_stall, 0x25), CMN_EVENT_RNID(CMN_ANY, s0_rdata_beats, 0x01), CMN_EVENT_RNID(CMN_ANY, s1_rdata_beats, 0x02), CMN_EVENT_RNID(CMN_ANY, s2_rdata_beats, 0x03), CMN_EVENT_RNID(CMN_ANY, rxdat_flits, 0x04), CMN_EVENT_RNID(CMN_ANY, txdat_flits, 0x05), CMN_EVENT_RNID(CMN_ANY, txreq_flits_total, 0x06), CMN_EVENT_RNID(CMN_ANY, txreq_flits_retried, 0x07), CMN_EVENT_RNID(CMN_ANY, rrt_occ_ovfl, 0x08), CMN_EVENT_RNID(CMN_ANY, wrt_occ_ovfl, 0x09), CMN_EVENT_RNID(CMN_ANY, txreq_flits_replayed, 0x0a), CMN_EVENT_RNID(CMN_ANY, wrcancel_sent, 0x0b), CMN_EVENT_RNID(CMN_ANY, s0_wdata_beats, 0x0c), CMN_EVENT_RNID(CMN_ANY, s1_wdata_beats, 0x0d), CMN_EVENT_RNID(CMN_ANY, s2_wdata_beats, 0x0e), CMN_EVENT_RNID(CMN_ANY, rrt_alloc, 0x0f), CMN_EVENT_RNID(CMN_ANY, wrt_alloc, 0x10), CMN_EVENT_RNID(CMN600, rdb_unord, 0x11), CMN_EVENT_RNID(CMN600, rdb_replay, 0x12), CMN_EVENT_RNID(CMN600, rdb_hybrid, 0x13), CMN_EVENT_RNID(CMN600, rdb_ord, 0x14), CMN_EVENT_RNID(NOT_CMN600, padb_occ_ovfl, 0x11), CMN_EVENT_RNID(NOT_CMN600, rpdb_occ_ovfl, 0x12), CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice1, 0x13), CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice2, 0x14), CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice3, 0x15), CMN_EVENT_RNID(NOT_CMN600, wrt_throttled, 0x16), CMN_EVENT_RNID(CMN700, ldb_full, 0x17), CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice0, 0x18), CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice1, 0x19), CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice2, 0x1a), CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice3, 0x1b), CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice0, 0x1c), CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice1, 0x1d), CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice2, 0x1e), CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice3, 0x1f), CMN_EVENT_RNID(CMN700, rrt_burst_alloc, 0x20), CMN_EVENT_RNID(CMN700, awid_hash, 0x21), CMN_EVENT_RNID(CMN700, atomic_alloc, 0x22), CMN_EVENT_RNID(CMN700, atomic_occ_ovfl, 0x23), CMN_EVENT_MTSX(tc_lookup, 0x01), CMN_EVENT_MTSX(tc_fill, 0x02), CMN_EVENT_MTSX(tc_miss, 0x03), CMN_EVENT_MTSX(tdb_forward, 0x04), CMN_EVENT_MTSX(tcq_hazard, 0x05), CMN_EVENT_MTSX(tcq_rd_alloc, 0x06), CMN_EVENT_MTSX(tcq_wr_alloc, 0x07), CMN_EVENT_MTSX(tcq_cmo_alloc, 0x08), CMN_EVENT_MTSX(axi_rd_req, 0x09), CMN_EVENT_MTSX(axi_wr_req, 0x0a), CMN_EVENT_MTSX(tcq_occ_cnt_ovfl, 0x0b), CMN_EVENT_MTSX(tdb_occ_cnt_ovfl, 0x0c), CMN_EVENT_CXRA(CMN_ANY, rht_occ, 0x01), CMN_EVENT_CXRA(CMN_ANY, sht_occ, 0x02), CMN_EVENT_CXRA(CMN_ANY, rdb_occ, 0x03), CMN_EVENT_CXRA(CMN_ANY, wdb_occ, 0x04), CMN_EVENT_CXRA(CMN_ANY, ssb_occ, 0x05), CMN_EVENT_CXRA(CMN_ANY, snp_bcasts, 0x06), CMN_EVENT_CXRA(CMN_ANY, req_chains, 0x07), CMN_EVENT_CXRA(CMN_ANY, req_chain_avglen, 0x08), CMN_EVENT_CXRA(CMN_ANY, chirsp_stalls, 0x09), CMN_EVENT_CXRA(CMN_ANY, chidat_stalls, 0x0a), CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link0, 0x0b), CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link1, 0x0c), CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link2, 0x0d), CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link0, 0x0e), CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link1, 0x0f), CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link2, 0x10), CMN_EVENT_CXRA(CMN_ANY, external_chirsp_stalls, 0x11), CMN_EVENT_CXRA(CMN_ANY, external_chidat_stalls, 0x12), CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link0, 0x13), CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link1, 0x14), CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link2, 0x15), CMN_EVENT_CXHA(rddatbyp, 0x21), CMN_EVENT_CXHA(chirsp_up_stall, 0x22), CMN_EVENT_CXHA(chidat_up_stall, 0x23), CMN_EVENT_CXHA(snppcrd_link0_stall, 0x24), CMN_EVENT_CXHA(snppcrd_link1_stall, 0x25), CMN_EVENT_CXHA(snppcrd_link2_stall, 0x26), CMN_EVENT_CXHA(reqtrk_occ, 0x27), CMN_EVENT_CXHA(rdb_occ, 0x28), CMN_EVENT_CXHA(rdbyp_occ, 0x29), CMN_EVENT_CXHA(wdb_occ, 0x2a), CMN_EVENT_CXHA(snptrk_occ, 0x2b), CMN_EVENT_CXHA(sdb_occ, 0x2c), CMN_EVENT_CXHA(snphaz_occ, 0x2d), CMN_EVENT_CCRA(rht_occ, 0x41), CMN_EVENT_CCRA(sht_occ, 0x42), CMN_EVENT_CCRA(rdb_occ, 0x43), CMN_EVENT_CCRA(wdb_occ, 0x44), CMN_EVENT_CCRA(ssb_occ, 0x45), CMN_EVENT_CCRA(snp_bcasts, 0x46), CMN_EVENT_CCRA(req_chains, 0x47), CMN_EVENT_CCRA(req_chain_avglen, 0x48), CMN_EVENT_CCRA(chirsp_stalls, 0x49), CMN_EVENT_CCRA(chidat_stalls, 0x4a), CMN_EVENT_CCRA(cxreq_pcrd_stalls_link0, 0x4b), CMN_EVENT_CCRA(cxreq_pcrd_stalls_link1, 0x4c), CMN_EVENT_CCRA(cxreq_pcrd_stalls_link2, 0x4d), CMN_EVENT_CCRA(cxdat_pcrd_stalls_link0, 0x4e), CMN_EVENT_CCRA(cxdat_pcrd_stalls_link1, 0x4f), CMN_EVENT_CCRA(cxdat_pcrd_stalls_link2, 0x50), CMN_EVENT_CCRA(external_chirsp_stalls, 0x51), CMN_EVENT_CCRA(external_chidat_stalls, 0x52), CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link0, 0x53), CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link1, 0x54), CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link2, 0x55), CMN_EVENT_CCRA(rht_alloc, 0x56), CMN_EVENT_CCRA(sht_alloc, 0x57), CMN_EVENT_CCRA(rdb_alloc, 0x58), CMN_EVENT_CCRA(wdb_alloc, 0x59), CMN_EVENT_CCRA(ssb_alloc, 0x5a), CMN_EVENT_CCHA(rddatbyp, 0x61), CMN_EVENT_CCHA(chirsp_up_stall, 0x62), CMN_EVENT_CCHA(chidat_up_stall, 0x63), CMN_EVENT_CCHA(snppcrd_link0_stall, 0x64), CMN_EVENT_CCHA(snppcrd_link1_stall, 0x65), CMN_EVENT_CCHA(snppcrd_link2_stall, 0x66), CMN_EVENT_CCHA(reqtrk_occ, 0x67), CMN_EVENT_CCHA(rdb_occ, 0x68), CMN_EVENT_CCHA(rdbyp_occ, 0x69), CMN_EVENT_CCHA(wdb_occ, 0x6a), CMN_EVENT_CCHA(snptrk_occ, 0x6b), CMN_EVENT_CCHA(sdb_occ, 0x6c), CMN_EVENT_CCHA(snphaz_occ, 0x6d), CMN_EVENT_CCHA(reqtrk_alloc, 0x6e), CMN_EVENT_CCHA(rdb_alloc, 0x6f), CMN_EVENT_CCHA(rdbyp_alloc, 0x70), CMN_EVENT_CCHA(wdb_alloc, 0x71), CMN_EVENT_CCHA(snptrk_alloc, 0x72), CMN_EVENT_CCHA(sdb_alloc, 0x73), CMN_EVENT_CCHA(snphaz_alloc, 0x74), CMN_EVENT_CCHA(pb_rhu_req_occ, 0x75), CMN_EVENT_CCHA(pb_rhu_req_alloc, 0x76), CMN_EVENT_CCHA(pb_rhu_pcie_req_occ, 0x77), CMN_EVENT_CCHA(pb_rhu_pcie_req_alloc, 0x78), CMN_EVENT_CCHA(pb_pcie_wr_req_occ, 0x79), CMN_EVENT_CCHA(pb_pcie_wr_req_alloc, 0x7a), CMN_EVENT_CCHA(pb_pcie_reg_req_occ, 0x7b), CMN_EVENT_CCHA(pb_pcie_reg_req_alloc, 0x7c), CMN_EVENT_CCHA(pb_pcie_rsvd_req_occ, 0x7d), CMN_EVENT_CCHA(pb_pcie_rsvd_req_alloc, 0x7e), CMN_EVENT_CCHA(pb_rhu_dat_occ, 0x7f), CMN_EVENT_CCHA(pb_rhu_dat_alloc, 0x80), CMN_EVENT_CCHA(pb_rhu_pcie_dat_occ, 0x81), CMN_EVENT_CCHA(pb_rhu_pcie_dat_alloc, 0x82), CMN_EVENT_CCHA(pb_pcie_wr_dat_occ, 0x83), CMN_EVENT_CCHA(pb_pcie_wr_dat_alloc, 0x84), CMN_EVENT_CCLA(rx_cxs, 0x21), CMN_EVENT_CCLA(tx_cxs, 0x22), CMN_EVENT_CCLA(rx_cxs_avg_size, 0x23), CMN_EVENT_CCLA(tx_cxs_avg_size, 0x24), CMN_EVENT_CCLA(tx_cxs_lcrd_backpressure, 0x25), CMN_EVENT_CCLA(link_crdbuf_occ, 0x26), CMN_EVENT_CCLA(link_crdbuf_alloc, 0x27), CMN_EVENT_CCLA(pfwd_rcvr_cxs, 0x28), CMN_EVENT_CCLA(pfwd_sndr_num_flits, 0x29), CMN_EVENT_CCLA(pfwd_sndr_stalls_static_crd, 0x2a), CMN_EVENT_CCLA(pfwd_sndr_stalls_dynmaic_crd, 0x2b), CMN_EVENT_HNS_HBT(cache_miss, 0x01), CMN_EVENT_HNS_HBT(slc_sf_cache_access, 0x02), CMN_EVENT_HNS_HBT(cache_fill, 0x03), CMN_EVENT_HNS_HBT(pocq_retry, 0x04), CMN_EVENT_HNS_HBT(pocq_reqs_recvd, 0x05), CMN_EVENT_HNS_HBT(sf_hit, 0x06), CMN_EVENT_HNS_HBT(sf_evictions, 0x07), CMN_EVENT_HNS(dir_snoops_sent, 0x08), CMN_EVENT_HNS(brd_snoops_sent, 0x09), CMN_EVENT_HNS_HBT(slc_eviction, 0x0a), CMN_EVENT_HNS_HBT(slc_fill_invalid_way, 0x0b), CMN_EVENT_HNS(mc_retries_local, 0x0c), CMN_EVENT_HNS_SNH(mc_reqs_local, 0x0d), CMN_EVENT_HNS(qos_hh_retry, 0x0e), CMN_EVENT_HNS_OCC(qos_pocq_occupancy, 0x0f), CMN_EVENT_HNS(pocq_addrhaz, 0x10), CMN_EVENT_HNS(pocq_atomic_addrhaz, 0x11), CMN_EVENT_HNS(ld_st_swp_adq_full, 0x12), CMN_EVENT_HNS(cmp_adq_full, 0x13), CMN_EVENT_HNS(txdat_stall, 0x14), CMN_EVENT_HNS(txrsp_stall, 0x15), CMN_EVENT_HNS(seq_full, 0x16), CMN_EVENT_HNS(seq_hit, 0x17), CMN_EVENT_HNS(snp_sent, 0x18), CMN_EVENT_HNS(sfbi_dir_snp_sent, 0x19), CMN_EVENT_HNS(sfbi_brd_snp_sent, 0x1a), CMN_EVENT_HNS(intv_dirty, 0x1c), CMN_EVENT_HNS(stash_snp_sent, 0x1d), CMN_EVENT_HNS(stash_data_pull, 0x1e), CMN_EVENT_HNS(snp_fwded, 0x1f), CMN_EVENT_HNS(atomic_fwd, 0x20), CMN_EVENT_HNS(mpam_hardlim, 0x21), CMN_EVENT_HNS(mpam_softlim, 0x22), CMN_EVENT_HNS(snp_sent_cluster, 0x23), CMN_EVENT_HNS(sf_imprecise_evict, 0x24), CMN_EVENT_HNS(sf_evict_shared_line, 0x25), CMN_EVENT_HNS_CLS(pocq_class_occup, 0x26), CMN_EVENT_HNS_CLS(pocq_class_retry, 0x27), CMN_EVENT_HNS_CLS(class_mc_reqs_local, 0x28), CMN_EVENT_HNS_CLS(class_cgnt_cmin, 0x29), CMN_EVENT_HNS_SNT(sn_throttle, 0x2a), CMN_EVENT_HNS_SNT(sn_throttle_min, 0x2b), CMN_EVENT_HNS(sf_precise_to_imprecise, 0x2c), CMN_EVENT_HNS(snp_intv_cln, 0x2d), CMN_EVENT_HNS(nc_excl, 0x2e), CMN_EVENT_HNS(excl_mon_ovfl, 0x2f), CMN_EVENT_HNS(snp_req_recvd, 0x30), CMN_EVENT_HNS(snp_req_byp_pocq, 0x31), CMN_EVENT_HNS(dir_ccgha_snp_sent, 0x32), CMN_EVENT_HNS(brd_ccgha_snp_sent, 0x33), CMN_EVENT_HNS(ccgha_snp_stall, 0x34), CMN_EVENT_HNS(lbt_req_hardlim, 0x35), CMN_EVENT_HNS(hbt_req_hardlim, 0x36), CMN_EVENT_HNS(sf_reupdate, 0x37), CMN_EVENT_HNS(excl_sf_imprecise, 0x38), CMN_EVENT_HNS(snp_pocq_addrhaz, 0x39), CMN_EVENT_HNS(mc_retries_remote, 0x3a), CMN_EVENT_HNS_SNH(mc_reqs_remote, 0x3b), CMN_EVENT_HNS_CLS(class_mc_reqs_remote, 0x3c), NULL }; static const struct attribute_group arm_cmn_event_attrs_group = { .name = "events", .attrs = arm_cmn_event_attrs, .is_visible = arm_cmn_event_attr_is_visible, }; static ssize_t arm_cmn_format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_cmn_format_attr *fmt = container_of(attr, typeof(*fmt), attr); int lo = __ffs(fmt->field), hi = __fls(fmt->field); if (lo == hi) return sysfs_emit(buf, "config:%d\n", lo); if (!fmt->config) return sysfs_emit(buf, "config:%d-%d\n", lo, hi); return sysfs_emit(buf, "config%d:%d-%d\n", fmt->config, lo, hi); } #define _CMN_FORMAT_ATTR(_name, _cfg, _fld) \ (&((struct arm_cmn_format_attr[]) {{ \ .attr = __ATTR(_name, 0444, arm_cmn_format_show, NULL), \ .config = _cfg, \ .field = _fld, \ }})[0].attr.attr) #define CMN_FORMAT_ATTR(_name, _fld) _CMN_FORMAT_ATTR(_name, 0, _fld) static struct attribute *arm_cmn_format_attrs[] = { CMN_FORMAT_ATTR(type, CMN_CONFIG_TYPE), CMN_FORMAT_ATTR(eventid, CMN_CONFIG_EVENTID), CMN_FORMAT_ATTR(occupid, CMN_CONFIG_OCCUPID), CMN_FORMAT_ATTR(bynodeid, CMN_CONFIG_BYNODEID), CMN_FORMAT_ATTR(nodeid, CMN_CONFIG_NODEID), CMN_FORMAT_ATTR(wp_dev_sel, CMN_CONFIG_WP_DEV_SEL), CMN_FORMAT_ATTR(wp_chn_sel, CMN_CONFIG_WP_CHN_SEL), CMN_FORMAT_ATTR(wp_grp, CMN_CONFIG_WP_GRP), CMN_FORMAT_ATTR(wp_exclusive, CMN_CONFIG_WP_EXCLUSIVE), CMN_FORMAT_ATTR(wp_combine, CMN_CONFIG_WP_COMBINE), _CMN_FORMAT_ATTR(wp_val, 1, CMN_CONFIG1_WP_VAL), _CMN_FORMAT_ATTR(wp_mask, 2, CMN_CONFIG2_WP_MASK), NULL }; static const struct attribute_group arm_cmn_format_attrs_group = { .name = "format", .attrs = arm_cmn_format_attrs, }; static ssize_t arm_cmn_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); return cpumap_print_to_pagebuf(true, buf, cpumask_of(cmn->cpu)); } static struct device_attribute arm_cmn_cpumask_attr = __ATTR(cpumask, 0444, arm_cmn_cpumask_show, NULL); static ssize_t arm_cmn_identifier_show(struct device *dev, struct device_attribute *attr, char *buf) { struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev)); return sysfs_emit(buf, "%03x%02x\n", cmn->part, cmn->rev); } static struct device_attribute arm_cmn_identifier_attr = __ATTR(identifier, 0444, arm_cmn_identifier_show, NULL); static struct attribute *arm_cmn_other_attrs[] = { &arm_cmn_cpumask_attr.attr, &arm_cmn_identifier_attr.attr, NULL, }; static const struct attribute_group arm_cmn_other_attrs_group = { .attrs = arm_cmn_other_attrs, }; static const struct attribute_group *arm_cmn_attr_groups[] = { &arm_cmn_event_attrs_group, &arm_cmn_format_attrs_group, &arm_cmn_other_attrs_group, NULL }; static int arm_cmn_wp_idx(struct perf_event *event) { return CMN_EVENT_EVENTID(event) + CMN_EVENT_WP_GRP(event); } static u32 arm_cmn_wp_config(struct perf_event *event) { u32 config; u32 dev = CMN_EVENT_WP_DEV_SEL(event); u32 chn = CMN_EVENT_WP_CHN_SEL(event); u32 grp = CMN_EVENT_WP_GRP(event); u32 exc = CMN_EVENT_WP_EXCLUSIVE(event); u32 combine = CMN_EVENT_WP_COMBINE(event); bool is_cmn600 = to_cmn(event->pmu)->part == PART_CMN600; config = FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL, dev) | FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_CHN_SEL, chn) | FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_GRP, grp) | FIELD_PREP(CMN_DTM_WPn_CONFIG_WP_DEV_SEL2, dev >> 1); if (exc) config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_EXCLUSIVE : CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE; if (combine && !grp) config |= is_cmn600 ? CMN600_WPn_CONFIG_WP_COMBINE : CMN_DTM_WPn_CONFIG_WP_COMBINE; return config; } static void arm_cmn_set_state(struct arm_cmn *cmn, u32 state) { if (!cmn->state) writel_relaxed(0, cmn->dtc[0].base + CMN_DT_PMCR); cmn->state |= state; } static void arm_cmn_clear_state(struct arm_cmn *cmn, u32 state) { cmn->state &= ~state; if (!cmn->state) writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, cmn->dtc[0].base + CMN_DT_PMCR); } static void arm_cmn_pmu_enable(struct pmu *pmu) { arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_DISABLED); } static void arm_cmn_pmu_disable(struct pmu *pmu) { arm_cmn_set_state(to_cmn(pmu), CMN_STATE_DISABLED); } static u64 arm_cmn_read_dtm(struct arm_cmn *cmn, struct arm_cmn_hw_event *hw, bool snapshot) { struct arm_cmn_dtm *dtm = NULL; struct arm_cmn_node *dn; unsigned int i, offset, dtm_idx; u64 reg, count = 0; offset = snapshot ? CMN_DTM_PMEVCNTSR : CMN_DTM_PMEVCNT; for_each_hw_dn(hw, dn, i) { if (dtm != &cmn->dtms[dn->dtm]) { dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; reg = readq_relaxed(dtm->base + offset); } dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); count += (u16)(reg >> (dtm_idx * 16)); } return count; } static u64 arm_cmn_read_cc(struct arm_cmn_dtc *dtc) { u64 val = readq_relaxed(dtc->base + CMN_DT_PMCCNTR); writeq_relaxed(CMN_CC_INIT, dtc->base + CMN_DT_PMCCNTR); return (val - CMN_CC_INIT) & ((CMN_CC_INIT << 1) - 1); } static u32 arm_cmn_read_counter(struct arm_cmn_dtc *dtc, int idx) { u32 val, pmevcnt = CMN_DT_PMEVCNT(idx); val = readl_relaxed(dtc->base + pmevcnt); writel_relaxed(CMN_COUNTER_INIT, dtc->base + pmevcnt); return val - CMN_COUNTER_INIT; } static void arm_cmn_init_counter(struct perf_event *event) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); unsigned int i, pmevcnt = CMN_DT_PMEVCNT(hw->dtc_idx); u64 count; for (i = 0; hw->dtcs_used & (1U << i); i++) { writel_relaxed(CMN_COUNTER_INIT, cmn->dtc[i].base + pmevcnt); cmn->dtc[i].counters[hw->dtc_idx] = event; } count = arm_cmn_read_dtm(cmn, hw, false); local64_set(&event->hw.prev_count, count); } static void arm_cmn_event_read(struct perf_event *event) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); u64 delta, new, prev; unsigned long flags; unsigned int i; if (hw->dtc_idx == CMN_DT_NUM_COUNTERS) { i = __ffs(hw->dtcs_used); delta = arm_cmn_read_cc(cmn->dtc + i); local64_add(delta, &event->count); return; } new = arm_cmn_read_dtm(cmn, hw, false); prev = local64_xchg(&event->hw.prev_count, new); delta = new - prev; local_irq_save(flags); for (i = 0; hw->dtcs_used & (1U << i); i++) { new = arm_cmn_read_counter(cmn->dtc + i, hw->dtc_idx); delta += new << 16; } local_irq_restore(flags); local64_add(delta, &event->count); } static int arm_cmn_set_event_sel_hi(struct arm_cmn_node *dn, enum cmn_filter_select fsel, u8 occupid) { u64 reg; if (fsel == SEL_NONE) return 0; if (!dn->occupid[fsel].count) { dn->occupid[fsel].val = occupid; reg = FIELD_PREP(CMN__PMU_CBUSY_SNTHROTTLE_SEL, dn->occupid[SEL_CBUSY_SNTHROTTLE_SEL].val) | FIELD_PREP(CMN__PMU_SN_HOME_SEL, dn->occupid[SEL_SN_HOME_SEL].val) | FIELD_PREP(CMN__PMU_HBT_LBT_SEL, dn->occupid[SEL_HBT_LBT_SEL].val) | FIELD_PREP(CMN__PMU_CLASS_OCCUP_ID, dn->occupid[SEL_CLASS_OCCUP_ID].val) | FIELD_PREP(CMN__PMU_OCCUP1_ID, dn->occupid[SEL_OCCUP1ID].val); writel_relaxed(reg >> 32, dn->pmu_base + CMN_PMU_EVENT_SEL + 4); } else if (dn->occupid[fsel].val != occupid) { return -EBUSY; } dn->occupid[fsel].count++; return 0; } static void arm_cmn_set_event_sel_lo(struct arm_cmn_node *dn, int dtm_idx, int eventid, bool wide_sel) { if (wide_sel) { dn->event_w[dtm_idx] = eventid; writeq_relaxed(le64_to_cpu(dn->event_sel_w), dn->pmu_base + CMN_PMU_EVENT_SEL); } else { dn->event[dtm_idx] = eventid; writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL); } } static void arm_cmn_event_start(struct perf_event *event, int flags) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_node *dn; enum cmn_node_type type = CMN_EVENT_TYPE(event); int i; if (type == CMN_TYPE_DTC) { i = __ffs(hw->dtcs_used); writeq_relaxed(CMN_CC_INIT, cmn->dtc[i].base + CMN_DT_PMCCNTR); cmn->dtc[i].cc_active = true; } else if (type == CMN_TYPE_WP) { int wp_idx = arm_cmn_wp_idx(event); u64 val = CMN_EVENT_WP_VAL(event); u64 mask = CMN_EVENT_WP_MASK(event); for_each_hw_dn(hw, dn, i) { void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); writeq_relaxed(val, base + CMN_DTM_WPn_VAL(wp_idx)); writeq_relaxed(mask, base + CMN_DTM_WPn_MASK(wp_idx)); } } else for_each_hw_dn(hw, dn, i) { int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); arm_cmn_set_event_sel_lo(dn, dtm_idx, CMN_EVENT_EVENTID(event), hw->wide_sel); } } static void arm_cmn_event_stop(struct perf_event *event, int flags) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_node *dn; enum cmn_node_type type = CMN_EVENT_TYPE(event); int i; if (type == CMN_TYPE_DTC) { i = __ffs(hw->dtcs_used); cmn->dtc[i].cc_active = false; } else if (type == CMN_TYPE_WP) { int wp_idx = arm_cmn_wp_idx(event); for_each_hw_dn(hw, dn, i) { void __iomem *base = dn->pmu_base + CMN_DTM_OFFSET(hw->dtm_offset); writeq_relaxed(0, base + CMN_DTM_WPn_MASK(wp_idx)); writeq_relaxed(~0ULL, base + CMN_DTM_WPn_VAL(wp_idx)); } } else for_each_hw_dn(hw, dn, i) { int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); arm_cmn_set_event_sel_lo(dn, dtm_idx, 0, hw->wide_sel); } arm_cmn_event_read(event); } struct arm_cmn_val { u8 dtm_count[CMN_MAX_DTMS]; u8 occupid[CMN_MAX_DTMS][SEL_MAX]; u8 wp[CMN_MAX_DTMS][4]; int dtc_count; bool cycles; }; static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val, struct perf_event *event) { struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_node *dn; enum cmn_node_type type; int i; if (is_software_event(event)) return; type = CMN_EVENT_TYPE(event); if (type == CMN_TYPE_DTC) { val->cycles = true; return; } val->dtc_count++; for_each_hw_dn(hw, dn, i) { int wp_idx, dtm = dn->dtm, sel = hw->filter_sel; val->dtm_count[dtm]++; if (sel > SEL_NONE) val->occupid[dtm][sel] = CMN_EVENT_OCCUPID(event) + 1; if (type != CMN_TYPE_WP) continue; wp_idx = arm_cmn_wp_idx(event); val->wp[dtm][wp_idx] = CMN_EVENT_WP_COMBINE(event) + 1; } } static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event) { struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_node *dn; struct perf_event *sibling, *leader = event->group_leader; enum cmn_node_type type; struct arm_cmn_val *val; int i, ret = -EINVAL; if (leader == event) return 0; if (event->pmu != leader->pmu && !is_software_event(leader)) return -EINVAL; val = kzalloc(sizeof(*val), GFP_KERNEL); if (!val) return -ENOMEM; arm_cmn_val_add_event(cmn, val, leader); for_each_sibling_event(sibling, leader) arm_cmn_val_add_event(cmn, val, sibling); type = CMN_EVENT_TYPE(event); if (type == CMN_TYPE_DTC) { ret = val->cycles ? -EINVAL : 0; goto done; } if (val->dtc_count == CMN_DT_NUM_COUNTERS) goto done; for_each_hw_dn(hw, dn, i) { int wp_idx, wp_cmb, dtm = dn->dtm, sel = hw->filter_sel; if (val->dtm_count[dtm] == CMN_DTM_NUM_COUNTERS) goto done; if (sel > SEL_NONE && val->occupid[dtm][sel] && val->occupid[dtm][sel] != CMN_EVENT_OCCUPID(event) + 1) goto done; if (type != CMN_TYPE_WP) continue; wp_idx = arm_cmn_wp_idx(event); if (val->wp[dtm][wp_idx]) goto done; wp_cmb = val->wp[dtm][wp_idx ^ 1]; if (wp_cmb && wp_cmb != CMN_EVENT_WP_COMBINE(event) + 1) goto done; } ret = 0; done: kfree(val); return ret; } static enum cmn_filter_select arm_cmn_filter_sel(const struct arm_cmn *cmn, enum cmn_node_type type, unsigned int eventid) { struct arm_cmn_event_attr *e; enum cmn_model model = arm_cmn_model(cmn); for (int i = 0; i < ARRAY_SIZE(arm_cmn_event_attrs) - 1; i++) { e = container_of(arm_cmn_event_attrs[i], typeof(*e), attr.attr); if (e->model & model && e->type == type && e->eventid == eventid) return e->fsel; } return SEL_NONE; } static int arm_cmn_event_init(struct perf_event *event) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_node *dn; enum cmn_node_type type; bool bynodeid; u16 nodeid, eventid; if (event->attr.type != event->pmu->type) return -ENOENT; if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EINVAL; event->cpu = cmn->cpu; if (event->cpu < 0) return -EINVAL; type = CMN_EVENT_TYPE(event); /* DTC events (i.e. cycles) already have everything they need */ if (type == CMN_TYPE_DTC) return arm_cmn_validate_group(cmn, event); eventid = CMN_EVENT_EVENTID(event); /* For watchpoints we need the actual XP node here */ if (type == CMN_TYPE_WP) { type = CMN_TYPE_XP; /* ...and we need a "real" direction */ if (eventid != CMN_WP_UP && eventid != CMN_WP_DOWN) return -EINVAL; /* ...but the DTM may depend on which port we're watching */ if (cmn->multi_dtm) hw->dtm_offset = CMN_EVENT_WP_DEV_SEL(event) / 2; } else if (type == CMN_TYPE_XP && cmn->part == PART_CMN700) { hw->wide_sel = true; } /* This is sufficiently annoying to recalculate, so cache it */ hw->filter_sel = arm_cmn_filter_sel(cmn, type, eventid); bynodeid = CMN_EVENT_BYNODEID(event); nodeid = CMN_EVENT_NODEID(event); hw->dn = arm_cmn_node(cmn, type); if (!hw->dn) return -EINVAL; for (dn = hw->dn; dn->type == type; dn++) { if (bynodeid && dn->id != nodeid) { hw->dn++; continue; } hw->num_dns++; if (bynodeid) break; } if (!hw->num_dns) { struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, nodeid); dev_dbg(cmn->dev, "invalid node 0x%x (%d,%d,%d,%d) type 0x%x\n", nodeid, nid.x, nid.y, nid.port, nid.dev, type); return -EINVAL; } /* * Keep assuming non-cycles events count in all DTC domains; turns out * it's hard to make a worthwhile optimisation around this, short of * going all-in with domain-local counter allocation as well. */ hw->dtcs_used = (1U << cmn->num_dtcs) - 1; return arm_cmn_validate_group(cmn, event); } static void arm_cmn_event_clear(struct arm_cmn *cmn, struct perf_event *event, int i) { struct arm_cmn_hw_event *hw = to_cmn_hw(event); enum cmn_node_type type = CMN_EVENT_TYPE(event); while (i--) { struct arm_cmn_dtm *dtm = &cmn->dtms[hw->dn[i].dtm] + hw->dtm_offset; unsigned int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i); if (type == CMN_TYPE_WP) dtm->wp_event[arm_cmn_wp_idx(event)] = -1; if (hw->filter_sel > SEL_NONE) hw->dn[i].occupid[hw->filter_sel].count--; dtm->pmu_config_low &= ~CMN__PMEVCNT_PAIRED(dtm_idx); writel_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); } memset(hw->dtm_idx, 0, sizeof(hw->dtm_idx)); for (i = 0; hw->dtcs_used & (1U << i); i++) cmn->dtc[i].counters[hw->dtc_idx] = NULL; } static int arm_cmn_event_add(struct perf_event *event, int flags) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); struct arm_cmn_dtc *dtc = &cmn->dtc[0]; struct arm_cmn_node *dn; enum cmn_node_type type = CMN_EVENT_TYPE(event); unsigned int i, dtc_idx, input_sel; if (type == CMN_TYPE_DTC) { i = 0; while (cmn->dtc[i].cycles) if (++i == cmn->num_dtcs) return -ENOSPC; cmn->dtc[i].cycles = event; hw->dtc_idx = CMN_DT_NUM_COUNTERS; hw->dtcs_used = 1U << i; if (flags & PERF_EF_START) arm_cmn_event_start(event, 0); return 0; } /* Grab a free global counter first... */ dtc_idx = 0; while (dtc->counters[dtc_idx]) if (++dtc_idx == CMN_DT_NUM_COUNTERS) return -ENOSPC; hw->dtc_idx = dtc_idx; /* ...then the local counters to feed it. */ for_each_hw_dn(hw, dn, i) { struct arm_cmn_dtm *dtm = &cmn->dtms[dn->dtm] + hw->dtm_offset; unsigned int dtm_idx, shift; u64 reg; dtm_idx = 0; while (dtm->pmu_config_low & CMN__PMEVCNT_PAIRED(dtm_idx)) if (++dtm_idx == CMN_DTM_NUM_COUNTERS) goto free_dtms; if (type == CMN_TYPE_XP) { input_sel = CMN__PMEVCNT0_INPUT_SEL_XP + dtm_idx; } else if (type == CMN_TYPE_WP) { int tmp, wp_idx = arm_cmn_wp_idx(event); u32 cfg = arm_cmn_wp_config(event); if (dtm->wp_event[wp_idx] >= 0) goto free_dtms; tmp = dtm->wp_event[wp_idx ^ 1]; if (tmp >= 0 && CMN_EVENT_WP_COMBINE(event) != CMN_EVENT_WP_COMBINE(dtc->counters[tmp])) goto free_dtms; input_sel = CMN__PMEVCNT0_INPUT_SEL_WP + wp_idx; dtm->wp_event[wp_idx] = dtc_idx; writel_relaxed(cfg, dtm->base + CMN_DTM_WPn_CONFIG(wp_idx)); } else { struct arm_cmn_nodeid nid = arm_cmn_nid(cmn, dn->id); if (cmn->multi_dtm) nid.port %= 2; input_sel = CMN__PMEVCNT0_INPUT_SEL_DEV + dtm_idx + (nid.port << 4) + (nid.dev << 2); if (arm_cmn_set_event_sel_hi(dn, hw->filter_sel, CMN_EVENT_OCCUPID(event))) goto free_dtms; } arm_cmn_set_index(hw->dtm_idx, i, dtm_idx); dtm->input_sel[dtm_idx] = input_sel; shift = CMN__PMEVCNTn_GLOBAL_NUM_SHIFT(dtm_idx); dtm->pmu_config_low &= ~(CMN__PMEVCNT0_GLOBAL_NUM << shift); dtm->pmu_config_low |= FIELD_PREP(CMN__PMEVCNT0_GLOBAL_NUM, dtc_idx) << shift; dtm->pmu_config_low |= CMN__PMEVCNT_PAIRED(dtm_idx); reg = (u64)le32_to_cpu(dtm->pmu_config_high) << 32 | dtm->pmu_config_low; writeq_relaxed(reg, dtm->base + CMN_DTM_PMU_CONFIG); } /* Go go go! */ arm_cmn_init_counter(event); if (flags & PERF_EF_START) arm_cmn_event_start(event, 0); return 0; free_dtms: arm_cmn_event_clear(cmn, event, i); return -ENOSPC; } static void arm_cmn_event_del(struct perf_event *event, int flags) { struct arm_cmn *cmn = to_cmn(event->pmu); struct arm_cmn_hw_event *hw = to_cmn_hw(event); enum cmn_node_type type = CMN_EVENT_TYPE(event); arm_cmn_event_stop(event, PERF_EF_UPDATE); if (type == CMN_TYPE_DTC) cmn->dtc[__ffs(hw->dtcs_used)].cycles = NULL; else arm_cmn_event_clear(cmn, event, hw->num_dns); } /* * We stop the PMU for both add and read, to avoid skew across DTM counters. * In theory we could use snapshots to read without stopping, but then it * becomes a lot trickier to deal with overlow and racing against interrupts, * plus it seems they don't work properly on some hardware anyway :( */ static void arm_cmn_start_txn(struct pmu *pmu, unsigned int flags) { arm_cmn_set_state(to_cmn(pmu), CMN_STATE_TXN); } static void arm_cmn_end_txn(struct pmu *pmu) { arm_cmn_clear_state(to_cmn(pmu), CMN_STATE_TXN); } static int arm_cmn_commit_txn(struct pmu *pmu) { arm_cmn_end_txn(pmu); return 0; } static void arm_cmn_migrate(struct arm_cmn *cmn, unsigned int cpu) { unsigned int i; perf_pmu_migrate_context(&cmn->pmu, cmn->cpu, cpu); for (i = 0; i < cmn->num_dtcs; i++) irq_set_affinity(cmn->dtc[i].irq, cpumask_of(cpu)); cmn->cpu = cpu; } static int arm_cmn_pmu_online_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) { struct arm_cmn *cmn; int node; cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); node = dev_to_node(cmn->dev); if (node != NUMA_NO_NODE && cpu_to_node(cmn->cpu) != node && cpu_to_node(cpu) == node) arm_cmn_migrate(cmn, cpu); return 0; } static int arm_cmn_pmu_offline_cpu(unsigned int cpu, struct hlist_node *cpuhp_node) { struct arm_cmn *cmn; unsigned int target; int node; cpumask_t mask; cmn = hlist_entry_safe(cpuhp_node, struct arm_cmn, cpuhp_node); if (cpu != cmn->cpu) return 0; node = dev_to_node(cmn->dev); if (cpumask_and(&mask, cpumask_of_node(node), cpu_online_mask) && cpumask_andnot(&mask, &mask, cpumask_of(cpu))) target = cpumask_any(&mask); else target = cpumask_any_but(cpu_online_mask, cpu); if (target < nr_cpu_ids) arm_cmn_migrate(cmn, target); return 0; } static irqreturn_t arm_cmn_handle_irq(int irq, void *dev_id) { struct arm_cmn_dtc *dtc = dev_id; irqreturn_t ret = IRQ_NONE; for (;;) { u32 status = readl_relaxed(dtc->base + CMN_DT_PMOVSR); u64 delta; int i; for (i = 0; i < CMN_DT_NUM_COUNTERS; i++) { if (status & (1U << i)) { ret = IRQ_HANDLED; if (WARN_ON(!dtc->counters[i])) continue; delta = (u64)arm_cmn_read_counter(dtc, i) << 16; local64_add(delta, &dtc->counters[i]->count); } } if (status & (1U << CMN_DT_NUM_COUNTERS)) { ret = IRQ_HANDLED; if (dtc->cc_active && !WARN_ON(!dtc->cycles)) { delta = arm_cmn_read_cc(dtc); local64_add(delta, &dtc->cycles->count); } } writel_relaxed(status, dtc->base + CMN_DT_PMOVSR_CLR); if (!dtc->irq_friend) return ret; dtc += dtc->irq_friend; } } /* We can reasonably accommodate DTCs of the same CMN sharing IRQs */ static int arm_cmn_init_irqs(struct arm_cmn *cmn) { int i, j, irq, err; for (i = 0; i < cmn->num_dtcs; i++) { irq = cmn->dtc[i].irq; for (j = i; j--; ) { if (cmn->dtc[j].irq == irq) { cmn->dtc[j].irq_friend = i - j; goto next; } } err = devm_request_irq(cmn->dev, irq, arm_cmn_handle_irq, IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(cmn->dev), &cmn->dtc[i]); if (err) return err; err = irq_set_affinity(irq, cpumask_of(cmn->cpu)); if (err) return err; next: ; /* isn't C great? */ } return 0; } static void arm_cmn_init_dtm(struct arm_cmn_dtm *dtm, struct arm_cmn_node *xp, int idx) { int i; dtm->base = xp->pmu_base + CMN_DTM_OFFSET(idx); dtm->pmu_config_low = CMN_DTM_PMU_CONFIG_PMU_EN; writeq_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG); for (i = 0; i < 4; i++) { dtm->wp_event[i] = -1; writeq_relaxed(0, dtm->base + CMN_DTM_WPn_MASK(i)); writeq_relaxed(~0ULL, dtm->base + CMN_DTM_WPn_VAL(i)); } } static int arm_cmn_init_dtc(struct arm_cmn *cmn, struct arm_cmn_node *dn, int idx) { struct arm_cmn_dtc *dtc = cmn->dtc + idx; dtc->base = dn->pmu_base - CMN_PMU_OFFSET; dtc->irq = platform_get_irq(to_platform_device(cmn->dev), idx); if (dtc->irq < 0) return dtc->irq; writel_relaxed(CMN_DT_DTC_CTL_DT_EN, dtc->base + CMN_DT_DTC_CTL); writel_relaxed(CMN_DT_PMCR_PMU_EN | CMN_DT_PMCR_OVFL_INTR_EN, dtc->base + CMN_DT_PMCR); writeq_relaxed(0, dtc->base + CMN_DT_PMCCNTR); writel_relaxed(0x1ff, dtc->base + CMN_DT_PMOVSR_CLR); return 0; } static int arm_cmn_node_cmp(const void *a, const void *b) { const struct arm_cmn_node *dna = a, *dnb = b; int cmp; cmp = dna->type - dnb->type; if (!cmp) cmp = dna->logid - dnb->logid; return cmp; } static int arm_cmn_init_dtcs(struct arm_cmn *cmn) { struct arm_cmn_node *dn, *xp; int dtc_idx = 0; u8 dtcs_present = (1 << cmn->num_dtcs) - 1; cmn->dtc = devm_kcalloc(cmn->dev, cmn->num_dtcs, sizeof(cmn->dtc[0]), GFP_KERNEL); if (!cmn->dtc) return -ENOMEM; sort(cmn->dns, cmn->num_dns, sizeof(cmn->dns[0]), arm_cmn_node_cmp, NULL); cmn->xps = arm_cmn_node(cmn, CMN_TYPE_XP); for (dn = cmn->dns; dn->type; dn++) { if (dn->type == CMN_TYPE_XP) { dn->dtc &= dtcs_present; continue; } xp = arm_cmn_node_to_xp(cmn, dn); dn->dtm = xp->dtm; if (cmn->multi_dtm) dn->dtm += arm_cmn_nid(cmn, dn->id).port / 2; if (dn->type == CMN_TYPE_DTC) { int err; /* We do at least know that a DTC's XP must be in that DTC's domain */ if (xp->dtc == 0xf) xp->dtc = 1 << dtc_idx; err = arm_cmn_init_dtc(cmn, dn, dtc_idx++); if (err) return err; } /* To the PMU, RN-Ds don't add anything over RN-Is, so smoosh them together */ if (dn->type == CMN_TYPE_RND) dn->type = CMN_TYPE_RNI; /* We split the RN-I off already, so let the CCLA part match CCLA events */ if (dn->type == CMN_TYPE_CCLA_RNI) dn->type = CMN_TYPE_CCLA; } arm_cmn_set_state(cmn, CMN_STATE_DISABLED); return 0; } static unsigned int arm_cmn_dtc_domain(struct arm_cmn *cmn, void __iomem *xp_region) { int offset = CMN_DTM_UNIT_INFO; if (cmn->part == PART_CMN650 || cmn->part == PART_CI700) offset = CMN650_DTM_UNIT_INFO; return FIELD_GET(CMN_DTM_UNIT_INFO_DTC_DOMAIN, readl_relaxed(xp_region + offset)); } static void arm_cmn_init_node_info(struct arm_cmn *cmn, u32 offset, struct arm_cmn_node *node) { int level; u64 reg = readq_relaxed(cmn->base + offset + CMN_NODE_INFO); node->type = FIELD_GET(CMN_NI_NODE_TYPE, reg); node->id = FIELD_GET(CMN_NI_NODE_ID, reg); node->logid = FIELD_GET(CMN_NI_LOGICAL_ID, reg); node->pmu_base = cmn->base + offset + CMN_PMU_OFFSET; if (node->type == CMN_TYPE_CFG) level = 0; else if (node->type == CMN_TYPE_XP) level = 1; else level = 2; dev_dbg(cmn->dev, "node%*c%#06hx%*ctype:%-#6x id:%-4hd off:%#x\n", (level * 2) + 1, ' ', node->id, 5 - (level * 2), ' ', node->type, node->logid, offset); } static enum cmn_node_type arm_cmn_subtype(enum cmn_node_type type) { switch (type) { case CMN_TYPE_HNP: return CMN_TYPE_HNI; case CMN_TYPE_CCLA_RNI: return CMN_TYPE_RNI; default: return CMN_TYPE_INVALID; } } static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset) { void __iomem *cfg_region; struct arm_cmn_node cfg, *dn; struct arm_cmn_dtm *dtm; enum cmn_part part; u16 child_count, child_poff; u32 xp_offset[CMN_MAX_XPS]; u64 reg; int i, j; size_t sz; arm_cmn_init_node_info(cmn, rgn_offset, &cfg); if (cfg.type != CMN_TYPE_CFG) return -ENODEV; cfg_region = cmn->base + rgn_offset; reg = readq_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_01); part = FIELD_GET(CMN_CFGM_PID0_PART_0, reg); part |= FIELD_GET(CMN_CFGM_PID1_PART_1, reg) << 8; if (cmn->part && cmn->part != part) dev_warn(cmn->dev, "Firmware binding mismatch: expected part number 0x%x, found 0x%x\n", cmn->part, part); cmn->part = part; if (!arm_cmn_model(cmn)) dev_warn(cmn->dev, "Unknown part number: 0x%x\n", part); reg = readl_relaxed(cfg_region + CMN_CFGM_PERIPH_ID_23); cmn->rev = FIELD_GET(CMN_CFGM_PID2_REVISION, reg); reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL); cmn->multi_dtm = reg & CMN_INFO_MULTIPLE_DTM_EN; cmn->rsp_vc_num = FIELD_GET(CMN_INFO_RSP_VC_NUM, reg); cmn->dat_vc_num = FIELD_GET(CMN_INFO_DAT_VC_NUM, reg); reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL_1); cmn->snp_vc_num = FIELD_GET(CMN_INFO_SNP_VC_NUM, reg); cmn->req_vc_num = FIELD_GET(CMN_INFO_REQ_VC_NUM, reg); reg = readq_relaxed(cfg_region + CMN_CHILD_INFO); child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); cmn->num_xps = child_count; cmn->num_dns = cmn->num_xps; /* Pass 1: visit the XPs, enumerate their children */ for (i = 0; i < cmn->num_xps; i++) { reg = readq_relaxed(cfg_region + child_poff + i * 8); xp_offset[i] = reg & CMN_CHILD_NODE_ADDR; reg = readq_relaxed(cmn->base + xp_offset[i] + CMN_CHILD_INFO); cmn->num_dns += FIELD_GET(CMN_CI_CHILD_COUNT, reg); } /* * Some nodes effectively have two separate types, which we'll handle * by creating one of each internally. For a (very) safe initial upper * bound, account for double the number of non-XP nodes. */ dn = devm_kcalloc(cmn->dev, cmn->num_dns * 2 - cmn->num_xps, sizeof(*dn), GFP_KERNEL); if (!dn) return -ENOMEM; /* Initial safe upper bound on DTMs for any possible mesh layout */ i = cmn->num_xps; if (cmn->multi_dtm) i += cmn->num_xps + 1; dtm = devm_kcalloc(cmn->dev, i, sizeof(*dtm), GFP_KERNEL); if (!dtm) return -ENOMEM; /* Pass 2: now we can actually populate the nodes */ cmn->dns = dn; cmn->dtms = dtm; for (i = 0; i < cmn->num_xps; i++) { void __iomem *xp_region = cmn->base + xp_offset[i]; struct arm_cmn_node *xp = dn++; unsigned int xp_ports = 0; arm_cmn_init_node_info(cmn, xp_offset[i], xp); /* * Thanks to the order in which XP logical IDs seem to be * assigned, we can handily infer the mesh X dimension by * looking out for the XP at (0,1) without needing to know * the exact node ID format, which we can later derive. */ if (xp->id == (1 << 3)) cmn->mesh_x = xp->logid; if (cmn->part == PART_CMN600) xp->dtc = 0xf; else xp->dtc = 1 << arm_cmn_dtc_domain(cmn, xp_region); xp->dtm = dtm - cmn->dtms; arm_cmn_init_dtm(dtm++, xp, 0); /* * Keeping track of connected ports will let us filter out * unnecessary XP events easily. We can also reliably infer the * "extra device ports" configuration for the node ID format * from this, since in that case we will see at least one XP * with port 2 connected, for the HN-D. */ for (int p = 0; p < CMN_MAX_PORTS; p++) if (arm_cmn_device_connect_info(cmn, xp, p)) xp_ports |= BIT(p); if (cmn->multi_dtm && (xp_ports & 0xc)) arm_cmn_init_dtm(dtm++, xp, 1); if (cmn->multi_dtm && (xp_ports & 0x30)) arm_cmn_init_dtm(dtm++, xp, 2); cmn->ports_used |= xp_ports; reg = readq_relaxed(xp_region + CMN_CHILD_INFO); child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg); child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg); for (j = 0; j < child_count; j++) { reg = readq_relaxed(xp_region + child_poff + j * 8); /* * Don't even try to touch anything external, since in general * we haven't a clue how to power up arbitrary CHI requesters. * As of CMN-600r1 these could only be RN-SAMs or CXLAs, * neither of which have any PMU events anyway. * (Actually, CXLAs do seem to have grown some events in r1p2, * but they don't go to regular XP DTMs, and they depend on * secure configuration which we can't easily deal with) */ if (reg & CMN_CHILD_NODE_EXTERNAL) { dev_dbg(cmn->dev, "ignoring external node %llx\n", reg); continue; } /* * AmpereOneX erratum AC04_MESH_1 makes some XPs report a bogus * child count larger than the number of valid child pointers. * A child offset of 0 can only occur on CMN-600; otherwise it * would imply the root node being its own grandchild, which * we can safely dismiss in general. */ if (reg == 0 && cmn->part != PART_CMN600) { dev_dbg(cmn->dev, "bogus child pointer?\n"); continue; } arm_cmn_init_node_info(cmn, reg & CMN_CHILD_NODE_ADDR, dn); switch (dn->type) { case CMN_TYPE_DTC: cmn->num_dtcs++; dn++; break; /* These guys have PMU events */ case CMN_TYPE_DVM: case CMN_TYPE_HNI: case CMN_TYPE_HNF: case CMN_TYPE_SBSX: case CMN_TYPE_RNI: case CMN_TYPE_RND: case CMN_TYPE_MTSX: case CMN_TYPE_CXRA: case CMN_TYPE_CXHA: case CMN_TYPE_CCRA: case CMN_TYPE_CCHA: case CMN_TYPE_CCLA: case CMN_TYPE_HNS: dn++; break; /* Nothing to see here */ case CMN_TYPE_MPAM_S: case CMN_TYPE_MPAM_NS: case CMN_TYPE_RNSAM: case CMN_TYPE_CXLA: case CMN_TYPE_HNS_MPAM_S: case CMN_TYPE_HNS_MPAM_NS: break; /* * Split "optimised" combination nodes into separate * types for the different event sets. Offsetting the * base address lets us handle the second pmu_event_sel * register via the normal mechanism later. */ case CMN_TYPE_HNP: case CMN_TYPE_CCLA_RNI: dn[1] = dn[0]; dn[0].pmu_base += CMN_HNP_PMU_EVENT_SEL; dn[1].type = arm_cmn_subtype(dn->type); dn += 2; break; /* Something has gone horribly wrong */ default: dev_err(cmn->dev, "invalid device node type: 0x%x\n", dn->type); return -ENODEV; } } } /* Correct for any nodes we added or skipped */ cmn->num_dns = dn - cmn->dns; /* Cheeky +1 to help terminate pointer-based iteration later */ sz = (void *)(dn + 1) - (void *)cmn->dns; dn = devm_krealloc(cmn->dev, cmn->dns, sz, GFP_KERNEL); if (dn) cmn->dns = dn; sz = (void *)dtm - (void *)cmn->dtms; dtm = devm_krealloc(cmn->dev, cmn->dtms, sz, GFP_KERNEL); if (dtm) cmn->dtms = dtm; /* * If mesh_x wasn't set during discovery then we never saw * an XP at (0,1), thus we must have an Nx1 configuration. */ if (!cmn->mesh_x) cmn->mesh_x = cmn->num_xps; cmn->mesh_y = cmn->num_xps / cmn->mesh_x; /* 1x1 config plays havoc with XP event encodings */ if (cmn->num_xps == 1) dev_warn(cmn->dev, "1x1 config not fully supported, translate XP events manually\n"); dev_dbg(cmn->dev, "periph_id part 0x%03x revision %d\n", cmn->part, cmn->rev); reg = cmn->ports_used; dev_dbg(cmn->dev, "mesh %dx%d, ID width %d, ports %6pbl%s\n", cmn->mesh_x, cmn->mesh_y, arm_cmn_xyidbits(cmn), ®, cmn->multi_dtm ? ", multi-DTM" : ""); return 0; } static int arm_cmn600_acpi_probe(struct platform_device *pdev, struct arm_cmn *cmn) { struct resource *cfg, *root; cfg = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!cfg) return -EINVAL; root = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!root) return -EINVAL; if (!resource_contains(cfg, root)) swap(cfg, root); /* * Note that devm_ioremap_resource() is dumb and won't let the platform * device claim cfg when the ACPI companion device has already claimed * root within it. But since they *are* already both claimed in the * appropriate name, we don't really need to do it again here anyway. */ cmn->base = devm_ioremap(cmn->dev, cfg->start, resource_size(cfg)); if (!cmn->base) return -ENOMEM; return root->start - cfg->start; } static int arm_cmn600_of_probe(struct device_node *np) { u32 rootnode; return of_property_read_u32(np, "arm,root-node", &rootnode) ?: rootnode; } static int arm_cmn_probe(struct platform_device *pdev) { struct arm_cmn *cmn; const char *name; static atomic_t id; int err, rootnode, this_id; cmn = devm_kzalloc(&pdev->dev, sizeof(*cmn), GFP_KERNEL); if (!cmn) return -ENOMEM; cmn->dev = &pdev->dev; cmn->part = (unsigned long)device_get_match_data(cmn->dev); platform_set_drvdata(pdev, cmn); if (cmn->part == PART_CMN600 && has_acpi_companion(cmn->dev)) { rootnode = arm_cmn600_acpi_probe(pdev, cmn); } else { rootnode = 0; cmn->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cmn->base)) return PTR_ERR(cmn->base); if (cmn->part == PART_CMN600) rootnode = arm_cmn600_of_probe(pdev->dev.of_node); } if (rootnode < 0) return rootnode; err = arm_cmn_discover(cmn, rootnode); if (err) return err; err = arm_cmn_init_dtcs(cmn); if (err) return err; err = arm_cmn_init_irqs(cmn); if (err) return err; cmn->cpu = cpumask_local_spread(0, dev_to_node(cmn->dev)); cmn->pmu = (struct pmu) { .module = THIS_MODULE, .attr_groups = arm_cmn_attr_groups, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, .task_ctx_nr = perf_invalid_context, .pmu_enable = arm_cmn_pmu_enable, .pmu_disable = arm_cmn_pmu_disable, .event_init = arm_cmn_event_init, .add = arm_cmn_event_add, .del = arm_cmn_event_del, .start = arm_cmn_event_start, .stop = arm_cmn_event_stop, .read = arm_cmn_event_read, .start_txn = arm_cmn_start_txn, .commit_txn = arm_cmn_commit_txn, .cancel_txn = arm_cmn_end_txn, }; this_id = atomic_fetch_inc(&id); name = devm_kasprintf(cmn->dev, GFP_KERNEL, "arm_cmn_%d", this_id); if (!name) return -ENOMEM; err = cpuhp_state_add_instance(arm_cmn_hp_state, &cmn->cpuhp_node); if (err) return err; err = perf_pmu_register(&cmn->pmu, name, -1); if (err) cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); else arm_cmn_debugfs_init(cmn, this_id); return err; } static int arm_cmn_remove(struct platform_device *pdev) { struct arm_cmn *cmn = platform_get_drvdata(pdev); writel_relaxed(0, cmn->dtc[0].base + CMN_DT_DTC_CTL); perf_pmu_unregister(&cmn->pmu); cpuhp_state_remove_instance_nocalls(arm_cmn_hp_state, &cmn->cpuhp_node); debugfs_remove(cmn->debug); return 0; } #ifdef CONFIG_OF static const struct of_device_id arm_cmn_of_match[] = { { .compatible = "arm,cmn-600", .data = (void *)PART_CMN600 }, { .compatible = "arm,cmn-650" }, { .compatible = "arm,cmn-700" }, { .compatible = "arm,ci-700" }, {} }; MODULE_DEVICE_TABLE(of, arm_cmn_of_match); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id arm_cmn_acpi_match[] = { { "ARMHC600", PART_CMN600 }, { "ARMHC650" }, { "ARMHC700" }, {} }; MODULE_DEVICE_TABLE(acpi, arm_cmn_acpi_match); #endif static struct platform_driver arm_cmn_driver = { .driver = { .name = "arm-cmn", .of_match_table = of_match_ptr(arm_cmn_of_match), .acpi_match_table = ACPI_PTR(arm_cmn_acpi_match), }, .probe = arm_cmn_probe, .remove = arm_cmn_remove, }; static int __init arm_cmn_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/arm/cmn:online", arm_cmn_pmu_online_cpu, arm_cmn_pmu_offline_cpu); if (ret < 0) return ret; arm_cmn_hp_state = ret; arm_cmn_debugfs = debugfs_create_dir("arm-cmn", NULL); ret = platform_driver_register(&arm_cmn_driver); if (ret) { cpuhp_remove_multi_state(arm_cmn_hp_state); debugfs_remove(arm_cmn_debugfs); } return ret; } static void __exit arm_cmn_exit(void) { platform_driver_unregister(&arm_cmn_driver); cpuhp_remove_multi_state(arm_cmn_hp_state); debugfs_remove(arm_cmn_debugfs); } module_init(arm_cmn_init); module_exit(arm_cmn_exit); MODULE_AUTHOR("Robin Murphy "); MODULE_DESCRIPTION("Arm CMN-600 PMU driver"); MODULE_LICENSE("GPL v2");