// SPDX-License-Identifier: GPL-2.0 /** * Test driver to test endpoint functionality * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I */ #include #include #include #include #include #include #include #include #include #include #include #define IRQ_TYPE_LEGACY 0 #define IRQ_TYPE_MSI 1 #define IRQ_TYPE_MSIX 2 #define COMMAND_RAISE_LEGACY_IRQ BIT(0) #define COMMAND_RAISE_MSI_IRQ BIT(1) #define COMMAND_RAISE_MSIX_IRQ BIT(2) #define COMMAND_READ BIT(3) #define COMMAND_WRITE BIT(4) #define COMMAND_COPY BIT(5) #define STATUS_READ_SUCCESS BIT(0) #define STATUS_READ_FAIL BIT(1) #define STATUS_WRITE_SUCCESS BIT(2) #define STATUS_WRITE_FAIL BIT(3) #define STATUS_COPY_SUCCESS BIT(4) #define STATUS_COPY_FAIL BIT(5) #define STATUS_IRQ_RAISED BIT(6) #define STATUS_SRC_ADDR_INVALID BIT(7) #define STATUS_DST_ADDR_INVALID BIT(8) #define FLAG_USE_DMA BIT(0) #define TIMER_RESOLUTION 1 static struct workqueue_struct *kpcitest_workqueue; struct pci_epf_test { void *reg[PCI_STD_NUM_BARS]; struct pci_epf *epf; enum pci_barno test_reg_bar; size_t msix_table_offset; struct delayed_work cmd_handler; struct dma_chan *dma_chan; struct completion transfer_complete; bool dma_supported; const struct pci_epc_features *epc_features; }; struct pci_epf_test_reg { u32 magic; u32 command; u32 status; u64 src_addr; u64 dst_addr; u32 size; u32 checksum; u32 irq_type; u32 irq_number; u32 flags; } __packed; static struct pci_epf_header test_header = { .vendorid = PCI_ANY_ID, .deviceid = PCI_ANY_ID, .baseclass_code = PCI_CLASS_OTHERS, .interrupt_pin = PCI_INTERRUPT_INTA, }; static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; static void pci_epf_test_dma_callback(void *param) { struct pci_epf_test *epf_test = param; complete(&epf_test->transfer_complete); } /** * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer * data between PCIe EP and remote PCIe RC * @epf_test: the EPF test device that performs the data transfer operation * @dma_dst: The destination address of the data transfer. It can be a physical * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. * @dma_src: The source address of the data transfer. It can be a physical * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. * @len: The size of the data transfer * * Function that uses dmaengine API to transfer data between PCIe EP and remote * PCIe RC. The source and destination address can be a physical address given * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. * * The function returns '0' on success and negative value on failure. */ static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len) { enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; struct dma_chan *chan = epf_test->dma_chan; struct pci_epf *epf = epf_test->epf; struct dma_async_tx_descriptor *tx; struct device *dev = &epf->dev; dma_cookie_t cookie; int ret; if (IS_ERR_OR_NULL(chan)) { dev_err(dev, "Invalid DMA memcpy channel\n"); return -EINVAL; } tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags); if (!tx) { dev_err(dev, "Failed to prepare DMA memcpy\n"); return -EIO; } tx->callback = pci_epf_test_dma_callback; tx->callback_param = epf_test; cookie = tx->tx_submit(tx); reinit_completion(&epf_test->transfer_complete); ret = dma_submit_error(cookie); if (ret) { dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie); return -EIO; } dma_async_issue_pending(chan); ret = wait_for_completion_interruptible(&epf_test->transfer_complete); if (ret < 0) { dmaengine_terminate_sync(chan); dev_err(dev, "DMA wait_for_completion_timeout\n"); return -ETIMEDOUT; } return 0; } /** * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel * @epf_test: the EPF test device that performs data transfer operation * * Function to initialize EPF test DMA channel. */ static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) { struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct dma_chan *dma_chan; dma_cap_mask_t mask; int ret; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); dma_chan = dma_request_chan_by_mask(&mask); if (IS_ERR(dma_chan)) { ret = PTR_ERR(dma_chan); if (ret != -EPROBE_DEFER) dev_err(dev, "Failed to get DMA channel\n"); return ret; } init_completion(&epf_test->transfer_complete); epf_test->dma_chan = dma_chan; return 0; } /** * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel * @epf: the EPF test device that performs data transfer operation * * Helper to cleanup EPF test DMA channel. */ static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) { dma_release_channel(epf_test->dma_chan); epf_test->dma_chan = NULL; } static void pci_epf_test_print_rate(const char *ops, u64 size, struct timespec64 *start, struct timespec64 *end, bool dma) { struct timespec64 ts; u64 rate, ns; ts = timespec64_sub(*end, *start); /* convert both size (stored in 'rate') and time in terms of 'ns' */ ns = timespec64_to_ns(&ts); rate = size * NSEC_PER_SEC; /* Divide both size (stored in 'rate') and ns by a common factor */ while (ns > UINT_MAX) { rate >>= 1; ns >>= 1; } if (!ns) return; /* calculate the rate */ do_div(rate, (uint32_t)ns); pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t" "Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO", (u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024); } static int pci_epf_test_copy(struct pci_epf_test *epf_test) { int ret; bool use_dma; void __iomem *src_addr; void __iomem *dst_addr; phys_addr_t src_phys_addr; phys_addr_t dst_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map source address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_src_addr; } dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err_src_map_addr; } ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map destination address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_dst_addr; } ktime_get_ts64(&start); use_dma = !!(reg->flags & FLAG_USE_DMA); if (use_dma) { if (!epf_test->dma_supported) { dev_err(dev, "Cannot transfer data using DMA\n"); ret = -EINVAL; goto err_map_addr; } ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, src_phys_addr, reg->size); if (ret) dev_err(dev, "Data transfer failed\n"); } else { memcpy(dst_addr, src_addr, reg->size); } ktime_get_ts64(&end); pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr); err_dst_addr: pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); err_src_map_addr: pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr); err_src_addr: pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); err: return ret; } static int pci_epf_test_read(struct pci_epf_test *epf_test) { int ret; void __iomem *src_addr; void *buf; u32 crc32; bool use_dma; phys_addr_t phys_addr; phys_addr_t dst_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; struct device *dma_dev = epf->epc->dev.parent; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!src_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_SRC_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_SRC_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } use_dma = !!(reg->flags & FLAG_USE_DMA); if (use_dma) { if (!epf_test->dma_supported) { dev_err(dev, "Cannot transfer data using DMA\n"); ret = -EINVAL; goto err_dma_map; } dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, DMA_FROM_DEVICE); if (dma_mapping_error(dma_dev, dst_phys_addr)) { dev_err(dev, "Failed to map destination buffer addr\n"); ret = -ENOMEM; goto err_dma_map; } ktime_get_ts64(&start); ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, phys_addr, reg->size); if (ret) dev_err(dev, "Data transfer failed\n"); ktime_get_ts64(&end); dma_unmap_single(dma_dev, dst_phys_addr, reg->size, DMA_FROM_DEVICE); } else { ktime_get_ts64(&start); memcpy_fromio(buf, src_addr, reg->size); ktime_get_ts64(&end); } pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma); crc32 = crc32_le(~0, buf, reg->size); if (crc32 != reg->checksum) ret = -EIO; err_dma_map: kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); err: return ret; } static int pci_epf_test_write(struct pci_epf_test *epf_test) { int ret; void __iomem *dst_addr; void *buf; bool use_dma; phys_addr_t phys_addr; phys_addr_t src_phys_addr; struct timespec64 start, end; struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; struct device *dma_dev = epf->epc->dev.parent; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); if (!dst_addr) { dev_err(dev, "Failed to allocate address\n"); reg->status = STATUS_DST_ADDR_INVALID; ret = -ENOMEM; goto err; } ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr, reg->size); if (ret) { dev_err(dev, "Failed to map address\n"); reg->status = STATUS_DST_ADDR_INVALID; goto err_addr; } buf = kzalloc(reg->size, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto err_map_addr; } get_random_bytes(buf, reg->size); reg->checksum = crc32_le(~0, buf, reg->size); use_dma = !!(reg->flags & FLAG_USE_DMA); if (use_dma) { if (!epf_test->dma_supported) { dev_err(dev, "Cannot transfer data using DMA\n"); ret = -EINVAL; goto err_map_addr; } src_phys_addr = dma_map_single(dma_dev, buf, reg->size, DMA_TO_DEVICE); if (dma_mapping_error(dma_dev, src_phys_addr)) { dev_err(dev, "Failed to map source buffer addr\n"); ret = -ENOMEM; goto err_dma_map; } ktime_get_ts64(&start); ret = pci_epf_test_data_transfer(epf_test, phys_addr, src_phys_addr, reg->size); if (ret) dev_err(dev, "Data transfer failed\n"); ktime_get_ts64(&end); dma_unmap_single(dma_dev, src_phys_addr, reg->size, DMA_TO_DEVICE); } else { ktime_get_ts64(&start); memcpy_toio(dst_addr, buf, reg->size); ktime_get_ts64(&end); } pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma); /* * wait 1ms inorder for the write to complete. Without this delay L3 * error in observed in the host system. */ usleep_range(1000, 2000); err_dma_map: kfree(buf); err_map_addr: pci_epc_unmap_addr(epc, epf->func_no, phys_addr); err_addr: pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); err: return ret; } static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type, u16 irq) { struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; reg->status |= STATUS_IRQ_RAISED; switch (irq_type) { case IRQ_TYPE_LEGACY: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); break; case IRQ_TYPE_MSI: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq); break; case IRQ_TYPE_MSIX: pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq); break; default: dev_err(dev, "Failed to raise IRQ, unknown type\n"); break; } } static void pci_epf_test_cmd_handler(struct work_struct *work) { int ret; int count; u32 command; struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, cmd_handler.work); struct pci_epf *epf = epf_test->epf; struct device *dev = &epf->dev; struct pci_epc *epc = epf->epc; enum pci_barno test_reg_bar = epf_test->test_reg_bar; struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; command = reg->command; if (!command) goto reset_handler; reg->command = 0; reg->status = 0; if (reg->irq_type > IRQ_TYPE_MSIX) { dev_err(dev, "Failed to detect IRQ type\n"); goto reset_handler; } if (command & COMMAND_RAISE_LEGACY_IRQ) { reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0); goto reset_handler; } if (command & COMMAND_WRITE) { ret = pci_epf_test_write(epf_test); if (ret) reg->status |= STATUS_WRITE_FAIL; else reg->status |= STATUS_WRITE_SUCCESS; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_READ) { ret = pci_epf_test_read(epf_test); if (!ret) reg->status |= STATUS_READ_SUCCESS; else reg->status |= STATUS_READ_FAIL; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_COPY) { ret = pci_epf_test_copy(epf_test); if (!ret) reg->status |= STATUS_COPY_SUCCESS; else reg->status |= STATUS_COPY_FAIL; pci_epf_test_raise_irq(epf_test, reg->irq_type, reg->irq_number); goto reset_handler; } if (command & COMMAND_RAISE_MSI_IRQ) { count = pci_epc_get_msi(epc, epf->func_no); if (reg->irq_number > count || count <= 0) goto reset_handler; reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, reg->irq_number); goto reset_handler; } if (command & COMMAND_RAISE_MSIX_IRQ) { count = pci_epc_get_msix(epc, epf->func_no); if (reg->irq_number > count || count <= 0) goto reset_handler; reg->status = STATUS_IRQ_RAISED; pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, reg->irq_number); goto reset_handler; } reset_handler: queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); } static void pci_epf_test_unbind(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epc *epc = epf->epc; struct pci_epf_bar *epf_bar; int bar; cancel_delayed_work(&epf_test->cmd_handler); pci_epf_test_clean_dma_chan(epf_test); pci_epc_stop(epc); for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { epf_bar = &epf->bar[bar]; if (epf_test->reg[bar]) { pci_epc_clear_bar(epc, epf->func_no, epf_bar); pci_epf_free_space(epf, epf_test->reg[bar], bar); } } } static int pci_epf_test_set_bar(struct pci_epf *epf) { int bar, add; int ret; struct pci_epf_bar *epf_bar; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; struct pci_epf_test *epf_test = epf_get_drvdata(epf); enum pci_barno test_reg_bar = epf_test->test_reg_bar; const struct pci_epc_features *epc_features; epc_features = epf_test->epc_features; for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { epf_bar = &epf->bar[bar]; /* * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 * if the specific implementation required a 64-bit BAR, * even if we only requested a 32-bit BAR. */ add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; if (!!(epc_features->reserved_bar & (1 << bar))) continue; ret = pci_epc_set_bar(epc, epf->func_no, epf_bar); if (ret) { pci_epf_free_space(epf, epf_test->reg[bar], bar); dev_err(dev, "Failed to set BAR%d\n", bar); if (bar == test_reg_bar) return ret; } } return 0; } static int pci_epf_test_core_init(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct pci_epf_header *header = epf->header; const struct pci_epc_features *epc_features; struct pci_epc *epc = epf->epc; struct device *dev = &epf->dev; bool msix_capable = false; bool msi_capable = true; int ret; epc_features = pci_epc_get_features(epc, epf->func_no); if (epc_features) { msix_capable = epc_features->msix_capable; msi_capable = epc_features->msi_capable; } ret = pci_epc_write_header(epc, epf->func_no, header); if (ret) { dev_err(dev, "Configuration header write failed\n"); return ret; } ret = pci_epf_test_set_bar(epf); if (ret) return ret; if (msi_capable) { ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts); if (ret) { dev_err(dev, "MSI configuration failed\n"); return ret; } } if (msix_capable) { ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts, epf_test->test_reg_bar, epf_test->msix_table_offset); if (ret) { dev_err(dev, "MSI-X configuration failed\n"); return ret; } } return 0; } static int pci_epf_test_notifier(struct notifier_block *nb, unsigned long val, void *data) { struct pci_epf *epf = container_of(nb, struct pci_epf, nb); struct pci_epf_test *epf_test = epf_get_drvdata(epf); int ret; switch (val) { case CORE_INIT: ret = pci_epf_test_core_init(epf); if (ret) return NOTIFY_BAD; break; case LINK_UP: queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, msecs_to_jiffies(1)); break; default: dev_err(&epf->dev, "Invalid EPF test notifier event\n"); return NOTIFY_BAD; } return NOTIFY_OK; } static int pci_epf_test_alloc_space(struct pci_epf *epf) { struct pci_epf_test *epf_test = epf_get_drvdata(epf); struct device *dev = &epf->dev; struct pci_epf_bar *epf_bar; size_t msix_table_size = 0; size_t test_reg_bar_size; size_t pba_size = 0; bool msix_capable; void *base; int bar, add; enum pci_barno test_reg_bar = epf_test->test_reg_bar; const struct pci_epc_features *epc_features; size_t test_reg_size; epc_features = epf_test->epc_features; test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); msix_capable = epc_features->msix_capable; if (msix_capable) { msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; epf_test->msix_table_offset = test_reg_bar_size; /* Align to QWORD or 8 Bytes */ pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); } test_reg_size = test_reg_bar_size + msix_table_size + pba_size; if (epc_features->bar_fixed_size[test_reg_bar]) { if (test_reg_size > bar_size[test_reg_bar]) return -ENOMEM; test_reg_size = bar_size[test_reg_bar]; } base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, epc_features->align); if (!base) { dev_err(dev, "Failed to allocated register space\n"); return -ENOMEM; } epf_test->reg[test_reg_bar] = base; for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { epf_bar = &epf->bar[bar]; add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; if (bar == test_reg_bar) continue; if (!!(epc_features->reserved_bar & (1 << bar))) continue; base = pci_epf_alloc_space(epf, bar_size[bar], bar, epc_features->align); if (!base) dev_err(dev, "Failed to allocate space for BAR%d\n", bar); epf_test->reg[bar] = base; } return 0; } static void pci_epf_configure_bar(struct pci_epf *epf, const struct pci_epc_features *epc_features) { struct pci_epf_bar *epf_bar; bool bar_fixed_64bit; int i; for (i = 0; i < PCI_STD_NUM_BARS; i++) { epf_bar = &epf->bar[i]; bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i)); if (bar_fixed_64bit) epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; if (epc_features->bar_fixed_size[i]) bar_size[i] = epc_features->bar_fixed_size[i]; } } static int pci_epf_test_bind(struct pci_epf *epf) { int ret; struct pci_epf_test *epf_test = epf_get_drvdata(epf); const struct pci_epc_features *epc_features; enum pci_barno test_reg_bar = BAR_0; struct pci_epc *epc = epf->epc; bool linkup_notifier = false; bool core_init_notifier = false; if (WARN_ON_ONCE(!epc)) return -EINVAL; epc_features = pci_epc_get_features(epc, epf->func_no); if (epc_features) { linkup_notifier = epc_features->linkup_notifier; core_init_notifier = epc_features->core_init_notifier; test_reg_bar = pci_epc_get_first_free_bar(epc_features); pci_epf_configure_bar(epf, epc_features); } epf_test->test_reg_bar = test_reg_bar; epf_test->epc_features = epc_features; ret = pci_epf_test_alloc_space(epf); if (ret) return ret; if (!core_init_notifier) { ret = pci_epf_test_core_init(epf); if (ret) return ret; } epf_test->dma_supported = true; ret = pci_epf_test_init_dma_chan(epf_test); if (ret) epf_test->dma_supported = false; if (linkup_notifier) { epf->nb.notifier_call = pci_epf_test_notifier; pci_epc_register_notifier(epc, &epf->nb); } else { queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); } return 0; } static const struct pci_epf_device_id pci_epf_test_ids[] = { { .name = "pci_epf_test", }, {}, }; static int pci_epf_test_probe(struct pci_epf *epf) { struct pci_epf_test *epf_test; struct device *dev = &epf->dev; epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); if (!epf_test) return -ENOMEM; epf->header = &test_header; epf_test->epf = epf; INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); epf_set_drvdata(epf, epf_test); return 0; } static struct pci_epf_ops ops = { .unbind = pci_epf_test_unbind, .bind = pci_epf_test_bind, }; static struct pci_epf_driver test_driver = { .driver.name = "pci_epf_test", .probe = pci_epf_test_probe, .id_table = pci_epf_test_ids, .ops = &ops, .owner = THIS_MODULE, }; static int __init pci_epf_test_init(void) { int ret; kpcitest_workqueue = alloc_workqueue("kpcitest", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); if (!kpcitest_workqueue) { pr_err("Failed to allocate the kpcitest work queue\n"); return -ENOMEM; } ret = pci_epf_register_driver(&test_driver); if (ret) { pr_err("Failed to register pci epf test driver --> %d\n", ret); return ret; } return 0; } module_init(pci_epf_test_init); static void __exit pci_epf_test_exit(void) { pci_epf_unregister_driver(&test_driver); } module_exit(pci_epf_test_exit); MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); MODULE_AUTHOR("Kishon Vijay Abraham I "); MODULE_LICENSE("GPL v2");