// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015 Broadcom Corporation */ #include <linux/interrupt.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/msi.h> #include <linux/of_irq.h> #include <linux/of_pci.h> #include <linux/pci.h> #include "pcie-iproc.h" #define IPROC_MSI_INTR_EN_SHIFT 11 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT) #define IPROC_MSI_INT_N_EVENT_SHIFT 1 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT) #define IPROC_MSI_EQ_EN_SHIFT 0 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT) #define IPROC_MSI_EQ_MASK 0x3f /* Max number of GIC interrupts */ #define NR_HW_IRQS 6 /* Number of entries in each event queue */ #define EQ_LEN 64 /* Size of each event queue memory region */ #define EQ_MEM_REGION_SIZE SZ_4K /* Size of each MSI address region */ #define MSI_MEM_REGION_SIZE SZ_4K enum iproc_msi_reg { IPROC_MSI_EQ_PAGE = 0, IPROC_MSI_EQ_PAGE_UPPER, IPROC_MSI_PAGE, IPROC_MSI_PAGE_UPPER, IPROC_MSI_CTRL, IPROC_MSI_EQ_HEAD, IPROC_MSI_EQ_TAIL, IPROC_MSI_INTS_EN, IPROC_MSI_REG_SIZE, }; struct iproc_msi; /** * iProc MSI group * * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI * event queue. * * @msi: pointer to iProc MSI data * @gic_irq: GIC interrupt * @eq: Event queue number */ struct iproc_msi_grp { struct iproc_msi *msi; int gic_irq; unsigned int eq; }; /** * iProc event queue based MSI * * Only meant to be used on platforms without MSI support integrated into the * GIC. * * @pcie: pointer to iProc PCIe data * @reg_offsets: MSI register offsets * @grps: MSI groups * @nr_irqs: number of total interrupts connected to GIC * @nr_cpus: number of toal CPUs * @has_inten_reg: indicates the MSI interrupt enable register needs to be * set explicitly (required for some legacy platforms) * @bitmap: MSI vector bitmap * @bitmap_lock: lock to protect access to the MSI bitmap * @nr_msi_vecs: total number of MSI vectors * @inner_domain: inner IRQ domain * @msi_domain: MSI IRQ domain * @nr_eq_region: required number of 4K aligned memory region for MSI event * queues * @nr_msi_region: required number of 4K aligned address region for MSI posted * writes * @eq_cpu: pointer to allocated memory region for MSI event queues * @eq_dma: DMA address of MSI event queues * @msi_addr: MSI address */ struct iproc_msi { struct iproc_pcie *pcie; const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE]; struct iproc_msi_grp *grps; int nr_irqs; int nr_cpus; bool has_inten_reg; unsigned long *bitmap; struct mutex bitmap_lock; unsigned int nr_msi_vecs; struct irq_domain *inner_domain; struct irq_domain *msi_domain; unsigned int nr_eq_region; unsigned int nr_msi_region; void *eq_cpu; dma_addr_t eq_dma; phys_addr_t msi_addr; }; static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 }, { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 }, { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 }, { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 }, { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 }, { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 }, }; static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 }, { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 }, { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 }, { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c }, }; static inline u32 iproc_msi_read_reg(struct iproc_msi *msi, enum iproc_msi_reg reg, unsigned int eq) { struct iproc_pcie *pcie = msi->pcie; return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]); } static inline void iproc_msi_write_reg(struct iproc_msi *msi, enum iproc_msi_reg reg, int eq, u32 val) { struct iproc_pcie *pcie = msi->pcie; writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]); } static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq) { return (hwirq % msi->nr_irqs); } static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi, unsigned long hwirq) { if (msi->nr_msi_region > 1) return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE; else return hwirq_to_group(msi, hwirq) * sizeof(u32); } static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq) { if (msi->nr_eq_region > 1) return eq * EQ_MEM_REGION_SIZE; else return eq * EQ_LEN * sizeof(u32); } static struct irq_chip iproc_msi_irq_chip = { .name = "iProc-MSI", }; static struct msi_domain_info iproc_msi_domain_info = { .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, .chip = &iproc_msi_irq_chip, }; /* * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a * dedicated event queue. Each MSI group can support up to 64 MSI vectors. * * The number of MSI groups varies between different iProc SoCs. The total * number of CPU cores also varies. To support MSI IRQ affinity, we * distribute GIC interrupts across all available CPUs. MSI vector is moved * from one GIC interrupt to another to steer to the target CPU. * * Assuming: * - the number of MSI groups is M * - the number of CPU cores is N * - M is always a multiple of N * * Total number of raw MSI vectors = M * 64 * Total number of supported MSI vectors = (M * 64) / N */ static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq) { return (hwirq % msi->nr_cpus); } static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi, unsigned long hwirq) { return (hwirq - hwirq_to_cpu(msi, hwirq)); } static int iproc_msi_irq_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct iproc_msi *msi = irq_data_get_irq_chip_data(data); int target_cpu = cpumask_first(mask); int curr_cpu; curr_cpu = hwirq_to_cpu(msi, data->hwirq); if (curr_cpu == target_cpu) return IRQ_SET_MASK_OK_DONE; /* steer MSI to the target CPU */ data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu; return IRQ_SET_MASK_OK; } static void iproc_msi_irq_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct iproc_msi *msi = irq_data_get_irq_chip_data(data); dma_addr_t addr; addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq); msg->address_lo = lower_32_bits(addr); msg->address_hi = upper_32_bits(addr); msg->data = data->hwirq << 5; } static struct irq_chip iproc_msi_bottom_irq_chip = { .name = "MSI", .irq_set_affinity = iproc_msi_irq_set_affinity, .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg, }; static int iproc_msi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct iproc_msi *msi = domain->host_data; int hwirq, i; mutex_lock(&msi->bitmap_lock); /* Allocate 'nr_cpus' number of MSI vectors each time */ hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0, msi->nr_cpus, 0); if (hwirq < msi->nr_msi_vecs) { bitmap_set(msi->bitmap, hwirq, msi->nr_cpus); } else { mutex_unlock(&msi->bitmap_lock); return -ENOSPC; } mutex_unlock(&msi->bitmap_lock); for (i = 0; i < nr_irqs; i++) { irq_domain_set_info(domain, virq + i, hwirq + i, &iproc_msi_bottom_irq_chip, domain->host_data, handle_simple_irq, NULL, NULL); } return hwirq; } static void iproc_msi_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *data = irq_domain_get_irq_data(domain, virq); struct iproc_msi *msi = irq_data_get_irq_chip_data(data); unsigned int hwirq; mutex_lock(&msi->bitmap_lock); hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq); bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus); mutex_unlock(&msi->bitmap_lock); irq_domain_free_irqs_parent(domain, virq, nr_irqs); } static const struct irq_domain_ops msi_domain_ops = { .alloc = iproc_msi_irq_domain_alloc, .free = iproc_msi_irq_domain_free, }; static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head) { u32 __iomem *msg; u32 hwirq; unsigned int offs; offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32); msg = (u32 __iomem *)(msi->eq_cpu + offs); hwirq = readl(msg); hwirq = (hwirq >> 5) + (hwirq & 0x1f); /* * Since we have multiple hwirq mapped to a single MSI vector, * now we need to derive the hwirq at CPU0. It can then be used to * mapped back to virq. */ return hwirq_to_canonical_hwirq(msi, hwirq); } static void iproc_msi_handler(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct iproc_msi_grp *grp; struct iproc_msi *msi; u32 eq, head, tail, nr_events; unsigned long hwirq; int virq; chained_irq_enter(chip, desc); grp = irq_desc_get_handler_data(desc); msi = grp->msi; eq = grp->eq; /* * iProc MSI event queue is tracked by head and tail pointers. Head * pointer indicates the next entry (MSI data) to be consumed by SW in * the queue and needs to be updated by SW. iProc MSI core uses the * tail pointer as the next data insertion point. * * Entries between head and tail pointers contain valid MSI data. MSI * data is guaranteed to be in the event queue memory before the tail * pointer is updated by the iProc MSI core. */ head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD, eq) & IPROC_MSI_EQ_MASK; do { tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL, eq) & IPROC_MSI_EQ_MASK; /* * Figure out total number of events (MSI data) to be * processed. */ nr_events = (tail < head) ? (EQ_LEN - (head - tail)) : (tail - head); if (!nr_events) break; /* process all outstanding events */ while (nr_events--) { hwirq = decode_msi_hwirq(msi, eq, head); virq = irq_find_mapping(msi->inner_domain, hwirq); generic_handle_irq(virq); head++; head %= EQ_LEN; } /* * Now all outstanding events have been processed. Update the * head pointer. */ iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head); /* * Now go read the tail pointer again to see if there are new * outstanding events that came in during the above window. */ } while (true); chained_irq_exit(chip, desc); } static void iproc_msi_enable(struct iproc_msi *msi) { int i, eq; u32 val; /* Program memory region for each event queue */ for (i = 0; i < msi->nr_eq_region; i++) { dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE); iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i, lower_32_bits(addr)); iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i, upper_32_bits(addr)); } /* Program address region for MSI posted writes */ for (i = 0; i < msi->nr_msi_region; i++) { phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE); iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i, lower_32_bits(addr)); iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i, upper_32_bits(addr)); } for (eq = 0; eq < msi->nr_irqs; eq++) { /* Enable MSI event queue */ val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | IPROC_MSI_EQ_EN; iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); /* * Some legacy platforms require the MSI interrupt enable * register to be set explicitly. */ if (msi->has_inten_reg) { val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); val |= BIT(eq); iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); } } } static void iproc_msi_disable(struct iproc_msi *msi) { u32 eq, val; for (eq = 0; eq < msi->nr_irqs; eq++) { if (msi->has_inten_reg) { val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); val &= ~BIT(eq); iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); } val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq); val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | IPROC_MSI_EQ_EN); iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); } } static int iproc_msi_alloc_domains(struct device_node *node, struct iproc_msi *msi) { msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs, &msi_domain_ops, msi); if (!msi->inner_domain) return -ENOMEM; msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), &iproc_msi_domain_info, msi->inner_domain); if (!msi->msi_domain) { irq_domain_remove(msi->inner_domain); return -ENOMEM; } return 0; } static void iproc_msi_free_domains(struct iproc_msi *msi) { if (msi->msi_domain) irq_domain_remove(msi->msi_domain); if (msi->inner_domain) irq_domain_remove(msi->inner_domain); } static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu) { int i; for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { irq_set_chained_handler_and_data(msi->grps[i].gic_irq, NULL, NULL); } } static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu) { int i, ret; cpumask_var_t mask; struct iproc_pcie *pcie = msi->pcie; for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { irq_set_chained_handler_and_data(msi->grps[i].gic_irq, iproc_msi_handler, &msi->grps[i]); /* Dedicate GIC interrupt to each CPU core */ if (alloc_cpumask_var(&mask, GFP_KERNEL)) { cpumask_clear(mask); cpumask_set_cpu(cpu, mask); ret = irq_set_affinity(msi->grps[i].gic_irq, mask); if (ret) dev_err(pcie->dev, "failed to set affinity for IRQ%d\n", msi->grps[i].gic_irq); free_cpumask_var(mask); } else { dev_err(pcie->dev, "failed to alloc CPU mask\n"); ret = -EINVAL; } if (ret) { /* Free all configured/unconfigured IRQs */ iproc_msi_irq_free(msi, cpu); return ret; } } return 0; } int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node) { struct iproc_msi *msi; int i, ret; unsigned int cpu; if (!of_device_is_compatible(node, "brcm,iproc-msi")) return -ENODEV; if (!of_find_property(node, "msi-controller", NULL)) return -ENODEV; if (pcie->msi) return -EBUSY; msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL); if (!msi) return -ENOMEM; msi->pcie = pcie; pcie->msi = msi; msi->msi_addr = pcie->base_addr; mutex_init(&msi->bitmap_lock); msi->nr_cpus = num_possible_cpus(); msi->nr_irqs = of_irq_count(node); if (!msi->nr_irqs) { dev_err(pcie->dev, "found no MSI GIC interrupt\n"); return -ENODEV; } if (msi->nr_irqs > NR_HW_IRQS) { dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n", msi->nr_irqs); msi->nr_irqs = NR_HW_IRQS; } if (msi->nr_irqs < msi->nr_cpus) { dev_err(pcie->dev, "not enough GIC interrupts for MSI affinity\n"); return -EINVAL; } if (msi->nr_irqs % msi->nr_cpus != 0) { msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus; dev_warn(pcie->dev, "Reducing number of interrupts to %d\n", msi->nr_irqs); } switch (pcie->type) { case IPROC_PCIE_PAXB_BCMA: case IPROC_PCIE_PAXB: msi->reg_offsets = iproc_msi_reg_paxb; msi->nr_eq_region = 1; msi->nr_msi_region = 1; break; case IPROC_PCIE_PAXC: msi->reg_offsets = iproc_msi_reg_paxc; msi->nr_eq_region = msi->nr_irqs; msi->nr_msi_region = msi->nr_irqs; break; default: dev_err(pcie->dev, "incompatible iProc PCIe interface\n"); return -EINVAL; } if (of_find_property(node, "brcm,pcie-msi-inten", NULL)) msi->has_inten_reg = true; msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN; msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs), sizeof(*msi->bitmap), GFP_KERNEL); if (!msi->bitmap) return -ENOMEM; msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps), GFP_KERNEL); if (!msi->grps) return -ENOMEM; for (i = 0; i < msi->nr_irqs; i++) { unsigned int irq = irq_of_parse_and_map(node, i); if (!irq) { dev_err(pcie->dev, "unable to parse/map interrupt\n"); ret = -ENODEV; goto free_irqs; } msi->grps[i].gic_irq = irq; msi->grps[i].msi = msi; msi->grps[i].eq = i; } /* Reserve memory for event queue and make sure memories are zeroed */ msi->eq_cpu = dma_alloc_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, &msi->eq_dma, GFP_KERNEL); if (!msi->eq_cpu) { ret = -ENOMEM; goto free_irqs; } ret = iproc_msi_alloc_domains(node, msi); if (ret) { dev_err(pcie->dev, "failed to create MSI domains\n"); goto free_eq_dma; } for_each_online_cpu(cpu) { ret = iproc_msi_irq_setup(msi, cpu); if (ret) goto free_msi_irq; } iproc_msi_enable(msi); return 0; free_msi_irq: for_each_online_cpu(cpu) iproc_msi_irq_free(msi, cpu); iproc_msi_free_domains(msi); free_eq_dma: dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, msi->eq_cpu, msi->eq_dma); free_irqs: for (i = 0; i < msi->nr_irqs; i++) { if (msi->grps[i].gic_irq) irq_dispose_mapping(msi->grps[i].gic_irq); } pcie->msi = NULL; return ret; } EXPORT_SYMBOL(iproc_msi_init); void iproc_msi_exit(struct iproc_pcie *pcie) { struct iproc_msi *msi = pcie->msi; unsigned int i, cpu; if (!msi) return; iproc_msi_disable(msi); for_each_online_cpu(cpu) iproc_msi_irq_free(msi, cpu); iproc_msi_free_domains(msi); dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, msi->eq_cpu, msi->eq_dma); for (i = 0; i < msi->nr_irqs; i++) { if (msi->grps[i].gic_irq) irq_dispose_mapping(msi->grps[i].gic_irq); } } EXPORT_SYMBOL(iproc_msi_exit);