// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2018-2019 Realtek Corporation */ #include #include "main.h" #include "regd.h" #include "fw.h" #include "ps.h" #include "sec.h" #include "mac.h" #include "coex.h" #include "phy.h" #include "reg.h" #include "efuse.h" #include "tx.h" #include "debug.h" #include "bf.h" #include "sar.h" #include "sdio.h" bool rtw_disable_lps_deep_mode; EXPORT_SYMBOL(rtw_disable_lps_deep_mode); bool rtw_bf_support = true; unsigned int rtw_debug_mask; EXPORT_SYMBOL(rtw_debug_mask); /* EDCCA is enabled during normal behavior. For debugging purpose in * a noisy environment, it can be disabled via edcca debugfs. Because * all rtw88 devices will probably be affected if environment is noisy, * rtw_edcca_enabled is just declared by driver instead of by device. * So, turning it off will take effect for all rtw88 devices before * there is a tough reason to maintain rtw_edcca_enabled by device. */ bool rtw_edcca_enabled = true; module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644); module_param_named(support_bf, rtw_bf_support, bool, 0644); module_param_named(debug_mask, rtw_debug_mask, uint, 0644); MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS"); MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support"); MODULE_PARM_DESC(debug_mask, "Debugging mask"); static struct ieee80211_channel rtw_channeltable_2g[] = { {.center_freq = 2412, .hw_value = 1,}, {.center_freq = 2417, .hw_value = 2,}, {.center_freq = 2422, .hw_value = 3,}, {.center_freq = 2427, .hw_value = 4,}, {.center_freq = 2432, .hw_value = 5,}, {.center_freq = 2437, .hw_value = 6,}, {.center_freq = 2442, .hw_value = 7,}, {.center_freq = 2447, .hw_value = 8,}, {.center_freq = 2452, .hw_value = 9,}, {.center_freq = 2457, .hw_value = 10,}, {.center_freq = 2462, .hw_value = 11,}, {.center_freq = 2467, .hw_value = 12,}, {.center_freq = 2472, .hw_value = 13,}, {.center_freq = 2484, .hw_value = 14,}, }; static struct ieee80211_channel rtw_channeltable_5g[] = { {.center_freq = 5180, .hw_value = 36,}, {.center_freq = 5200, .hw_value = 40,}, {.center_freq = 5220, .hw_value = 44,}, {.center_freq = 5240, .hw_value = 48,}, {.center_freq = 5260, .hw_value = 52,}, {.center_freq = 5280, .hw_value = 56,}, {.center_freq = 5300, .hw_value = 60,}, {.center_freq = 5320, .hw_value = 64,}, {.center_freq = 5500, .hw_value = 100,}, {.center_freq = 5520, .hw_value = 104,}, {.center_freq = 5540, .hw_value = 108,}, {.center_freq = 5560, .hw_value = 112,}, {.center_freq = 5580, .hw_value = 116,}, {.center_freq = 5600, .hw_value = 120,}, {.center_freq = 5620, .hw_value = 124,}, {.center_freq = 5640, .hw_value = 128,}, {.center_freq = 5660, .hw_value = 132,}, {.center_freq = 5680, .hw_value = 136,}, {.center_freq = 5700, .hw_value = 140,}, {.center_freq = 5720, .hw_value = 144,}, {.center_freq = 5745, .hw_value = 149,}, {.center_freq = 5765, .hw_value = 153,}, {.center_freq = 5785, .hw_value = 157,}, {.center_freq = 5805, .hw_value = 161,}, {.center_freq = 5825, .hw_value = 165, .flags = IEEE80211_CHAN_NO_HT40MINUS}, }; static struct ieee80211_rate rtw_ratetable[] = { {.bitrate = 10, .hw_value = 0x00,}, {.bitrate = 20, .hw_value = 0x01,}, {.bitrate = 55, .hw_value = 0x02,}, {.bitrate = 110, .hw_value = 0x03,}, {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static const struct ieee80211_iface_limit rtw_iface_limits[] = { { .max = 1, .types = BIT(NL80211_IFTYPE_STATION), }, { .max = 1, .types = BIT(NL80211_IFTYPE_AP), } }; static const struct ieee80211_iface_combination rtw_iface_combs[] = { { .limits = rtw_iface_limits, .n_limits = ARRAY_SIZE(rtw_iface_limits), .max_interfaces = 2, .num_different_channels = 1, } }; u16 rtw_desc_to_bitrate(u8 desc_rate) { struct ieee80211_rate rate; if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n")) return 0; rate = rtw_ratetable[desc_rate]; return rate.bitrate; } static struct ieee80211_supported_band rtw_band_2ghz = { .band = NL80211_BAND_2GHZ, .channels = rtw_channeltable_2g, .n_channels = ARRAY_SIZE(rtw_channeltable_2g), .bitrates = rtw_ratetable, .n_bitrates = ARRAY_SIZE(rtw_ratetable), .ht_cap = {0}, .vht_cap = {0}, }; static struct ieee80211_supported_band rtw_band_5ghz = { .band = NL80211_BAND_5GHZ, .channels = rtw_channeltable_5g, .n_channels = ARRAY_SIZE(rtw_channeltable_5g), /* 5G has no CCK rates */ .bitrates = rtw_ratetable + 4, .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, .ht_cap = {0}, .vht_cap = {0}, }; struct rtw_watch_dog_iter_data { struct rtw_dev *rtwdev; struct rtw_vif *rtwvif; }; static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif) { struct rtw_bf_info *bf_info = &rtwdev->bf_info; u8 fix_rate_enable = 0; u8 new_csi_rate_idx; if (rtwvif->bfee.role != RTW_BFEE_SU && rtwvif->bfee.role != RTW_BFEE_MU) return; rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi, bf_info->cur_csi_rpt_rate, fix_rate_enable, &new_csi_rate_idx); if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate) bf_info->cur_csi_rpt_rate = new_csi_rate_idx; } static void rtw_vif_watch_dog_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_watch_dog_iter_data *iter_data = data; struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; if (vif->type == NL80211_IFTYPE_STATION) if (vif->cfg.assoc) iter_data->rtwvif = rtwvif; rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif); rtwvif->stats.tx_unicast = 0; rtwvif->stats.rx_unicast = 0; rtwvif->stats.tx_cnt = 0; rtwvif->stats.rx_cnt = 0; } /* process TX/RX statistics periodically for hardware, * the information helps hardware to enhance performance */ static void rtw_watch_dog_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, watch_dog_work.work); struct rtw_traffic_stats *stats = &rtwdev->stats; struct rtw_watch_dog_iter_data data = {}; bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); bool ps_active; mutex_lock(&rtwdev->mutex); if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags)) goto unlock; ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, RTW_WATCH_DOG_DELAY_TIME); if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100) set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); else clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); rtw_coex_wl_status_check(rtwdev); rtw_coex_query_bt_hid_list(rtwdev); if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags)) rtw_coex_wl_status_change_notify(rtwdev, 0); if (stats->tx_cnt > RTW_LPS_THRESHOLD || stats->rx_cnt > RTW_LPS_THRESHOLD) ps_active = true; else ps_active = false; ewma_tp_add(&stats->tx_ewma_tp, (u32)(stats->tx_unicast >> RTW_TP_SHIFT)); ewma_tp_add(&stats->rx_ewma_tp, (u32)(stats->rx_unicast >> RTW_TP_SHIFT)); stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp); stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp); /* reset tx/rx statictics */ stats->tx_unicast = 0; stats->rx_unicast = 0; stats->tx_cnt = 0; stats->rx_cnt = 0; if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) goto unlock; /* make sure BB/RF is working for dynamic mech */ rtw_leave_lps(rtwdev); rtw_phy_dynamic_mechanism(rtwdev); data.rtwdev = rtwdev; /* rtw_iterate_vifs internally uses an atomic iterator which is needed * to avoid taking local->iflist_mtx mutex */ rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data); /* fw supports only one station associated to enter lps, if there are * more than two stations associated to the AP, then we can not enter * lps, because fw does not handle the overlapped beacon interval * * rtw_recalc_lps() iterate vifs and determine if driver can enter * ps by vif->type and vif->cfg.ps, all we need to do here is to * get that vif and check if device is having traffic more than the * threshold. */ if (rtwdev->ps_enabled && data.rtwvif && !ps_active && !rtwdev->beacon_loss && !rtwdev->ap_active) rtw_enter_lps(rtwdev, data.rtwvif->port); rtwdev->watch_dog_cnt++; unlock: mutex_unlock(&rtwdev->mutex); } static void rtw_c2h_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); struct sk_buff *skb, *tmp; skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { skb_unlink(skb, &rtwdev->c2h_queue); rtw_fw_c2h_cmd_handle(rtwdev, skb); dev_kfree_skb_any(skb); } } static void rtw_ips_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work); mutex_lock(&rtwdev->mutex); if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE) rtw_enter_ips(rtwdev); mutex_unlock(&rtwdev->mutex); } static u8 rtw_acquire_macid(struct rtw_dev *rtwdev) { unsigned long mac_id; mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM); if (mac_id < RTW_MAX_MAC_ID_NUM) set_bit(mac_id, rtwdev->mac_id_map); return mac_id; } static void rtw_sta_rc_work(struct work_struct *work) { struct rtw_sta_info *si = container_of(work, struct rtw_sta_info, rc_work); struct rtw_dev *rtwdev = si->rtwdev; mutex_lock(&rtwdev->mutex); rtw_update_sta_info(rtwdev, si, true); mutex_unlock(&rtwdev->mutex); } int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, struct ieee80211_vif *vif) { struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; int i; si->mac_id = rtw_acquire_macid(rtwdev); if (si->mac_id >= RTW_MAX_MAC_ID_NUM) return -ENOSPC; si->rtwdev = rtwdev; si->sta = sta; si->vif = vif; si->init_ra_lv = 1; ewma_rssi_init(&si->avg_rssi); for (i = 0; i < ARRAY_SIZE(sta->txq); i++) rtw_txq_init(rtwdev, sta->txq[i]); INIT_WORK(&si->rc_work, rtw_sta_rc_work); rtw_update_sta_info(rtwdev, si, true); rtw_fw_media_status_report(rtwdev, si->mac_id, true); rtwdev->sta_cnt++; rtwdev->beacon_loss = false; rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n", sta->addr, si->mac_id); return 0; } void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, bool fw_exist) { struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; int i; cancel_work_sync(&si->rc_work); rtw_release_macid(rtwdev, si->mac_id); if (fw_exist) rtw_fw_media_status_report(rtwdev, si->mac_id, false); for (i = 0; i < ARRAY_SIZE(sta->txq); i++) rtw_txq_cleanup(rtwdev, sta->txq[i]); kfree(si->mask); rtwdev->sta_cnt--; rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n", sta->addr, si->mac_id); } struct rtw_fwcd_hdr { u32 item; u32 size; u32 padding1; u32 padding2; } __packed; static int rtw_fwcd_prep(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; const struct rtw_fwcd_segs *segs = chip->fwcd_segs; u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr); u8 i; if (segs) { prep_size += segs->num * sizeof(struct rtw_fwcd_hdr); for (i = 0; i < segs->num; i++) prep_size += segs->segs[i]; } desc->data = vmalloc(prep_size); if (!desc->data) return -ENOMEM; desc->size = prep_size; desc->next = desc->data; return 0; } static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size) { struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; struct rtw_fwcd_hdr *hdr; u8 *next; if (!desc->data) { rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n"); return NULL; } next = desc->next + sizeof(struct rtw_fwcd_hdr); if (next - desc->data + size > desc->size) { rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n"); return NULL; } hdr = (struct rtw_fwcd_hdr *)(desc->next); hdr->item = item; hdr->size = size; hdr->padding1 = 0x01234567; hdr->padding2 = 0x89abcdef; desc->next = next + size; return next; } static void rtw_fwcd_dump(struct rtw_dev *rtwdev) { struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n"); /* Data will be freed after lifetime of device coredump. After calling * dev_coredump, data is supposed to be handled by the device coredump * framework. Note that a new dump will be discarded if a previous one * hasn't been released yet. */ dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL); } static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self) { struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; if (free_self) { rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n"); vfree(desc->data); } desc->data = NULL; desc->next = NULL; } static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev) { u32 size = rtwdev->chip->fw_rxff_size; u32 *buf; u8 seq; buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size); if (!buf) return -ENOMEM; if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) { rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n"); return -EINVAL; } if (GET_FW_DUMP_LEN(buf) == 0) { rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n"); return -EINVAL; } seq = GET_FW_DUMP_SEQ(buf); if (seq > 0) { rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's seq is wrong: %d\n", seq); return -EINVAL; } return 0; } int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size, u32 fwcd_item) { u32 rxff = rtwdev->chip->fw_rxff_size; u32 dump_size, done_size = 0; u8 *buf; int ret; buf = rtw_fwcd_next(rtwdev, fwcd_item, size); if (!buf) return -ENOMEM; while (size) { dump_size = size > rxff ? rxff : size; ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size, dump_size); if (ret) { rtw_err(rtwdev, "ddma fw 0x%x [+0x%x] to fw fifo fail\n", ocp_src, done_size); return ret; } ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, dump_size, (u32 *)(buf + done_size)); if (ret) { rtw_err(rtwdev, "dump fw 0x%x [+0x%x] from fw fifo fail\n", ocp_src, done_size); return ret; } size -= dump_size; done_size += dump_size; } return 0; } EXPORT_SYMBOL(rtw_dump_fw); int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size) { u8 *buf; u32 i; if (addr & 0x3) { WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr); return -EINVAL; } buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size); if (!buf) return -ENOMEM; for (i = 0; i < size; i += 4) *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i); return 0; } EXPORT_SYMBOL(rtw_dump_reg); void rtw_vif_assoc_changed(struct rtw_vif *rtwvif, struct ieee80211_bss_conf *conf) { struct ieee80211_vif *vif = NULL; if (conf) vif = container_of(conf, struct ieee80211_vif, bss_conf); if (conf && vif->cfg.assoc) { rtwvif->aid = vif->cfg.aid; rtwvif->net_type = RTW_NET_MGD_LINKED; } else { rtwvif->aid = 0; rtwvif->net_type = RTW_NET_NO_LINK; } } static void rtw_reset_key_iter(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data) { struct rtw_dev *rtwdev = (struct rtw_dev *)data; struct rtw_sec_desc *sec = &rtwdev->sec; rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx); } static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta) { struct rtw_dev *rtwdev = (struct rtw_dev *)data; if (rtwdev->sta_cnt == 0) { rtw_warn(rtwdev, "sta count before reset should not be 0\n"); return; } rtw_sta_remove(rtwdev, sta, false); } static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_dev *rtwdev = (struct rtw_dev *)data; struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; rtw_bf_disassoc(rtwdev, vif, NULL); rtw_vif_assoc_changed(rtwvif, NULL); rtw_txq_cleanup(rtwdev, vif->txq); } void rtw_fw_recovery(struct rtw_dev *rtwdev) { if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags)) ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work); } static void __fw_recovery_work(struct rtw_dev *rtwdev) { int ret = 0; set_bit(RTW_FLAG_RESTARTING, rtwdev->flags); clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags); ret = rtw_fwcd_prep(rtwdev); if (ret) goto free; ret = rtw_fw_dump_crash_log(rtwdev); if (ret) goto free; ret = rtw_chip_dump_fw_crash(rtwdev); if (ret) goto free; rtw_fwcd_dump(rtwdev); free: rtw_fwcd_free(rtwdev, !!ret); rtw_write8(rtwdev, REG_MCU_TST_CFG, 0); WARN(1, "firmware crash, start reset and recover\n"); rcu_read_lock(); rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev); rcu_read_unlock(); rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev); rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev); bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM); rtw_enter_ips(rtwdev); } static void rtw_fw_recovery_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, fw_recovery_work); mutex_lock(&rtwdev->mutex); __fw_recovery_work(rtwdev); mutex_unlock(&rtwdev->mutex); ieee80211_restart_hw(rtwdev->hw); } struct rtw_txq_ba_iter_data { }; static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta) { struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; int ret; u8 tid; tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); while (tid != IEEE80211_NUM_TIDS) { clear_bit(tid, si->tid_ba); ret = ieee80211_start_tx_ba_session(sta, tid, 0); if (ret == -EINVAL) { struct ieee80211_txq *txq; struct rtw_txq *rtwtxq; txq = sta->txq[tid]; rtwtxq = (struct rtw_txq *)txq->drv_priv; set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags); } tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); } } static void rtw_txq_ba_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work); struct rtw_txq_ba_iter_data data; rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data); } void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel) { if (IS_CH_2G_BAND(channel)) pkt_stat->band = NL80211_BAND_2GHZ; else if (IS_CH_5G_BAND(channel)) pkt_stat->band = NL80211_BAND_5GHZ; else return; pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band); } EXPORT_SYMBOL(rtw_set_rx_freq_band); void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period) { rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE); rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1); } void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel, u8 primary_channel, enum rtw_supported_band band, enum rtw_bandwidth bandwidth) { enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band); struct rtw_hal *hal = &rtwdev->hal; u8 *cch_by_bw = hal->cch_by_bw; u32 center_freq, primary_freq; enum rtw_sar_bands sar_band; u8 primary_channel_idx; center_freq = ieee80211_channel_to_frequency(center_channel, nl_band); primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band); /* assign the center channel used while 20M bw is selected */ cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel; /* assign the center channel used while current bw is selected */ cch_by_bw[bandwidth] = center_channel; switch (bandwidth) { case RTW_CHANNEL_WIDTH_20: default: primary_channel_idx = RTW_SC_DONT_CARE; break; case RTW_CHANNEL_WIDTH_40: if (primary_freq > center_freq) primary_channel_idx = RTW_SC_20_UPPER; else primary_channel_idx = RTW_SC_20_LOWER; break; case RTW_CHANNEL_WIDTH_80: if (primary_freq > center_freq) { if (primary_freq - center_freq == 10) primary_channel_idx = RTW_SC_20_UPPER; else primary_channel_idx = RTW_SC_20_UPMOST; /* assign the center channel used * while 40M bw is selected */ cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4; } else { if (center_freq - primary_freq == 10) primary_channel_idx = RTW_SC_20_LOWER; else primary_channel_idx = RTW_SC_20_LOWEST; /* assign the center channel used * while 40M bw is selected */ cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4; } break; } switch (center_channel) { case 1 ... 14: sar_band = RTW_SAR_BAND_0; break; case 36 ... 64: sar_band = RTW_SAR_BAND_1; break; case 100 ... 144: sar_band = RTW_SAR_BAND_3; break; case 149 ... 177: sar_band = RTW_SAR_BAND_4; break; default: WARN(1, "unknown ch(%u) to SAR band\n", center_channel); sar_band = RTW_SAR_BAND_0; break; } hal->current_primary_channel_index = primary_channel_idx; hal->current_band_width = bandwidth; hal->primary_channel = primary_channel; hal->current_channel = center_channel; hal->current_band_type = band; hal->sar_band = sar_band; } void rtw_get_channel_params(struct cfg80211_chan_def *chandef, struct rtw_channel_params *chan_params) { struct ieee80211_channel *channel = chandef->chan; enum nl80211_chan_width width = chandef->width; u32 primary_freq, center_freq; u8 center_chan; u8 bandwidth = RTW_CHANNEL_WIDTH_20; center_chan = channel->hw_value; primary_freq = channel->center_freq; center_freq = chandef->center_freq1; switch (width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bandwidth = RTW_CHANNEL_WIDTH_20; break; case NL80211_CHAN_WIDTH_40: bandwidth = RTW_CHANNEL_WIDTH_40; if (primary_freq > center_freq) center_chan -= 2; else center_chan += 2; break; case NL80211_CHAN_WIDTH_80: bandwidth = RTW_CHANNEL_WIDTH_80; if (primary_freq > center_freq) { if (primary_freq - center_freq == 10) center_chan -= 2; else center_chan -= 6; } else { if (center_freq - primary_freq == 10) center_chan += 2; else center_chan += 6; } break; default: center_chan = 0; break; } chan_params->center_chan = center_chan; chan_params->bandwidth = bandwidth; chan_params->primary_chan = channel->hw_value; } void rtw_set_channel(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct ieee80211_hw *hw = rtwdev->hw; struct rtw_hal *hal = &rtwdev->hal; struct rtw_channel_params ch_param; u8 center_chan, primary_chan, bandwidth, band; rtw_get_channel_params(&hw->conf.chandef, &ch_param); if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) return; center_chan = ch_param.center_chan; primary_chan = ch_param.primary_chan; bandwidth = ch_param.bandwidth; band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth); if (rtwdev->scan_info.op_chan) rtw_store_op_chan(rtwdev, true); chip->ops->set_channel(rtwdev, center_chan, bandwidth, hal->current_primary_channel_index); if (hal->current_band_type == RTW_BAND_5G) { rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G); } else { if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G); else rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN); } rtw_phy_set_tx_power_level(rtwdev, center_chan); /* if the channel isn't set for scanning, we will do RF calibration * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration * during scanning on each channel takes too long. */ if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) rtwdev->need_rfk = true; } void rtw_chip_prepare_tx(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; if (rtwdev->need_rfk) { rtwdev->need_rfk = false; chip->ops->phy_calibration(rtwdev); } } static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) { int i; for (i = 0; i < ETH_ALEN; i++) rtw_write8(rtwdev, start + i, addr[i]); } void rtw_vif_port_config(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif, u32 config) { u32 addr, mask; if (config & PORT_SET_MAC_ADDR) { addr = rtwvif->conf->mac_addr.addr; rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); } if (config & PORT_SET_BSSID) { addr = rtwvif->conf->bssid.addr; rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); } if (config & PORT_SET_NET_TYPE) { addr = rtwvif->conf->net_type.addr; mask = rtwvif->conf->net_type.mask; rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); } if (config & PORT_SET_AID) { addr = rtwvif->conf->aid.addr; mask = rtwvif->conf->aid.mask; rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); } if (config & PORT_SET_BCN_CTRL) { addr = rtwvif->conf->bcn_ctrl.addr; mask = rtwvif->conf->bcn_ctrl.mask; rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl); } } static u8 hw_bw_cap_to_bitamp(u8 bw_cap) { u8 bw = 0; switch (bw_cap) { case EFUSE_HW_CAP_IGNORE: case EFUSE_HW_CAP_SUPP_BW80: bw |= BIT(RTW_CHANNEL_WIDTH_80); fallthrough; case EFUSE_HW_CAP_SUPP_BW40: bw |= BIT(RTW_CHANNEL_WIDTH_40); fallthrough; default: bw |= BIT(RTW_CHANNEL_WIDTH_20); break; } return bw; } static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_hal *hal = &rtwdev->hal; if (hw_ant_num == EFUSE_HW_CAP_IGNORE || hw_ant_num >= hal->rf_path_num) return; switch (hw_ant_num) { case 1: hal->rf_type = RF_1T1R; hal->rf_path_num = 1; if (!chip->fix_rf_phy_num) hal->rf_phy_num = hal->rf_path_num; hal->antenna_tx = BB_PATH_A; hal->antenna_rx = BB_PATH_A; break; default: WARN(1, "invalid hw configuration from efuse\n"); break; } } static u64 get_vht_ra_mask(struct ieee80211_sta *sta) { u64 ra_mask = 0; u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map); u8 vht_mcs_cap; int i, nss; /* 4SS, every two bits for MCS7/8/9 */ for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { vht_mcs_cap = mcs_map & 0x3; switch (vht_mcs_cap) { case 2: /* MCS9 */ ra_mask |= 0x3ffULL << nss; break; case 1: /* MCS8 */ ra_mask |= 0x1ffULL << nss; break; case 0: /* MCS7 */ ra_mask |= 0x0ffULL << nss; break; default: break; } } return ra_mask; } static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) { u8 rate_id = 0; switch (wireless_set) { case WIRELESS_CCK: rate_id = RTW_RATEID_B_20M; break; case WIRELESS_OFDM: rate_id = RTW_RATEID_G; break; case WIRELESS_CCK | WIRELESS_OFDM: rate_id = RTW_RATEID_BG; break; case WIRELESS_OFDM | WIRELESS_HT: if (tx_num == 1) rate_id = RTW_RATEID_GN_N1SS; else if (tx_num == 2) rate_id = RTW_RATEID_GN_N2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; break; case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: if (bw_mode == RTW_CHANNEL_WIDTH_40) { if (tx_num == 1) rate_id = RTW_RATEID_BGN_40M_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_BGN_40M_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR7_N_4SS; } else { if (tx_num == 1) rate_id = RTW_RATEID_BGN_20M_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_BGN_20M_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR7_N_4SS; } break; case WIRELESS_OFDM | WIRELESS_VHT: if (tx_num == 1) rate_id = RTW_RATEID_ARFR1_AC_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR0_AC_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; break; case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: if (bw_mode >= RTW_CHANNEL_WIDTH_80) { if (tx_num == 1) rate_id = RTW_RATEID_ARFR1_AC_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR0_AC_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; } else { if (tx_num == 1) rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; } break; default: break; } return rate_id; } #define RA_MASK_CCK_RATES 0x0000f #define RA_MASK_OFDM_RATES 0x00ff0 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ RA_MASK_HT_RATES_2SS | \ RA_MASK_HT_RATES_3SS) #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ RA_MASK_VHT_RATES_2SS | \ RA_MASK_VHT_RATES_3SS) #define RA_MASK_CCK_IN_BG 0x00005 #define RA_MASK_CCK_IN_HT 0x00005 #define RA_MASK_CCK_IN_VHT 0x00005 #define RA_MASK_OFDM_IN_VHT 0x00010 #define RA_MASK_OFDM_IN_HT_2G 0x00010 #define RA_MASK_OFDM_IN_HT_5G 0x00030 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set) { u8 rssi_level = si->rssi_level; if (wireless_set == WIRELESS_CCK) return 0xffffffffffffffffULL; if (rssi_level == 0) return 0xffffffffffffffffULL; else if (rssi_level == 1) return 0xfffffffffffffff0ULL; else if (rssi_level == 2) return 0xffffffffffffefe0ULL; else if (rssi_level == 3) return 0xffffffffffffcfc0ULL; else if (rssi_level == 4) return 0xffffffffffff8f80ULL; else return 0xffffffffffff0f00ULL; } static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak) { if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0) ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); if (ra_mask == 0) ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); return ra_mask; } static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si, u64 ra_mask, bool is_vht_enable) { struct rtw_hal *hal = &rtwdev->hal; const struct cfg80211_bitrate_mask *mask = si->mask; u64 cfg_mask = GENMASK_ULL(63, 0); u8 band; if (!si->use_cfg_mask) return ra_mask; band = hal->current_band_type; if (band == RTW_BAND_2G) { band = NL80211_BAND_2GHZ; cfg_mask = mask->control[band].legacy; } else if (band == RTW_BAND_5G) { band = NL80211_BAND_5GHZ; cfg_mask = u64_encode_bits(mask->control[band].legacy, RA_MASK_OFDM_RATES); } if (!is_vht_enable) { if (ra_mask & RA_MASK_HT_RATES_1SS) cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0], RA_MASK_HT_RATES_1SS); if (ra_mask & RA_MASK_HT_RATES_2SS) cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1], RA_MASK_HT_RATES_2SS); } else { if (ra_mask & RA_MASK_VHT_RATES_1SS) cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0], RA_MASK_VHT_RATES_1SS); if (ra_mask & RA_MASK_VHT_RATES_2SS) cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1], RA_MASK_VHT_RATES_2SS); } ra_mask &= cfg_mask; return ra_mask; } void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si, bool reset_ra_mask) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; struct ieee80211_sta *sta = si->sta; struct rtw_efuse *efuse = &rtwdev->efuse; struct rtw_hal *hal = &rtwdev->hal; u8 wireless_set; u8 bw_mode; u8 rate_id; u8 rf_type = RF_1T1R; u8 stbc_en = 0; u8 ldpc_en = 0; u8 tx_num = 1; u64 ra_mask = 0; u64 ra_mask_bak = 0; bool is_vht_enable = false; bool is_support_sgi = false; if (sta->deflink.vht_cap.vht_supported) { is_vht_enable = true; ra_mask |= get_vht_ra_mask(sta); if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) stbc_en = VHT_STBC_EN; if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) ldpc_en = VHT_LDPC_EN; } else if (sta->deflink.ht_cap.ht_supported) { ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) | (sta->deflink.ht_cap.mcs.rx_mask[0] << 12); if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) stbc_en = HT_STBC_EN; if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) ldpc_en = HT_LDPC_EN; } if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss) ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS; if (hal->current_band_type == RTW_BAND_5G) { ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4; ra_mask_bak = ra_mask; if (sta->deflink.vht_cap.vht_supported) { ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; wireless_set = WIRELESS_OFDM | WIRELESS_VHT; } else if (sta->deflink.ht_cap.ht_supported) { ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; wireless_set = WIRELESS_OFDM | WIRELESS_HT; } else { wireless_set = WIRELESS_OFDM; } dm_info->rrsr_val_init = RRSR_INIT_5G; } else if (hal->current_band_type == RTW_BAND_2G) { ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ]; ra_mask_bak = ra_mask; if (sta->deflink.vht_cap.vht_supported) { ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | RA_MASK_OFDM_IN_VHT; wireless_set = WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT | WIRELESS_VHT; } else if (sta->deflink.ht_cap.ht_supported) { ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | RA_MASK_OFDM_IN_HT_2G; wireless_set = WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT; } else if (sta->deflink.supp_rates[0] <= 0xf) { wireless_set = WIRELESS_CCK; } else { ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG; wireless_set = WIRELESS_CCK | WIRELESS_OFDM; } dm_info->rrsr_val_init = RRSR_INIT_2G; } else { rtw_err(rtwdev, "Unknown band type\n"); ra_mask_bak = ra_mask; wireless_set = 0; } switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_80: bw_mode = RTW_CHANNEL_WIDTH_80; is_support_sgi = sta->deflink.vht_cap.vht_supported && (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80); break; case IEEE80211_STA_RX_BW_40: bw_mode = RTW_CHANNEL_WIDTH_40; is_support_sgi = sta->deflink.ht_cap.ht_supported && (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40); break; default: bw_mode = RTW_CHANNEL_WIDTH_20; is_support_sgi = sta->deflink.ht_cap.ht_supported && (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20); break; } if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) { tx_num = 2; rf_type = RF_2T2R; } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) { tx_num = 2; rf_type = RF_2T2R; } rate_id = get_rate_id(wireless_set, bw_mode, tx_num); ra_mask &= rtw_rate_mask_rssi(si, wireless_set); ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak); ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable); si->bw_mode = bw_mode; si->stbc_en = stbc_en; si->ldpc_en = ldpc_en; si->rf_type = rf_type; si->wireless_set = wireless_set; si->sgi_enable = is_support_sgi; si->vht_enable = is_vht_enable; si->ra_mask = ra_mask; si->rate_id = rate_id; rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask); } static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_fw_state *fw; fw = &rtwdev->fw; wait_for_completion(&fw->completion); if (!fw->firmware) return -EINVAL; if (chip->wow_fw_name) { fw = &rtwdev->wow_fw; wait_for_completion(&fw->completion); if (!fw->firmware) return -EINVAL; } return 0; } static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev, struct rtw_fw_state *fw) { const struct rtw_chip_info *chip = rtwdev->chip; if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported || !fw->feature) return LPS_DEEP_MODE_NONE; if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) && rtw_fw_feature_check(fw, FW_FEATURE_PG)) return LPS_DEEP_MODE_PG; if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) && rtw_fw_feature_check(fw, FW_FEATURE_LCLK)) return LPS_DEEP_MODE_LCLK; return LPS_DEEP_MODE_NONE; } static int rtw_power_on(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_fw_state *fw = &rtwdev->fw; bool wifi_only; int ret; ret = rtw_hci_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup hci\n"); goto err; } /* power on MAC before firmware downloaded */ ret = rtw_mac_power_on(rtwdev); if (ret) { rtw_err(rtwdev, "failed to power on mac\n"); goto err; } ret = rtw_wait_firmware_completion(rtwdev); if (ret) { rtw_err(rtwdev, "failed to wait firmware completion\n"); goto err_off; } ret = rtw_download_firmware(rtwdev, fw); if (ret) { rtw_err(rtwdev, "failed to download firmware\n"); goto err_off; } /* config mac after firmware downloaded */ ret = rtw_mac_init(rtwdev); if (ret) { rtw_err(rtwdev, "failed to configure mac\n"); goto err_off; } chip->ops->phy_set_param(rtwdev); ret = rtw_hci_start(rtwdev); if (ret) { rtw_err(rtwdev, "failed to start hci\n"); goto err_off; } /* send H2C after HCI has started */ rtw_fw_send_general_info(rtwdev); rtw_fw_send_phydm_info(rtwdev); wifi_only = !rtwdev->efuse.btcoex; rtw_coex_power_on_setting(rtwdev); rtw_coex_init_hw_config(rtwdev, wifi_only); return 0; err_off: rtw_mac_power_off(rtwdev); err: return ret; } void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start) { if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN)) return; if (start) { rtw_fw_scan_notify(rtwdev, true); } else { reinit_completion(&rtwdev->fw_scan_density); rtw_fw_scan_notify(rtwdev, false); if (!wait_for_completion_timeout(&rtwdev->fw_scan_density, SCAN_NOTIFY_TIMEOUT)) rtw_warn(rtwdev, "firmware failed to report density after scan\n"); } } void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif, const u8 *mac_addr, bool hw_scan) { u32 config = 0; int ret = 0; rtw_leave_lps(rtwdev); if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) { ret = rtw_leave_ips(rtwdev); if (ret) { rtw_err(rtwdev, "failed to leave idle state\n"); return; } } ether_addr_copy(rtwvif->mac_addr, mac_addr); config |= PORT_SET_MAC_ADDR; rtw_vif_port_config(rtwdev, rtwvif, config); rtw_coex_scan_notify(rtwdev, COEX_SCAN_START); rtw_core_fw_scan_notify(rtwdev, true); set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); set_bit(RTW_FLAG_SCANNING, rtwdev->flags); } void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif, bool hw_scan) { struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL; u32 config = 0; if (!rtwvif) return; clear_bit(RTW_FLAG_SCANNING, rtwdev->flags); clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); rtw_core_fw_scan_notify(rtwdev, false); ether_addr_copy(rtwvif->mac_addr, vif->addr); config |= PORT_SET_MAC_ADDR; rtw_vif_port_config(rtwdev, rtwvif, config); rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH); if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work); } int rtw_core_start(struct rtw_dev *rtwdev) { int ret; ret = rtw_power_on(rtwdev); if (ret) return ret; rtw_sec_enable_sec_engine(rtwdev); rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw); rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw); /* rcr reset after powered on */ rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, RTW_WATCH_DOG_DELAY_TIME); set_bit(RTW_FLAG_RUNNING, rtwdev->flags); return 0; } static void rtw_power_off(struct rtw_dev *rtwdev) { rtw_hci_stop(rtwdev); rtw_coex_power_off_setting(rtwdev); rtw_mac_power_off(rtwdev); } void rtw_core_stop(struct rtw_dev *rtwdev) { struct rtw_coex *coex = &rtwdev->coex; clear_bit(RTW_FLAG_RUNNING, rtwdev->flags); clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags); mutex_unlock(&rtwdev->mutex); cancel_work_sync(&rtwdev->c2h_work); cancel_work_sync(&rtwdev->update_beacon_work); cancel_delayed_work_sync(&rtwdev->watch_dog_work); cancel_delayed_work_sync(&coex->bt_relink_work); cancel_delayed_work_sync(&coex->bt_reenable_work); cancel_delayed_work_sync(&coex->defreeze_work); cancel_delayed_work_sync(&coex->wl_remain_work); cancel_delayed_work_sync(&coex->bt_remain_work); cancel_delayed_work_sync(&coex->wl_connecting_work); cancel_delayed_work_sync(&coex->bt_multi_link_remain_work); cancel_delayed_work_sync(&coex->wl_ccklock_work); mutex_lock(&rtwdev->mutex); rtw_power_off(rtwdev); } static void rtw_init_ht_cap(struct rtw_dev *rtwdev, struct ieee80211_sta_ht_cap *ht_cap) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_efuse *efuse = &rtwdev->efuse; ht_cap->ht_supported = true; ht_cap->cap = 0; ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_MAX_AMSDU | (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); if (rtw_chip_has_rx_ldpc(rtwdev)) ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING; if (rtw_chip_has_tx_stbc(rtwdev)) ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_SGI_40; ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap->ampdu_density = chip->ampdu_density; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; if (efuse->hw_cap.nss > 1) { ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(300); } else { ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0x00; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(150); } } static void rtw_init_vht_cap(struct rtw_dev *rtwdev, struct ieee80211_sta_vht_cap *vht_cap) { struct rtw_efuse *efuse = &rtwdev->efuse; u16 mcs_map; __le16 highest; if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) return; vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_HTC_VHT | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | 0; if (rtwdev->hal.rf_path_num > 1) vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; vht_cap->cap |= (rtwdev->hal.bfee_sts_cap << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); if (rtw_chip_has_rx_ldpc(rtwdev)) vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; if (efuse->hw_cap.nss > 1) { highest = cpu_to_le16(780); mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; } else { highest = cpu_to_le16(390); mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; } vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.rx_highest = highest; vht_cap->vht_mcs.tx_highest = highest; } static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev) { u16 len; len = rtwdev->chip->max_scan_ie_len; if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) len = IEEE80211_MAX_DATA_LEN; else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM)) len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE; return len; } static void rtw_set_supported_band(struct ieee80211_hw *hw, const struct rtw_chip_info *chip) { struct rtw_dev *rtwdev = hw->priv; struct ieee80211_supported_band *sband; if (chip->band & RTW_BAND_2G) { sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); if (!sband) goto err_out; if (chip->ht_supported) rtw_init_ht_cap(rtwdev, &sband->ht_cap); hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; } if (chip->band & RTW_BAND_5G) { sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); if (!sband) goto err_out; if (chip->ht_supported) rtw_init_ht_cap(rtwdev, &sband->ht_cap); if (chip->vht_supported) rtw_init_vht_cap(rtwdev, &sband->vht_cap); hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; } return; err_out: rtw_err(rtwdev, "failed to set supported band\n"); } static void rtw_unset_supported_band(struct ieee80211_hw *hw, const struct rtw_chip_info *chip) { kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); } static void rtw_vif_smps_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_dev *rtwdev = (struct rtw_dev *)data; if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc) return; if (rtwdev->hal.txrx_1ss) ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC); else ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF); } void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_hal *hal = &rtwdev->hal; if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss) return; rtwdev->hal.txrx_1ss = txrx_1ss; if (txrx_1ss) chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false); else chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx, hal->antenna_rx, false); rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev); } static void __update_firmware_feature(struct rtw_dev *rtwdev, struct rtw_fw_state *fw) { u32 feature; const struct rtw_fw_hdr *fw_hdr = (const struct rtw_fw_hdr *)fw->firmware->data; feature = le32_to_cpu(fw_hdr->feature); fw->feature = feature & FW_FEATURE_SIG ? feature : 0; if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C && RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13)) fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM; } static void __update_firmware_info(struct rtw_dev *rtwdev, struct rtw_fw_state *fw) { const struct rtw_fw_hdr *fw_hdr = (const struct rtw_fw_hdr *)fw->firmware->data; fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver); fw->version = le16_to_cpu(fw_hdr->version); fw->sub_version = fw_hdr->subversion; fw->sub_index = fw_hdr->subindex; __update_firmware_feature(rtwdev, fw); } static void __update_firmware_info_legacy(struct rtw_dev *rtwdev, struct rtw_fw_state *fw) { struct rtw_fw_hdr_legacy *legacy = (struct rtw_fw_hdr_legacy *)fw->firmware->data; fw->h2c_version = 0; fw->version = le16_to_cpu(legacy->version); fw->sub_version = legacy->subversion1; fw->sub_index = legacy->subversion2; } static void update_firmware_info(struct rtw_dev *rtwdev, struct rtw_fw_state *fw) { if (rtw_chip_wcpu_11n(rtwdev)) __update_firmware_info_legacy(rtwdev, fw); else __update_firmware_info(rtwdev, fw); } static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) { struct rtw_fw_state *fw = context; struct rtw_dev *rtwdev = fw->rtwdev; if (!firmware || !firmware->data) { rtw_err(rtwdev, "failed to request firmware\n"); complete_all(&fw->completion); return; } fw->firmware = firmware; update_firmware_info(rtwdev, fw); complete_all(&fw->completion); rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n", fw->type == RTW_WOWLAN_FW ? "WOW " : "", fw->version, fw->sub_version, fw->sub_index, fw->h2c_version); } static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type) { const char *fw_name; struct rtw_fw_state *fw; int ret; switch (type) { case RTW_WOWLAN_FW: fw = &rtwdev->wow_fw; fw_name = rtwdev->chip->wow_fw_name; break; case RTW_NORMAL_FW: fw = &rtwdev->fw; fw_name = rtwdev->chip->fw_name; break; default: rtw_warn(rtwdev, "unsupported firmware type\n"); return -ENOENT; } fw->type = type; fw->rtwdev = rtwdev; init_completion(&fw->completion); ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, GFP_KERNEL, fw, rtw_load_firmware_cb); if (ret) { rtw_err(rtwdev, "failed to async firmware request\n"); return ret; } return 0; } static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_hal *hal = &rtwdev->hal; struct rtw_efuse *efuse = &rtwdev->efuse; switch (rtw_hci_type(rtwdev)) { case RTW_HCI_TYPE_PCIE: rtwdev->hci.rpwm_addr = 0x03d9; rtwdev->hci.cpwm_addr = 0x03da; break; case RTW_HCI_TYPE_SDIO: rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1; rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2; break; case RTW_HCI_TYPE_USB: rtwdev->hci.rpwm_addr = 0xfe58; rtwdev->hci.cpwm_addr = 0xfe57; break; default: rtw_err(rtwdev, "unsupported hci type\n"); return -EINVAL; } hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; if (hal->chip_version & BIT_RF_TYPE_ID) { hal->rf_type = RF_2T2R; hal->rf_path_num = 2; hal->antenna_tx = BB_PATH_AB; hal->antenna_rx = BB_PATH_AB; } else { hal->rf_type = RF_1T1R; hal->rf_path_num = 1; hal->antenna_tx = BB_PATH_A; hal->antenna_rx = BB_PATH_A; } hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num : hal->rf_path_num; efuse->physical_size = chip->phy_efuse_size; efuse->logical_size = chip->log_efuse_size; efuse->protect_size = chip->ptct_efuse_size; /* default use ack */ rtwdev->hal.rcr |= BIT_VHT_DACK; hal->bfee_sts_cap = 3; return 0; } static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) { struct rtw_fw_state *fw = &rtwdev->fw; int ret; ret = rtw_hci_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup hci\n"); goto err; } ret = rtw_mac_power_on(rtwdev); if (ret) { rtw_err(rtwdev, "failed to power on mac\n"); goto err; } rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); wait_for_completion(&fw->completion); if (!fw->firmware) { ret = -EINVAL; rtw_err(rtwdev, "failed to load firmware\n"); goto err; } ret = rtw_download_firmware(rtwdev, fw); if (ret) { rtw_err(rtwdev, "failed to download firmware\n"); goto err_off; } return 0; err_off: rtw_mac_power_off(rtwdev); err: return ret; } static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) { struct rtw_efuse *efuse = &rtwdev->efuse; u8 hw_feature[HW_FEATURE_LEN]; u8 id; u8 bw; int i; id = rtw_read8(rtwdev, REG_C2HEVT); if (id != C2H_HW_FEATURE_REPORT) { rtw_err(rtwdev, "failed to read hw feature report\n"); return -EBUSY; } for (i = 0; i < HW_FEATURE_LEN; i++) hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); rtw_write8(rtwdev, REG_C2HEVT, 0); bw = GET_EFUSE_HW_CAP_BW(hw_feature); efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE || efuse->hw_cap.nss > rtwdev->hal.rf_path_num) efuse->hw_cap.nss = rtwdev->hal.rf_path_num; rtw_dbg(rtwdev, RTW_DBG_EFUSE, "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, efuse->hw_cap.ant_num, efuse->hw_cap.nss); return 0; } static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) { rtw_hci_stop(rtwdev); rtw_mac_power_off(rtwdev); } static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) { struct rtw_efuse *efuse = &rtwdev->efuse; int ret; mutex_lock(&rtwdev->mutex); /* power on mac to read efuse */ ret = rtw_chip_efuse_enable(rtwdev); if (ret) goto out_unlock; ret = rtw_parse_efuse_map(rtwdev); if (ret) goto out_disable; ret = rtw_dump_hw_feature(rtwdev); if (ret) goto out_disable; ret = rtw_check_supported_rfe(rtwdev); if (ret) goto out_disable; if (efuse->crystal_cap == 0xff) efuse->crystal_cap = 0; if (efuse->pa_type_2g == 0xff) efuse->pa_type_2g = 0; if (efuse->pa_type_5g == 0xff) efuse->pa_type_5g = 0; if (efuse->lna_type_2g == 0xff) efuse->lna_type_2g = 0; if (efuse->lna_type_5g == 0xff) efuse->lna_type_5g = 0; if (efuse->channel_plan == 0xff) efuse->channel_plan = 0x7f; if (efuse->rf_board_option == 0xff) efuse->rf_board_option = 0; if (efuse->bt_setting & BIT(0)) efuse->share_ant = true; if (efuse->regd == 0xff) efuse->regd = 0; if (efuse->tx_bb_swing_setting_2g == 0xff) efuse->tx_bb_swing_setting_2g = 0; if (efuse->tx_bb_swing_setting_5g == 0xff) efuse->tx_bb_swing_setting_5g = 0; efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20; efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0; out_disable: rtw_chip_efuse_disable(rtwdev); out_unlock: mutex_unlock(&rtwdev->mutex); return ret; } static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) { struct rtw_hal *hal = &rtwdev->hal; const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); if (!rfe_def) return -ENODEV; rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type); rtw_phy_init_tx_power(rtwdev); if (rfe_def->agc_btg_tbl) rtw_load_table(rtwdev, rfe_def->agc_btg_tbl); rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); rtw_phy_tx_power_by_rate_config(hal); rtw_phy_tx_power_limit_config(hal); return 0; } int rtw_chip_info_setup(struct rtw_dev *rtwdev) { int ret; ret = rtw_chip_parameter_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip parameters\n"); goto err_out; } ret = rtw_chip_efuse_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip efuse info\n"); goto err_out; } ret = rtw_chip_board_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip board info\n"); goto err_out; } return 0; err_out: return ret; } EXPORT_SYMBOL(rtw_chip_info_setup); static void rtw_stats_init(struct rtw_dev *rtwdev) { struct rtw_traffic_stats *stats = &rtwdev->stats; struct rtw_dm_info *dm_info = &rtwdev->dm_info; int i; ewma_tp_init(&stats->tx_ewma_tp); ewma_tp_init(&stats->rx_ewma_tp); for (i = 0; i < RTW_EVM_NUM; i++) ewma_evm_init(&dm_info->ewma_evm[i]); for (i = 0; i < RTW_SNR_NUM; i++) ewma_snr_init(&dm_info->ewma_snr[i]); } int rtw_core_init(struct rtw_dev *rtwdev) { const struct rtw_chip_info *chip = rtwdev->chip; struct rtw_coex *coex = &rtwdev->coex; int ret; INIT_LIST_HEAD(&rtwdev->rsvd_page_list); INIT_LIST_HEAD(&rtwdev->txqs); timer_setup(&rtwdev->tx_report.purge_timer, rtw_tx_report_purge_timer, 0); rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0); if (!rtwdev->tx_wq) { rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n"); return -ENOMEM; } INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work); INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work); INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work); INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work); INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work); INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work); INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work, rtw_coex_bt_multi_link_remain_work); INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work); INIT_WORK(&rtwdev->tx_work, rtw_tx_work); INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); INIT_WORK(&rtwdev->ips_work, rtw_ips_work); INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work); INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work); INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work); skb_queue_head_init(&rtwdev->c2h_queue); skb_queue_head_init(&rtwdev->coex.queue); skb_queue_head_init(&rtwdev->tx_report.queue); spin_lock_init(&rtwdev->txq_lock); spin_lock_init(&rtwdev->tx_report.q_lock); mutex_init(&rtwdev->mutex); mutex_init(&rtwdev->hal.tx_power_mutex); init_waitqueue_head(&rtwdev->coex.wait); init_completion(&rtwdev->lps_leave_check); init_completion(&rtwdev->fw_scan_density); rtwdev->sec.total_cam_num = 32; rtwdev->hal.current_channel = 1; rtwdev->dm_info.fix_rate = U8_MAX; set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map); rtw_stats_init(rtwdev); /* default rx filter setting */ rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | BIT_AB | BIT_AM | BIT_APM; ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW); if (ret) { rtw_warn(rtwdev, "no firmware loaded\n"); goto out; } if (chip->wow_fw_name) { ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW); if (ret) { rtw_warn(rtwdev, "no wow firmware loaded\n"); wait_for_completion(&rtwdev->fw.completion); if (rtwdev->fw.firmware) release_firmware(rtwdev->fw.firmware); goto out; } } return 0; out: destroy_workqueue(rtwdev->tx_wq); return ret; } EXPORT_SYMBOL(rtw_core_init); void rtw_core_deinit(struct rtw_dev *rtwdev) { struct rtw_fw_state *fw = &rtwdev->fw; struct rtw_fw_state *wow_fw = &rtwdev->wow_fw; struct rtw_rsvd_page *rsvd_pkt, *tmp; unsigned long flags; rtw_wait_firmware_completion(rtwdev); if (fw->firmware) release_firmware(fw->firmware); if (wow_fw->firmware) release_firmware(wow_fw->firmware); destroy_workqueue(rtwdev->tx_wq); spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); skb_queue_purge(&rtwdev->tx_report.queue); skb_queue_purge(&rtwdev->coex.queue); spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, build_list) { list_del(&rsvd_pkt->build_list); kfree(rsvd_pkt); } mutex_destroy(&rtwdev->mutex); mutex_destroy(&rtwdev->hal.tx_power_mutex); } EXPORT_SYMBOL(rtw_core_deinit); int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) { struct rtw_hal *hal = &rtwdev->hal; int max_tx_headroom = 0; int ret; max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO) max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN; hw->extra_tx_headroom = max_tx_headroom; hw->queues = IEEE80211_NUM_ACS; hw->txq_data_size = sizeof(struct rtw_txq); hw->sta_data_size = sizeof(struct rtw_sta_info); hw->vif_data_size = sizeof(struct rtw_vif); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, RX_INCLUDES_FCS); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, TX_AMSDU); ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS); hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); hw->wiphy->available_antennas_tx = hal->antenna_tx; hw->wiphy->available_antennas_rx = hal->antenna_rx; hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | WIPHY_FLAG_TDLS_EXTERNAL_SETUP; hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS; hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev); if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) { hw->wiphy->iface_combinations = rtw_iface_combs; hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs); } wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN); wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); #ifdef CONFIG_PM hw->wiphy->wowlan = rtwdev->chip->wowlan_stub; hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids; #endif rtw_set_supported_band(hw, rtwdev->chip); SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); hw->wiphy->sar_capa = &rtw_sar_capa; ret = rtw_regd_init(rtwdev); if (ret) { rtw_err(rtwdev, "failed to init regd\n"); return ret; } ret = ieee80211_register_hw(hw); if (ret) { rtw_err(rtwdev, "failed to register hw\n"); return ret; } ret = rtw_regd_hint(rtwdev); if (ret) { rtw_err(rtwdev, "failed to hint regd\n"); return ret; } rtw_debugfs_init(rtwdev); rtwdev->bf_info.bfer_mu_cnt = 0; rtwdev->bf_info.bfer_su_cnt = 0; return 0; } EXPORT_SYMBOL(rtw_register_hw); void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) { const struct rtw_chip_info *chip = rtwdev->chip; ieee80211_unregister_hw(hw); rtw_unset_supported_band(hw, chip); } EXPORT_SYMBOL(rtw_unregister_hw); static void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, const struct rtw_hw_reg *reg2, u8 nbytes) { u8 i; for (i = 0; i < nbytes; i++) { u8 v1 = rtw_read8(rtwdev, reg1->addr + i); u8 v2 = rtw_read8(rtwdev, reg2->addr + i); rtw_write8(rtwdev, reg1->addr + i, v2); rtw_write8(rtwdev, reg2->addr + i, v1); } } static void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, const struct rtw_hw_reg *reg2) { u32 v1, v2; v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask); v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask); rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1); rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2); } struct rtw_iter_port_switch_data { struct rtw_dev *rtwdev; struct rtw_vif *rtwvif_ap; }; static void rtw_port_switch_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_iter_port_switch_data *iter_data = data; struct rtw_dev *rtwdev = iter_data->rtwdev; struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv; struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap; const struct rtw_hw_reg *reg1, *reg2; if (rtwvif_target->port != RTW_PORT_0) return; rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n", rtwvif_ap->port, rtwvif_target->port); reg1 = &rtwvif_ap->conf->net_type; reg2 = &rtwvif_target->conf->net_type; rtw_swap_reg_mask(rtwdev, reg1, reg2); reg1 = &rtwvif_ap->conf->mac_addr; reg2 = &rtwvif_target->conf->mac_addr; rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); reg1 = &rtwvif_ap->conf->bssid; reg2 = &rtwvif_target->conf->bssid; rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); reg1 = &rtwvif_ap->conf->bcn_ctrl; reg2 = &rtwvif_target->conf->bcn_ctrl; rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1); swap(rtwvif_target->port, rtwvif_ap->port); swap(rtwvif_target->conf, rtwvif_ap->conf); } void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif) { struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; struct rtw_iter_port_switch_data iter_data; if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0) return; iter_data.rtwdev = rtwdev; iter_data.rtwvif_ap = rtwvif; rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data); } static void rtw_check_sta_active_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; bool *active = data; if (*active) return; if (vif->type != NL80211_IFTYPE_STATION) return; if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid)) *active = true; } bool rtw_core_check_sta_active(struct rtw_dev *rtwdev) { bool sta_active = false; rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active); return rtwdev->ap_active || sta_active; } void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable) { if (!rtwdev->ap_active) return; if (enable) rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); else rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); } MODULE_AUTHOR("Realtek Corporation"); MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); MODULE_LICENSE("Dual BSD/GPL");