// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "wifi.h" #include "rc.h" #include "base.h" #include "efuse.h" #include "cam.h" #include "ps.h" #include "regd.h" #include "pci.h" #include #include #include /* *NOTICE!!!: This file will be very big, we should *keep it clear under following roles: * *This file include following parts, so, if you add new *functions into this file, please check which part it *should includes. or check if you should add new part *for this file: * *1) mac80211 init functions *2) tx information functions *3) functions called by core.c *4) wq & timer callback functions *5) frame process functions *6) IOT functions *7) sysfs functions *8) vif functions *9) ... */ /********************************************************* * * mac80211 init functions * *********************************************************/ static struct ieee80211_channel rtl_channeltable_2g[] = { {.center_freq = 2412, .hw_value = 1,}, {.center_freq = 2417, .hw_value = 2,}, {.center_freq = 2422, .hw_value = 3,}, {.center_freq = 2427, .hw_value = 4,}, {.center_freq = 2432, .hw_value = 5,}, {.center_freq = 2437, .hw_value = 6,}, {.center_freq = 2442, .hw_value = 7,}, {.center_freq = 2447, .hw_value = 8,}, {.center_freq = 2452, .hw_value = 9,}, {.center_freq = 2457, .hw_value = 10,}, {.center_freq = 2462, .hw_value = 11,}, {.center_freq = 2467, .hw_value = 12,}, {.center_freq = 2472, .hw_value = 13,}, {.center_freq = 2484, .hw_value = 14,}, }; static struct ieee80211_channel rtl_channeltable_5g[] = { {.center_freq = 5180, .hw_value = 36,}, {.center_freq = 5200, .hw_value = 40,}, {.center_freq = 5220, .hw_value = 44,}, {.center_freq = 5240, .hw_value = 48,}, {.center_freq = 5260, .hw_value = 52,}, {.center_freq = 5280, .hw_value = 56,}, {.center_freq = 5300, .hw_value = 60,}, {.center_freq = 5320, .hw_value = 64,}, {.center_freq = 5500, .hw_value = 100,}, {.center_freq = 5520, .hw_value = 104,}, {.center_freq = 5540, .hw_value = 108,}, {.center_freq = 5560, .hw_value = 112,}, {.center_freq = 5580, .hw_value = 116,}, {.center_freq = 5600, .hw_value = 120,}, {.center_freq = 5620, .hw_value = 124,}, {.center_freq = 5640, .hw_value = 128,}, {.center_freq = 5660, .hw_value = 132,}, {.center_freq = 5680, .hw_value = 136,}, {.center_freq = 5700, .hw_value = 140,}, {.center_freq = 5745, .hw_value = 149,}, {.center_freq = 5765, .hw_value = 153,}, {.center_freq = 5785, .hw_value = 157,}, {.center_freq = 5805, .hw_value = 161,}, {.center_freq = 5825, .hw_value = 165,}, }; static struct ieee80211_rate rtl_ratetable_2g[] = { {.bitrate = 10, .hw_value = 0x00,}, {.bitrate = 20, .hw_value = 0x01,}, {.bitrate = 55, .hw_value = 0x02,}, {.bitrate = 110, .hw_value = 0x03,}, {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static struct ieee80211_rate rtl_ratetable_5g[] = { {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static const struct ieee80211_supported_band rtl_band_2ghz = { .band = NL80211_BAND_2GHZ, .channels = rtl_channeltable_2g, .n_channels = ARRAY_SIZE(rtl_channeltable_2g), .bitrates = rtl_ratetable_2g, .n_bitrates = ARRAY_SIZE(rtl_ratetable_2g), .ht_cap = {0}, }; static struct ieee80211_supported_band rtl_band_5ghz = { .band = NL80211_BAND_5GHZ, .channels = rtl_channeltable_5g, .n_channels = ARRAY_SIZE(rtl_channeltable_5g), .bitrates = rtl_ratetable_5g, .n_bitrates = ARRAY_SIZE(rtl_ratetable_5g), .ht_cap = {0}, }; static const u8 tid_to_ac[] = { 2, /* IEEE80211_AC_BE */ 3, /* IEEE80211_AC_BK */ 3, /* IEEE80211_AC_BK */ 2, /* IEEE80211_AC_BE */ 1, /* IEEE80211_AC_VI */ 1, /* IEEE80211_AC_VI */ 0, /* IEEE80211_AC_VO */ 0, /* IEEE80211_AC_VO */ }; u8 rtl_tid_to_ac(u8 tid) { return tid_to_ac[tid]; } EXPORT_SYMBOL_GPL(rtl_tid_to_ac); static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw, struct ieee80211_sta_ht_cap *ht_cap) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); ht_cap->ht_supported = true; ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU; if (rtlpriv->rtlhal.disable_amsdu_8k) ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU; /* *Maximum length of AMPDU that the STA can receive. *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; /*Minimum MPDU start spacing , */ ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; /*hw->wiphy->bands[NL80211_BAND_2GHZ] *base on ant_num *rx_mask: RX mask *if rx_ant = 1 rx_mask[0]= 0xff;==>MCS0-MCS7 *if rx_ant = 2 rx_mask[1]= 0xff;==>MCS8-MCS15 *if rx_ant >= 3 rx_mask[2]= 0xff; *if BW_40 rx_mask[4]= 0x01; *highest supported RX rate */ if (rtlpriv->dm.supp_phymode_switch) { pr_info("Support phy mode switch\n"); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15); } else { if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T2R or 2T2R\n"); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS15); } else if (get_rf_type(rtlphy) == RF_1T1R) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "1T1R\n"); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0x00; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_40MHZ_MCS7); } } } static void _rtl_init_hw_vht_capab(struct ieee80211_hw *hw, struct ieee80211_sta_vht_cap *vht_cap) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); if (!(rtlpriv->cfg->spec_ver & RTL_SPEC_SUPPORT_VHT)) return; if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE || rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) { u16 mcs_map; vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_HTC_VHT | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | 0; mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_SHORT_GI_2NSS_80MHZ_MCS9); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.tx_highest = cpu_to_le16(MAX_BIT_RATE_SHORT_GI_2NSS_80MHZ_MCS9); } else if (rtlhal->hw_type == HARDWARE_TYPE_RTL8821AE) { u16 mcs_map; vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE | IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_HTC_VHT | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | 0; mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 2 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.rx_highest = cpu_to_le16(MAX_BIT_RATE_SHORT_GI_1NSS_80MHZ_MCS9); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.tx_highest = cpu_to_le16(MAX_BIT_RATE_SHORT_GI_1NSS_80MHZ_MCS9); } } static void _rtl_init_mac80211(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct ieee80211_supported_band *sband; if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset == BAND_ON_BOTH) { /* 1: 2.4 G bands */ /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[NL80211_BAND_2GHZ]); /* <2> set hw->wiphy->bands[NL80211_BAND_2GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[NL80211_BAND_2GHZ]), &rtl_band_2ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; /* 2: 5 G bands */ /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[NL80211_BAND_5GHZ]); /* <2> set hw->wiphy->bands[NL80211_BAND_5GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[NL80211_BAND_5GHZ]), &rtl_band_5ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); _rtl_init_hw_vht_capab(hw, &sband->vht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; } else { if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[NL80211_BAND_2GHZ]); /* <2> set hw->wiphy->bands[NL80211_BAND_2GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[NL80211_BAND_2GHZ]), &rtl_band_2ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; } else if (rtlhal->current_bandtype == BAND_ON_5G) { /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[NL80211_BAND_5GHZ]); /* <2> set hw->wiphy->bands[NL80211_BAND_5GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[NL80211_BAND_5GHZ]), &rtl_band_5ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); _rtl_init_hw_vht_capab(hw, &sband->vht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; } else { pr_err("Err BAND %d\n", rtlhal->current_bandtype); } } /* <5> set hw caps */ ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, RX_INCLUDES_FCS); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); /* swlps or hwlps has been set in diff chip in init_sw_vars */ if (rtlpriv->psc.swctrl_lps) { ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, PS_NULLFUNC_STACK); } if (rtlpriv->psc.fwctrl_lps) { ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); } hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; hw->wiphy->rts_threshold = 2347; hw->queues = AC_MAX; hw->extra_tx_headroom = RTL_TX_HEADER_SIZE; /* TODO: Correct this value for our hw */ hw->max_listen_interval = MAX_LISTEN_INTERVAL; hw->max_rate_tries = MAX_RATE_TRIES; /* hw->max_rates = 1; */ hw->sta_data_size = sizeof(struct rtl_sta_info); /* wowlan is not supported by kernel if CONFIG_PM is not defined */ #ifdef CONFIG_PM if (rtlpriv->psc.wo_wlan_mode) { if (rtlpriv->psc.wo_wlan_mode & WAKE_ON_MAGIC_PACKET) rtlpriv->wowlan.flags = WIPHY_WOWLAN_MAGIC_PKT; if (rtlpriv->psc.wo_wlan_mode & WAKE_ON_PATTERN_MATCH) { rtlpriv->wowlan.n_patterns = MAX_SUPPORT_WOL_PATTERN_NUM; rtlpriv->wowlan.pattern_min_len = MIN_WOL_PATTERN_SIZE; rtlpriv->wowlan.pattern_max_len = MAX_WOL_PATTERN_SIZE; } hw->wiphy->wowlan = &rtlpriv->wowlan; } #endif /* <6> mac address */ if (is_valid_ether_addr(rtlefuse->dev_addr)) { SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr); } else { u8 rtlmac1[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 }; get_random_bytes((rtlmac1 + (ETH_ALEN - 1)), 1); SET_IEEE80211_PERM_ADDR(hw, rtlmac1); } } static void _rtl_init_deferred_work(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* <1> timer */ timer_setup(&rtlpriv->works.watchdog_timer, rtl_watch_dog_timer_callback, 0); timer_setup(&rtlpriv->works.dualmac_easyconcurrent_retrytimer, rtl_easy_concurrent_retrytimer_callback, 0); /* <2> work queue */ rtlpriv->works.hw = hw; rtlpriv->works.rtl_wq = alloc_workqueue("%s", 0, 0, rtlpriv->cfg->name); if (unlikely(!rtlpriv->works.rtl_wq)) { pr_err("Failed to allocate work queue\n"); return; } INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq, (void *)rtl_watchdog_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq, (void *)rtl_ips_nic_off_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ps_work, (void *)rtl_swlps_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq, (void *)rtl_swlps_rfon_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.fwevt_wq, (void *)rtl_fwevt_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.c2hcmd_wq, (void *)rtl_c2hcmd_wq_callback); } void rtl_deinit_deferred_work(struct ieee80211_hw *hw, bool ips_wq) { struct rtl_priv *rtlpriv = rtl_priv(hw); del_timer_sync(&rtlpriv->works.watchdog_timer); cancel_delayed_work_sync(&rtlpriv->works.watchdog_wq); if (ips_wq) cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq); else cancel_delayed_work_sync(&rtlpriv->works.ips_nic_off_wq); cancel_delayed_work_sync(&rtlpriv->works.ps_work); cancel_delayed_work_sync(&rtlpriv->works.ps_rfon_wq); cancel_delayed_work_sync(&rtlpriv->works.fwevt_wq); cancel_delayed_work_sync(&rtlpriv->works.c2hcmd_wq); } EXPORT_SYMBOL_GPL(rtl_deinit_deferred_work); void rtl_init_rfkill(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool radio_state; bool blocked; u8 valid = 0; /*set init state to on */ rtlpriv->rfkill.rfkill_state = true; wiphy_rfkill_set_hw_state(hw->wiphy, 0); radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid); if (valid) { pr_info("rtlwifi: wireless switch is %s\n", rtlpriv->rfkill.rfkill_state ? "on" : "off"); rtlpriv->rfkill.rfkill_state = radio_state; blocked = rtlpriv->rfkill.rfkill_state != 1; wiphy_rfkill_set_hw_state(hw->wiphy, blocked); } wiphy_rfkill_start_polling(hw->wiphy); } EXPORT_SYMBOL(rtl_init_rfkill); void rtl_deinit_rfkill(struct ieee80211_hw *hw) { wiphy_rfkill_stop_polling(hw->wiphy); } EXPORT_SYMBOL_GPL(rtl_deinit_rfkill); int rtl_init_core(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); /* <1> init mac80211 */ _rtl_init_mac80211(hw); rtlmac->hw = hw; /* <2> rate control register */ hw->rate_control_algorithm = "rtl_rc"; /* * <3> init CRDA must come after init * mac80211 hw in _rtl_init_mac80211. */ if (rtl_regd_init(hw, rtl_reg_notifier)) { pr_err("REGD init failed\n"); return 1; } /* <4> locks */ mutex_init(&rtlpriv->locks.conf_mutex); mutex_init(&rtlpriv->locks.ips_mutex); mutex_init(&rtlpriv->locks.lps_mutex); spin_lock_init(&rtlpriv->locks.irq_th_lock); spin_lock_init(&rtlpriv->locks.h2c_lock); spin_lock_init(&rtlpriv->locks.rf_ps_lock); spin_lock_init(&rtlpriv->locks.rf_lock); spin_lock_init(&rtlpriv->locks.waitq_lock); spin_lock_init(&rtlpriv->locks.entry_list_lock); spin_lock_init(&rtlpriv->locks.c2hcmd_lock); spin_lock_init(&rtlpriv->locks.scan_list_lock); spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock); spin_lock_init(&rtlpriv->locks.fw_ps_lock); spin_lock_init(&rtlpriv->locks.iqk_lock); /* <5> init list */ INIT_LIST_HEAD(&rtlpriv->entry_list); INIT_LIST_HEAD(&rtlpriv->scan_list.list); skb_queue_head_init(&rtlpriv->tx_report.queue); skb_queue_head_init(&rtlpriv->c2hcmd_queue); rtlmac->link_state = MAC80211_NOLINK; /* <6> init deferred work */ _rtl_init_deferred_work(hw); return 0; } EXPORT_SYMBOL_GPL(rtl_init_core); static void rtl_free_entries_from_scan_list(struct ieee80211_hw *hw); static void rtl_free_entries_from_ack_queue(struct ieee80211_hw *hw, bool timeout); void rtl_deinit_core(struct ieee80211_hw *hw) { rtl_c2hcmd_launcher(hw, 0); rtl_free_entries_from_scan_list(hw); rtl_free_entries_from_ack_queue(hw, false); } EXPORT_SYMBOL_GPL(rtl_deinit_core); void rtl_init_rx_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf)); } EXPORT_SYMBOL_GPL(rtl_init_rx_config); /********************************************************* * * tx information functions * *********************************************************/ static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; tcb_desc->use_shortpreamble = false; /* 1M can only use Long Preamble. 11B spec */ if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M]) return; else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) tcb_desc->use_shortpreamble = true; return; } static void _rtl_query_shortgi(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 rate_flag = info->control.rates[0].flags; u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0; u8 sgi_80 = 0, bw_80 = 0; tcb_desc->use_shortgi = false; if (sta == NULL) return; sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40; sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20; sgi_80 = sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80; if ((!sta->ht_cap.ht_supported) && (!sta->vht_cap.vht_supported)) return; if (!sgi_40 && !sgi_20) return; if (mac->opmode == NL80211_IFTYPE_STATION) { bw_40 = mac->bw_40; bw_80 = mac->bw_80; } else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40; bw_80 = sta->vht_cap.vht_supported; } if (bw_80) { if (sgi_80) tcb_desc->use_shortgi = true; else tcb_desc->use_shortgi = false; } else { if (bw_40 && sgi_40) tcb_desc->use_shortgi = true; else if (!bw_40 && sgi_20) tcb_desc->use_shortgi = true; } if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI)) tcb_desc->use_shortgi = false; } static void _rtl_query_protection_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; /* Common Settings */ tcb_desc->rts_stbc = false; tcb_desc->cts_enable = false; tcb_desc->rts_sc = 0; tcb_desc->rts_bw = false; tcb_desc->rts_use_shortpreamble = false; tcb_desc->rts_use_shortgi = false; if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) { /* Use CTS-to-SELF in protection mode. */ tcb_desc->rts_enable = true; tcb_desc->cts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) { /* Use RTS-CTS in protection mode. */ tcb_desc->rts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } } u8 rtl_mrate_idx_to_arfr_id(struct ieee80211_hw *hw, u8 rate_index, enum wireless_mode wirelessmode) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &rtlpriv->phy; u8 ret = 0; switch (rate_index) { case RATR_INX_WIRELESS_NGB: if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_BGN_40M_1SS; else ret = RATEID_IDX_BGN_40M_2SS; ; break; case RATR_INX_WIRELESS_N: case RATR_INX_WIRELESS_NG: if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_GN_N1SS; else ret = RATEID_IDX_GN_N2SS; ; break; case RATR_INX_WIRELESS_NB: if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_BGN_20M_1SS_BN; else ret = RATEID_IDX_BGN_20M_2SS_BN; ; break; case RATR_INX_WIRELESS_GB: ret = RATEID_IDX_BG; break; case RATR_INX_WIRELESS_G: ret = RATEID_IDX_G; break; case RATR_INX_WIRELESS_B: ret = RATEID_IDX_B; break; case RATR_INX_WIRELESS_MC: if (wirelessmode == WIRELESS_MODE_B || wirelessmode == WIRELESS_MODE_G || wirelessmode == WIRELESS_MODE_N_24G || wirelessmode == WIRELESS_MODE_AC_24G) ret = RATEID_IDX_BG; else ret = RATEID_IDX_G; break; case RATR_INX_WIRELESS_AC_5N: if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_VHT_1SS; else ret = RATEID_IDX_VHT_2SS; break; case RATR_INX_WIRELESS_AC_24N: if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_80) { if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_VHT_1SS; else ret = RATEID_IDX_VHT_2SS; } else { if (rtlphy->rf_type == RF_1T1R) ret = RATEID_IDX_MIX1; else ret = RATEID_IDX_MIX2; } break; default: ret = RATEID_IDX_BGN_40M_2SS; break; } return ret; } EXPORT_SYMBOL(rtl_mrate_idx_to_arfr_id); static void _rtl_txrate_selectmode(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc) { #define SET_RATE_ID(rate_id) \ ({typeof(rate_id) _id = rate_id; \ ((rtlpriv->cfg->spec_ver & RTL_SPEC_NEW_RATEID) ? \ rtl_mrate_idx_to_arfr_id(hw, _id, \ (sta_entry ? sta_entry->wireless_mode : \ WIRELESS_MODE_G)) : \ _id); }) struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u8 ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_MC); if (sta) { sta_entry = (struct rtl_sta_info *) sta->drv_priv; ratr_index = sta_entry->ratr_index; } if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) { if (mac->opmode == NL80211_IFTYPE_STATION) { tcb_desc->ratr_index = 0; } else if (mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { if (tcb_desc->multicast || tcb_desc->broadcast) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M]; tcb_desc->use_driver_rate = 1; tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_MC); } else { tcb_desc->ratr_index = ratr_index; } } else if (mac->opmode == NL80211_IFTYPE_AP) { tcb_desc->ratr_index = ratr_index; } } if (rtlpriv->dm.useramask) { tcb_desc->ratr_index = ratr_index; /* TODO we will differentiate adhoc and station future */ if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) { tcb_desc->mac_id = 0; if (sta && (rtlpriv->cfg->spec_ver & RTL_SPEC_NEW_RATEID)) ; /* use sta_entry->ratr_index */ else if (mac->mode == WIRELESS_MODE_AC_5G) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_AC_5N); else if (mac->mode == WIRELESS_MODE_AC_24G) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_AC_24N); else if (mac->mode == WIRELESS_MODE_N_24G) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_NGB); else if (mac->mode == WIRELESS_MODE_N_5G) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_NG); else if (mac->mode & WIRELESS_MODE_G) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_GB); else if (mac->mode & WIRELESS_MODE_B) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_B); else if (mac->mode & WIRELESS_MODE_A) tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_G); } else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) { if (NULL != sta) { if (sta->aid > 0) tcb_desc->mac_id = sta->aid + 1; else tcb_desc->mac_id = 1; } else { tcb_desc->mac_id = 0; } } } #undef SET_RATE_ID } static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); tcb_desc->packet_bw = false; if (!sta) return; if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { if (!(sta->ht_cap.ht_supported) || !(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) return; } else if (mac->opmode == NL80211_IFTYPE_STATION) { if (!mac->bw_40 || !(sta->ht_cap.ht_supported)) return; } if (tcb_desc->multicast || tcb_desc->broadcast) return; /*use legency rate, shall use 20MHz */ if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]) return; tcb_desc->packet_bw = HT_CHANNEL_WIDTH_20_40; if (rtlpriv->cfg->spec_ver & RTL_SPEC_SUPPORT_VHT) { if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { if (!(sta->vht_cap.vht_supported)) return; } else if (mac->opmode == NL80211_IFTYPE_STATION) { if (!mac->bw_80 || !(sta->vht_cap.vht_supported)) return; } if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15]) return; tcb_desc->packet_bw = HT_CHANNEL_WIDTH_80; } } static u8 _rtl_get_vht_highest_n_rate(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 hw_rate; u16 tx_mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.tx_mcs_map); if ((get_rf_type(rtlphy) == RF_2T2R) && (tx_mcs_map & 0x000c) != 0x000c) { if ((tx_mcs_map & 0x000c) >> 2 == IEEE80211_VHT_MCS_SUPPORT_0_7) hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS7]; else if ((tx_mcs_map & 0x000c) >> 2 == IEEE80211_VHT_MCS_SUPPORT_0_8) hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS8]; else hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS9]; } else { if ((tx_mcs_map & 0x0003) == IEEE80211_VHT_MCS_SUPPORT_0_7) hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS7]; else if ((tx_mcs_map & 0x0003) == IEEE80211_VHT_MCS_SUPPORT_0_8) hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS8]; else hw_rate = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS9]; } return hw_rate; } static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &rtlpriv->phy; u8 hw_rate; if (get_rf_type(rtlphy) == RF_2T2R && sta->ht_cap.mcs.rx_mask[1] != 0) hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15]; else hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7]; return hw_rate; } /* mac80211's rate_idx is like this: * * 2.4G band:rx_status->band == NL80211_BAND_2GHZ * * B/G rate: * (rx_status->flag & RX_FLAG_HT) = 0, * DESC_RATE1M-->DESC_RATE54M ==> idx is 0-->11, * * N rate: * (rx_status->flag & RX_FLAG_HT) = 1, * DESC_RATEMCS0-->DESC_RATEMCS15 ==> idx is 0-->15 * * 5G band:rx_status->band == NL80211_BAND_5GHZ * A rate: * (rx_status->flag & RX_FLAG_HT) = 0, * DESC_RATE6M-->DESC_RATE54M ==> idx is 0-->7, * * N rate: * (rx_status->flag & RX_FLAG_HT) = 1, * DESC_RATEMCS0-->DESC_RATEMCS15 ==> idx is 0-->15 * * VHT rates: * DESC_RATEVHT1SS_MCS0-->DESC_RATEVHT1SS_MCS9 ==> idx is 0-->9 * DESC_RATEVHT2SS_MCS0-->DESC_RATEVHT2SS_MCS9 ==> idx is 0-->9 */ int rtlwifi_rate_mapping(struct ieee80211_hw *hw, bool isht, bool isvht, u8 desc_rate) { int rate_idx; if (isvht) { switch (desc_rate) { case DESC_RATEVHT1SS_MCS0: rate_idx = 0; break; case DESC_RATEVHT1SS_MCS1: rate_idx = 1; break; case DESC_RATEVHT1SS_MCS2: rate_idx = 2; break; case DESC_RATEVHT1SS_MCS3: rate_idx = 3; break; case DESC_RATEVHT1SS_MCS4: rate_idx = 4; break; case DESC_RATEVHT1SS_MCS5: rate_idx = 5; break; case DESC_RATEVHT1SS_MCS6: rate_idx = 6; break; case DESC_RATEVHT1SS_MCS7: rate_idx = 7; break; case DESC_RATEVHT1SS_MCS8: rate_idx = 8; break; case DESC_RATEVHT1SS_MCS9: rate_idx = 9; break; case DESC_RATEVHT2SS_MCS0: rate_idx = 0; break; case DESC_RATEVHT2SS_MCS1: rate_idx = 1; break; case DESC_RATEVHT2SS_MCS2: rate_idx = 2; break; case DESC_RATEVHT2SS_MCS3: rate_idx = 3; break; case DESC_RATEVHT2SS_MCS4: rate_idx = 4; break; case DESC_RATEVHT2SS_MCS5: rate_idx = 5; break; case DESC_RATEVHT2SS_MCS6: rate_idx = 6; break; case DESC_RATEVHT2SS_MCS7: rate_idx = 7; break; case DESC_RATEVHT2SS_MCS8: rate_idx = 8; break; case DESC_RATEVHT2SS_MCS9: rate_idx = 9; break; default: rate_idx = 0; break; } return rate_idx; } if (false == isht) { if (NL80211_BAND_2GHZ == hw->conf.chandef.chan->band) { switch (desc_rate) { case DESC_RATE1M: rate_idx = 0; break; case DESC_RATE2M: rate_idx = 1; break; case DESC_RATE5_5M: rate_idx = 2; break; case DESC_RATE11M: rate_idx = 3; break; case DESC_RATE6M: rate_idx = 4; break; case DESC_RATE9M: rate_idx = 5; break; case DESC_RATE12M: rate_idx = 6; break; case DESC_RATE18M: rate_idx = 7; break; case DESC_RATE24M: rate_idx = 8; break; case DESC_RATE36M: rate_idx = 9; break; case DESC_RATE48M: rate_idx = 10; break; case DESC_RATE54M: rate_idx = 11; break; default: rate_idx = 0; break; } } else { switch (desc_rate) { case DESC_RATE6M: rate_idx = 0; break; case DESC_RATE9M: rate_idx = 1; break; case DESC_RATE12M: rate_idx = 2; break; case DESC_RATE18M: rate_idx = 3; break; case DESC_RATE24M: rate_idx = 4; break; case DESC_RATE36M: rate_idx = 5; break; case DESC_RATE48M: rate_idx = 6; break; case DESC_RATE54M: rate_idx = 7; break; default: rate_idx = 0; break; } } } else { switch (desc_rate) { case DESC_RATEMCS0: rate_idx = 0; break; case DESC_RATEMCS1: rate_idx = 1; break; case DESC_RATEMCS2: rate_idx = 2; break; case DESC_RATEMCS3: rate_idx = 3; break; case DESC_RATEMCS4: rate_idx = 4; break; case DESC_RATEMCS5: rate_idx = 5; break; case DESC_RATEMCS6: rate_idx = 6; break; case DESC_RATEMCS7: rate_idx = 7; break; case DESC_RATEMCS8: rate_idx = 8; break; case DESC_RATEMCS9: rate_idx = 9; break; case DESC_RATEMCS10: rate_idx = 10; break; case DESC_RATEMCS11: rate_idx = 11; break; case DESC_RATEMCS12: rate_idx = 12; break; case DESC_RATEMCS13: rate_idx = 13; break; case DESC_RATEMCS14: rate_idx = 14; break; case DESC_RATEMCS15: rate_idx = 15; break; default: rate_idx = 0; break; } } return rate_idx; } EXPORT_SYMBOL(rtlwifi_rate_mapping); static u8 _rtl_get_tx_hw_rate(struct ieee80211_hw *hw, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_tx_rate *r = &info->status.rates[0]; struct ieee80211_rate *txrate; u8 hw_value = 0x0; if (r->flags & IEEE80211_TX_RC_MCS) { /* HT MCS0-15 */ hw_value = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15] - 15 + r->idx; } else if (r->flags & IEEE80211_TX_RC_VHT_MCS) { /* VHT MCS0-9, NSS */ if (ieee80211_rate_get_vht_nss(r) == 2) hw_value = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_2SS_MCS9]; else hw_value = rtlpriv->cfg->maps[RTL_RC_VHT_RATE_1SS_MCS9]; hw_value = hw_value - 9 + ieee80211_rate_get_vht_mcs(r); } else { /* legacy */ txrate = ieee80211_get_tx_rate(hw, info); if (txrate) hw_value = txrate->hw_value; } /* check 5G band */ if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G && hw_value < rtlpriv->cfg->maps[RTL_RC_OFDM_RATE6M]) hw_value = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE6M]; return hw_value; } void rtl_get_tcb_desc(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, struct ieee80211_sta *sta, struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc) { #define SET_RATE_ID(rate_id) \ ({typeof(rate_id) _id = rate_id; \ ((rtlpriv->cfg->spec_ver & RTL_SPEC_NEW_RATEID) ? \ rtl_mrate_idx_to_arfr_id(hw, _id, \ (sta_entry ? sta_entry->wireless_mode : \ WIRELESS_MODE_G)) : \ _id); }) struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = rtl_get_hdr(skb); struct rtl_sta_info *sta_entry = (sta ? (struct rtl_sta_info *)sta->drv_priv : NULL); __le16 fc = rtl_get_fc(skb); tcb_desc->hw_rate = _rtl_get_tx_hw_rate(hw, info); if (rtl_is_tx_report_skb(hw, skb)) tcb_desc->use_spe_rpt = 1; if (ieee80211_is_data(fc)) { /* *we set data rate INX 0 *in rtl_rc.c if skb is special data or *mgt which need low data rate. */ /* *So tcb_desc->hw_rate is just used for *special data and mgt frames */ if (info->control.rates[0].idx == 0 || ieee80211_is_nullfunc(fc)) { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_MC); tcb_desc->disable_ratefallback = 1; } else { /* *because hw will nerver use hw_rate *when tcb_desc->use_driver_rate = false *so we never set highest N rate here, *and N rate will all be controlled by FW *when tcb_desc->use_driver_rate = false */ if (sta && sta->vht_cap.vht_supported) { tcb_desc->hw_rate = _rtl_get_vht_highest_n_rate(hw, sta); } else { if (sta && sta->ht_cap.ht_supported) { tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw, sta); } else { if (rtlmac->mode == WIRELESS_MODE_B) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M]; } else { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]; } } } } if (is_multicast_ether_addr(hdr->addr1)) tcb_desc->multicast = 1; else if (is_broadcast_ether_addr(hdr->addr1)) tcb_desc->broadcast = 1; _rtl_txrate_selectmode(hw, sta, tcb_desc); _rtl_query_bandwidth_mode(hw, sta, tcb_desc); _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info); _rtl_query_shortgi(hw, sta, tcb_desc, info); _rtl_query_protection_mode(hw, tcb_desc, info); } else { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = SET_RATE_ID(RATR_INX_WIRELESS_MC); tcb_desc->disable_ratefallback = 1; tcb_desc->mac_id = 0; tcb_desc->packet_bw = false; } #undef SET_RATE_ID } EXPORT_SYMBOL(rtl_get_tcb_desc); bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); __le16 fc = rtl_get_fc(skb); if (rtlpriv->dm.supp_phymode_switch && mac->link_state < MAC80211_LINKED && (ieee80211_is_auth(fc) || ieee80211_is_probe_req(fc))) { if (rtlpriv->cfg->ops->chk_switch_dmdp) rtlpriv->cfg->ops->chk_switch_dmdp(hw); } if (ieee80211_is_auth(fc)) { RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "MAC80211_LINKING\n"); mac->link_state = MAC80211_LINKING; /* Dul mac */ rtlpriv->phy.need_iqk = true; } return true; } EXPORT_SYMBOL_GPL(rtl_tx_mgmt_proc); struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa, u8 *bssid, u16 tid); static void process_agg_start(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_rx_status rx_status = { 0 }; struct sk_buff *skb_delba = NULL; skb_delba = rtl_make_del_ba(hw, hdr->addr2, hdr->addr3, tid); if (skb_delba) { rx_status.freq = hw->conf.chandef.chan->center_freq; rx_status.band = hw->conf.chandef.chan->band; rx_status.flag |= RX_FLAG_DECRYPTED; rx_status.flag |= RX_FLAG_MACTIME_START; rx_status.rate_idx = 0; rx_status.signal = 50 + 10; memcpy(IEEE80211_SKB_RXCB(skb_delba), &rx_status, sizeof(rx_status)); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "fake del\n", skb_delba->data, skb_delba->len); ieee80211_rx_irqsafe(hw, skb_delba); } } bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = rtl_get_hdr(skb); struct rtl_priv *rtlpriv = rtl_priv(hw); __le16 fc = rtl_get_fc(skb); u8 *act = (u8 *)(((u8 *)skb->data + MAC80211_3ADDR_LEN)); u8 category; if (!ieee80211_is_action(fc)) return true; category = *act; act++; switch (category) { case ACT_CAT_BA: switch (*act) { case ACT_ADDBAREQ: if (mac->act_scanning) return false; RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, "%s ACT_ADDBAREQ From :%pM\n", is_tx ? "Tx" : "Rx", hdr->addr2); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "req\n", skb->data, skb->len); if (!is_tx) { struct ieee80211_sta *sta = NULL; struct rtl_sta_info *sta_entry = NULL; struct rtl_tid_data *tid_data; struct ieee80211_mgmt *mgmt = (void *)skb->data; u16 capab = 0, tid = 0; rcu_read_lock(); sta = rtl_find_sta(hw, hdr->addr3); if (sta == NULL) { RT_TRACE(rtlpriv, COMP_SEND | COMP_RECV, DBG_DMESG, "sta is NULL\n"); rcu_read_unlock(); return true; } sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) { rcu_read_unlock(); return true; } capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; if (tid >= MAX_TID_COUNT) { rcu_read_unlock(); return true; } tid_data = &sta_entry->tids[tid]; if (tid_data->agg.rx_agg_state == RTL_RX_AGG_START) process_agg_start(hw, hdr, tid); rcu_read_unlock(); } break; case ACT_ADDBARSP: RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, "%s ACT_ADDBARSP From :%pM\n", is_tx ? "Tx" : "Rx", hdr->addr2); break; case ACT_DELBA: RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, "ACT_ADDBADEL From :%pM\n", hdr->addr2); break; } break; default: break; } return true; } EXPORT_SYMBOL_GPL(rtl_action_proc); static void setup_special_tx(struct rtl_priv *rtlpriv, struct rtl_ps_ctl *ppsc, int type) { struct ieee80211_hw *hw = rtlpriv->hw; rtlpriv->ra.is_special_data = true; if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_special_packet_notify( rtlpriv, type); rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } static const u8 *rtl_skb_ether_type_ptr(struct ieee80211_hw *hw, struct sk_buff *skb, bool is_enc) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb); u8 encrypt_header_len = 0; u8 offset; switch (rtlpriv->sec.pairwise_enc_algorithm) { case WEP40_ENCRYPTION: case WEP104_ENCRYPTION: encrypt_header_len = 4;/*WEP_IV_LEN*/ break; case TKIP_ENCRYPTION: encrypt_header_len = 8;/*TKIP_IV_LEN*/ break; case AESCCMP_ENCRYPTION: encrypt_header_len = 8;/*CCMP_HDR_LEN;*/ break; default: break; } offset = mac_hdr_len + SNAP_SIZE; if (is_enc) offset += encrypt_header_len; return skb->data + offset; } /*should call before software enc*/ u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx, bool is_enc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); __le16 fc = rtl_get_fc(skb); u16 ether_type; const u8 *ether_type_ptr; const struct iphdr *ip; if (!ieee80211_is_data(fc)) goto end; ether_type_ptr = rtl_skb_ether_type_ptr(hw, skb, is_enc); ether_type = be16_to_cpup((__be16 *)ether_type_ptr); if (ETH_P_IP == ether_type) { ip = (struct iphdr *)((u8 *)ether_type_ptr + PROTOC_TYPE_SIZE); if (IPPROTO_UDP == ip->protocol) { struct udphdr *udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); if (((((u8 *)udp)[1] == 68) && (((u8 *)udp)[3] == 67)) || ((((u8 *)udp)[1] == 67) && (((u8 *)udp)[3] == 68))) { /* 68 : UDP BOOTP client * 67 : UDP BOOTP server */ RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, "dhcp %s !!\n", (is_tx) ? "Tx" : "Rx"); if (is_tx) setup_special_tx(rtlpriv, ppsc, PACKET_DHCP); return true; } } } else if (ETH_P_ARP == ether_type) { if (is_tx) setup_special_tx(rtlpriv, ppsc, PACKET_ARP); return true; } else if (ETH_P_PAE == ether_type) { /* EAPOL is seens as in-4way */ rtlpriv->btcoexist.btc_info.in_4way = true; rtlpriv->btcoexist.btc_info.in_4way_ts = jiffies; RT_TRACE(rtlpriv, (COMP_SEND | COMP_RECV), DBG_DMESG, "802.1X %s EAPOL pkt!!\n", (is_tx) ? "Tx" : "Rx"); if (is_tx) { rtlpriv->ra.is_special_data = true; rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; setup_special_tx(rtlpriv, ppsc, PACKET_EAPOL); } return true; } else if (ETH_P_IPV6 == ether_type) { /* TODO: Handle any IPv6 cases that need special handling. * For now, always return false */ goto end; } end: rtlpriv->ra.is_special_data = false; return false; } EXPORT_SYMBOL_GPL(rtl_is_special_data); void rtl_tx_ackqueue(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_report *tx_report = &rtlpriv->tx_report; __skb_queue_tail(&tx_report->queue, skb); } EXPORT_SYMBOL_GPL(rtl_tx_ackqueue); static void rtl_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb, bool ack) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_tx_info *info; info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); if (ack) { RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_LOUD, "tx report: ack\n"); info->flags |= IEEE80211_TX_STAT_ACK; } else { RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_LOUD, "tx report: not ack\n"); info->flags &= ~IEEE80211_TX_STAT_ACK; } ieee80211_tx_status_irqsafe(hw, skb); } bool rtl_is_tx_report_skb(struct ieee80211_hw *hw, struct sk_buff *skb) { u16 ether_type; const u8 *ether_type_ptr; __le16 fc = rtl_get_fc(skb); ether_type_ptr = rtl_skb_ether_type_ptr(hw, skb, true); ether_type = be16_to_cpup((__be16 *)ether_type_ptr); if (ether_type == ETH_P_PAE || ieee80211_is_nullfunc(fc)) return true; return false; } static u16 rtl_get_tx_report_sn(struct ieee80211_hw *hw, struct rtlwifi_tx_info *tx_info) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_report *tx_report = &rtlpriv->tx_report; u16 sn; /* SW_DEFINE[11:8] are reserved (driver fills zeros) * SW_DEFINE[7:2] are used by driver * SW_DEFINE[1:0] are reserved for firmware (driver fills zeros) */ sn = (atomic_inc_return(&tx_report->sn) & 0x003F) << 2; tx_report->last_sent_sn = sn; tx_report->last_sent_time = jiffies; tx_info->sn = sn; tx_info->send_time = tx_report->last_sent_time; RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_DMESG, "Send TX-Report sn=0x%X\n", sn); return sn; } void rtl_set_tx_report(struct rtl_tcb_desc *ptcb_desc, u8 *pdesc, struct ieee80211_hw *hw, struct rtlwifi_tx_info *tx_info) { if (ptcb_desc->use_spe_rpt) { u16 sn = rtl_get_tx_report_sn(hw, tx_info); SET_TX_DESC_SPE_RPT(pdesc, 1); SET_TX_DESC_SW_DEFINE(pdesc, sn); } } EXPORT_SYMBOL_GPL(rtl_set_tx_report); void rtl_tx_report_handler(struct ieee80211_hw *hw, u8 *tmp_buf, u8 c2h_cmd_len) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_report *tx_report = &rtlpriv->tx_report; struct rtlwifi_tx_info *tx_info; struct sk_buff_head *queue = &tx_report->queue; struct sk_buff *skb; u16 sn; u8 st, retry; if (rtlpriv->cfg->spec_ver & RTL_SPEC_EXT_C2H) { sn = GET_TX_REPORT_SN_V2(tmp_buf); st = GET_TX_REPORT_ST_V2(tmp_buf); retry = GET_TX_REPORT_RETRY_V2(tmp_buf); } else { sn = GET_TX_REPORT_SN_V1(tmp_buf); st = GET_TX_REPORT_ST_V1(tmp_buf); retry = GET_TX_REPORT_RETRY_V1(tmp_buf); } tx_report->last_recv_sn = sn; skb_queue_walk(queue, skb) { tx_info = rtl_tx_skb_cb_info(skb); if (tx_info->sn == sn) { skb_unlink(skb, queue); rtl_tx_status(hw, skb, st == 0); break; } } RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_DMESG, "Recv TX-Report st=0x%02X sn=0x%X retry=0x%X\n", st, sn, retry); } EXPORT_SYMBOL_GPL(rtl_tx_report_handler); bool rtl_check_tx_report_acked(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_report *tx_report = &rtlpriv->tx_report; if (tx_report->last_sent_sn == tx_report->last_recv_sn) return true; if (time_before(tx_report->last_sent_time + 3 * HZ, jiffies)) { RT_TRACE(rtlpriv, COMP_TX_REPORT, DBG_WARNING, "Check TX-Report timeout!! s_sn=0x%X r_sn=0x%X\n", tx_report->last_sent_sn, tx_report->last_recv_sn); return true; /* 3 sec. (timeout) seen as acked */ } return false; } void rtl_wait_tx_report_acked(struct ieee80211_hw *hw, u32 wait_ms) { struct rtl_priv *rtlpriv = rtl_priv(hw); int i; for (i = 0; i < wait_ms; i++) { if (rtl_check_tx_report_acked(hw)) break; usleep_range(1000, 2000); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "Wait 1ms (%d/%d) to disable key.\n", i, wait_ms); } } u32 rtl_get_hal_edca_param(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum wireless_mode wirelessmode, struct ieee80211_tx_queue_params *param) { u32 reg = 0; u8 sifstime = 10; u8 slottime = 20; /* AIFS = AIFSN * slot time + SIFS */ switch (wirelessmode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: case WIRELESS_MODE_AC_5G: case WIRELESS_MODE_AC_24G: sifstime = 16; slottime = 9; break; case WIRELESS_MODE_G: slottime = (vif->bss_conf.use_short_slot ? 9 : 20); break; default: break; } reg |= (param->txop & 0x7FF) << 16; reg |= (fls(param->cw_max) & 0xF) << 12; reg |= (fls(param->cw_min) & 0xF) << 8; reg |= (param->aifs & 0x0F) * slottime + sifstime; return reg; } EXPORT_SYMBOL_GPL(rtl_get_hal_edca_param); /********************************************************* * * functions called by core.c * *********************************************************/ int rtl_tx_agg_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) return -ENXIO; tid_data = &sta_entry->tids[tid]; RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d seq:%d\n", sta->addr, tid, *ssn); tid_data->agg.agg_state = RTL_AGG_START; return IEEE80211_AMPDU_TX_START_IMMEDIATE; } int rtl_tx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n", sta->addr, tid); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP; ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); return 0; } int rtl_rx_agg_start(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; u8 reject_agg; if (sta == NULL) return -EINVAL; if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; if (rtlpriv->cfg->ops->get_btc_status()) { rtlpriv->btcoexist.btc_ops->btc_get_ampdu_cfg(rtlpriv, &reject_agg, NULL, NULL); if (reject_agg) return -EINVAL; } sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) return -ENXIO; tid_data = &sta_entry->tids[tid]; RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG, "on ra = %pM tid = %d\n", sta->addr, tid); tid_data->agg.rx_agg_state = RTL_RX_AGG_START; return 0; } int rtl_rx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n", sta->addr, tid); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; sta_entry->tids[tid].agg.rx_agg_state = RTL_RX_AGG_STOP; return 0; } int rtl_tx_agg_oper(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; RT_TRACE(rtlpriv, COMP_SEND, DBG_DMESG, "on ra = %pM tid = %d\n", sta->addr, tid); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL; return 0; } void rtl_rx_ampdu_apply(struct rtl_priv *rtlpriv) { struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops; u8 reject_agg = 0, ctrl_agg_size = 0, agg_size = 0; if (rtlpriv->cfg->ops->get_btc_status()) btc_ops->btc_get_ampdu_cfg(rtlpriv, &reject_agg, &ctrl_agg_size, &agg_size); RT_TRACE(rtlpriv, COMP_BT_COEXIST, DBG_DMESG, "Set RX AMPDU: coex - reject=%d, ctrl_agg_size=%d, size=%d", reject_agg, ctrl_agg_size, agg_size); rtlpriv->hw->max_rx_aggregation_subframes = (ctrl_agg_size ? agg_size : IEEE80211_MAX_AMPDU_BUF_HT); } EXPORT_SYMBOL(rtl_rx_ampdu_apply); /********************************************************* * * wq & timer callback functions * *********************************************************/ /* this function is used for roaming */ void rtl_beacon_statistic(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (rtlpriv->mac80211.opmode != NL80211_IFTYPE_STATION) return; if (rtlpriv->mac80211.link_state < MAC80211_LINKED) return; /* check if this really is a beacon */ if (!ieee80211_is_beacon(hdr->frame_control) && !ieee80211_is_probe_resp(hdr->frame_control)) return; /* min. beacon length + FCS_LEN */ if (skb->len <= 40 + FCS_LEN) return; /* and only beacons from the associated BSSID, please */ if (!ether_addr_equal(hdr->addr3, rtlpriv->mac80211.bssid)) return; rtlpriv->link_info.bcn_rx_inperiod++; } EXPORT_SYMBOL_GPL(rtl_beacon_statistic); static void rtl_free_entries_from_scan_list(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_bssid_entry *entry, *next; list_for_each_entry_safe(entry, next, &rtlpriv->scan_list.list, list) { list_del(&entry->list); kfree(entry); rtlpriv->scan_list.num--; } } static void rtl_free_entries_from_ack_queue(struct ieee80211_hw *hw, bool chk_timeout) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tx_report *tx_report = &rtlpriv->tx_report; struct sk_buff_head *queue = &tx_report->queue; struct sk_buff *skb, *tmp; struct rtlwifi_tx_info *tx_info; skb_queue_walk_safe(queue, skb, tmp) { tx_info = rtl_tx_skb_cb_info(skb); if (chk_timeout && time_after(tx_info->send_time + HZ, jiffies)) continue; skb_unlink(skb, queue); rtl_tx_status(hw, skb, false); } } void rtl_scan_list_expire(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_bssid_entry *entry, *next; unsigned long flags; spin_lock_irqsave(&rtlpriv->locks.scan_list_lock, flags); list_for_each_entry_safe(entry, next, &rtlpriv->scan_list.list, list) { /* 180 seconds */ if (jiffies_to_msecs(jiffies - entry->age) < 180000) continue; list_del(&entry->list); rtlpriv->scan_list.num--; RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "BSSID=%pM is expire in scan list (total=%d)\n", entry->bssid, rtlpriv->scan_list.num); kfree(entry); } spin_unlock_irqrestore(&rtlpriv->locks.scan_list_lock, flags); rtlpriv->btcoexist.btc_info.ap_num = rtlpriv->scan_list.num; } void rtl_collect_scan_list(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); unsigned long flags; struct rtl_bssid_entry *entry; bool entry_found = false; /* check if it is scanning */ if (!mac->act_scanning) return; /* check if this really is a beacon */ if (!ieee80211_is_beacon(hdr->frame_control) && !ieee80211_is_probe_resp(hdr->frame_control)) return; spin_lock_irqsave(&rtlpriv->locks.scan_list_lock, flags); list_for_each_entry(entry, &rtlpriv->scan_list.list, list) { if (memcmp(entry->bssid, hdr->addr3, ETH_ALEN) == 0) { list_del_init(&entry->list); entry_found = true; RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "Update BSSID=%pM to scan list (total=%d)\n", hdr->addr3, rtlpriv->scan_list.num); break; } } if (!entry_found) { entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) goto label_err; memcpy(entry->bssid, hdr->addr3, ETH_ALEN); rtlpriv->scan_list.num++; RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "Add BSSID=%pM to scan list (total=%d)\n", hdr->addr3, rtlpriv->scan_list.num); } entry->age = jiffies; list_add_tail(&entry->list, &rtlpriv->scan_list.list); label_err: spin_unlock_irqrestore(&rtlpriv->locks.scan_list_lock, flags); } EXPORT_SYMBOL(rtl_collect_scan_list); void rtl_watchdog_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, watchdog_wq); struct ieee80211_hw *hw = rtlworks->hw; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); bool busytraffic = false; bool tx_busy_traffic = false; bool rx_busy_traffic = false; bool higher_busytraffic = false; bool higher_busyrxtraffic = false; u8 idx, tid; u32 rx_cnt_inp4eriod = 0; u32 tx_cnt_inp4eriod = 0; u32 aver_rx_cnt_inperiod = 0; u32 aver_tx_cnt_inperiod = 0; u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0}; u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0}; if (is_hal_stop(rtlhal)) return; /* <1> Determine if action frame is allowed */ if (mac->link_state > MAC80211_NOLINK) { if (mac->cnt_after_linked < 20) mac->cnt_after_linked++; } else { mac->cnt_after_linked = 0; } /* <2> to check if traffic busy, if * busytraffic we don't change channel */ if (mac->link_state >= MAC80211_LINKED) { /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */ for (idx = 0; idx <= 2; idx++) { rtlpriv->link_info.num_rx_in4period[idx] = rtlpriv->link_info.num_rx_in4period[idx + 1]; rtlpriv->link_info.num_tx_in4period[idx] = rtlpriv->link_info.num_tx_in4period[idx + 1]; } rtlpriv->link_info.num_rx_in4period[3] = rtlpriv->link_info.num_rx_inperiod; rtlpriv->link_info.num_tx_in4period[3] = rtlpriv->link_info.num_tx_inperiod; for (idx = 0; idx <= 3; idx++) { rx_cnt_inp4eriod += rtlpriv->link_info.num_rx_in4period[idx]; tx_cnt_inp4eriod += rtlpriv->link_info.num_tx_in4period[idx]; } aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4; aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4; /* (2) check traffic busy */ if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) { busytraffic = true; if (aver_rx_cnt_inperiod > aver_tx_cnt_inperiod) rx_busy_traffic = true; else tx_busy_traffic = false; } /* Higher Tx/Rx data. */ if (aver_rx_cnt_inperiod > 4000 || aver_tx_cnt_inperiod > 4000) { higher_busytraffic = true; /* Extremely high Rx data. */ if (aver_rx_cnt_inperiod > 5000) higher_busyrxtraffic = true; } /* check every tid's tx traffic */ for (tid = 0; tid <= 7; tid++) { for (idx = 0; idx <= 2; idx++) rtlpriv->link_info.tidtx_in4period[tid][idx] = rtlpriv->link_info.tidtx_in4period[tid] [idx + 1]; rtlpriv->link_info.tidtx_in4period[tid][3] = rtlpriv->link_info.tidtx_inperiod[tid]; for (idx = 0; idx <= 3; idx++) tidtx_inp4eriod[tid] += rtlpriv->link_info.tidtx_in4period[tid][idx]; aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4; if (aver_tidtx_inperiod[tid] > 5000) rtlpriv->link_info.higher_busytxtraffic[tid] = true; else rtlpriv->link_info.higher_busytxtraffic[tid] = false; } /* PS is controlled by coex. */ if (rtlpriv->cfg->ops->get_btc_status() && rtlpriv->btcoexist.btc_ops->btc_is_bt_ctrl_lps(rtlpriv)) goto label_lps_done; if (rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod > 8 || rtlpriv->link_info.num_rx_inperiod > 2) rtl_lps_leave(hw); else rtl_lps_enter(hw); label_lps_done: ; } for (tid = 0; tid <= 7; tid++) rtlpriv->link_info.tidtx_inperiod[tid] = 0; rtlpriv->link_info.busytraffic = busytraffic; rtlpriv->link_info.higher_busytraffic = higher_busytraffic; rtlpriv->link_info.rx_busy_traffic = rx_busy_traffic; rtlpriv->link_info.tx_busy_traffic = tx_busy_traffic; rtlpriv->link_info.higher_busyrxtraffic = higher_busyrxtraffic; rtlpriv->stats.txbytesunicast_inperiod = rtlpriv->stats.txbytesunicast - rtlpriv->stats.txbytesunicast_last; rtlpriv->stats.rxbytesunicast_inperiod = rtlpriv->stats.rxbytesunicast - rtlpriv->stats.rxbytesunicast_last; rtlpriv->stats.txbytesunicast_last = rtlpriv->stats.txbytesunicast; rtlpriv->stats.rxbytesunicast_last = rtlpriv->stats.rxbytesunicast; rtlpriv->stats.txbytesunicast_inperiod_tp = (u32)(rtlpriv->stats.txbytesunicast_inperiod * 8 / 2 / 1024 / 1024); rtlpriv->stats.rxbytesunicast_inperiod_tp = (u32)(rtlpriv->stats.rxbytesunicast_inperiod * 8 / 2 / 1024 / 1024); /* <3> DM */ if (!rtlpriv->cfg->mod_params->disable_watchdog) rtlpriv->cfg->ops->dm_watchdog(hw); /* <4> roaming */ if (mac->link_state == MAC80211_LINKED && mac->opmode == NL80211_IFTYPE_STATION) { if ((rtlpriv->link_info.bcn_rx_inperiod + rtlpriv->link_info.num_rx_inperiod) == 0) { rtlpriv->link_info.roam_times++; RT_TRACE(rtlpriv, COMP_ERR, DBG_DMESG, "AP off for %d s\n", (rtlpriv->link_info.roam_times * 2)); /* if we can't recv beacon for 10s, * we should reconnect this AP */ if (rtlpriv->link_info.roam_times >= 5) { pr_err("AP off, try to reconnect now\n"); rtlpriv->link_info.roam_times = 0; ieee80211_connection_loss( rtlpriv->mac80211.vif); } } else { rtlpriv->link_info.roam_times = 0; } } if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_periodical(rtlpriv); if (rtlpriv->btcoexist.btc_info.in_4way) { if (time_after(jiffies, rtlpriv->btcoexist.btc_info.in_4way_ts + msecs_to_jiffies(IN_4WAY_TIMEOUT_TIME))) rtlpriv->btcoexist.btc_info.in_4way = false; } rtlpriv->link_info.num_rx_inperiod = 0; rtlpriv->link_info.num_tx_inperiod = 0; rtlpriv->link_info.bcn_rx_inperiod = 0; /* <6> scan list */ rtl_scan_list_expire(hw); /* <7> check ack queue */ rtl_free_entries_from_ack_queue(hw, true); } void rtl_watch_dog_timer_callback(struct timer_list *t) { struct rtl_priv *rtlpriv = from_timer(rtlpriv, t, works.watchdog_timer); queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.watchdog_wq, 0); mod_timer(&rtlpriv->works.watchdog_timer, jiffies + MSECS(RTL_WATCH_DOG_TIME)); } void rtl_fwevt_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, fwevt_wq); struct ieee80211_hw *hw = rtlworks->hw; struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->c2h_command_handle(hw); } static void rtl_c2h_content_parsing(struct ieee80211_hw *hw, struct sk_buff *skb); static bool rtl_c2h_fast_cmd(struct ieee80211_hw *hw, struct sk_buff *skb) { u8 cmd_id = GET_C2H_CMD_ID(skb->data); switch (cmd_id) { case C2H_BT_MP: return true; default: break; } return false; } void rtl_c2hcmd_enqueue(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned long flags; if (rtl_c2h_fast_cmd(hw, skb)) { rtl_c2h_content_parsing(hw, skb); kfree_skb(skb); return; } /* enqueue */ spin_lock_irqsave(&rtlpriv->locks.c2hcmd_lock, flags); __skb_queue_tail(&rtlpriv->c2hcmd_queue, skb); spin_unlock_irqrestore(&rtlpriv->locks.c2hcmd_lock, flags); /* wake up wq */ queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.c2hcmd_wq, 0); } EXPORT_SYMBOL(rtl_c2hcmd_enqueue); static void rtl_c2h_content_parsing(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal_ops *hal_ops = rtlpriv->cfg->ops; const struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops; u8 cmd_id, cmd_len; u8 *cmd_buf = NULL; cmd_id = GET_C2H_CMD_ID(skb->data); cmd_len = skb->len - C2H_DATA_OFFSET; cmd_buf = GET_C2H_DATA_PTR(skb->data); switch (cmd_id) { case C2H_DBG: RT_TRACE(rtlpriv, COMP_FW, DBG_LOUD, "[C2H], C2H_DBG!!\n"); break; case C2H_TXBF: RT_TRACE(rtlpriv, COMP_FW, DBG_TRACE, "[C2H], C2H_TXBF!!\n"); break; case C2H_TX_REPORT: rtl_tx_report_handler(hw, cmd_buf, cmd_len); break; case C2H_RA_RPT: if (hal_ops->c2h_ra_report_handler) hal_ops->c2h_ra_report_handler(hw, cmd_buf, cmd_len); break; case C2H_BT_INFO: RT_TRACE(rtlpriv, COMP_FW, DBG_TRACE, "[C2H], C2H_BT_INFO!!\n"); if (rtlpriv->cfg->ops->get_btc_status()) btc_ops->btc_btinfo_notify(rtlpriv, cmd_buf, cmd_len); break; case C2H_BT_MP: RT_TRACE(rtlpriv, COMP_FW, DBG_TRACE, "[C2H], C2H_BT_MP!!\n"); if (rtlpriv->cfg->ops->get_btc_status()) btc_ops->btc_btmpinfo_notify(rtlpriv, cmd_buf, cmd_len); break; default: RT_TRACE(rtlpriv, COMP_FW, DBG_TRACE, "[C2H], Unknown packet!! cmd_id(%#X)!\n", cmd_id); break; } } void rtl_c2hcmd_launcher(struct ieee80211_hw *hw, int exec) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct sk_buff *skb; unsigned long flags; int i; for (i = 0; i < 200; i++) { /* dequeue a task */ spin_lock_irqsave(&rtlpriv->locks.c2hcmd_lock, flags); skb = __skb_dequeue(&rtlpriv->c2hcmd_queue); spin_unlock_irqrestore(&rtlpriv->locks.c2hcmd_lock, flags); /* do it */ if (!skb) break; RT_TRACE(rtlpriv, COMP_FW, DBG_DMESG, "C2H rx_desc_shift=%d\n", *((u8 *)skb->cb)); RT_PRINT_DATA(rtlpriv, COMP_FW, DBG_DMESG, "C2H data: ", skb->data, skb->len); if (exec) rtl_c2h_content_parsing(hw, skb); /* free */ dev_kfree_skb_any(skb); } } void rtl_c2hcmd_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, c2hcmd_wq); struct ieee80211_hw *hw = rtlworks->hw; rtl_c2hcmd_launcher(hw, 1); } void rtl_easy_concurrent_retrytimer_callback(struct timer_list *t) { struct rtl_priv *rtlpriv = from_timer(rtlpriv, t, works.dualmac_easyconcurrent_retrytimer); struct ieee80211_hw *hw = rtlpriv->hw; struct rtl_priv *buddy_priv = rtlpriv->buddy_priv; if (buddy_priv == NULL) return; rtlpriv->cfg->ops->dualmac_easy_concurrent(hw); } /********************************************************* * * frame process functions * *********************************************************/ u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie) { struct ieee80211_mgmt *mgmt = (void *)data; u8 *pos, *end; pos = (u8 *)mgmt->u.beacon.variable; end = data + len; while (pos < end) { if (pos + 2 + pos[1] > end) return NULL; if (pos[0] == ie) return pos; pos += 2 + pos[1]; } return NULL; } /* when we use 2 rx ants we send IEEE80211_SMPS_OFF */ /* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */ static struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw, enum ieee80211_smps_mode smps, u8 *da, u8 *bssid) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct sk_buff *skb; struct ieee80211_mgmt *action_frame; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(27 + hw->extra_tx_headroom); if (!skb) return NULL; skb_reserve(skb, hw->extra_tx_headroom); action_frame = skb_put_zero(skb, 27); memcpy(action_frame->da, da, ETH_ALEN); memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_HT; action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC:/* 0 */ case IEEE80211_SMPS_NUM_MODES:/* 4 */ WARN_ON(1); /* fall through */ case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */ break; case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */ break; case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */ break; } return skb; } int rtl_send_smps_action(struct ieee80211_hw *hw, struct ieee80211_sta *sta, enum ieee80211_smps_mode smps) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct sk_buff *skb = NULL; struct rtl_tcb_desc tcb_desc; u8 bssid[ETH_ALEN] = {0}; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); if (rtlpriv->mac80211.act_scanning) goto err_free; if (!sta) goto err_free; if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON)) goto err_free; if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status)) goto err_free; if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP) memcpy(bssid, rtlpriv->efuse.dev_addr, ETH_ALEN); else memcpy(bssid, rtlpriv->mac80211.bssid, ETH_ALEN); skb = rtl_make_smps_action(hw, smps, sta->addr, bssid); /* this is a type = mgmt * stype = action frame */ if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_sta_info *sta_entry = (struct rtl_sta_info *) sta->drv_priv; sta_entry->mimo_ps = smps; /* rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0, true); */ info->control.rates[0].idx = 0; info->band = hw->conf.chandef.chan->band; rtlpriv->intf_ops->adapter_tx(hw, sta, skb, &tcb_desc); } return 1; err_free: return 0; } EXPORT_SYMBOL(rtl_send_smps_action); void rtl_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); enum io_type iotype; if (!is_hal_stop(rtlhal)) { switch (operation) { case SCAN_OPT_BACKUP: iotype = IO_CMD_PAUSE_DM_BY_SCAN; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD, (u8 *)&iotype); break; case SCAN_OPT_RESTORE: iotype = IO_CMD_RESUME_DM_BY_SCAN; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD, (u8 *)&iotype); break; default: pr_err("Unknown Scan Backup operation.\n"); break; } } } EXPORT_SYMBOL(rtl_phy_scan_operation_backup); /* because mac80211 have issues when can receive del ba * so here we just make a fake del_ba if we receive a ba_req * but rx_agg was opened to let mac80211 release some ba * related resources, so please this del_ba for tx */ struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa, u8 *bssid, u16 tid) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct sk_buff *skb; struct ieee80211_mgmt *action_frame; u16 params; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(34 + hw->extra_tx_headroom); if (!skb) return NULL; skb_reserve(skb, hw->extra_tx_headroom); action_frame = skb_put_zero(skb, 34); memcpy(action_frame->sa, sa, ETH_ALEN); memcpy(action_frame->da, rtlefuse->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_BACK; action_frame->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(1 << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ action_frame->u.action.u.delba.params = cpu_to_le16(params); action_frame->u.action.u.delba.reason_code = cpu_to_le16(WLAN_REASON_QSTA_TIMEOUT); return skb; } /********************************************************* * * IOT functions * *********************************************************/ static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw, struct octet_string vendor_ie) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool matched = false; static u8 athcap_1[] = { 0x00, 0x03, 0x7F }; static u8 athcap_2[] = { 0x00, 0x13, 0x74 }; static u8 broadcap_1[] = { 0x00, 0x10, 0x18 }; static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 }; static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 }; static u8 racap[] = { 0x00, 0x0c, 0x43 }; static u8 ciscocap[] = { 0x00, 0x40, 0x96 }; static u8 marvcap[] = { 0x00, 0x50, 0x43 }; if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 || memcmp(vendor_ie.octet, athcap_2, 3) == 0) { rtlpriv->mac80211.vendor = PEER_ATH; matched = true; } else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 || memcmp(vendor_ie.octet, broadcap_2, 3) == 0 || memcmp(vendor_ie.octet, broadcap_3, 3) == 0) { rtlpriv->mac80211.vendor = PEER_BROAD; matched = true; } else if (memcmp(vendor_ie.octet, racap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_RAL; matched = true; } else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_CISCO; matched = true; } else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_MARV; matched = true; } return matched; } static bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data, unsigned int len) { struct ieee80211_mgmt *mgmt = (void *)data; struct octet_string vendor_ie; u8 *pos, *end; pos = (u8 *)mgmt->u.beacon.variable; end = data + len; while (pos < end) { if (pos[0] == 221) { vendor_ie.length = pos[1]; vendor_ie.octet = &pos[2]; if (rtl_chk_vendor_ouisub(hw, vendor_ie)) return true; } if (pos + 2 + pos[1] > end) return false; pos += 2 + pos[1]; } return false; } void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = (void *)data; u32 vendor = PEER_UNKNOWN; static u8 ap3_1[3] = { 0x00, 0x14, 0xbf }; static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 }; static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e }; static u8 ap4_1[3] = { 0x00, 0x90, 0xcc }; static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e }; static u8 ap4_3[3] = { 0x00, 0x18, 0x02 }; static u8 ap4_4[3] = { 0x00, 0x17, 0x3f }; static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf }; static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 }; static u8 ap5_2[3] = { 0x00, 0x21, 0x91 }; static u8 ap5_3[3] = { 0x00, 0x24, 0x01 }; static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 }; static u8 ap5_5[3] = { 0x00, 0x17, 0x9A }; static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 }; static u8 ap6_1[3] = { 0x00, 0x17, 0x94 }; static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 }; if (mac->opmode != NL80211_IFTYPE_STATION) return; if (mac->link_state == MAC80211_NOLINK) { mac->vendor = PEER_UNKNOWN; return; } if (mac->cnt_after_linked > 2) return; /* check if this really is a beacon */ if (!ieee80211_is_beacon(hdr->frame_control)) return; /* min. beacon length + FCS_LEN */ if (len <= 40 + FCS_LEN) return; /* and only beacons from the associated BSSID, please */ if (!ether_addr_equal_64bits(hdr->addr3, rtlpriv->mac80211.bssid)) return; if (rtl_find_221_ie(hw, data, len)) vendor = mac->vendor; if ((memcmp(mac->bssid, ap5_1, 3) == 0) || (memcmp(mac->bssid, ap5_2, 3) == 0) || (memcmp(mac->bssid, ap5_3, 3) == 0) || (memcmp(mac->bssid, ap5_4, 3) == 0) || (memcmp(mac->bssid, ap5_5, 3) == 0) || (memcmp(mac->bssid, ap5_6, 3) == 0) || vendor == PEER_ATH) { vendor = PEER_ATH; RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ath find\n"); } else if ((memcmp(mac->bssid, ap4_4, 3) == 0) || (memcmp(mac->bssid, ap4_5, 3) == 0) || (memcmp(mac->bssid, ap4_1, 3) == 0) || (memcmp(mac->bssid, ap4_2, 3) == 0) || (memcmp(mac->bssid, ap4_3, 3) == 0) || vendor == PEER_RAL) { RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>ral find\n"); vendor = PEER_RAL; } else if (memcmp(mac->bssid, ap6_1, 3) == 0 || vendor == PEER_CISCO) { vendor = PEER_CISCO; RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>cisco find\n"); } else if ((memcmp(mac->bssid, ap3_1, 3) == 0) || (memcmp(mac->bssid, ap3_2, 3) == 0) || (memcmp(mac->bssid, ap3_3, 3) == 0) || vendor == PEER_BROAD) { RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>broad find\n"); vendor = PEER_BROAD; } else if (memcmp(mac->bssid, ap7_1, 3) == 0 || vendor == PEER_MARV) { vendor = PEER_MARV; RT_TRACE(rtlpriv, COMP_MAC80211, DBG_LOUD, "=>marv find\n"); } mac->vendor = vendor; } EXPORT_SYMBOL_GPL(rtl_recognize_peer); MODULE_AUTHOR("lizhaoming "); MODULE_AUTHOR("Realtek WlanFAE "); MODULE_AUTHOR("Larry Finger "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core"); struct rtl_global_var rtl_global_var = {}; EXPORT_SYMBOL_GPL(rtl_global_var); static int __init rtl_core_module_init(void) { BUILD_BUG_ON(TX_PWR_BY_RATE_NUM_RATE < TX_PWR_BY_RATE_NUM_SECTION); BUILD_BUG_ON(MAX_RATE_SECTION_NUM != MAX_RATE_SECTION); BUILD_BUG_ON(MAX_BASE_NUM_IN_PHY_REG_PG_24G != MAX_RATE_SECTION); BUILD_BUG_ON(MAX_BASE_NUM_IN_PHY_REG_PG_5G != (MAX_RATE_SECTION - 1)); if (rtl_rate_control_register()) pr_err("rtl: Unable to register rtl_rc, use default RC !!\n"); /* add debugfs */ rtl_debugfs_add_topdir(); /* init some global vars */ INIT_LIST_HEAD(&rtl_global_var.glb_priv_list); spin_lock_init(&rtl_global_var.glb_list_lock); return 0; } static void __exit rtl_core_module_exit(void) { /*RC*/ rtl_rate_control_unregister(); /* remove debugfs */ rtl_debugfs_remove_topdir(); } module_init(rtl_core_module_init); module_exit(rtl_core_module_exit);