/* Copyright (C) 2009 - 2010 Ivo van Doorn * Copyright (C) 2009 Alban Browaeys * Copyright (C) 2009 Felix Fietkau * Copyright (C) 2009 Luis Correia * Copyright (C) 2009 Mattias Nissler * Copyright (C) 2009 Mark Asselstine * Copyright (C) 2009 Xose Vazquez Perez * Copyright (C) 2009 Bart Zolnierkiewicz * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* Module: rt2800mmio * Abstract: rt2800 MMIO device routines. */ #include #include #include #include "rt2x00.h" #include "rt2x00mmio.h" #include "rt2800.h" #include "rt2800lib.h" #include "rt2800mmio.h" /* * TX descriptor initialization */ __le32 *rt2800mmio_get_txwi(struct queue_entry *entry) { return (__le32 *) entry->skb->data; } EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi); void rt2800mmio_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_mmio *entry_priv = entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; const unsigned int txwi_size = entry->queue->winfo_size; /* * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 * must contains a TXWI structure + 802.11 header + padding + 802.11 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 * data. It means that LAST_SEC0 is always 0. */ /* * Initialize TX descriptor */ word = 0; rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); rt2x00_desc_write(txd, 0, word); word = 0; rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size); rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); rt2x00_desc_write(txd, 1, word); word = 0; rt2x00_set_field32(&word, TXD_W2_SD_PTR1, skbdesc->skb_dma + txwi_size); rt2x00_desc_write(txd, 2, word); word = 0; rt2x00_set_field32(&word, TXD_W3_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W3_QSEL, 2); rt2x00_desc_write(txd, 3, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc); /* * RX control handlers */ void rt2800mmio_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; __le32 *rxd = entry_priv->desc; u32 word; rt2x00_desc_read(rxd, 3, &word); if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; /* * Unfortunately we don't know the cipher type used during * decryption. This prevents us from correct providing * correct statistics through debugfs. */ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; /* * The hardware has already checked the Michael Mic and has * stripped it from the frame. Signal this to mac80211. */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(word, RXD_W3_L2PAD)) rxdesc->dev_flags |= RXDONE_L2PAD; /* * Process the RXWI structure that is at the start of the buffer. */ rt2800_process_rxwi(entry, rxdesc); } EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone); /* * Interrupt functions. */ static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev) { struct ieee80211_conf conf = { .flags = 0 }; struct rt2x00lib_conf libconf = { .conf = &conf }; rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); } static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status) { __le32 *txwi; u32 word; int wcid, tx_wcid; wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID); txwi = rt2800_drv_get_txwi(entry); rt2x00_desc_read(txwi, 1, &word); tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID); return (tx_wcid == wcid); } static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data) { u32 status = *(u32 *)data; /* * rt2800pci hardware might reorder frames when exchanging traffic * with multiple BA enabled STAs. * * For example, a tx queue * [ STA1 | STA2 | STA1 | STA2 ] * can result in tx status reports * [ STA1 | STA1 | STA2 | STA2 ] * when the hw decides to aggregate the frames for STA1 into one AMPDU. * * To mitigate this effect, associate the tx status to the first frame * in the tx queue with a matching wcid. */ if (rt2800mmio_txdone_entry_check(entry, status) && !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { /* * Got a matching frame, associate the tx status with * the frame */ entry->status = status; set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); return true; } /* Check the next frame */ return false; } static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data) { u32 status = *(u32 *)data; /* * Find the first frame without tx status and assign this status to it * regardless if it matches or not. */ if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { /* * Got a matching frame, associate the tx status with * the frame */ entry->status = status; set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); return true; } /* Check the next frame */ return false; } static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry, void *data) { if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { rt2800_txdone_entry(entry, entry->status, rt2800mmio_get_txwi(entry), true); return false; } /* No more frames to release */ return true; } static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; u32 status; u8 qid; int max_tx_done = 16; while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); if (unlikely(qid >= QID_RX)) { /* * Unknown queue, this shouldn't happen. Just drop * this tx status. */ rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n", qid); break; } queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); if (unlikely(queue == NULL)) { /* * The queue is NULL, this shouldn't happen. Stop * processing here and drop the tx status */ rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n", qid); break; } if (unlikely(rt2x00queue_empty(queue))) { /* * The queue is empty. Stop processing here * and drop the tx status. */ rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n", qid); break; } /* * Let's associate this tx status with the first * matching frame. */ if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, &status, rt2800mmio_txdone_find_entry)) { /* * We cannot match the tx status to any frame, so just * use the first one. */ if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, &status, rt2800mmio_txdone_match_first)) { rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n", qid); break; } } /* * Release all frames with a valid tx status. */ rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL, rt2800mmio_txdone_release_entries); if (--max_tx_done == 0) break; } return !max_tx_done; } static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev, struct rt2x00_field32 irq_field) { u32 reg; /* * Enable a single interrupt. The interrupt mask register * access needs locking. */ spin_lock_irq(&rt2x00dev->irqmask_lock); rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, irq_field, 1); rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irq(&rt2x00dev->irqmask_lock); } void rt2800mmio_txstatus_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; if (rt2800mmio_txdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); /* * No need to enable the tx status interrupt here as we always * leave it enabled to minimize the possibility of a tx status * register overflow. See comment in interrupt handler. */ } EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet); void rt2800mmio_pretbtt_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2x00lib_pretbtt(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); } EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet); void rt2800mmio_tbtt_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; struct rt2800_drv_data *drv_data = rt2x00dev->drv_data; u32 reg; rt2x00lib_beacondone(rt2x00dev); if (rt2x00dev->intf_ap_count) { /* * The rt2800pci hardware tbtt timer is off by 1us per tbtt * causing beacon skew and as a result causing problems with * some powersaving clients over time. Shorten the beacon * interval every 64 beacons by 64us to mitigate this effect. */ if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) { rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, (rt2x00dev->beacon_int * 16) - 1); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) { rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, (rt2x00dev->beacon_int * 16)); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); } drv_data->tbtt_tick++; drv_data->tbtt_tick %= BCN_TBTT_OFFSET; } if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); } EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet); void rt2800mmio_rxdone_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; if (rt2x00mmio_rxdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); } EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet); void rt2800mmio_autowake_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2800mmio_wakeup(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP); } EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet); static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) { u32 status; int i; /* * The TX_FIFO_STATUS interrupt needs special care. We should * read TX_STA_FIFO but we should do it immediately as otherwise * the register can overflow and we would lose status reports. * * Hence, read the TX_STA_FIFO register and copy all tx status * reports into a kernel FIFO which is handled in the txstatus * tasklet. We use a tasklet to process the tx status reports * because we can schedule the tasklet multiple times (when the * interrupt fires again during tx status processing). * * Furthermore we don't disable the TX_FIFO_STATUS * interrupt here but leave it enabled so that the TX_STA_FIFO * can also be read while the tx status tasklet gets executed. * * Since we have only one producer and one consumer we don't * need to lock the kfifo. */ for (i = 0; i < rt2x00dev->tx->limit; i++) { rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status); if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) break; if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) { rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n"); break; } } /* Schedule the tasklet for processing the tx status. */ tasklet_schedule(&rt2x00dev->txstatus_tasklet); } irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg, mask; /* Read status and ACK all interrupts */ rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits * for interrupts and interrupt masks we can just use the value of * INT_SOURCE_CSR to create the interrupt mask. */ mask = ~reg; if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { rt2800mmio_txstatus_interrupt(rt2x00dev); /* * Never disable the TX_FIFO_STATUS interrupt. */ rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); } if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) tasklet_schedule(&rt2x00dev->autowake_tasklet); /* * Disable all interrupts for which a tasklet was scheduled right now, * the tasklet will reenable the appropriate interrupts. */ spin_lock(&rt2x00dev->irqmask_lock); rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); reg &= mask; rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock(&rt2x00dev->irqmask_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(rt2800mmio_interrupt); void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; unsigned long flags; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); } spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); reg = 0; if (state == STATE_RADIO_IRQ_ON) { rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); } rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); if (state == STATE_RADIO_IRQ_OFF) { /* * Wait for possibly running tasklets to finish. */ tasklet_kill(&rt2x00dev->txstatus_tasklet); tasklet_kill(&rt2x00dev->rxdone_tasklet); tasklet_kill(&rt2x00dev->autowake_tasklet); tasklet_kill(&rt2x00dev->tbtt_tasklet); tasklet_kill(&rt2x00dev->pretbtt_tasklet); } } EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq); /* * Queue handlers. */ void rt2800mmio_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_start_queue); void rt2800mmio_kick_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry *entry; switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx); break; case QID_MGMT: entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue); void rt2800mmio_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); /* * Wait for current invocation to finish. The tasklet * won't be scheduled anymore afterwards since we disabled * the TBTT and PRE TBTT timer. */ tasklet_kill(&rt2x00dev->tbtt_tasklet); tasklet_kill(&rt2x00dev->pretbtt_tasklet); break; default: break; } } EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue); void rt2800mmio_queue_init(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; unsigned short txwi_size, rxwi_size; rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size); switch (queue->qid) { case QID_RX: queue->limit = 128; queue->data_size = AGGREGATION_SIZE; queue->desc_size = RXD_DESC_SIZE; queue->winfo_size = rxwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: queue->limit = 64; queue->data_size = AGGREGATION_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->winfo_size = txwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_BEACON: queue->limit = 8; queue->data_size = 0; /* No DMA required for beacons */ queue->desc_size = TXD_DESC_SIZE; queue->winfo_size = txwi_size; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_ATIM: /* fallthrough */ default: BUG(); break; } } EXPORT_SYMBOL_GPL(rt2800mmio_queue_init); /* * Initialization functions. */ bool rt2800mmio_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); } } EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state); void rt2800mmio_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 0, word); rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); rt2x00_desc_write(entry_priv->desc, 1, word); /* * Set RX IDX in register to inform hardware that we have * handled this entry and it is available for reuse again. */ rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); rt2x00_desc_write(entry_priv->desc, 1, word); } } EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry); int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_mmio *entry_priv; /* * Initialize registers. */ entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0); rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0); rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0); rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0); rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0); rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0); rt2800_disable_wpdma(rt2x00dev); rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0); return 0; } EXPORT_SYMBOL_GPL(rt2800mmio_init_queues); int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Reset DMA indexes */ rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); if (rt2x00_is_pcie(rt2x00dev) && (rt2x00_rt(rt2x00dev, RT3090) || rt2x00_rt(rt2x00dev, RT3390) || rt2x00_rt(rt2x00dev, RT3572) || rt2x00_rt(rt2x00dev, RT3593) || rt2x00_rt(rt2x00dev, RT5390) || rt2x00_rt(rt2x00dev, RT5392) || rt2x00_rt(rt2x00dev, RT5592))) { rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, ®); rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg); } rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); reg = 0; rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); return 0; } EXPORT_SYMBOL_GPL(rt2800mmio_init_registers); /* * Device state switch handlers. */ int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev) { /* Wait for DMA, ignore error until we initialize queues. */ rt2800_wait_wpdma_ready(rt2x00dev); if (unlikely(rt2800mmio_init_queues(rt2x00dev))) return -EIO; return rt2800_enable_radio(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio); MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2800 MMIO library"); MODULE_LICENSE("GPL");