/* SPDX-License-Identifier: ISC */ /* * Copyright (C) 2016 Felix Fietkau */ #ifndef __MT76_H #define __MT76_H #include #include #include #include #include #include #include #include #include #include "util.h" #include "testmode.h" #define MT_MCU_RING_SIZE 32 #define MT_RX_BUF_SIZE 2048 #define MT_SKB_HEAD_LEN 256 #define MT_MAX_NON_AQL_PKT 16 #define MT_TXQ_FREE_THR 32 #define MT76_TOKEN_FREE_THR 64 #define MT_QFLAG_WED_RING GENMASK(1, 0) #define MT_QFLAG_WED_TYPE GENMASK(3, 2) #define MT_QFLAG_WED BIT(4) #define __MT_WED_Q(_type, _n) (MT_QFLAG_WED | \ FIELD_PREP(MT_QFLAG_WED_TYPE, _type) | \ FIELD_PREP(MT_QFLAG_WED_RING, _n)) #define MT_WED_Q_TX(_n) __MT_WED_Q(MT76_WED_Q_TX, _n) #define MT_WED_Q_TXFREE __MT_WED_Q(MT76_WED_Q_TXFREE, 0) struct mt76_dev; struct mt76_phy; struct mt76_wcid; struct mt76s_intr; struct mt76_reg_pair { u32 reg; u32 value; }; enum mt76_bus_type { MT76_BUS_MMIO, MT76_BUS_USB, MT76_BUS_SDIO, }; enum mt76_wed_type { MT76_WED_Q_TX, MT76_WED_Q_TXFREE, }; struct mt76_bus_ops { u32 (*rr)(struct mt76_dev *dev, u32 offset); void (*wr)(struct mt76_dev *dev, u32 offset, u32 val); u32 (*rmw)(struct mt76_dev *dev, u32 offset, u32 mask, u32 val); void (*write_copy)(struct mt76_dev *dev, u32 offset, const void *data, int len); void (*read_copy)(struct mt76_dev *dev, u32 offset, void *data, int len); int (*wr_rp)(struct mt76_dev *dev, u32 base, const struct mt76_reg_pair *rp, int len); int (*rd_rp)(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *rp, int len); enum mt76_bus_type type; }; #define mt76_is_usb(dev) ((dev)->bus->type == MT76_BUS_USB) #define mt76_is_mmio(dev) ((dev)->bus->type == MT76_BUS_MMIO) #define mt76_is_sdio(dev) ((dev)->bus->type == MT76_BUS_SDIO) enum mt76_txq_id { MT_TXQ_VO = IEEE80211_AC_VO, MT_TXQ_VI = IEEE80211_AC_VI, MT_TXQ_BE = IEEE80211_AC_BE, MT_TXQ_BK = IEEE80211_AC_BK, MT_TXQ_PSD, MT_TXQ_BEACON, MT_TXQ_CAB, __MT_TXQ_MAX }; enum mt76_mcuq_id { MT_MCUQ_WM, MT_MCUQ_WA, MT_MCUQ_FWDL, __MT_MCUQ_MAX }; enum mt76_rxq_id { MT_RXQ_MAIN, MT_RXQ_MCU, MT_RXQ_MCU_WA, MT_RXQ_BAND1, MT_RXQ_BAND1_WA, MT_RXQ_MAIN_WA, MT_RXQ_BAND2, MT_RXQ_BAND2_WA, __MT_RXQ_MAX }; enum mt76_band_id { MT_BAND0, MT_BAND1, MT_BAND2, __MT_MAX_BAND }; enum mt76_cipher_type { MT_CIPHER_NONE, MT_CIPHER_WEP40, MT_CIPHER_TKIP, MT_CIPHER_TKIP_NO_MIC, MT_CIPHER_AES_CCMP, MT_CIPHER_WEP104, MT_CIPHER_BIP_CMAC_128, MT_CIPHER_WEP128, MT_CIPHER_WAPI, MT_CIPHER_CCMP_CCX, MT_CIPHER_CCMP_256, MT_CIPHER_GCMP, MT_CIPHER_GCMP_256, }; enum mt76_dfs_state { MT_DFS_STATE_UNKNOWN, MT_DFS_STATE_DISABLED, MT_DFS_STATE_CAC, MT_DFS_STATE_ACTIVE, }; struct mt76_queue_buf { dma_addr_t addr; u16 len; bool skip_unmap; }; struct mt76_tx_info { struct mt76_queue_buf buf[32]; struct sk_buff *skb; int nbuf; u32 info; }; struct mt76_queue_entry { union { void *buf; struct sk_buff *skb; }; union { struct mt76_txwi_cache *txwi; struct urb *urb; int buf_sz; }; u32 dma_addr[2]; u16 dma_len[2]; u16 wcid; bool skip_buf0:1; bool skip_buf1:1; bool done:1; }; struct mt76_queue_regs { u32 desc_base; u32 ring_size; u32 cpu_idx; u32 dma_idx; } __packed __aligned(4); struct mt76_queue { struct mt76_queue_regs __iomem *regs; spinlock_t lock; spinlock_t cleanup_lock; struct mt76_queue_entry *entry; struct mt76_desc *desc; u16 first; u16 head; u16 tail; int ndesc; int queued; int buf_size; bool stopped; bool blocked; u8 buf_offset; u8 hw_idx; u8 flags; u32 wed_regs; dma_addr_t desc_dma; struct sk_buff *rx_head; struct page_frag_cache rx_page; }; struct mt76_mcu_ops { u32 headroom; u32 tailroom; int (*mcu_send_msg)(struct mt76_dev *dev, int cmd, const void *data, int len, bool wait_resp); int (*mcu_skb_send_msg)(struct mt76_dev *dev, struct sk_buff *skb, int cmd, int *seq); int (*mcu_parse_response)(struct mt76_dev *dev, int cmd, struct sk_buff *skb, int seq); u32 (*mcu_rr)(struct mt76_dev *dev, u32 offset); void (*mcu_wr)(struct mt76_dev *dev, u32 offset, u32 val); int (*mcu_wr_rp)(struct mt76_dev *dev, u32 base, const struct mt76_reg_pair *rp, int len); int (*mcu_rd_rp)(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *rp, int len); int (*mcu_restart)(struct mt76_dev *dev); }; struct mt76_queue_ops { int (*init)(struct mt76_dev *dev, int (*poll)(struct napi_struct *napi, int budget)); int (*alloc)(struct mt76_dev *dev, struct mt76_queue *q, int idx, int n_desc, int bufsize, u32 ring_base); int (*tx_queue_skb)(struct mt76_dev *dev, struct mt76_queue *q, enum mt76_txq_id qid, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta); int (*tx_queue_skb_raw)(struct mt76_dev *dev, struct mt76_queue *q, struct sk_buff *skb, u32 tx_info); void *(*dequeue)(struct mt76_dev *dev, struct mt76_queue *q, bool flush, int *len, u32 *info, bool *more); void (*rx_reset)(struct mt76_dev *dev, enum mt76_rxq_id qid); void (*tx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q, bool flush); void (*rx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q); void (*kick)(struct mt76_dev *dev, struct mt76_queue *q); void (*reset_q)(struct mt76_dev *dev, struct mt76_queue *q); }; enum mt76_phy_type { MT_PHY_TYPE_CCK, MT_PHY_TYPE_OFDM, MT_PHY_TYPE_HT, MT_PHY_TYPE_HT_GF, MT_PHY_TYPE_VHT, MT_PHY_TYPE_HE_SU = 8, MT_PHY_TYPE_HE_EXT_SU, MT_PHY_TYPE_HE_TB, MT_PHY_TYPE_HE_MU, __MT_PHY_TYPE_HE_MAX, }; struct mt76_sta_stats { u64 tx_mode[__MT_PHY_TYPE_HE_MAX]; u64 tx_bw[4]; /* 20, 40, 80, 160 */ u64 tx_nss[4]; /* 1, 2, 3, 4 */ u64 tx_mcs[16]; /* mcs idx */ u64 tx_bytes; u32 tx_packets; u32 tx_retries; u32 tx_failed; }; enum mt76_wcid_flags { MT_WCID_FLAG_CHECK_PS, MT_WCID_FLAG_PS, MT_WCID_FLAG_4ADDR, MT_WCID_FLAG_HDR_TRANS, }; #define MT76_N_WCIDS 544 /* stored in ieee80211_tx_info::hw_queue */ #define MT_TX_HW_QUEUE_PHY GENMASK(3, 2) DECLARE_EWMA(signal, 10, 8); #define MT_WCID_TX_INFO_RATE GENMASK(15, 0) #define MT_WCID_TX_INFO_NSS GENMASK(17, 16) #define MT_WCID_TX_INFO_TXPWR_ADJ GENMASK(25, 18) #define MT_WCID_TX_INFO_SET BIT(31) struct mt76_wcid { struct mt76_rx_tid __rcu *aggr[IEEE80211_NUM_TIDS]; atomic_t non_aql_packets; unsigned long flags; struct ewma_signal rssi; int inactive_count; struct rate_info rate; u16 idx; u8 hw_key_idx; u8 hw_key_idx2; u8 sta:1; u8 amsdu:1; u8 phy_idx:2; u8 rx_check_pn; u8 rx_key_pn[IEEE80211_NUM_TIDS + 1][6]; u16 cipher; u32 tx_info; bool sw_iv; struct list_head list; struct idr pktid; struct mt76_sta_stats stats; }; struct mt76_txq { u16 wcid; u16 agg_ssn; bool send_bar; bool aggr; }; struct mt76_txwi_cache { struct list_head list; dma_addr_t dma_addr; struct sk_buff *skb; }; struct mt76_rx_tid { struct rcu_head rcu_head; struct mt76_dev *dev; spinlock_t lock; struct delayed_work reorder_work; u16 head; u16 size; u16 nframes; u8 num; u8 started:1, stopped:1, timer_pending:1; struct sk_buff *reorder_buf[]; }; #define MT_TX_CB_DMA_DONE BIT(0) #define MT_TX_CB_TXS_DONE BIT(1) #define MT_TX_CB_TXS_FAILED BIT(2) #define MT_PACKET_ID_MASK GENMASK(6, 0) #define MT_PACKET_ID_NO_ACK 0 #define MT_PACKET_ID_NO_SKB 1 #define MT_PACKET_ID_WED 2 #define MT_PACKET_ID_FIRST 3 #define MT_PACKET_ID_HAS_RATE BIT(7) /* This is timer for when to give up when waiting for TXS callback, * with starting time being the time at which the DMA_DONE callback * was seen (so, we know packet was processed then, it should not take * long after that for firmware to send the TXS callback if it is going * to do so.) */ #define MT_TX_STATUS_SKB_TIMEOUT (HZ / 4) struct mt76_tx_cb { unsigned long jiffies; u16 wcid; u8 pktid; u8 flags; }; enum { MT76_STATE_INITIALIZED, MT76_STATE_RUNNING, MT76_STATE_MCU_RUNNING, MT76_SCANNING, MT76_HW_SCANNING, MT76_HW_SCHED_SCANNING, MT76_RESTART, MT76_RESET, MT76_MCU_RESET, MT76_REMOVED, MT76_READING_STATS, MT76_STATE_POWER_OFF, MT76_STATE_SUSPEND, MT76_STATE_ROC, MT76_STATE_PM, }; struct mt76_hw_cap { bool has_2ghz; bool has_5ghz; bool has_6ghz; }; #define MT_DRV_TXWI_NO_FREE BIT(0) #define MT_DRV_TX_ALIGNED4_SKBS BIT(1) #define MT_DRV_SW_RX_AIRTIME BIT(2) #define MT_DRV_RX_DMA_HDR BIT(3) #define MT_DRV_HW_MGMT_TXQ BIT(4) struct mt76_driver_ops { u32 drv_flags; u32 survey_flags; u16 txwi_size; u16 token_size; u8 mcs_rates; void (*update_survey)(struct mt76_phy *phy); int (*tx_prepare_skb)(struct mt76_dev *dev, void *txwi_ptr, enum mt76_txq_id qid, struct mt76_wcid *wcid, struct ieee80211_sta *sta, struct mt76_tx_info *tx_info); void (*tx_complete_skb)(struct mt76_dev *dev, struct mt76_queue_entry *e); bool (*tx_status_data)(struct mt76_dev *dev, u8 *update); bool (*rx_check)(struct mt76_dev *dev, void *data, int len); void (*rx_skb)(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb); void (*rx_poll_complete)(struct mt76_dev *dev, enum mt76_rxq_id q); void (*sta_ps)(struct mt76_dev *dev, struct ieee80211_sta *sta, bool ps); int (*sta_add)(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void (*sta_assoc)(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void (*sta_remove)(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta); }; struct mt76_channel_state { u64 cc_active; u64 cc_busy; u64 cc_rx; u64 cc_bss_rx; u64 cc_tx; s8 noise; }; struct mt76_sband { struct ieee80211_supported_band sband; struct mt76_channel_state *chan; }; /* addr req mask */ #define MT_VEND_TYPE_EEPROM BIT(31) #define MT_VEND_TYPE_CFG BIT(30) #define MT_VEND_TYPE_MASK (MT_VEND_TYPE_EEPROM | MT_VEND_TYPE_CFG) #define MT_VEND_ADDR(type, n) (MT_VEND_TYPE_##type | (n)) enum mt_vendor_req { MT_VEND_DEV_MODE = 0x1, MT_VEND_WRITE = 0x2, MT_VEND_POWER_ON = 0x4, MT_VEND_MULTI_WRITE = 0x6, MT_VEND_MULTI_READ = 0x7, MT_VEND_READ_EEPROM = 0x9, MT_VEND_WRITE_FCE = 0x42, MT_VEND_WRITE_CFG = 0x46, MT_VEND_READ_CFG = 0x47, MT_VEND_READ_EXT = 0x63, MT_VEND_WRITE_EXT = 0x66, MT_VEND_FEATURE_SET = 0x91, }; enum mt76u_in_ep { MT_EP_IN_PKT_RX, MT_EP_IN_CMD_RESP, __MT_EP_IN_MAX, }; enum mt76u_out_ep { MT_EP_OUT_INBAND_CMD, MT_EP_OUT_AC_BE, MT_EP_OUT_AC_BK, MT_EP_OUT_AC_VI, MT_EP_OUT_AC_VO, MT_EP_OUT_HCCA, __MT_EP_OUT_MAX, }; struct mt76_mcu { struct mutex mutex; u32 msg_seq; int timeout; struct sk_buff_head res_q; wait_queue_head_t wait; }; #define MT_TX_SG_MAX_SIZE 8 #define MT_RX_SG_MAX_SIZE 4 #define MT_NUM_TX_ENTRIES 256 #define MT_NUM_RX_ENTRIES 128 #define MCU_RESP_URB_SIZE 1024 struct mt76_usb { struct mutex usb_ctrl_mtx; u8 *data; u16 data_len; struct mt76_worker status_worker; struct mt76_worker rx_worker; struct work_struct stat_work; u8 out_ep[__MT_EP_OUT_MAX]; u8 in_ep[__MT_EP_IN_MAX]; bool sg_en; struct mt76u_mcu { u8 *data; /* multiple reads */ struct mt76_reg_pair *rp; int rp_len; u32 base; } mcu; }; #define MT76S_XMIT_BUF_SZ 0x3fe00 #define MT76S_NUM_TX_ENTRIES 256 #define MT76S_NUM_RX_ENTRIES 512 struct mt76_sdio { struct mt76_worker txrx_worker; struct mt76_worker status_worker; struct mt76_worker net_worker; struct work_struct stat_work; u8 *xmit_buf; u32 xmit_buf_sz; struct sdio_func *func; void *intr_data; u8 hw_ver; wait_queue_head_t wait; struct { int pse_data_quota; int ple_data_quota; int pse_mcu_quota; int pse_page_size; int deficit; } sched; int (*parse_irq)(struct mt76_dev *dev, struct mt76s_intr *intr); }; struct mt76_mmio { void __iomem *regs; spinlock_t irq_lock; u32 irqmask; struct mtk_wed_device wed; }; struct mt76_rx_status { union { struct mt76_wcid *wcid; u16 wcid_idx; }; u32 reorder_time; u32 ampdu_ref; u32 timestamp; u8 iv[6]; u8 phy_idx:2; u8 aggr:1; u8 qos_ctl; u16 seqno; u16 freq; u32 flag; u8 enc_flags; u8 encoding:2, bw:3, he_ru:3; u8 he_gi:2, he_dcm:1; u8 amsdu:1, first_amsdu:1, last_amsdu:1; u8 rate_idx; u8 nss; u8 band; s8 signal; u8 chains; s8 chain_signal[IEEE80211_MAX_CHAINS]; }; struct mt76_freq_range_power { const struct cfg80211_sar_freq_ranges *range; s8 power; }; struct mt76_testmode_ops { int (*set_state)(struct mt76_phy *phy, enum mt76_testmode_state state); int (*set_params)(struct mt76_phy *phy, struct nlattr **tb, enum mt76_testmode_state new_state); int (*dump_stats)(struct mt76_phy *phy, struct sk_buff *msg); }; struct mt76_testmode_data { enum mt76_testmode_state state; u32 param_set[DIV_ROUND_UP(NUM_MT76_TM_ATTRS, 32)]; struct sk_buff *tx_skb; u32 tx_count; u16 tx_mpdu_len; u8 tx_rate_mode; u8 tx_rate_idx; u8 tx_rate_nss; u8 tx_rate_sgi; u8 tx_rate_ldpc; u8 tx_rate_stbc; u8 tx_ltf; u8 tx_antenna_mask; u8 tx_spe_idx; u8 tx_duty_cycle; u32 tx_time; u32 tx_ipg; u32 freq_offset; u8 tx_power[4]; u8 tx_power_control; u8 addr[3][ETH_ALEN]; u32 tx_pending; u32 tx_queued; u16 tx_queued_limit; u32 tx_done; struct { u64 packets[__MT_RXQ_MAX]; u64 fcs_error[__MT_RXQ_MAX]; } rx_stats; }; struct mt76_vif { u8 idx; u8 omac_idx; u8 band_idx; u8 wmm_idx; u8 scan_seq_num; u8 cipher; }; struct mt76_phy { struct ieee80211_hw *hw; struct mt76_dev *dev; void *priv; unsigned long state; u8 band_idx; struct mt76_queue *q_tx[__MT_TXQ_MAX]; struct cfg80211_chan_def chandef; struct ieee80211_channel *main_chan; struct mt76_channel_state *chan_state; enum mt76_dfs_state dfs_state; ktime_t survey_time; struct mt76_hw_cap cap; struct mt76_sband sband_2g; struct mt76_sband sband_5g; struct mt76_sband sband_6g; u8 macaddr[ETH_ALEN]; int txpower_cur; u8 antenna_mask; u16 chainmask; #ifdef CONFIG_NL80211_TESTMODE struct mt76_testmode_data test; #endif struct delayed_work mac_work; u8 mac_work_count; struct { struct sk_buff *head; struct sk_buff **tail; u16 seqno; } rx_amsdu[__MT_RXQ_MAX]; struct mt76_freq_range_power *frp; }; struct mt76_dev { struct mt76_phy phy; /* must be first */ struct mt76_phy *phys[__MT_MAX_BAND]; struct ieee80211_hw *hw; spinlock_t lock; spinlock_t cc_lock; u32 cur_cc_bss_rx; struct mt76_rx_status rx_ampdu_status; u32 rx_ampdu_len; u32 rx_ampdu_ref; struct mutex mutex; const struct mt76_bus_ops *bus; const struct mt76_driver_ops *drv; const struct mt76_mcu_ops *mcu_ops; struct device *dev; struct device *dma_dev; struct mt76_mcu mcu; struct net_device napi_dev; struct net_device tx_napi_dev; spinlock_t rx_lock; struct napi_struct napi[__MT_RXQ_MAX]; struct sk_buff_head rx_skb[__MT_RXQ_MAX]; struct list_head txwi_cache; struct mt76_queue *q_mcu[__MT_MCUQ_MAX]; struct mt76_queue q_rx[__MT_RXQ_MAX]; const struct mt76_queue_ops *queue_ops; int tx_dma_idx[4]; struct mt76_worker tx_worker; struct napi_struct tx_napi; spinlock_t token_lock; struct idr token; u16 wed_token_count; u16 token_count; u16 token_size; wait_queue_head_t tx_wait; /* spinclock used to protect wcid pktid linked list */ spinlock_t status_lock; u32 wcid_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)]; u32 wcid_phy_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)]; u64 vif_mask; struct mt76_wcid global_wcid; struct mt76_wcid __rcu *wcid[MT76_N_WCIDS]; struct list_head wcid_list; u32 rev; u32 aggr_stats[32]; struct tasklet_struct pre_tbtt_tasklet; int beacon_int; u8 beacon_mask; struct debugfs_blob_wrapper eeprom; struct debugfs_blob_wrapper otp; char alpha2[3]; enum nl80211_dfs_regions region; u32 debugfs_reg; struct led_classdev led_cdev; char led_name[32]; bool led_al; u8 led_pin; u8 csa_complete; u32 rxfilter; #ifdef CONFIG_NL80211_TESTMODE const struct mt76_testmode_ops *test_ops; struct { const char *name; u32 offset; } test_mtd; #endif struct workqueue_struct *wq; union { struct mt76_mmio mmio; struct mt76_usb usb; struct mt76_sdio sdio; }; }; struct mt76_power_limits { s8 cck[4]; s8 ofdm[8]; s8 mcs[4][10]; s8 ru[7][12]; }; struct mt76_ethtool_worker_info { u64 *data; int idx; int initial_stat_idx; int worker_stat_count; int sta_count; }; #define CCK_RATE(_idx, _rate) { \ .bitrate = _rate, \ .flags = IEEE80211_RATE_SHORT_PREAMBLE, \ .hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx), \ .hw_value_short = (MT_PHY_TYPE_CCK << 8) | (4 + _idx), \ } #define OFDM_RATE(_idx, _rate) { \ .bitrate = _rate, \ .hw_value = (MT_PHY_TYPE_OFDM << 8) | (_idx), \ .hw_value_short = (MT_PHY_TYPE_OFDM << 8) | (_idx), \ } extern struct ieee80211_rate mt76_rates[12]; #define __mt76_rr(dev, ...) (dev)->bus->rr((dev), __VA_ARGS__) #define __mt76_wr(dev, ...) (dev)->bus->wr((dev), __VA_ARGS__) #define __mt76_rmw(dev, ...) (dev)->bus->rmw((dev), __VA_ARGS__) #define __mt76_wr_copy(dev, ...) (dev)->bus->write_copy((dev), __VA_ARGS__) #define __mt76_rr_copy(dev, ...) (dev)->bus->read_copy((dev), __VA_ARGS__) #define __mt76_set(dev, offset, val) __mt76_rmw(dev, offset, 0, val) #define __mt76_clear(dev, offset, val) __mt76_rmw(dev, offset, val, 0) #define mt76_rr(dev, ...) (dev)->mt76.bus->rr(&((dev)->mt76), __VA_ARGS__) #define mt76_wr(dev, ...) (dev)->mt76.bus->wr(&((dev)->mt76), __VA_ARGS__) #define mt76_rmw(dev, ...) (dev)->mt76.bus->rmw(&((dev)->mt76), __VA_ARGS__) #define mt76_wr_copy(dev, ...) (dev)->mt76.bus->write_copy(&((dev)->mt76), __VA_ARGS__) #define mt76_rr_copy(dev, ...) (dev)->mt76.bus->read_copy(&((dev)->mt76), __VA_ARGS__) #define mt76_wr_rp(dev, ...) (dev)->mt76.bus->wr_rp(&((dev)->mt76), __VA_ARGS__) #define mt76_rd_rp(dev, ...) (dev)->mt76.bus->rd_rp(&((dev)->mt76), __VA_ARGS__) #define mt76_mcu_restart(dev, ...) (dev)->mt76.mcu_ops->mcu_restart(&((dev)->mt76)) #define __mt76_mcu_restart(dev, ...) (dev)->mcu_ops->mcu_restart((dev)) #define mt76_set(dev, offset, val) mt76_rmw(dev, offset, 0, val) #define mt76_clear(dev, offset, val) mt76_rmw(dev, offset, val, 0) #define mt76_get_field(_dev, _reg, _field) \ FIELD_GET(_field, mt76_rr(dev, _reg)) #define mt76_rmw_field(_dev, _reg, _field, _val) \ mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val)) #define __mt76_rmw_field(_dev, _reg, _field, _val) \ __mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val)) #define mt76_hw(dev) (dev)->mphy.hw bool __mt76_poll(struct mt76_dev *dev, u32 offset, u32 mask, u32 val, int timeout); #define mt76_poll(dev, ...) __mt76_poll(&((dev)->mt76), __VA_ARGS__) bool __mt76_poll_msec(struct mt76_dev *dev, u32 offset, u32 mask, u32 val, int timeout); #define mt76_poll_msec(dev, ...) __mt76_poll_msec(&((dev)->mt76), __VA_ARGS__) void mt76_mmio_init(struct mt76_dev *dev, void __iomem *regs); void mt76_pci_disable_aspm(struct pci_dev *pdev); static inline u16 mt76_chip(struct mt76_dev *dev) { return dev->rev >> 16; } static inline u16 mt76_rev(struct mt76_dev *dev) { return dev->rev & 0xffff; } #define mt76xx_chip(dev) mt76_chip(&((dev)->mt76)) #define mt76xx_rev(dev) mt76_rev(&((dev)->mt76)) #define mt76_init_queues(dev, ...) (dev)->mt76.queue_ops->init(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_alloc(dev, ...) (dev)->mt76.queue_ops->alloc(&((dev)->mt76), __VA_ARGS__) #define mt76_tx_queue_skb_raw(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb_raw(&((dev)->mt76), __VA_ARGS__) #define mt76_tx_queue_skb(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_rx_reset(dev, ...) (dev)->mt76.queue_ops->rx_reset(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_tx_cleanup(dev, ...) (dev)->mt76.queue_ops->tx_cleanup(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_rx_cleanup(dev, ...) (dev)->mt76.queue_ops->rx_cleanup(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_kick(dev, ...) (dev)->mt76.queue_ops->kick(&((dev)->mt76), __VA_ARGS__) #define mt76_queue_reset(dev, ...) (dev)->mt76.queue_ops->reset_q(&((dev)->mt76), __VA_ARGS__) #define mt76_for_each_q_rx(dev, i) \ for (i = 0; i < ARRAY_SIZE((dev)->q_rx); i++) \ if ((dev)->q_rx[i].ndesc) struct mt76_dev *mt76_alloc_device(struct device *pdev, unsigned int size, const struct ieee80211_ops *ops, const struct mt76_driver_ops *drv_ops); int mt76_register_device(struct mt76_dev *dev, bool vht, struct ieee80211_rate *rates, int n_rates); void mt76_unregister_device(struct mt76_dev *dev); void mt76_free_device(struct mt76_dev *dev); void mt76_unregister_phy(struct mt76_phy *phy); struct mt76_phy *mt76_alloc_phy(struct mt76_dev *dev, unsigned int size, const struct ieee80211_ops *ops, u8 band_idx); int mt76_register_phy(struct mt76_phy *phy, bool vht, struct ieee80211_rate *rates, int n_rates); struct dentry *mt76_register_debugfs_fops(struct mt76_phy *phy, const struct file_operations *ops); static inline struct dentry *mt76_register_debugfs(struct mt76_dev *dev) { return mt76_register_debugfs_fops(&dev->phy, NULL); } int mt76_queues_read(struct seq_file *s, void *data); void mt76_seq_puts_array(struct seq_file *file, const char *str, s8 *val, int len); int mt76_eeprom_init(struct mt76_dev *dev, int len); void mt76_eeprom_override(struct mt76_phy *phy); int mt76_get_of_eeprom(struct mt76_dev *dev, void *data, int offset, int len); struct mt76_queue * mt76_init_queue(struct mt76_dev *dev, int qid, int idx, int n_desc, int ring_base, u32 flags); u16 mt76_calculate_default_rate(struct mt76_phy *phy, int rateidx); static inline int mt76_init_tx_queue(struct mt76_phy *phy, int qid, int idx, int n_desc, int ring_base, u32 flags) { struct mt76_queue *q; q = mt76_init_queue(phy->dev, qid, idx, n_desc, ring_base, flags); if (IS_ERR(q)) return PTR_ERR(q); phy->q_tx[qid] = q; return 0; } static inline int mt76_init_mcu_queue(struct mt76_dev *dev, int qid, int idx, int n_desc, int ring_base) { struct mt76_queue *q; q = mt76_init_queue(dev, qid, idx, n_desc, ring_base, 0); if (IS_ERR(q)) return PTR_ERR(q); dev->q_mcu[qid] = q; return 0; } static inline struct mt76_phy * mt76_dev_phy(struct mt76_dev *dev, u8 phy_idx) { if ((phy_idx == MT_BAND1 && dev->phys[phy_idx]) || (phy_idx == MT_BAND2 && dev->phys[phy_idx])) return dev->phys[phy_idx]; return &dev->phy; } static inline struct ieee80211_hw * mt76_phy_hw(struct mt76_dev *dev, u8 phy_idx) { return mt76_dev_phy(dev, phy_idx)->hw; } static inline u8 * mt76_get_txwi_ptr(struct mt76_dev *dev, struct mt76_txwi_cache *t) { return (u8 *)t - dev->drv->txwi_size; } /* increment with wrap-around */ static inline int mt76_incr(int val, int size) { return (val + 1) & (size - 1); } /* decrement with wrap-around */ static inline int mt76_decr(int val, int size) { return (val - 1) & (size - 1); } u8 mt76_ac_to_hwq(u8 ac); static inline struct ieee80211_txq * mtxq_to_txq(struct mt76_txq *mtxq) { void *ptr = mtxq; return container_of(ptr, struct ieee80211_txq, drv_priv); } static inline struct ieee80211_sta * wcid_to_sta(struct mt76_wcid *wcid) { void *ptr = wcid; if (!wcid || !wcid->sta) return NULL; return container_of(ptr, struct ieee80211_sta, drv_priv); } static inline struct mt76_tx_cb *mt76_tx_skb_cb(struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct mt76_tx_cb) > sizeof(IEEE80211_SKB_CB(skb)->status.status_driver_data)); return ((void *)IEEE80211_SKB_CB(skb)->status.status_driver_data); } static inline void *mt76_skb_get_hdr(struct sk_buff *skb) { struct mt76_rx_status mstat; u8 *data = skb->data; /* Alignment concerns */ BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); mstat = *((struct mt76_rx_status *)skb->cb); if (mstat.flag & RX_FLAG_RADIOTAP_HE) data += sizeof(struct ieee80211_radiotap_he); if (mstat.flag & RX_FLAG_RADIOTAP_HE_MU) data += sizeof(struct ieee80211_radiotap_he_mu); return data; } static inline void mt76_insert_hdr_pad(struct sk_buff *skb) { int len = ieee80211_get_hdrlen_from_skb(skb); if (len % 4 == 0) return; skb_push(skb, 2); memmove(skb->data, skb->data + 2, len); skb->data[len] = 0; skb->data[len + 1] = 0; } static inline bool mt76_is_skb_pktid(u8 pktid) { if (pktid & MT_PACKET_ID_HAS_RATE) return false; return pktid >= MT_PACKET_ID_FIRST; } static inline u8 mt76_tx_power_nss_delta(u8 nss) { static const u8 nss_delta[4] = { 0, 6, 9, 12 }; return nss_delta[nss - 1]; } static inline bool mt76_testmode_enabled(struct mt76_phy *phy) { #ifdef CONFIG_NL80211_TESTMODE return phy->test.state != MT76_TM_STATE_OFF; #else return false; #endif } static inline bool mt76_is_testmode_skb(struct mt76_dev *dev, struct sk_buff *skb, struct ieee80211_hw **hw) { #ifdef CONFIG_NL80211_TESTMODE int i; for (i = 0; i < ARRAY_SIZE(dev->phys); i++) { struct mt76_phy *phy = dev->phys[i]; if (phy && skb == phy->test.tx_skb) { *hw = dev->phys[i]->hw; return true; } } return false; #else return false; #endif } void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb); void mt76_tx(struct mt76_phy *dev, struct ieee80211_sta *sta, struct mt76_wcid *wcid, struct sk_buff *skb); void mt76_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq); void mt76_stop_tx_queues(struct mt76_phy *phy, struct ieee80211_sta *sta, bool send_bar); void mt76_tx_check_agg_ssn(struct ieee80211_sta *sta, struct sk_buff *skb); void mt76_txq_schedule(struct mt76_phy *phy, enum mt76_txq_id qid); void mt76_txq_schedule_all(struct mt76_phy *phy); void mt76_tx_worker_run(struct mt76_dev *dev); void mt76_tx_worker(struct mt76_worker *w); void mt76_release_buffered_frames(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int nframes, enum ieee80211_frame_release_type reason, bool more_data); bool mt76_has_tx_pending(struct mt76_phy *phy); void mt76_set_channel(struct mt76_phy *phy); void mt76_update_survey(struct mt76_phy *phy); void mt76_update_survey_active_time(struct mt76_phy *phy, ktime_t time); int mt76_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey); void mt76_set_stream_caps(struct mt76_phy *phy, bool vht); int mt76_rx_aggr_start(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid, u16 ssn, u16 size); void mt76_rx_aggr_stop(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid); void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key); void mt76_tx_status_lock(struct mt76_dev *dev, struct sk_buff_head *list) __acquires(&dev->status_lock); void mt76_tx_status_unlock(struct mt76_dev *dev, struct sk_buff_head *list) __releases(&dev->status_lock); int mt76_tx_status_skb_add(struct mt76_dev *dev, struct mt76_wcid *wcid, struct sk_buff *skb); struct sk_buff *mt76_tx_status_skb_get(struct mt76_dev *dev, struct mt76_wcid *wcid, int pktid, struct sk_buff_head *list); void mt76_tx_status_skb_done(struct mt76_dev *dev, struct sk_buff *skb, struct sk_buff_head *list); void __mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb, struct list_head *free_list); static inline void mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb) { __mt76_tx_complete_skb(dev, wcid, skb, NULL); } void mt76_tx_status_check(struct mt76_dev *dev, bool flush); int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state); void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void mt76_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); int mt76_get_min_avg_rssi(struct mt76_dev *dev, bool ext_phy); int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int *dbm); int mt76_init_sar_power(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar); int mt76_get_sar_power(struct mt76_phy *phy, struct ieee80211_channel *chan, int power); void mt76_csa_check(struct mt76_dev *dev); void mt76_csa_finish(struct mt76_dev *dev); int mt76_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); int mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set); void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id); int mt76_get_rate(struct mt76_dev *dev, struct ieee80211_supported_band *sband, int idx, bool cck); void mt76_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac); void mt76_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif); enum mt76_dfs_state mt76_phy_dfs_state(struct mt76_phy *phy); int mt76_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len); int mt76_testmode_dump(struct ieee80211_hw *hw, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len); int mt76_testmode_set_state(struct mt76_phy *phy, enum mt76_testmode_state state); int mt76_testmode_alloc_skb(struct mt76_phy *phy, u32 len); static inline void mt76_testmode_reset(struct mt76_phy *phy, bool disable) { #ifdef CONFIG_NL80211_TESTMODE enum mt76_testmode_state state = MT76_TM_STATE_IDLE; if (disable || phy->test.state == MT76_TM_STATE_OFF) state = MT76_TM_STATE_OFF; mt76_testmode_set_state(phy, state); #endif } /* internal */ static inline struct ieee80211_hw * mt76_tx_status_get_hw(struct mt76_dev *dev, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2; struct ieee80211_hw *hw = mt76_phy_hw(dev, phy_idx); info->hw_queue &= ~MT_TX_HW_QUEUE_PHY; return hw; } void mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t); void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames, struct napi_struct *napi); void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q, struct napi_struct *napi); void mt76_rx_aggr_reorder(struct sk_buff *skb, struct sk_buff_head *frames); void mt76_testmode_tx_pending(struct mt76_phy *phy); void mt76_queue_tx_complete(struct mt76_dev *dev, struct mt76_queue *q, struct mt76_queue_entry *e); /* usb */ static inline bool mt76u_urb_error(struct urb *urb) { return urb->status && urb->status != -ECONNRESET && urb->status != -ESHUTDOWN && urb->status != -ENOENT; } /* Map hardware queues to usb endpoints */ static inline u8 q2ep(u8 qid) { /* TODO: take management packets to queue 5 */ return qid + 1; } static inline int mt76u_bulk_msg(struct mt76_dev *dev, void *data, int len, int *actual_len, int timeout, int ep) { struct usb_interface *uintf = to_usb_interface(dev->dev); struct usb_device *udev = interface_to_usbdev(uintf); struct mt76_usb *usb = &dev->usb; unsigned int pipe; if (actual_len) pipe = usb_rcvbulkpipe(udev, usb->in_ep[ep]); else pipe = usb_sndbulkpipe(udev, usb->out_ep[ep]); return usb_bulk_msg(udev, pipe, data, len, actual_len, timeout); } void mt76_ethtool_worker(struct mt76_ethtool_worker_info *wi, struct mt76_sta_stats *stats); int mt76_skb_adjust_pad(struct sk_buff *skb, int pad); int __mt76u_vendor_request(struct mt76_dev *dev, u8 req, u8 req_type, u16 val, u16 offset, void *buf, size_t len); int mt76u_vendor_request(struct mt76_dev *dev, u8 req, u8 req_type, u16 val, u16 offset, void *buf, size_t len); void mt76u_single_wr(struct mt76_dev *dev, const u8 req, const u16 offset, const u32 val); void mt76u_read_copy(struct mt76_dev *dev, u32 offset, void *data, int len); u32 ___mt76u_rr(struct mt76_dev *dev, u8 req, u8 req_type, u32 addr); void ___mt76u_wr(struct mt76_dev *dev, u8 req, u8 req_type, u32 addr, u32 val); int __mt76u_init(struct mt76_dev *dev, struct usb_interface *intf, struct mt76_bus_ops *ops); int mt76u_init(struct mt76_dev *dev, struct usb_interface *intf); int mt76u_alloc_mcu_queue(struct mt76_dev *dev); int mt76u_alloc_queues(struct mt76_dev *dev); void mt76u_stop_tx(struct mt76_dev *dev); void mt76u_stop_rx(struct mt76_dev *dev); int mt76u_resume_rx(struct mt76_dev *dev); void mt76u_queues_deinit(struct mt76_dev *dev); int mt76s_init(struct mt76_dev *dev, struct sdio_func *func, const struct mt76_bus_ops *bus_ops); int mt76s_alloc_rx_queue(struct mt76_dev *dev, enum mt76_rxq_id qid); int mt76s_alloc_tx(struct mt76_dev *dev); void mt76s_deinit(struct mt76_dev *dev); void mt76s_sdio_irq(struct sdio_func *func); void mt76s_txrx_worker(struct mt76_sdio *sdio); bool mt76s_txqs_empty(struct mt76_dev *dev); int mt76s_hw_init(struct mt76_dev *dev, struct sdio_func *func, int hw_ver); u32 mt76s_rr(struct mt76_dev *dev, u32 offset); void mt76s_wr(struct mt76_dev *dev, u32 offset, u32 val); u32 mt76s_rmw(struct mt76_dev *dev, u32 offset, u32 mask, u32 val); u32 mt76s_read_pcr(struct mt76_dev *dev); void mt76s_write_copy(struct mt76_dev *dev, u32 offset, const void *data, int len); void mt76s_read_copy(struct mt76_dev *dev, u32 offset, void *data, int len); int mt76s_wr_rp(struct mt76_dev *dev, u32 base, const struct mt76_reg_pair *data, int len); int mt76s_rd_rp(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *data, int len); struct sk_buff * __mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data, int len, int data_len, gfp_t gfp); static inline struct sk_buff * mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data, int data_len) { return __mt76_mcu_msg_alloc(dev, data, data_len, data_len, GFP_KERNEL); } void mt76_mcu_rx_event(struct mt76_dev *dev, struct sk_buff *skb); struct sk_buff *mt76_mcu_get_response(struct mt76_dev *dev, unsigned long expires); int mt76_mcu_send_and_get_msg(struct mt76_dev *dev, int cmd, const void *data, int len, bool wait_resp, struct sk_buff **ret); int mt76_mcu_skb_send_and_get_msg(struct mt76_dev *dev, struct sk_buff *skb, int cmd, bool wait_resp, struct sk_buff **ret); int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data, int len, int max_len); static inline int mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data, int len) { int max_len = 4096 - dev->mcu_ops->headroom; return __mt76_mcu_send_firmware(dev, cmd, data, len, max_len); } static inline int mt76_mcu_send_msg(struct mt76_dev *dev, int cmd, const void *data, int len, bool wait_resp) { return mt76_mcu_send_and_get_msg(dev, cmd, data, len, wait_resp, NULL); } static inline int mt76_mcu_skb_send_msg(struct mt76_dev *dev, struct sk_buff *skb, int cmd, bool wait_resp) { return mt76_mcu_skb_send_and_get_msg(dev, skb, cmd, wait_resp, NULL); } void mt76_set_irq_mask(struct mt76_dev *dev, u32 addr, u32 clear, u32 set); s8 mt76_get_rate_power_limits(struct mt76_phy *phy, struct ieee80211_channel *chan, struct mt76_power_limits *dest, s8 target_power); struct mt76_txwi_cache * mt76_token_release(struct mt76_dev *dev, int token, bool *wake); int mt76_token_consume(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi); void __mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked); static inline void mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked) { spin_lock_bh(&dev->token_lock); __mt76_set_tx_blocked(dev, blocked); spin_unlock_bh(&dev->token_lock); } static inline int mt76_token_get(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi) { int token; spin_lock_bh(&dev->token_lock); token = idr_alloc(&dev->token, *ptxwi, 0, dev->token_size, GFP_ATOMIC); spin_unlock_bh(&dev->token_lock); return token; } static inline struct mt76_txwi_cache * mt76_token_put(struct mt76_dev *dev, int token) { struct mt76_txwi_cache *txwi; spin_lock_bh(&dev->token_lock); txwi = idr_remove(&dev->token, token); spin_unlock_bh(&dev->token_lock); return txwi; } static inline void mt76_packet_id_init(struct mt76_wcid *wcid) { INIT_LIST_HEAD(&wcid->list); idr_init(&wcid->pktid); } static inline void mt76_packet_id_flush(struct mt76_dev *dev, struct mt76_wcid *wcid) { struct sk_buff_head list; mt76_tx_status_lock(dev, &list); mt76_tx_status_skb_get(dev, wcid, -1, &list); mt76_tx_status_unlock(dev, &list); idr_destroy(&wcid->pktid); } #endif