// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau */ #include #include #include "mt76.h" #define CHAN2G(_idx, _freq) { \ .band = NL80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } #define CHAN5G(_idx, _freq) { \ .band = NL80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } #define CHAN6G(_idx, _freq) { \ .band = NL80211_BAND_6GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } static const struct ieee80211_channel mt76_channels_2ghz[] = { CHAN2G(1, 2412), CHAN2G(2, 2417), CHAN2G(3, 2422), CHAN2G(4, 2427), CHAN2G(5, 2432), CHAN2G(6, 2437), CHAN2G(7, 2442), CHAN2G(8, 2447), CHAN2G(9, 2452), CHAN2G(10, 2457), CHAN2G(11, 2462), CHAN2G(12, 2467), CHAN2G(13, 2472), CHAN2G(14, 2484), }; static const struct ieee80211_channel mt76_channels_5ghz[] = { CHAN5G(36, 5180), CHAN5G(40, 5200), CHAN5G(44, 5220), CHAN5G(48, 5240), CHAN5G(52, 5260), CHAN5G(56, 5280), CHAN5G(60, 5300), CHAN5G(64, 5320), CHAN5G(100, 5500), CHAN5G(104, 5520), CHAN5G(108, 5540), CHAN5G(112, 5560), CHAN5G(116, 5580), CHAN5G(120, 5600), CHAN5G(124, 5620), CHAN5G(128, 5640), CHAN5G(132, 5660), CHAN5G(136, 5680), CHAN5G(140, 5700), CHAN5G(144, 5720), CHAN5G(149, 5745), CHAN5G(153, 5765), CHAN5G(157, 5785), CHAN5G(161, 5805), CHAN5G(165, 5825), CHAN5G(169, 5845), CHAN5G(173, 5865), CHAN5G(177, 5885), }; static const struct ieee80211_channel mt76_channels_6ghz[] = { /* UNII-5 */ CHAN6G(1, 5955), CHAN6G(5, 5975), CHAN6G(9, 5995), CHAN6G(13, 6015), CHAN6G(17, 6035), CHAN6G(21, 6055), CHAN6G(25, 6075), CHAN6G(29, 6095), CHAN6G(33, 6115), CHAN6G(37, 6135), CHAN6G(41, 6155), CHAN6G(45, 6175), CHAN6G(49, 6195), CHAN6G(53, 6215), CHAN6G(57, 6235), CHAN6G(61, 6255), CHAN6G(65, 6275), CHAN6G(69, 6295), CHAN6G(73, 6315), CHAN6G(77, 6335), CHAN6G(81, 6355), CHAN6G(85, 6375), CHAN6G(89, 6395), CHAN6G(93, 6415), /* UNII-6 */ CHAN6G(97, 6435), CHAN6G(101, 6455), CHAN6G(105, 6475), CHAN6G(109, 6495), CHAN6G(113, 6515), CHAN6G(117, 6535), /* UNII-7 */ CHAN6G(121, 6555), CHAN6G(125, 6575), CHAN6G(129, 6595), CHAN6G(133, 6615), CHAN6G(137, 6635), CHAN6G(141, 6655), CHAN6G(145, 6675), CHAN6G(149, 6695), CHAN6G(153, 6715), CHAN6G(157, 6735), CHAN6G(161, 6755), CHAN6G(165, 6775), CHAN6G(169, 6795), CHAN6G(173, 6815), CHAN6G(177, 6835), CHAN6G(181, 6855), CHAN6G(185, 6875), /* UNII-8 */ CHAN6G(189, 6895), CHAN6G(193, 6915), CHAN6G(197, 6935), CHAN6G(201, 6955), CHAN6G(205, 6975), CHAN6G(209, 6995), CHAN6G(213, 7015), CHAN6G(217, 7035), CHAN6G(221, 7055), CHAN6G(225, 7075), CHAN6G(229, 7095), CHAN6G(233, 7115), }; static const struct ieee80211_tpt_blink mt76_tpt_blink[] = { { .throughput = 0 * 1024, .blink_time = 334 }, { .throughput = 1 * 1024, .blink_time = 260 }, { .throughput = 5 * 1024, .blink_time = 220 }, { .throughput = 10 * 1024, .blink_time = 190 }, { .throughput = 20 * 1024, .blink_time = 170 }, { .throughput = 50 * 1024, .blink_time = 150 }, { .throughput = 70 * 1024, .blink_time = 130 }, { .throughput = 100 * 1024, .blink_time = 110 }, { .throughput = 200 * 1024, .blink_time = 80 }, { .throughput = 300 * 1024, .blink_time = 50 }, }; struct ieee80211_rate mt76_rates[] = { CCK_RATE(0, 10), CCK_RATE(1, 20), CCK_RATE(2, 55), CCK_RATE(3, 110), OFDM_RATE(11, 60), OFDM_RATE(15, 90), OFDM_RATE(10, 120), OFDM_RATE(14, 180), OFDM_RATE(9, 240), OFDM_RATE(13, 360), OFDM_RATE(8, 480), OFDM_RATE(12, 540), }; EXPORT_SYMBOL_GPL(mt76_rates); static const struct cfg80211_sar_freq_ranges mt76_sar_freq_ranges[] = { { .start_freq = 2402, .end_freq = 2494, }, { .start_freq = 5150, .end_freq = 5350, }, { .start_freq = 5350, .end_freq = 5470, }, { .start_freq = 5470, .end_freq = 5725, }, { .start_freq = 5725, .end_freq = 5950, }, { .start_freq = 5945, .end_freq = 6165, }, { .start_freq = 6165, .end_freq = 6405, }, { .start_freq = 6405, .end_freq = 6525, }, { .start_freq = 6525, .end_freq = 6705, }, { .start_freq = 6705, .end_freq = 6865, }, { .start_freq = 6865, .end_freq = 7125, }, }; static const struct cfg80211_sar_capa mt76_sar_capa = { .type = NL80211_SAR_TYPE_POWER, .num_freq_ranges = ARRAY_SIZE(mt76_sar_freq_ranges), .freq_ranges = &mt76_sar_freq_ranges[0], }; static int mt76_led_init(struct mt76_phy *phy) { struct mt76_dev *dev = phy->dev; struct ieee80211_hw *hw = phy->hw; if (!phy->leds.cdev.brightness_set && !phy->leds.cdev.blink_set) return 0; snprintf(phy->leds.name, sizeof(phy->leds.name), "mt76-%s", wiphy_name(hw->wiphy)); phy->leds.cdev.name = phy->leds.name; phy->leds.cdev.default_trigger = ieee80211_create_tpt_led_trigger(hw, IEEE80211_TPT_LEDTRIG_FL_RADIO, mt76_tpt_blink, ARRAY_SIZE(mt76_tpt_blink)); if (phy == &dev->phy) { struct device_node *np = dev->dev->of_node; np = of_get_child_by_name(np, "led"); if (np) { int led_pin; if (!of_property_read_u32(np, "led-sources", &led_pin)) phy->leds.pin = led_pin; phy->leds.al = of_property_read_bool(np, "led-active-low"); of_node_put(np); } } return led_classdev_register(dev->dev, &phy->leds.cdev); } static void mt76_led_cleanup(struct mt76_phy *phy) { if (!phy->leds.cdev.brightness_set && !phy->leds.cdev.blink_set) return; led_classdev_unregister(&phy->leds.cdev); } static void mt76_init_stream_cap(struct mt76_phy *phy, struct ieee80211_supported_band *sband, bool vht) { struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap; int i, nstream = hweight8(phy->antenna_mask); struct ieee80211_sta_vht_cap *vht_cap; u16 mcs_map = 0; if (nstream > 1) ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; else ht_cap->cap &= ~IEEE80211_HT_CAP_TX_STBC; for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) ht_cap->mcs.rx_mask[i] = i < nstream ? 0xff : 0; if (!vht) return; vht_cap = &sband->vht_cap; if (nstream > 1) vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; else vht_cap->cap &= ~IEEE80211_VHT_CAP_TXSTBC; vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN | IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; for (i = 0; i < 8; i++) { if (i < nstream) mcs_map |= (IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2)); else mcs_map |= (IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2)); } vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); if (ieee80211_hw_check(phy->hw, SUPPORTS_VHT_EXT_NSS_BW)) vht_cap->vht_mcs.tx_highest |= cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); } void mt76_set_stream_caps(struct mt76_phy *phy, bool vht) { if (phy->cap.has_2ghz) mt76_init_stream_cap(phy, &phy->sband_2g.sband, false); if (phy->cap.has_5ghz) mt76_init_stream_cap(phy, &phy->sband_5g.sband, vht); if (phy->cap.has_6ghz) mt76_init_stream_cap(phy, &phy->sband_6g.sband, vht); } EXPORT_SYMBOL_GPL(mt76_set_stream_caps); static int mt76_init_sband(struct mt76_phy *phy, struct mt76_sband *msband, const struct ieee80211_channel *chan, int n_chan, struct ieee80211_rate *rates, int n_rates, bool ht, bool vht) { struct ieee80211_supported_band *sband = &msband->sband; struct ieee80211_sta_vht_cap *vht_cap; struct ieee80211_sta_ht_cap *ht_cap; struct mt76_dev *dev = phy->dev; void *chanlist; int size; size = n_chan * sizeof(*chan); chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL); if (!chanlist) return -ENOMEM; msband->chan = devm_kcalloc(dev->dev, n_chan, sizeof(*msband->chan), GFP_KERNEL); if (!msband->chan) return -ENOMEM; sband->channels = chanlist; sband->n_channels = n_chan; sband->bitrates = rates; sband->n_bitrates = n_rates; if (!ht) return 0; ht_cap = &sband->ht_cap; ht_cap->ht_supported = true; ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; mt76_init_stream_cap(phy, sband, vht); if (!vht) return 0; vht_cap = &sband->vht_cap; vht_cap->vht_supported = true; vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_SHORT_GI_80 | (3 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); return 0; } static int mt76_init_sband_2g(struct mt76_phy *phy, struct ieee80211_rate *rates, int n_rates) { phy->hw->wiphy->bands[NL80211_BAND_2GHZ] = &phy->sband_2g.sband; return mt76_init_sband(phy, &phy->sband_2g, mt76_channels_2ghz, ARRAY_SIZE(mt76_channels_2ghz), rates, n_rates, true, false); } static int mt76_init_sband_5g(struct mt76_phy *phy, struct ieee80211_rate *rates, int n_rates, bool vht) { phy->hw->wiphy->bands[NL80211_BAND_5GHZ] = &phy->sband_5g.sband; return mt76_init_sband(phy, &phy->sband_5g, mt76_channels_5ghz, ARRAY_SIZE(mt76_channels_5ghz), rates, n_rates, true, vht); } static int mt76_init_sband_6g(struct mt76_phy *phy, struct ieee80211_rate *rates, int n_rates) { phy->hw->wiphy->bands[NL80211_BAND_6GHZ] = &phy->sband_6g.sband; return mt76_init_sband(phy, &phy->sband_6g, mt76_channels_6ghz, ARRAY_SIZE(mt76_channels_6ghz), rates, n_rates, false, false); } static void mt76_check_sband(struct mt76_phy *phy, struct mt76_sband *msband, enum nl80211_band band) { struct ieee80211_supported_band *sband = &msband->sband; bool found = false; int i; if (!sband) return; for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; found = true; break; } if (found) { phy->chandef.chan = &sband->channels[0]; phy->chan_state = &msband->chan[0]; return; } sband->n_channels = 0; phy->hw->wiphy->bands[band] = NULL; } static int mt76_phy_init(struct mt76_phy *phy, struct ieee80211_hw *hw) { struct mt76_dev *dev = phy->dev; struct wiphy *wiphy = hw->wiphy; SET_IEEE80211_DEV(hw, dev->dev); SET_IEEE80211_PERM_ADDR(hw, phy->macaddr); wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR | NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE; wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH | WIPHY_FLAG_SUPPORTS_TDLS | WIPHY_FLAG_AP_UAPSD; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_AIRTIME_FAIRNESS); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_AQL); wiphy->available_antennas_tx = phy->antenna_mask; wiphy->available_antennas_rx = phy->antenna_mask; wiphy->sar_capa = &mt76_sar_capa; phy->frp = devm_kcalloc(dev->dev, wiphy->sar_capa->num_freq_ranges, sizeof(struct mt76_freq_range_power), GFP_KERNEL); if (!phy->frp) return -ENOMEM; hw->txq_data_size = sizeof(struct mt76_txq); hw->uapsd_max_sp_len = IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL; if (!hw->max_tx_fragments) hw->max_tx_fragments = 16; ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS); ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER); if (!(dev->drv->drv_flags & MT_DRV_AMSDU_OFFLOAD)) { ieee80211_hw_set(hw, TX_AMSDU); ieee80211_hw_set(hw, TX_FRAG_LIST); } ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, AP_LINK_PS); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); return 0; } struct mt76_phy * mt76_alloc_phy(struct mt76_dev *dev, unsigned int size, const struct ieee80211_ops *ops, u8 band_idx) { struct ieee80211_hw *hw; unsigned int phy_size; struct mt76_phy *phy; phy_size = ALIGN(sizeof(*phy), 8); hw = ieee80211_alloc_hw(size + phy_size, ops); if (!hw) return NULL; phy = hw->priv; phy->dev = dev; phy->hw = hw; phy->priv = hw->priv + phy_size; phy->band_idx = band_idx; hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_ADHOC); return phy; } EXPORT_SYMBOL_GPL(mt76_alloc_phy); int mt76_register_phy(struct mt76_phy *phy, bool vht, struct ieee80211_rate *rates, int n_rates) { int ret; ret = mt76_phy_init(phy, phy->hw); if (ret) return ret; if (phy->cap.has_2ghz) { ret = mt76_init_sband_2g(phy, rates, n_rates); if (ret) return ret; } if (phy->cap.has_5ghz) { ret = mt76_init_sband_5g(phy, rates + 4, n_rates - 4, vht); if (ret) return ret; } if (phy->cap.has_6ghz) { ret = mt76_init_sband_6g(phy, rates + 4, n_rates - 4); if (ret) return ret; } if (IS_ENABLED(CONFIG_MT76_LEDS)) { ret = mt76_led_init(phy); if (ret) return ret; } wiphy_read_of_freq_limits(phy->hw->wiphy); mt76_check_sband(phy, &phy->sband_2g, NL80211_BAND_2GHZ); mt76_check_sband(phy, &phy->sband_5g, NL80211_BAND_5GHZ); mt76_check_sband(phy, &phy->sband_6g, NL80211_BAND_6GHZ); ret = ieee80211_register_hw(phy->hw); if (ret) return ret; set_bit(MT76_STATE_REGISTERED, &phy->state); phy->dev->phys[phy->band_idx] = phy; return 0; } EXPORT_SYMBOL_GPL(mt76_register_phy); void mt76_unregister_phy(struct mt76_phy *phy) { struct mt76_dev *dev = phy->dev; if (!test_bit(MT76_STATE_REGISTERED, &phy->state)) return; if (IS_ENABLED(CONFIG_MT76_LEDS)) mt76_led_cleanup(phy); mt76_tx_status_check(dev, true); ieee80211_unregister_hw(phy->hw); dev->phys[phy->band_idx] = NULL; } EXPORT_SYMBOL_GPL(mt76_unregister_phy); int mt76_create_page_pool(struct mt76_dev *dev, struct mt76_queue *q) { struct page_pool_params pp_params = { .order = 0, .flags = PP_FLAG_PAGE_FRAG, .nid = NUMA_NO_NODE, .dev = dev->dma_dev, }; int idx = q - dev->q_rx; switch (idx) { case MT_RXQ_MAIN: case MT_RXQ_BAND1: case MT_RXQ_BAND2: pp_params.pool_size = 256; break; default: pp_params.pool_size = 16; break; } if (mt76_is_mmio(dev)) { /* rely on page_pool for DMA mapping */ pp_params.flags |= PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; pp_params.dma_dir = DMA_FROM_DEVICE; pp_params.max_len = PAGE_SIZE; pp_params.offset = 0; } q->page_pool = page_pool_create(&pp_params); if (IS_ERR(q->page_pool)) { int err = PTR_ERR(q->page_pool); q->page_pool = NULL; return err; } return 0; } EXPORT_SYMBOL_GPL(mt76_create_page_pool); struct mt76_dev * mt76_alloc_device(struct device *pdev, unsigned int size, const struct ieee80211_ops *ops, const struct mt76_driver_ops *drv_ops) { struct ieee80211_hw *hw; struct mt76_phy *phy; struct mt76_dev *dev; int i; hw = ieee80211_alloc_hw(size, ops); if (!hw) return NULL; dev = hw->priv; dev->hw = hw; dev->dev = pdev; dev->drv = drv_ops; dev->dma_dev = pdev; phy = &dev->phy; phy->dev = dev; phy->hw = hw; phy->band_idx = MT_BAND0; dev->phys[phy->band_idx] = phy; spin_lock_init(&dev->rx_lock); spin_lock_init(&dev->lock); spin_lock_init(&dev->cc_lock); spin_lock_init(&dev->status_lock); spin_lock_init(&dev->wed_lock); mutex_init(&dev->mutex); init_waitqueue_head(&dev->tx_wait); skb_queue_head_init(&dev->mcu.res_q); init_waitqueue_head(&dev->mcu.wait); mutex_init(&dev->mcu.mutex); dev->tx_worker.fn = mt76_tx_worker; hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | #ifdef CONFIG_MAC80211_MESH BIT(NL80211_IFTYPE_MESH_POINT) | #endif BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_ADHOC); spin_lock_init(&dev->token_lock); idr_init(&dev->token); spin_lock_init(&dev->rx_token_lock); idr_init(&dev->rx_token); INIT_LIST_HEAD(&dev->wcid_list); INIT_LIST_HEAD(&dev->sta_poll_list); spin_lock_init(&dev->sta_poll_lock); INIT_LIST_HEAD(&dev->txwi_cache); INIT_LIST_HEAD(&dev->rxwi_cache); dev->token_size = dev->drv->token_size; for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) skb_queue_head_init(&dev->rx_skb[i]); dev->wq = alloc_ordered_workqueue("mt76", 0); if (!dev->wq) { ieee80211_free_hw(hw); return NULL; } return dev; } EXPORT_SYMBOL_GPL(mt76_alloc_device); int mt76_register_device(struct mt76_dev *dev, bool vht, struct ieee80211_rate *rates, int n_rates) { struct ieee80211_hw *hw = dev->hw; struct mt76_phy *phy = &dev->phy; int ret; dev_set_drvdata(dev->dev, dev); ret = mt76_phy_init(phy, hw); if (ret) return ret; if (phy->cap.has_2ghz) { ret = mt76_init_sband_2g(phy, rates, n_rates); if (ret) return ret; } if (phy->cap.has_5ghz) { ret = mt76_init_sband_5g(phy, rates + 4, n_rates - 4, vht); if (ret) return ret; } if (phy->cap.has_6ghz) { ret = mt76_init_sband_6g(phy, rates + 4, n_rates - 4); if (ret) return ret; } wiphy_read_of_freq_limits(hw->wiphy); mt76_check_sband(&dev->phy, &phy->sband_2g, NL80211_BAND_2GHZ); mt76_check_sband(&dev->phy, &phy->sband_5g, NL80211_BAND_5GHZ); mt76_check_sband(&dev->phy, &phy->sband_6g, NL80211_BAND_6GHZ); if (IS_ENABLED(CONFIG_MT76_LEDS)) { ret = mt76_led_init(phy); if (ret) return ret; } ret = ieee80211_register_hw(hw); if (ret) return ret; WARN_ON(mt76_worker_setup(hw, &dev->tx_worker, NULL, "tx")); set_bit(MT76_STATE_REGISTERED, &phy->state); sched_set_fifo_low(dev->tx_worker.task); return 0; } EXPORT_SYMBOL_GPL(mt76_register_device); void mt76_unregister_device(struct mt76_dev *dev) { struct ieee80211_hw *hw = dev->hw; if (!test_bit(MT76_STATE_REGISTERED, &dev->phy.state)) return; if (IS_ENABLED(CONFIG_MT76_LEDS)) mt76_led_cleanup(&dev->phy); mt76_tx_status_check(dev, true); ieee80211_unregister_hw(hw); } EXPORT_SYMBOL_GPL(mt76_unregister_device); void mt76_free_device(struct mt76_dev *dev) { mt76_worker_teardown(&dev->tx_worker); if (dev->wq) { destroy_workqueue(dev->wq); dev->wq = NULL; } ieee80211_free_hw(dev->hw); } EXPORT_SYMBOL_GPL(mt76_free_device); static void mt76_rx_release_amsdu(struct mt76_phy *phy, enum mt76_rxq_id q) { struct sk_buff *skb = phy->rx_amsdu[q].head; struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_dev *dev = phy->dev; phy->rx_amsdu[q].head = NULL; phy->rx_amsdu[q].tail = NULL; /* * Validate if the amsdu has a proper first subframe. * A single MSDU can be parsed as A-MSDU when the unauthenticated A-MSDU * flag of the QoS header gets flipped. In such cases, the first * subframe has a LLC/SNAP header in the location of the destination * address. */ if (skb_shinfo(skb)->frag_list) { int offset = 0; if (!(status->flag & RX_FLAG_8023)) { offset = ieee80211_get_hdrlen_from_skb(skb); if ((status->flag & (RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED)) == RX_FLAG_DECRYPTED) offset += 8; } if (ether_addr_equal(skb->data + offset, rfc1042_header)) { dev_kfree_skb(skb); return; } } __skb_queue_tail(&dev->rx_skb[q], skb); } static void mt76_rx_release_burst(struct mt76_phy *phy, enum mt76_rxq_id q, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; if (phy->rx_amsdu[q].head && (!status->amsdu || status->first_amsdu || status->seqno != phy->rx_amsdu[q].seqno)) mt76_rx_release_amsdu(phy, q); if (!phy->rx_amsdu[q].head) { phy->rx_amsdu[q].tail = &skb_shinfo(skb)->frag_list; phy->rx_amsdu[q].seqno = status->seqno; phy->rx_amsdu[q].head = skb; } else { *phy->rx_amsdu[q].tail = skb; phy->rx_amsdu[q].tail = &skb->next; } if (!status->amsdu || status->last_amsdu) mt76_rx_release_amsdu(phy, q); } void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_phy *phy = mt76_dev_phy(dev, status->phy_idx); if (!test_bit(MT76_STATE_RUNNING, &phy->state)) { dev_kfree_skb(skb); return; } #ifdef CONFIG_NL80211_TESTMODE if (phy->test.state == MT76_TM_STATE_RX_FRAMES) { phy->test.rx_stats.packets[q]++; if (status->flag & RX_FLAG_FAILED_FCS_CRC) phy->test.rx_stats.fcs_error[q]++; } #endif mt76_rx_release_burst(phy, q, skb); } EXPORT_SYMBOL_GPL(mt76_rx); bool mt76_has_tx_pending(struct mt76_phy *phy) { struct mt76_queue *q; int i; for (i = 0; i < __MT_TXQ_MAX; i++) { q = phy->q_tx[i]; if (q && q->queued) return true; } return false; } EXPORT_SYMBOL_GPL(mt76_has_tx_pending); static struct mt76_channel_state * mt76_channel_state(struct mt76_phy *phy, struct ieee80211_channel *c) { struct mt76_sband *msband; int idx; if (c->band == NL80211_BAND_2GHZ) msband = &phy->sband_2g; else if (c->band == NL80211_BAND_6GHZ) msband = &phy->sband_6g; else msband = &phy->sband_5g; idx = c - &msband->sband.channels[0]; return &msband->chan[idx]; } void mt76_update_survey_active_time(struct mt76_phy *phy, ktime_t time) { struct mt76_channel_state *state = phy->chan_state; state->cc_active += ktime_to_us(ktime_sub(time, phy->survey_time)); phy->survey_time = time; } EXPORT_SYMBOL_GPL(mt76_update_survey_active_time); void mt76_update_survey(struct mt76_phy *phy) { struct mt76_dev *dev = phy->dev; ktime_t cur_time; if (dev->drv->update_survey) dev->drv->update_survey(phy); cur_time = ktime_get_boottime(); mt76_update_survey_active_time(phy, cur_time); if (dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME) { struct mt76_channel_state *state = phy->chan_state; spin_lock_bh(&dev->cc_lock); state->cc_bss_rx += dev->cur_cc_bss_rx; dev->cur_cc_bss_rx = 0; spin_unlock_bh(&dev->cc_lock); } } EXPORT_SYMBOL_GPL(mt76_update_survey); void mt76_set_channel(struct mt76_phy *phy) { struct mt76_dev *dev = phy->dev; struct ieee80211_hw *hw = phy->hw; struct cfg80211_chan_def *chandef = &hw->conf.chandef; bool offchannel = hw->conf.flags & IEEE80211_CONF_OFFCHANNEL; int timeout = HZ / 5; wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(phy), timeout); mt76_update_survey(phy); if (phy->chandef.chan->center_freq != chandef->chan->center_freq || phy->chandef.width != chandef->width) phy->dfs_state = MT_DFS_STATE_UNKNOWN; phy->chandef = *chandef; phy->chan_state = mt76_channel_state(phy, chandef->chan); if (!offchannel) phy->main_chan = chandef->chan; if (chandef->chan != phy->main_chan) memset(phy->chan_state, 0, sizeof(*phy->chan_state)); } EXPORT_SYMBOL_GPL(mt76_set_channel); int mt76_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; struct mt76_sband *sband; struct ieee80211_channel *chan; struct mt76_channel_state *state; int ret = 0; mutex_lock(&dev->mutex); if (idx == 0 && dev->drv->update_survey) mt76_update_survey(phy); if (idx >= phy->sband_2g.sband.n_channels + phy->sband_5g.sband.n_channels) { idx -= (phy->sband_2g.sband.n_channels + phy->sband_5g.sband.n_channels); sband = &phy->sband_6g; } else if (idx >= phy->sband_2g.sband.n_channels) { idx -= phy->sband_2g.sband.n_channels; sband = &phy->sband_5g; } else { sband = &phy->sband_2g; } if (idx >= sband->sband.n_channels) { ret = -ENOENT; goto out; } chan = &sband->sband.channels[idx]; state = mt76_channel_state(phy, chan); memset(survey, 0, sizeof(*survey)); survey->channel = chan; survey->filled = SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; survey->filled |= dev->drv->survey_flags; if (state->noise) survey->filled |= SURVEY_INFO_NOISE_DBM; if (chan == phy->main_chan) { survey->filled |= SURVEY_INFO_IN_USE; if (dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME) survey->filled |= SURVEY_INFO_TIME_BSS_RX; } survey->time_busy = div_u64(state->cc_busy, 1000); survey->time_rx = div_u64(state->cc_rx, 1000); survey->time = div_u64(state->cc_active, 1000); survey->noise = state->noise; spin_lock_bh(&dev->cc_lock); survey->time_bss_rx = div_u64(state->cc_bss_rx, 1000); survey->time_tx = div_u64(state->cc_tx, 1000); spin_unlock_bh(&dev->cc_lock); out: mutex_unlock(&dev->mutex); return ret; } EXPORT_SYMBOL_GPL(mt76_get_survey); void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid, struct ieee80211_key_conf *key) { struct ieee80211_key_seq seq; int i; wcid->rx_check_pn = false; if (!key) return; if (key->cipher != WLAN_CIPHER_SUITE_CCMP) return; wcid->rx_check_pn = true; /* data frame */ for (i = 0; i < IEEE80211_NUM_TIDS; i++) { ieee80211_get_key_rx_seq(key, i, &seq); memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn)); } /* robust management frame */ ieee80211_get_key_rx_seq(key, -1, &seq); memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn)); } EXPORT_SYMBOL(mt76_wcid_key_setup); int mt76_rx_signal(u8 chain_mask, s8 *chain_signal) { int signal = -128; u8 chains; for (chains = chain_mask; chains; chains >>= 1, chain_signal++) { int cur, diff; cur = *chain_signal; if (!(chains & BIT(0)) || cur > 0) continue; if (cur > signal) swap(cur, signal); diff = signal - cur; if (diff == 0) signal += 3; else if (diff <= 2) signal += 2; else if (diff <= 6) signal += 1; } return signal; } EXPORT_SYMBOL(mt76_rx_signal); static void mt76_rx_convert(struct mt76_dev *dev, struct sk_buff *skb, struct ieee80211_hw **hw, struct ieee80211_sta **sta) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = mt76_skb_get_hdr(skb); struct mt76_rx_status mstat; mstat = *((struct mt76_rx_status *)skb->cb); memset(status, 0, sizeof(*status)); status->flag = mstat.flag; status->freq = mstat.freq; status->enc_flags = mstat.enc_flags; status->encoding = mstat.encoding; status->bw = mstat.bw; if (status->encoding == RX_ENC_EHT) { status->eht.ru = mstat.eht.ru; status->eht.gi = mstat.eht.gi; } else { status->he_ru = mstat.he_ru; status->he_gi = mstat.he_gi; status->he_dcm = mstat.he_dcm; } status->rate_idx = mstat.rate_idx; status->nss = mstat.nss; status->band = mstat.band; status->signal = mstat.signal; status->chains = mstat.chains; status->ampdu_reference = mstat.ampdu_ref; status->device_timestamp = mstat.timestamp; status->mactime = mstat.timestamp; status->signal = mt76_rx_signal(mstat.chains, mstat.chain_signal); if (status->signal <= -128) status->flag |= RX_FLAG_NO_SIGNAL_VAL; if (ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) status->boottime_ns = ktime_get_boottime_ns(); BUILD_BUG_ON(sizeof(mstat) > sizeof(skb->cb)); BUILD_BUG_ON(sizeof(status->chain_signal) != sizeof(mstat.chain_signal)); memcpy(status->chain_signal, mstat.chain_signal, sizeof(mstat.chain_signal)); *sta = wcid_to_sta(mstat.wcid); *hw = mt76_phy_hw(dev, mstat.phy_idx); } static void mt76_check_ccmp_pn(struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_wcid *wcid = status->wcid; struct ieee80211_hdr *hdr; int security_idx; int ret; if (!(status->flag & RX_FLAG_DECRYPTED)) return; if (status->flag & RX_FLAG_ONLY_MONITOR) return; if (!wcid || !wcid->rx_check_pn) return; security_idx = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; if (status->flag & RX_FLAG_8023) goto skip_hdr_check; hdr = mt76_skb_get_hdr(skb); if (!(status->flag & RX_FLAG_IV_STRIPPED)) { /* * Validate the first fragment both here and in mac80211 * All further fragments will be validated by mac80211 only. */ if (ieee80211_is_frag(hdr) && !ieee80211_is_first_frag(hdr->frame_control)) return; } /* IEEE 802.11-2020, 12.5.3.4.4 "PN and replay detection" c): * * the recipient shall maintain a single replay counter for received * individually addressed robust Management frames that are received * with the To DS subfield equal to 0, [...] */ if (ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_has_tods(hdr->frame_control)) security_idx = IEEE80211_NUM_TIDS; skip_hdr_check: BUILD_BUG_ON(sizeof(status->iv) != sizeof(wcid->rx_key_pn[0])); ret = memcmp(status->iv, wcid->rx_key_pn[security_idx], sizeof(status->iv)); if (ret <= 0) { status->flag |= RX_FLAG_ONLY_MONITOR; return; } memcpy(wcid->rx_key_pn[security_idx], status->iv, sizeof(status->iv)); if (status->flag & RX_FLAG_IV_STRIPPED) status->flag |= RX_FLAG_PN_VALIDATED; } static void mt76_airtime_report(struct mt76_dev *dev, struct mt76_rx_status *status, int len) { struct mt76_wcid *wcid = status->wcid; struct ieee80211_rx_status info = { .enc_flags = status->enc_flags, .rate_idx = status->rate_idx, .encoding = status->encoding, .band = status->band, .nss = status->nss, .bw = status->bw, }; struct ieee80211_sta *sta; u32 airtime; u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; airtime = ieee80211_calc_rx_airtime(dev->hw, &info, len); spin_lock(&dev->cc_lock); dev->cur_cc_bss_rx += airtime; spin_unlock(&dev->cc_lock); if (!wcid || !wcid->sta) return; sta = container_of((void *)wcid, struct ieee80211_sta, drv_priv); ieee80211_sta_register_airtime(sta, tidno, 0, airtime); } static void mt76_airtime_flush_ampdu(struct mt76_dev *dev) { struct mt76_wcid *wcid; int wcid_idx; if (!dev->rx_ampdu_len) return; wcid_idx = dev->rx_ampdu_status.wcid_idx; if (wcid_idx < ARRAY_SIZE(dev->wcid)) wcid = rcu_dereference(dev->wcid[wcid_idx]); else wcid = NULL; dev->rx_ampdu_status.wcid = wcid; mt76_airtime_report(dev, &dev->rx_ampdu_status, dev->rx_ampdu_len); dev->rx_ampdu_len = 0; dev->rx_ampdu_ref = 0; } static void mt76_airtime_check(struct mt76_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct mt76_wcid *wcid = status->wcid; if (!(dev->drv->drv_flags & MT_DRV_SW_RX_AIRTIME)) return; if (!wcid || !wcid->sta) { struct ieee80211_hdr *hdr = mt76_skb_get_hdr(skb); if (status->flag & RX_FLAG_8023) return; if (!ether_addr_equal(hdr->addr1, dev->phy.macaddr)) return; wcid = NULL; } if (!(status->flag & RX_FLAG_AMPDU_DETAILS) || status->ampdu_ref != dev->rx_ampdu_ref) mt76_airtime_flush_ampdu(dev); if (status->flag & RX_FLAG_AMPDU_DETAILS) { if (!dev->rx_ampdu_len || status->ampdu_ref != dev->rx_ampdu_ref) { dev->rx_ampdu_status = *status; dev->rx_ampdu_status.wcid_idx = wcid ? wcid->idx : 0xff; dev->rx_ampdu_ref = status->ampdu_ref; } dev->rx_ampdu_len += skb->len; return; } mt76_airtime_report(dev, status, skb->len); } static void mt76_check_sta(struct mt76_dev *dev, struct sk_buff *skb) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; struct ieee80211_hdr *hdr = mt76_skb_get_hdr(skb); struct ieee80211_sta *sta; struct ieee80211_hw *hw; struct mt76_wcid *wcid = status->wcid; u8 tidno = status->qos_ctl & IEEE80211_QOS_CTL_TID_MASK; bool ps; hw = mt76_phy_hw(dev, status->phy_idx); if (ieee80211_is_pspoll(hdr->frame_control) && !wcid && !(status->flag & RX_FLAG_8023)) { sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr2, NULL); if (sta) wcid = status->wcid = (struct mt76_wcid *)sta->drv_priv; } mt76_airtime_check(dev, skb); if (!wcid || !wcid->sta) return; sta = container_of((void *)wcid, struct ieee80211_sta, drv_priv); if (status->signal <= 0) ewma_signal_add(&wcid->rssi, -status->signal); wcid->inactive_count = 0; if (status->flag & RX_FLAG_8023) return; if (!test_bit(MT_WCID_FLAG_CHECK_PS, &wcid->flags)) return; if (ieee80211_is_pspoll(hdr->frame_control)) { ieee80211_sta_pspoll(sta); return; } if (ieee80211_has_morefrags(hdr->frame_control) || !(ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_data(hdr->frame_control))) return; ps = ieee80211_has_pm(hdr->frame_control); if (ps && (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control))) ieee80211_sta_uapsd_trigger(sta, tidno); if (!!test_bit(MT_WCID_FLAG_PS, &wcid->flags) == ps) return; if (ps) set_bit(MT_WCID_FLAG_PS, &wcid->flags); if (dev->drv->sta_ps) dev->drv->sta_ps(dev, sta, ps); if (!ps) clear_bit(MT_WCID_FLAG_PS, &wcid->flags); ieee80211_sta_ps_transition(sta, ps); } void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames, struct napi_struct *napi) { struct ieee80211_sta *sta; struct ieee80211_hw *hw; struct sk_buff *skb, *tmp; LIST_HEAD(list); spin_lock(&dev->rx_lock); while ((skb = __skb_dequeue(frames)) != NULL) { struct sk_buff *nskb = skb_shinfo(skb)->frag_list; mt76_check_ccmp_pn(skb); skb_shinfo(skb)->frag_list = NULL; mt76_rx_convert(dev, skb, &hw, &sta); ieee80211_rx_list(hw, sta, skb, &list); /* subsequent amsdu frames */ while (nskb) { skb = nskb; nskb = nskb->next; skb->next = NULL; mt76_rx_convert(dev, skb, &hw, &sta); ieee80211_rx_list(hw, sta, skb, &list); } } spin_unlock(&dev->rx_lock); if (!napi) { netif_receive_skb_list(&list); return; } list_for_each_entry_safe(skb, tmp, &list, list) { skb_list_del_init(skb); napi_gro_receive(napi, skb); } } void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q, struct napi_struct *napi) { struct sk_buff_head frames; struct sk_buff *skb; __skb_queue_head_init(&frames); while ((skb = __skb_dequeue(&dev->rx_skb[q])) != NULL) { mt76_check_sta(dev, skb); if (mtk_wed_device_active(&dev->mmio.wed)) __skb_queue_tail(&frames, skb); else mt76_rx_aggr_reorder(skb, &frames); } mt76_rx_complete(dev, &frames, napi); } EXPORT_SYMBOL_GPL(mt76_rx_poll_complete); static int mt76_sta_add(struct mt76_phy *phy, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; struct mt76_dev *dev = phy->dev; int ret; int i; mutex_lock(&dev->mutex); ret = dev->drv->sta_add(dev, vif, sta); if (ret) goto out; for (i = 0; i < ARRAY_SIZE(sta->txq); i++) { struct mt76_txq *mtxq; if (!sta->txq[i]) continue; mtxq = (struct mt76_txq *)sta->txq[i]->drv_priv; mtxq->wcid = wcid->idx; } ewma_signal_init(&wcid->rssi); if (phy->band_idx == MT_BAND1) mt76_wcid_mask_set(dev->wcid_phy_mask, wcid->idx); wcid->phy_idx = phy->band_idx; rcu_assign_pointer(dev->wcid[wcid->idx], wcid); mt76_packet_id_init(wcid); out: mutex_unlock(&dev->mutex); return ret; } void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; int i, idx = wcid->idx; for (i = 0; i < ARRAY_SIZE(wcid->aggr); i++) mt76_rx_aggr_stop(dev, wcid, i); if (dev->drv->sta_remove) dev->drv->sta_remove(dev, vif, sta); mt76_packet_id_flush(dev, wcid); mt76_wcid_mask_clear(dev->wcid_mask, idx); mt76_wcid_mask_clear(dev->wcid_phy_mask, idx); } EXPORT_SYMBOL_GPL(__mt76_sta_remove); static void mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { mutex_lock(&dev->mutex); __mt76_sta_remove(dev, vif, sta); mutex_unlock(&dev->mutex); } int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) return mt76_sta_add(phy, vif, sta); if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC && dev->drv->sta_assoc) dev->drv->sta_assoc(dev, vif, sta); if (old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST) mt76_sta_remove(dev, vif, sta); return 0; } EXPORT_SYMBOL_GPL(mt76_sta_state); void mt76_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv; mutex_lock(&dev->mutex); spin_lock_bh(&dev->status_lock); rcu_assign_pointer(dev->wcid[wcid->idx], NULL); spin_unlock_bh(&dev->status_lock); mutex_unlock(&dev->mutex); } EXPORT_SYMBOL_GPL(mt76_sta_pre_rcu_remove); int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int *dbm) { struct mt76_phy *phy = hw->priv; int n_chains = hweight8(phy->antenna_mask); int delta = mt76_tx_power_nss_delta(n_chains); *dbm = DIV_ROUND_UP(phy->txpower_cur + delta, 2); return 0; } EXPORT_SYMBOL_GPL(mt76_get_txpower); int mt76_init_sar_power(struct ieee80211_hw *hw, const struct cfg80211_sar_specs *sar) { struct mt76_phy *phy = hw->priv; const struct cfg80211_sar_capa *capa = hw->wiphy->sar_capa; int i; if (sar->type != NL80211_SAR_TYPE_POWER || !sar->num_sub_specs) return -EINVAL; for (i = 0; i < sar->num_sub_specs; i++) { u32 index = sar->sub_specs[i].freq_range_index; /* SAR specifies power limitaton in 0.25dbm */ s32 power = sar->sub_specs[i].power >> 1; if (power > 127 || power < -127) power = 127; phy->frp[index].range = &capa->freq_ranges[index]; phy->frp[index].power = power; } return 0; } EXPORT_SYMBOL_GPL(mt76_init_sar_power); int mt76_get_sar_power(struct mt76_phy *phy, struct ieee80211_channel *chan, int power) { const struct cfg80211_sar_capa *capa = phy->hw->wiphy->sar_capa; int freq, i; if (!capa || !phy->frp) return power; if (power > 127 || power < -127) power = 127; freq = ieee80211_channel_to_frequency(chan->hw_value, chan->band); for (i = 0 ; i < capa->num_freq_ranges; i++) { if (phy->frp[i].range && freq >= phy->frp[i].range->start_freq && freq < phy->frp[i].range->end_freq) { power = min_t(int, phy->frp[i].power, power); break; } } return power; } EXPORT_SYMBOL_GPL(mt76_get_sar_power); static void __mt76_csa_finish(void *priv, u8 *mac, struct ieee80211_vif *vif) { if (vif->bss_conf.csa_active && ieee80211_beacon_cntdwn_is_complete(vif)) ieee80211_csa_finish(vif); } void mt76_csa_finish(struct mt76_dev *dev) { if (!dev->csa_complete) return; ieee80211_iterate_active_interfaces_atomic(dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, __mt76_csa_finish, dev); dev->csa_complete = 0; } EXPORT_SYMBOL_GPL(mt76_csa_finish); static void __mt76_csa_check(void *priv, u8 *mac, struct ieee80211_vif *vif) { struct mt76_dev *dev = priv; if (!vif->bss_conf.csa_active) return; dev->csa_complete |= ieee80211_beacon_cntdwn_is_complete(vif); } void mt76_csa_check(struct mt76_dev *dev) { ieee80211_iterate_active_interfaces_atomic(dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, __mt76_csa_check, dev); } EXPORT_SYMBOL_GPL(mt76_csa_check); int mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) { return 0; } EXPORT_SYMBOL_GPL(mt76_set_tim); void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id) { struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb; int hdr_len = ieee80211_get_hdrlen_from_skb(skb); u8 *hdr, *pn = status->iv; __skb_push(skb, 8); memmove(skb->data, skb->data + 8, hdr_len); hdr = skb->data + hdr_len; hdr[0] = pn[5]; hdr[1] = pn[4]; hdr[2] = 0; hdr[3] = 0x20 | (key_id << 6); hdr[4] = pn[3]; hdr[5] = pn[2]; hdr[6] = pn[1]; hdr[7] = pn[0]; status->flag &= ~RX_FLAG_IV_STRIPPED; } EXPORT_SYMBOL_GPL(mt76_insert_ccmp_hdr); int mt76_get_rate(struct mt76_dev *dev, struct ieee80211_supported_band *sband, int idx, bool cck) { int i, offset = 0, len = sband->n_bitrates; if (cck) { if (sband != &dev->phy.sband_2g.sband) return 0; idx &= ~BIT(2); /* short preamble */ } else if (sband == &dev->phy.sband_2g.sband) { offset = 4; } for (i = offset; i < len; i++) { if ((sband->bitrates[i].hw_value & GENMASK(7, 0)) == idx) return i; } return 0; } EXPORT_SYMBOL_GPL(mt76_get_rate); void mt76_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac) { struct mt76_phy *phy = hw->priv; set_bit(MT76_SCANNING, &phy->state); } EXPORT_SYMBOL_GPL(mt76_sw_scan); void mt76_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct mt76_phy *phy = hw->priv; clear_bit(MT76_SCANNING, &phy->state); } EXPORT_SYMBOL_GPL(mt76_sw_scan_complete); int mt76_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct mt76_phy *phy = hw->priv; struct mt76_dev *dev = phy->dev; mutex_lock(&dev->mutex); *tx_ant = phy->antenna_mask; *rx_ant = phy->antenna_mask; mutex_unlock(&dev->mutex); return 0; } EXPORT_SYMBOL_GPL(mt76_get_antenna); struct mt76_queue * mt76_init_queue(struct mt76_dev *dev, int qid, int idx, int n_desc, int ring_base, u32 flags) { struct mt76_queue *hwq; int err; hwq = devm_kzalloc(dev->dev, sizeof(*hwq), GFP_KERNEL); if (!hwq) return ERR_PTR(-ENOMEM); hwq->flags = flags; err = dev->queue_ops->alloc(dev, hwq, idx, n_desc, 0, ring_base); if (err < 0) return ERR_PTR(err); return hwq; } EXPORT_SYMBOL_GPL(mt76_init_queue); u16 mt76_calculate_default_rate(struct mt76_phy *phy, struct ieee80211_vif *vif, int rateidx) { struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv; struct cfg80211_chan_def *chandef = mvif->ctx ? &mvif->ctx->def : &phy->chandef; int offset = 0; if (chandef->chan->band != NL80211_BAND_2GHZ) offset = 4; /* pick the lowest rate for hidden nodes */ if (rateidx < 0) rateidx = 0; rateidx += offset; if (rateidx >= ARRAY_SIZE(mt76_rates)) rateidx = offset; return mt76_rates[rateidx].hw_value; } EXPORT_SYMBOL_GPL(mt76_calculate_default_rate); void mt76_ethtool_worker(struct mt76_ethtool_worker_info *wi, struct mt76_sta_stats *stats, bool eht) { int i, ei = wi->initial_stat_idx; u64 *data = wi->data; wi->sta_count++; data[ei++] += stats->tx_mode[MT_PHY_TYPE_CCK]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_OFDM]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HT]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HT_GF]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_VHT]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HE_SU]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HE_EXT_SU]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HE_TB]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_HE_MU]; if (eht) { data[ei++] += stats->tx_mode[MT_PHY_TYPE_EHT_SU]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_EHT_TRIG]; data[ei++] += stats->tx_mode[MT_PHY_TYPE_EHT_MU]; } for (i = 0; i < (ARRAY_SIZE(stats->tx_bw) - !eht); i++) data[ei++] += stats->tx_bw[i]; for (i = 0; i < (eht ? 14 : 12); i++) data[ei++] += stats->tx_mcs[i]; for (i = 0; i < 4; i++) data[ei++] += stats->tx_nss[i]; wi->worker_stat_count = ei - wi->initial_stat_idx; } EXPORT_SYMBOL_GPL(mt76_ethtool_worker); void mt76_ethtool_page_pool_stats(struct mt76_dev *dev, u64 *data, int *index) { #ifdef CONFIG_PAGE_POOL_STATS struct page_pool_stats stats = {}; int i; mt76_for_each_q_rx(dev, i) page_pool_get_stats(dev->q_rx[i].page_pool, &stats); page_pool_ethtool_stats_get(data, &stats); *index += page_pool_ethtool_stats_get_count(); #endif } EXPORT_SYMBOL_GPL(mt76_ethtool_page_pool_stats); enum mt76_dfs_state mt76_phy_dfs_state(struct mt76_phy *phy) { struct ieee80211_hw *hw = phy->hw; struct mt76_dev *dev = phy->dev; if (dev->region == NL80211_DFS_UNSET || test_bit(MT76_SCANNING, &phy->state)) return MT_DFS_STATE_DISABLED; if (!hw->conf.radar_enabled) { if ((hw->conf.flags & IEEE80211_CONF_MONITOR) && (phy->chandef.chan->flags & IEEE80211_CHAN_RADAR)) return MT_DFS_STATE_ACTIVE; return MT_DFS_STATE_DISABLED; } if (!cfg80211_reg_can_beacon(hw->wiphy, &phy->chandef, NL80211_IFTYPE_AP)) return MT_DFS_STATE_CAC; return MT_DFS_STATE_ACTIVE; } EXPORT_SYMBOL_GPL(mt76_phy_dfs_state);