// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2020-2023 Intel Corporation */ #include #include #include "iwl-debug.h" #include "iwl-io.h" #include "fw/api/commands.h" #include "fw/api/tx.h" #include "fw/api/datapath.h" #include "fw/api/debug.h" #include "queue/tx.h" #include "iwl-fh.h" #include "iwl-scd.h" #include /* * iwl_txq_update_byte_tbl - Set up entry in Tx byte-count array */ static void iwl_pcie_gen2_update_byte_tbl(struct iwl_trans *trans, struct iwl_txq *txq, u16 byte_cnt, int num_tbs) { int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); u8 filled_tfd_size, num_fetch_chunks; u16 len = byte_cnt; __le16 bc_ent; if (WARN(idx >= txq->n_window, "%d >= %d\n", idx, txq->n_window)) return; filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + num_tbs * sizeof(struct iwl_tfh_tb); /* * filled_tfd_size contains the number of filled bytes in the TFD. * Dividing it by 64 will give the number of chunks to fetch * to SRAM- 0 for one chunk, 1 for 2 and so on. * If, for example, TFD contains only 3 TBs then 32 bytes * of the TFD are used, and only one chunk of 64 bytes should * be fetched */ num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_gen3_bc_tbl_entry *scd_bc_tbl_gen3 = txq->bc_tbl.addr; /* Starting from AX210, the HW expects bytes */ WARN_ON(trans->txqs.bc_table_dword); WARN_ON(len > 0x3FFF); bc_ent = cpu_to_le16(len | (num_fetch_chunks << 14)); scd_bc_tbl_gen3[idx].tfd_offset = bc_ent; } else { struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr; /* Before AX210, the HW expects DW */ WARN_ON(!trans->txqs.bc_table_dword); len = DIV_ROUND_UP(len, 4); WARN_ON(len > 0xFFF); bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); scd_bc_tbl->tfd_offset[idx] = bc_ent; } } /* * iwl_txq_inc_wr_ptr - Send new write index to hardware */ void iwl_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq) { lockdep_assert_held(&txq->lock); IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr); /* * if not in power-save mode, uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16)); } static u8 iwl_txq_gen2_get_num_tbs(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd) { return le16_to_cpu(tfd->num_tbs) & 0x1f; } int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd, dma_addr_t addr, u16 len) { int idx = iwl_txq_gen2_get_num_tbs(trans, tfd); struct iwl_tfh_tb *tb; /* Only WARN here so we know about the issue, but we mess up our * unmap path because not every place currently checks for errors * returned from this function - it can only return an error if * there's no more space, and so when we know there is enough we * don't always check ... */ WARN(iwl_txq_crosses_4g_boundary(addr, len), "possible DMA problem with iova:0x%llx, len:%d\n", (unsigned long long)addr, len); if (WARN_ON(idx >= IWL_TFH_NUM_TBS)) return -EINVAL; tb = &tfd->tbs[idx]; /* Each TFD can point to a maximum max_tbs Tx buffers */ if (le16_to_cpu(tfd->num_tbs) >= trans->txqs.tfd.max_tbs) { IWL_ERR(trans, "Error can not send more than %d chunks\n", trans->txqs.tfd.max_tbs); return -EINVAL; } put_unaligned_le64(addr, &tb->addr); tb->tb_len = cpu_to_le16(len); tfd->num_tbs = cpu_to_le16(idx + 1); return idx; } static void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd) { tfd->num_tbs = 0; iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma, trans->invalid_tx_cmd.size); } void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_tfh_tfd *tfd) { int i, num_tbs; /* Sanity check on number of chunks */ num_tbs = iwl_txq_gen2_get_num_tbs(trans, tfd); if (num_tbs > trans->txqs.tfd.max_tbs) { IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); return; } /* first TB is never freed - it's the bidirectional DMA data */ for (i = 1; i < num_tbs; i++) { if (meta->tbs & BIT(i)) dma_unmap_page(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); else dma_unmap_single(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); } iwl_txq_set_tfd_invalid_gen2(trans, tfd); } void iwl_txq_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) { /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and * idx is bounded by n_window */ int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); struct sk_buff *skb; lockdep_assert_held(&txq->lock); if (!txq->entries) return; iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta, iwl_txq_get_tfd(trans, txq, idx)); skb = txq->entries[idx].skb; /* Can be called from irqs-disabled context * If skb is not NULL, it means that the whole queue is being * freed and that the queue is not empty - free the skb */ if (skb) { iwl_op_mode_free_skb(trans->op_mode, skb); txq->entries[idx].skb = NULL; } } static struct page *get_workaround_page(struct iwl_trans *trans, struct sk_buff *skb) { struct page **page_ptr; struct page *ret; page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); ret = alloc_page(GFP_ATOMIC); if (!ret) return NULL; /* set the chaining pointer to the previous page if there */ *(void **)((u8 *)page_address(ret) + PAGE_SIZE - sizeof(void *)) = *page_ptr; *page_ptr = ret; return ret; } /* * Add a TB and if needed apply the FH HW bug workaround; * meta != NULL indicates that it's a page mapping and we * need to dma_unmap_page() and set the meta->tbs bit in * this case. */ static int iwl_txq_gen2_set_tb_with_wa(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, dma_addr_t phys, void *virt, u16 len, struct iwl_cmd_meta *meta) { dma_addr_t oldphys = phys; struct page *page; int ret; if (unlikely(dma_mapping_error(trans->dev, phys))) return -ENOMEM; if (likely(!iwl_txq_crosses_4g_boundary(phys, len))) { ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); if (ret < 0) goto unmap; if (meta) meta->tbs |= BIT(ret); ret = 0; goto trace; } /* * Work around a hardware bug. If (as expressed in the * condition above) the TB ends on a 32-bit boundary, * then the next TB may be accessed with the wrong * address. * To work around it, copy the data elsewhere and make * a new mapping for it so the device will not fail. */ if (WARN_ON(len > PAGE_SIZE - sizeof(void *))) { ret = -ENOBUFS; goto unmap; } page = get_workaround_page(trans, skb); if (!page) { ret = -ENOMEM; goto unmap; } memcpy(page_address(page), virt, len); phys = dma_map_single(trans->dev, page_address(page), len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, phys))) return -ENOMEM; ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len); if (ret < 0) { /* unmap the new allocation as single */ oldphys = phys; meta = NULL; goto unmap; } IWL_WARN(trans, "TB bug workaround: copied %d bytes from 0x%llx to 0x%llx\n", len, (unsigned long long)oldphys, (unsigned long long)phys); ret = 0; unmap: if (meta) dma_unmap_page(trans->dev, oldphys, len, DMA_TO_DEVICE); else dma_unmap_single(trans->dev, oldphys, len, DMA_TO_DEVICE); trace: trace_iwlwifi_dev_tx_tb(trans->dev, skb, virt, phys, len); return ret; } #ifdef CONFIG_INET struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len, struct sk_buff *skb) { struct iwl_tso_hdr_page *p = this_cpu_ptr(trans->txqs.tso_hdr_page); struct page **page_ptr; page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); if (WARN_ON(*page_ptr)) return NULL; if (!p->page) goto alloc; /* * Check if there's enough room on this page * * Note that we put a page chaining pointer *last* in the * page - we need it somewhere, and if it's there then we * avoid DMA mapping the last bits of the page which may * trigger the 32-bit boundary hardware bug. * * (see also get_workaround_page() in tx-gen2.c) */ if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE - sizeof(void *)) goto out; /* We don't have enough room on this page, get a new one. */ __free_page(p->page); alloc: p->page = alloc_page(GFP_ATOMIC); if (!p->page) return NULL; p->pos = page_address(p->page); /* set the chaining pointer to NULL */ *(void **)((u8 *)page_address(p->page) + PAGE_SIZE - sizeof(void *)) = NULL; out: *page_ptr = p->page; get_page(p->page); return p; } #endif static int iwl_txq_gen2_build_amsdu(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, int start_len, u8 hdr_len, struct iwl_device_tx_cmd *dev_cmd) { #ifdef CONFIG_INET struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload; struct ieee80211_hdr *hdr = (void *)skb->data; unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room; unsigned int mss = skb_shinfo(skb)->gso_size; u16 length, amsdu_pad; u8 *start_hdr; struct iwl_tso_hdr_page *hdr_page; struct tso_t tso; trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, start_len, 0); ip_hdrlen = skb_transport_header(skb) - skb_network_header(skb); snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb); total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len; amsdu_pad = 0; /* total amount of header we may need for this A-MSDU */ hdr_room = DIV_ROUND_UP(total_len, mss) * (3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)); /* Our device supports 9 segments at most, it will fit in 1 page */ hdr_page = get_page_hdr(trans, hdr_room, skb); if (!hdr_page) return -ENOMEM; start_hdr = hdr_page->pos; /* * Pull the ieee80211 header to be able to use TSO core, * we will restore it for the tx_status flow. */ skb_pull(skb, hdr_len); /* * Remove the length of all the headers that we don't actually * have in the MPDU by themselves, but that we duplicate into * all the different MSDUs inside the A-MSDU. */ le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen); tso_start(skb, &tso); while (total_len) { /* this is the data left for this subframe */ unsigned int data_left = min_t(unsigned int, mss, total_len); unsigned int tb_len; dma_addr_t tb_phys; u8 *subf_hdrs_start = hdr_page->pos; total_len -= data_left; memset(hdr_page->pos, 0, amsdu_pad); hdr_page->pos += amsdu_pad; amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen + data_left)) & 0x3; ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr)); hdr_page->pos += ETH_ALEN; ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr)); hdr_page->pos += ETH_ALEN; length = snap_ip_tcp_hdrlen + data_left; *((__be16 *)hdr_page->pos) = cpu_to_be16(length); hdr_page->pos += sizeof(length); /* * This will copy the SNAP as well which will be considered * as MAC header. */ tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len); hdr_page->pos += snap_ip_tcp_hdrlen; tb_len = hdr_page->pos - start_hdr; tb_phys = dma_map_single(trans->dev, start_hdr, tb_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; /* * No need for _with_wa, this is from the TSO page and * we leave some space at the end of it so can't hit * the buggy scenario. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb_len); trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr, tb_phys, tb_len); /* add this subframe's headers' length to the tx_cmd */ le16_add_cpu(&tx_cmd->len, hdr_page->pos - subf_hdrs_start); /* prepare the start_hdr for the next subframe */ start_hdr = hdr_page->pos; /* put the payload */ while (data_left) { int ret; tb_len = min_t(unsigned int, tso.size, data_left); tb_phys = dma_map_single(trans->dev, tso.data, tb_len, DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, tso.data, tb_len, NULL); if (ret) goto out_err; data_left -= tb_len; tso_build_data(skb, &tso, tb_len); } } /* re -add the WiFi header */ skb_push(skb, hdr_len); return 0; out_err: #endif return -EINVAL; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tx_amsdu(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta, int hdr_len, int tx_cmd_len) { int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); dma_addr_t tb_phys; int len; void *tb1_addr; tb_phys = iwl_txq_get_first_tb_dma(txq, idx); /* * No need for _with_wa, the first TB allocation is aligned up * to a 64-byte boundary and thus can't be at the end or cross * a page boundary (much less a 2^32 boundary). */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - IWL_FIRST_TB_SIZE; /* do not align A-MSDU to dword as the subframe header aligns it */ /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; tb_phys = dma_map_single(trans->dev, tb1_addr, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; /* * No need for _with_wa(), we ensure (via alignment) that the data * here can never cross or end at a page boundary. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, len); if (iwl_txq_gen2_build_amsdu(trans, skb, tfd, len + IWL_FIRST_TB_SIZE, hdr_len, dev_cmd)) goto out_err; /* building the A-MSDU might have changed this data, memcpy it now */ memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); return tfd; out_err: iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); return NULL; } static int iwl_txq_gen2_tx_add_frags(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_tfh_tfd *tfd, struct iwl_cmd_meta *out_meta) { int i; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; dma_addr_t tb_phys; unsigned int fragsz = skb_frag_size(frag); int ret; if (!fragsz) continue; tb_phys = skb_frag_dma_map(trans->dev, frag, 0, fragsz, DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, skb_frag_address(frag), fragsz, out_meta); if (ret) return ret; } return 0; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tx(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta, int hdr_len, int tx_cmd_len, bool pad) { int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); dma_addr_t tb_phys; int len, tb1_len, tb2_len; void *tb1_addr; struct sk_buff *frag; tb_phys = iwl_txq_get_first_tb_dma(txq, idx); /* The first TB points to bi-directional DMA data */ memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE); /* * No need for _with_wa, the first TB allocation is aligned up * to a 64-byte boundary and thus can't be at the end or cross * a page boundary (much less a 2^32 boundary). */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len - IWL_FIRST_TB_SIZE; if (pad) tb1_len = ALIGN(len, 4); else tb1_len = len; /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; /* * No need for _with_wa(), we ensure (via alignment) that the data * here can never cross or end at a page boundary. */ iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb1_len); trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, hdr_len); /* set up TFD's third entry to point to remainder of skb's head */ tb2_len = skb_headlen(skb) - hdr_len; if (tb2_len > 0) { int ret; tb_phys = dma_map_single(trans->dev, skb->data + hdr_len, tb2_len, DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, skb->data + hdr_len, tb2_len, NULL); if (ret) goto out_err; } if (iwl_txq_gen2_tx_add_frags(trans, skb, tfd, out_meta)) goto out_err; skb_walk_frags(skb, frag) { int ret; tb_phys = dma_map_single(trans->dev, frag->data, skb_headlen(frag), DMA_TO_DEVICE); ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys, frag->data, skb_headlen(frag), NULL); if (ret) goto out_err; if (iwl_txq_gen2_tx_add_frags(trans, frag, tfd, out_meta)) goto out_err; } return tfd; out_err: iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd); return NULL; } static struct iwl_tfh_tfd *iwl_txq_gen2_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_tx_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx); int len, hdr_len; bool amsdu; /* There must be data left over for TB1 or this code must be changed */ BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + offsetofend(struct iwl_tx_cmd_gen2, dram_info) > IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen3) < IWL_FIRST_TB_SIZE); BUILD_BUG_ON(sizeof(struct iwl_cmd_header) + offsetofend(struct iwl_tx_cmd_gen3, dram_info) > IWL_FIRST_TB_SIZE); memset(tfd, 0, sizeof(*tfd)); if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210) len = sizeof(struct iwl_tx_cmd_gen2); else len = sizeof(struct iwl_tx_cmd_gen3); amsdu = ieee80211_is_data_qos(hdr->frame_control) && (*ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_A_MSDU_PRESENT); hdr_len = ieee80211_hdrlen(hdr->frame_control); /* * Only build A-MSDUs here if doing so by GSO, otherwise it may be * an A-MSDU for other reasons, e.g. NAN or an A-MSDU having been * built in the higher layers already. */ if (amsdu && skb_shinfo(skb)->gso_size) return iwl_txq_gen2_build_tx_amsdu(trans, txq, dev_cmd, skb, out_meta, hdr_len, len); return iwl_txq_gen2_build_tx(trans, txq, dev_cmd, skb, out_meta, hdr_len, len, !amsdu); } int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q) { unsigned int max; unsigned int used; /* * To avoid ambiguity between empty and completely full queues, there * should always be less than max_tfd_queue_size elements in the queue. * If q->n_window is smaller than max_tfd_queue_size, there is no need * to reserve any queue entries for this purpose. */ if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size) max = q->n_window; else max = trans->trans_cfg->base_params->max_tfd_queue_size - 1; /* * max_tfd_queue_size is a power of 2, so the following is equivalent to * modulo by max_tfd_queue_size and is well defined. */ used = (q->write_ptr - q->read_ptr) & (trans->trans_cfg->base_params->max_tfd_queue_size - 1); if (WARN_ON(used > max)) return 0; return max - used; } int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int txq_id) { struct iwl_cmd_meta *out_meta; struct iwl_txq *txq = trans->txqs.txq[txq_id]; u16 cmd_len; int idx; void *tfd; if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", txq_id)) return -EINVAL; if (WARN_ONCE(!test_bit(txq_id, trans->txqs.queue_used), "TX on unused queue %d\n", txq_id)) return -EINVAL; if (skb_is_nonlinear(skb) && skb_shinfo(skb)->nr_frags > IWL_TRANS_MAX_FRAGS(trans) && __skb_linearize(skb)) return -ENOMEM; spin_lock(&txq->lock); if (iwl_txq_space(trans, txq) < txq->high_mark) { iwl_txq_stop(trans, txq); /* don't put the packet on the ring, if there is no room */ if (unlikely(iwl_txq_space(trans, txq) < 3)) { struct iwl_device_tx_cmd **dev_cmd_ptr; dev_cmd_ptr = (void *)((u8 *)skb->cb + trans->txqs.dev_cmd_offs); *dev_cmd_ptr = dev_cmd; __skb_queue_tail(&txq->overflow_q, skb); spin_unlock(&txq->lock); return 0; } } idx = iwl_txq_get_cmd_index(txq, txq->write_ptr); /* Set up driver data for this TFD */ txq->entries[idx].skb = skb; txq->entries[idx].cmd = dev_cmd; dev_cmd->hdr.sequence = cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | INDEX_TO_SEQ(idx))); /* Set up first empty entry in queue's array of Tx/cmd buffers */ out_meta = &txq->entries[idx].meta; out_meta->flags = 0; tfd = iwl_txq_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta); if (!tfd) { spin_unlock(&txq->lock); return -1; } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { struct iwl_tx_cmd_gen3 *tx_cmd_gen3 = (void *)dev_cmd->payload; cmd_len = le16_to_cpu(tx_cmd_gen3->len); } else { struct iwl_tx_cmd_gen2 *tx_cmd_gen2 = (void *)dev_cmd->payload; cmd_len = le16_to_cpu(tx_cmd_gen2->len); } /* Set up entry for this TFD in Tx byte-count array */ iwl_pcie_gen2_update_byte_tbl(trans, txq, cmd_len, iwl_txq_gen2_get_num_tbs(trans, tfd)); /* start timer if queue currently empty */ if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); /* Tell device the write index *just past* this latest filled TFD */ txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr); iwl_txq_inc_wr_ptr(trans, txq); /* * At this point the frame is "transmitted" successfully * and we will get a TX status notification eventually. */ spin_unlock(&txq->lock); return 0; } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * iwl_txq_gen2_unmap - Unmap any remaining DMA mappings and free skb's */ void iwl_txq_gen2_unmap(struct iwl_trans *trans, int txq_id) { struct iwl_txq *txq = trans->txqs.txq[txq_id]; spin_lock_bh(&txq->lock); while (txq->write_ptr != txq->read_ptr) { IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", txq_id, txq->read_ptr); if (txq_id != trans->txqs.cmd.q_id) { int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr); struct sk_buff *skb = txq->entries[idx].skb; if (!WARN_ON_ONCE(!skb)) iwl_txq_free_tso_page(trans, skb); } iwl_txq_gen2_free_tfd(trans, txq); txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr); } while (!skb_queue_empty(&txq->overflow_q)) { struct sk_buff *skb = __skb_dequeue(&txq->overflow_q); iwl_op_mode_free_skb(trans->op_mode, skb); } spin_unlock_bh(&txq->lock); /* just in case - this queue may have been stopped */ iwl_wake_queue(trans, txq); } static void iwl_txq_gen2_free_memory(struct iwl_trans *trans, struct iwl_txq *txq) { struct device *dev = trans->dev; /* De-alloc circular buffer of TFDs */ if (txq->tfds) { dma_free_coherent(dev, trans->txqs.tfd.size * txq->n_window, txq->tfds, txq->dma_addr); dma_free_coherent(dev, sizeof(*txq->first_tb_bufs) * txq->n_window, txq->first_tb_bufs, txq->first_tb_dma); } kfree(txq->entries); if (txq->bc_tbl.addr) dma_pool_free(trans->txqs.bc_pool, txq->bc_tbl.addr, txq->bc_tbl.dma); kfree(txq); } /* * iwl_pcie_txq_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ static void iwl_txq_gen2_free(struct iwl_trans *trans, int txq_id) { struct iwl_txq *txq; int i; if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", txq_id)) return; txq = trans->txqs.txq[txq_id]; if (WARN_ON(!txq)) return; iwl_txq_gen2_unmap(trans, txq_id); /* De-alloc array of command/tx buffers */ if (txq_id == trans->txqs.cmd.q_id) for (i = 0; i < txq->n_window; i++) { kfree_sensitive(txq->entries[i].cmd); kfree_sensitive(txq->entries[i].free_buf); } del_timer_sync(&txq->stuck_timer); iwl_txq_gen2_free_memory(trans, txq); trans->txqs.txq[txq_id] = NULL; clear_bit(txq_id, trans->txqs.queue_used); } /* * iwl_queue_init - Initialize queue's high/low-water and read/write indexes */ static int iwl_queue_init(struct iwl_txq *q, int slots_num) { q->n_window = slots_num; /* slots_num must be power-of-two size, otherwise * iwl_txq_get_cmd_index is broken. */ if (WARN_ON(!is_power_of_2(slots_num))) return -EINVAL; q->low_mark = q->n_window / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_window / 8; if (q->high_mark < 2) q->high_mark = 2; q->write_ptr = 0; q->read_ptr = 0; return 0; } int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, bool cmd_queue) { int ret; u32 tfd_queue_max_size = trans->trans_cfg->base_params->max_tfd_queue_size; txq->need_update = false; /* max_tfd_queue_size must be power-of-two size, otherwise * iwl_txq_inc_wrap and iwl_txq_dec_wrap are broken. */ if (WARN_ONCE(tfd_queue_max_size & (tfd_queue_max_size - 1), "Max tfd queue size must be a power of two, but is %d", tfd_queue_max_size)) return -EINVAL; /* Initialize queue's high/low-water marks, and head/tail indexes */ ret = iwl_queue_init(txq, slots_num); if (ret) return ret; spin_lock_init(&txq->lock); if (cmd_queue) { static struct lock_class_key iwl_txq_cmd_queue_lock_class; lockdep_set_class(&txq->lock, &iwl_txq_cmd_queue_lock_class); } __skb_queue_head_init(&txq->overflow_q); return 0; } void iwl_txq_free_tso_page(struct iwl_trans *trans, struct sk_buff *skb) { struct page **page_ptr; struct page *next; page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs); next = *page_ptr; *page_ptr = NULL; while (next) { struct page *tmp = next; next = *(void **)((u8 *)page_address(next) + PAGE_SIZE - sizeof(void *)); __free_page(tmp); } } void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq) { u32 txq_id = txq->id; u32 status; bool active; u8 fifo; if (trans->trans_cfg->gen2) { IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id, txq->read_ptr, txq->write_ptr); /* TODO: access new SCD registers and dump them */ return; } status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id)); fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); IWL_ERR(trans, "Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n", txq_id, active ? "" : "in", fifo, jiffies_to_msecs(txq->wd_timeout), txq->read_ptr, txq->write_ptr, iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) & (trans->trans_cfg->base_params->max_tfd_queue_size - 1), iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) & (trans->trans_cfg->base_params->max_tfd_queue_size - 1), iwl_read_direct32(trans, FH_TX_TRB_REG(fifo))); } static void iwl_txq_stuck_timer(struct timer_list *t) { struct iwl_txq *txq = from_timer(txq, t, stuck_timer); struct iwl_trans *trans = txq->trans; spin_lock(&txq->lock); /* check if triggered erroneously */ if (txq->read_ptr == txq->write_ptr) { spin_unlock(&txq->lock); return; } spin_unlock(&txq->lock); iwl_txq_log_scd_error(trans, txq); iwl_force_nmi(trans); } static void iwl_txq_set_tfd_invalid_gen1(struct iwl_trans *trans, struct iwl_tfd *tfd) { tfd->num_tbs = 0; iwl_pcie_gen1_tfd_set_tb(trans, tfd, 0, trans->invalid_tx_cmd.dma, trans->invalid_tx_cmd.size); } int iwl_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, bool cmd_queue) { size_t num_entries = trans->trans_cfg->gen2 ? slots_num : trans->trans_cfg->base_params->max_tfd_queue_size; size_t tfd_sz; size_t tb0_buf_sz; int i; if (WARN_ONCE(slots_num <= 0, "Invalid slots num:%d\n", slots_num)) return -EINVAL; if (WARN_ON(txq->entries || txq->tfds)) return -EINVAL; tfd_sz = trans->txqs.tfd.size * num_entries; timer_setup(&txq->stuck_timer, iwl_txq_stuck_timer, 0); txq->trans = trans; txq->n_window = slots_num; txq->entries = kcalloc(slots_num, sizeof(struct iwl_pcie_txq_entry), GFP_KERNEL); if (!txq->entries) goto error; if (cmd_queue) for (i = 0; i < slots_num; i++) { txq->entries[i].cmd = kmalloc(sizeof(struct iwl_device_cmd), GFP_KERNEL); if (!txq->entries[i].cmd) goto error; } /* Circular buffer of transmit frame descriptors (TFDs), * shared with device */ txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz, &txq->dma_addr, GFP_KERNEL); if (!txq->tfds) goto error; BUILD_BUG_ON(sizeof(*txq->first_tb_bufs) != IWL_FIRST_TB_SIZE_ALIGN); tb0_buf_sz = sizeof(*txq->first_tb_bufs) * slots_num; txq->first_tb_bufs = dma_alloc_coherent(trans->dev, tb0_buf_sz, &txq->first_tb_dma, GFP_KERNEL); if (!txq->first_tb_bufs) goto err_free_tfds; for (i = 0; i < num_entries; i++) { void *tfd = iwl_txq_get_tfd(trans, txq, i); if (trans->trans_cfg->gen2) iwl_txq_set_tfd_invalid_gen2(trans, tfd); else iwl_txq_set_tfd_invalid_gen1(trans, tfd); } return 0; err_free_tfds: dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->dma_addr); txq->tfds = NULL; error: if (txq->entries && cmd_queue) for (i = 0; i < slots_num; i++) kfree(txq->entries[i].cmd); kfree(txq->entries); txq->entries = NULL; return -ENOMEM; } static struct iwl_txq * iwl_txq_dyn_alloc_dma(struct iwl_trans *trans, int size, unsigned int timeout) { size_t bc_tbl_size, bc_tbl_entries; struct iwl_txq *txq; int ret; WARN_ON(!trans->txqs.bc_tbl_size); bc_tbl_size = trans->txqs.bc_tbl_size; bc_tbl_entries = bc_tbl_size / sizeof(u16); if (WARN_ON(size > bc_tbl_entries)) return ERR_PTR(-EINVAL); txq = kzalloc(sizeof(*txq), GFP_KERNEL); if (!txq) return ERR_PTR(-ENOMEM); txq->bc_tbl.addr = dma_pool_alloc(trans->txqs.bc_pool, GFP_KERNEL, &txq->bc_tbl.dma); if (!txq->bc_tbl.addr) { IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); kfree(txq); return ERR_PTR(-ENOMEM); } ret = iwl_txq_alloc(trans, txq, size, false); if (ret) { IWL_ERR(trans, "Tx queue alloc failed\n"); goto error; } ret = iwl_txq_init(trans, txq, size, false); if (ret) { IWL_ERR(trans, "Tx queue init failed\n"); goto error; } txq->wd_timeout = msecs_to_jiffies(timeout); return txq; error: iwl_txq_gen2_free_memory(trans, txq); return ERR_PTR(ret); } static int iwl_txq_alloc_response(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_host_cmd *hcmd) { struct iwl_tx_queue_cfg_rsp *rsp; int ret, qid; u32 wr_ptr; if (WARN_ON(iwl_rx_packet_payload_len(hcmd->resp_pkt) != sizeof(*rsp))) { ret = -EINVAL; goto error_free_resp; } rsp = (void *)hcmd->resp_pkt->data; qid = le16_to_cpu(rsp->queue_number); wr_ptr = le16_to_cpu(rsp->write_pointer); if (qid >= ARRAY_SIZE(trans->txqs.txq)) { WARN_ONCE(1, "queue index %d unsupported", qid); ret = -EIO; goto error_free_resp; } if (test_and_set_bit(qid, trans->txqs.queue_used)) { WARN_ONCE(1, "queue %d already used", qid); ret = -EIO; goto error_free_resp; } if (WARN_ONCE(trans->txqs.txq[qid], "queue %d already allocated\n", qid)) { ret = -EIO; goto error_free_resp; } txq->id = qid; trans->txqs.txq[qid] = txq; wr_ptr &= (trans->trans_cfg->base_params->max_tfd_queue_size - 1); /* Place first TFD at index corresponding to start sequence number */ txq->read_ptr = wr_ptr; txq->write_ptr = wr_ptr; IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid); iwl_free_resp(hcmd); return qid; error_free_resp: iwl_free_resp(hcmd); iwl_txq_gen2_free_memory(trans, txq); return ret; } int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid, int size, unsigned int timeout) { struct iwl_txq *txq; union { struct iwl_tx_queue_cfg_cmd old; struct iwl_scd_queue_cfg_cmd new; } cmd; struct iwl_host_cmd hcmd = { .flags = CMD_WANT_SKB, }; int ret; if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_BZ && trans->hw_rev_step == SILICON_A_STEP) size = 4096; txq = iwl_txq_dyn_alloc_dma(trans, size, timeout); if (IS_ERR(txq)) return PTR_ERR(txq); if (trans->txqs.queue_alloc_cmd_ver == 0) { memset(&cmd.old, 0, sizeof(cmd.old)); cmd.old.tfdq_addr = cpu_to_le64(txq->dma_addr); cmd.old.byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma); cmd.old.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); cmd.old.flags = cpu_to_le16(flags | TX_QUEUE_CFG_ENABLE_QUEUE); cmd.old.tid = tid; if (hweight32(sta_mask) != 1) { ret = -EINVAL; goto error; } cmd.old.sta_id = ffs(sta_mask) - 1; hcmd.id = SCD_QUEUE_CFG; hcmd.len[0] = sizeof(cmd.old); hcmd.data[0] = &cmd.old; } else if (trans->txqs.queue_alloc_cmd_ver == 3) { memset(&cmd.new, 0, sizeof(cmd.new)); cmd.new.operation = cpu_to_le32(IWL_SCD_QUEUE_ADD); cmd.new.u.add.tfdq_dram_addr = cpu_to_le64(txq->dma_addr); cmd.new.u.add.bc_dram_addr = cpu_to_le64(txq->bc_tbl.dma); cmd.new.u.add.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size)); cmd.new.u.add.flags = cpu_to_le32(flags); cmd.new.u.add.sta_mask = cpu_to_le32(sta_mask); cmd.new.u.add.tid = tid; hcmd.id = WIDE_ID(DATA_PATH_GROUP, SCD_QUEUE_CONFIG_CMD); hcmd.len[0] = sizeof(cmd.new); hcmd.data[0] = &cmd.new; } else { ret = -EOPNOTSUPP; goto error; } ret = iwl_trans_send_cmd(trans, &hcmd); if (ret) goto error; return iwl_txq_alloc_response(trans, txq, &hcmd); error: iwl_txq_gen2_free_memory(trans, txq); return ret; } void iwl_txq_dyn_free(struct iwl_trans *trans, int queue) { if (WARN(queue >= IWL_MAX_TVQM_QUEUES, "queue %d out of range", queue)) return; /* * Upon HW Rfkill - we stop the device, and then stop the queues * in the op_mode. Just for the sake of the simplicity of the op_mode, * allow the op_mode to call txq_disable after it already called * stop_device. */ if (!test_and_clear_bit(queue, trans->txqs.queue_used)) { WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), "queue %d not used", queue); return; } iwl_txq_gen2_free(trans, queue); IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue); } void iwl_txq_gen2_tx_free(struct iwl_trans *trans) { int i; memset(trans->txqs.queue_used, 0, sizeof(trans->txqs.queue_used)); /* Free all TX queues */ for (i = 0; i < ARRAY_SIZE(trans->txqs.txq); i++) { if (!trans->txqs.txq[i]) continue; iwl_txq_gen2_free(trans, i); } } int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size) { struct iwl_txq *queue; int ret; /* alloc and init the tx queue */ if (!trans->txqs.txq[txq_id]) { queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { IWL_ERR(trans, "Not enough memory for tx queue\n"); return -ENOMEM; } trans->txqs.txq[txq_id] = queue; ret = iwl_txq_alloc(trans, queue, queue_size, true); if (ret) { IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); goto error; } } else { queue = trans->txqs.txq[txq_id]; } ret = iwl_txq_init(trans, queue, queue_size, (txq_id == trans->txqs.cmd.q_id)); if (ret) { IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); goto error; } trans->txqs.txq[txq_id]->id = txq_id; set_bit(txq_id, trans->txqs.queue_used); return 0; error: iwl_txq_gen2_tx_free(trans); return ret; } static inline dma_addr_t iwl_txq_gen1_tfd_tb_get_addr(struct iwl_trans *trans, struct iwl_tfd *tfd, u8 idx) { struct iwl_tfd_tb *tb = &tfd->tbs[idx]; dma_addr_t addr; dma_addr_t hi_len; addr = get_unaligned_le32(&tb->lo); if (sizeof(dma_addr_t) <= sizeof(u32)) return addr; hi_len = le16_to_cpu(tb->hi_n_len) & 0xF; /* * shift by 16 twice to avoid warnings on 32-bit * (where this code never runs anyway due to the * if statement above) */ return addr | ((hi_len << 16) << 16); } void iwl_txq_gen1_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_txq *txq, int index) { int i, num_tbs; struct iwl_tfd *tfd = iwl_txq_get_tfd(trans, txq, index); /* Sanity check on number of chunks */ num_tbs = iwl_txq_gen1_tfd_get_num_tbs(trans, tfd); if (num_tbs > trans->txqs.tfd.max_tbs) { IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); /* @todo issue fatal error, it is quite serious situation */ return; } /* first TB is never freed - it's the bidirectional DMA data */ for (i = 1; i < num_tbs; i++) { if (meta->tbs & BIT(i)) dma_unmap_page(trans->dev, iwl_txq_gen1_tfd_tb_get_addr(trans, tfd, i), iwl_txq_gen1_tfd_tb_get_len(trans, tfd, i), DMA_TO_DEVICE); else dma_unmap_single(trans->dev, iwl_txq_gen1_tfd_tb_get_addr(trans, tfd, i), iwl_txq_gen1_tfd_tb_get_len(trans, tfd, i), DMA_TO_DEVICE); } meta->tbs = 0; iwl_txq_set_tfd_invalid_gen1(trans, tfd); } #define IWL_TX_CRC_SIZE 4 #define IWL_TX_DELIMITER_SIZE 4 /* * iwl_txq_gen1_update_byte_cnt_tbl - Set up entry in Tx byte-count array */ void iwl_txq_gen1_update_byte_cnt_tbl(struct iwl_trans *trans, struct iwl_txq *txq, u16 byte_cnt, int num_tbs) { struct iwlagn_scd_bc_tbl *scd_bc_tbl; int write_ptr = txq->write_ptr; int txq_id = txq->id; u8 sec_ctl = 0; u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; __le16 bc_ent; struct iwl_device_tx_cmd *dev_cmd = txq->entries[txq->write_ptr].cmd; struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload; u8 sta_id = tx_cmd->sta_id; scd_bc_tbl = trans->txqs.scd_bc_tbls.addr; sec_ctl = tx_cmd->sec_ctl; switch (sec_ctl & TX_CMD_SEC_MSK) { case TX_CMD_SEC_CCM: len += IEEE80211_CCMP_MIC_LEN; break; case TX_CMD_SEC_TKIP: len += IEEE80211_TKIP_ICV_LEN; break; case TX_CMD_SEC_WEP: len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN; break; } if (trans->txqs.bc_table_dword) len = DIV_ROUND_UP(len, 4); if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) return; bc_ent = cpu_to_le16(len | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; } void iwl_txq_gen1_inval_byte_cnt_tbl(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans->txqs.scd_bc_tbls.addr; int txq_id = txq->id; int read_ptr = txq->read_ptr; u8 sta_id = 0; __le16 bc_ent; struct iwl_device_tx_cmd *dev_cmd = txq->entries[read_ptr].cmd; struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload; WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX); if (txq_id != trans->txqs.cmd.q_id) sta_id = tx_cmd->sta_id; bc_ent = cpu_to_le16(1 | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent; if (read_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent; } /* * iwl_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr] * @trans - transport private data * @txq - tx queue * @dma_dir - the direction of the DMA mapping * * Does NOT advance any TFD circular buffer read/write indexes * Does NOT free the TFD itself (which is within circular buffer) */ void iwl_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) { /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and * idx is bounded by n_window */ int rd_ptr = txq->read_ptr; int idx = iwl_txq_get_cmd_index(txq, rd_ptr); struct sk_buff *skb; lockdep_assert_held(&txq->lock); if (!txq->entries) return; /* We have only q->n_window txq->entries, but we use * TFD_QUEUE_SIZE_MAX tfds */ if (trans->trans_cfg->gen2) iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta, iwl_txq_get_tfd(trans, txq, rd_ptr)); else iwl_txq_gen1_tfd_unmap(trans, &txq->entries[idx].meta, txq, rd_ptr); /* free SKB */ skb = txq->entries[idx].skb; /* Can be called from irqs-disabled context * If skb is not NULL, it means that the whole queue is being * freed and that the queue is not empty - free the skb */ if (skb) { iwl_op_mode_free_skb(trans->op_mode, skb); txq->entries[idx].skb = NULL; } } void iwl_txq_progress(struct iwl_txq *txq) { lockdep_assert_held(&txq->lock); if (!txq->wd_timeout) return; /* * station is asleep and we send data - that must * be uAPSD or PS-Poll. Don't rearm the timer. */ if (txq->frozen) return; /* * if empty delete timer, otherwise move timer forward * since we're making progress on this queue */ if (txq->read_ptr == txq->write_ptr) del_timer(&txq->stuck_timer); else mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); } /* Frees buffers until index _not_ inclusive */ void iwl_txq_reclaim(struct iwl_trans *trans, int txq_id, int ssn, struct sk_buff_head *skbs) { struct iwl_txq *txq = trans->txqs.txq[txq_id]; int tfd_num, read_ptr, last_to_free; /* This function is not meant to release cmd queue*/ if (WARN_ON(txq_id == trans->txqs.cmd.q_id)) return; if (WARN_ON(!txq)) return; tfd_num = iwl_txq_get_cmd_index(txq, ssn); read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr); spin_lock_bh(&txq->lock); if (!test_bit(txq_id, trans->txqs.queue_used)) { IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n", txq_id, ssn); goto out; } if (read_ptr == tfd_num) goto out; IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d -> %d (%d)\n", txq_id, txq->read_ptr, tfd_num, ssn); /*Since we free until index _not_ inclusive, the one before index is * the last we will free. This one must be used */ last_to_free = iwl_txq_dec_wrap(trans, tfd_num); if (!iwl_txq_used(txq, last_to_free)) { IWL_ERR(trans, "%s: Read index for txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n", __func__, txq_id, last_to_free, trans->trans_cfg->base_params->max_tfd_queue_size, txq->write_ptr, txq->read_ptr); iwl_op_mode_time_point(trans->op_mode, IWL_FW_INI_TIME_POINT_FAKE_TX, NULL); goto out; } if (WARN_ON(!skb_queue_empty(skbs))) goto out; for (; read_ptr != tfd_num; txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr), read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr)) { struct sk_buff *skb = txq->entries[read_ptr].skb; if (WARN_ON_ONCE(!skb)) continue; iwl_txq_free_tso_page(trans, skb); __skb_queue_tail(skbs, skb); txq->entries[read_ptr].skb = NULL; if (!trans->trans_cfg->gen2) iwl_txq_gen1_inval_byte_cnt_tbl(trans, txq); iwl_txq_free_tfd(trans, txq); } iwl_txq_progress(txq); if (iwl_txq_space(trans, txq) > txq->low_mark && test_bit(txq_id, trans->txqs.queue_stopped)) { struct sk_buff_head overflow_skbs; __skb_queue_head_init(&overflow_skbs); skb_queue_splice_init(&txq->overflow_q, &overflow_skbs); /* * We are going to transmit from the overflow queue. * Remember this state so that wait_for_txq_empty will know we * are adding more packets to the TFD queue. It cannot rely on * the state of &txq->overflow_q, as we just emptied it, but * haven't TXed the content yet. */ txq->overflow_tx = true; /* * This is tricky: we are in reclaim path which is non * re-entrant, so noone will try to take the access the * txq data from that path. We stopped tx, so we can't * have tx as well. Bottom line, we can unlock and re-lock * later. */ spin_unlock_bh(&txq->lock); while (!skb_queue_empty(&overflow_skbs)) { struct sk_buff *skb = __skb_dequeue(&overflow_skbs); struct iwl_device_tx_cmd *dev_cmd_ptr; dev_cmd_ptr = *(void **)((u8 *)skb->cb + trans->txqs.dev_cmd_offs); /* * Note that we can very well be overflowing again. * In that case, iwl_txq_space will be small again * and we won't wake mac80211's queue. */ iwl_trans_tx(trans, skb, dev_cmd_ptr, txq_id); } if (iwl_txq_space(trans, txq) > txq->low_mark) iwl_wake_queue(trans, txq); spin_lock_bh(&txq->lock); txq->overflow_tx = false; } out: spin_unlock_bh(&txq->lock); } /* Set wr_ptr of specific device and txq */ void iwl_txq_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr) { struct iwl_txq *txq = trans->txqs.txq[txq_id]; spin_lock_bh(&txq->lock); txq->write_ptr = ptr; txq->read_ptr = txq->write_ptr; spin_unlock_bh(&txq->lock); } void iwl_trans_txq_freeze_timer(struct iwl_trans *trans, unsigned long txqs, bool freeze) { int queue; for_each_set_bit(queue, &txqs, BITS_PER_LONG) { struct iwl_txq *txq = trans->txqs.txq[queue]; unsigned long now; spin_lock_bh(&txq->lock); now = jiffies; if (txq->frozen == freeze) goto next_queue; IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", freeze ? "Freezing" : "Waking", queue); txq->frozen = freeze; if (txq->read_ptr == txq->write_ptr) goto next_queue; if (freeze) { if (unlikely(time_after(now, txq->stuck_timer.expires))) { /* * The timer should have fired, maybe it is * spinning right now on the lock. */ goto next_queue; } /* remember how long until the timer fires */ txq->frozen_expiry_remainder = txq->stuck_timer.expires - now; del_timer(&txq->stuck_timer); goto next_queue; } /* * Wake a non-empty queue -> arm timer with the * remainder before it froze */ mod_timer(&txq->stuck_timer, now + txq->frozen_expiry_remainder); next_queue: spin_unlock_bh(&txq->lock); } } #define HOST_COMPLETE_TIMEOUT (2 * HZ) static int iwl_trans_txq_send_hcmd_sync(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { const char *cmd_str = iwl_get_cmd_string(trans, cmd->id); struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; int cmd_idx; int ret; IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", cmd_str); if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), "Command %s: a command is already active!\n", cmd_str)) return -EIO; IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", cmd_str); cmd_idx = trans->ops->send_cmd(trans, cmd); if (cmd_idx < 0) { ret = cmd_idx; clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", cmd_str, ret); return ret; } ret = wait_event_timeout(trans->wait_command_queue, !test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), HOST_COMPLETE_TIMEOUT); if (!ret) { IWL_ERR(trans, "Error sending %s: time out after %dms.\n", cmd_str, jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", txq->read_ptr, txq->write_ptr); clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", cmd_str); ret = -ETIMEDOUT; iwl_trans_sync_nmi(trans); goto cancel; } if (test_bit(STATUS_FW_ERROR, &trans->status)) { if (!test_and_clear_bit(STATUS_SUPPRESS_CMD_ERROR_ONCE, &trans->status)) { IWL_ERR(trans, "FW error in SYNC CMD %s\n", cmd_str); dump_stack(); } ret = -EIO; goto cancel; } if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL_OPMODE, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); ret = -ERFKILL; goto cancel; } if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { IWL_ERR(trans, "Error: Response NULL in '%s'\n", cmd_str); ret = -EIO; goto cancel; } return 0; cancel: if (cmd->flags & CMD_WANT_SKB) { /* * Cancel the CMD_WANT_SKB flag for the cmd in the * TX cmd queue. Otherwise in case the cmd comes * in later, it will possibly set an invalid * address (cmd->meta.source). */ txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; } if (cmd->resp_pkt) { iwl_free_resp(cmd); cmd->resp_pkt = NULL; } return ret; } int iwl_trans_txq_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { /* Make sure the NIC is still alive in the bus */ if (test_bit(STATUS_TRANS_DEAD, &trans->status)) return -ENODEV; if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL_OPMODE, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", cmd->id); return -ERFKILL; } if (unlikely(trans->system_pm_mode == IWL_PLAT_PM_MODE_D3 && !(cmd->flags & CMD_SEND_IN_D3))) { IWL_DEBUG_WOWLAN(trans, "Dropping CMD 0x%x: D3\n", cmd->id); return -EHOSTDOWN; } if (cmd->flags & CMD_ASYNC) { int ret; /* An asynchronous command can not expect an SKB to be set. */ if (WARN_ON(cmd->flags & CMD_WANT_SKB)) return -EINVAL; ret = trans->ops->send_cmd(trans, cmd); if (ret < 0) { IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", iwl_get_cmd_string(trans, cmd->id), ret); return ret; } return 0; } return iwl_trans_txq_send_hcmd_sync(trans, cmd); }