/* * Copyright (c) 2004-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "core.h" #include "debug.h" static int ath6kl_wmi_sync_point(struct wmi *wmi); static const s32 wmi_rate_tbl[][2] = { /* {W/O SGI, with SGI} */ {1000, 1000}, {2000, 2000}, {5500, 5500}, {11000, 11000}, {6000, 6000}, {9000, 9000}, {12000, 12000}, {18000, 18000}, {24000, 24000}, {36000, 36000}, {48000, 48000}, {54000, 54000}, {6500, 7200}, {13000, 14400}, {19500, 21700}, {26000, 28900}, {39000, 43300}, {52000, 57800}, {58500, 65000}, {65000, 72200}, {13500, 15000}, {27000, 30000}, {40500, 45000}, {54000, 60000}, {81000, 90000}, {108000, 120000}, {121500, 135000}, {135000, 150000}, {0, 0} }; /* 802.1d to AC mapping. Refer pg 57 of WMM-test-plan-v1.2 */ static const u8 up_to_ac[] = { WMM_AC_BE, WMM_AC_BK, WMM_AC_BK, WMM_AC_BE, WMM_AC_VI, WMM_AC_VI, WMM_AC_VO, WMM_AC_VO, }; void ath6kl_wmi_set_control_ep(struct wmi *wmi, enum htc_endpoint_id ep_id) { if (WARN_ON(ep_id == ENDPOINT_UNUSED || ep_id >= ENDPOINT_MAX)) return; wmi->ep_id = ep_id; } enum htc_endpoint_id ath6kl_wmi_get_control_ep(struct wmi *wmi) { return wmi->ep_id; } /* Performs DIX to 802.3 encapsulation for transmit packets. * Assumes the entire DIX header is contigous and that there is * enough room in the buffer for a 802.3 mac header and LLC+SNAP headers. */ int ath6kl_wmi_dix_2_dot3(struct wmi *wmi, struct sk_buff *skb) { struct ath6kl_llc_snap_hdr *llc_hdr; struct ethhdr *eth_hdr; size_t new_len; __be16 type; u8 *datap; u16 size; if (WARN_ON(skb == NULL)) return -EINVAL; size = sizeof(struct ath6kl_llc_snap_hdr) + sizeof(struct wmi_data_hdr); if (skb_headroom(skb) < size) return -ENOMEM; eth_hdr = (struct ethhdr *) skb->data; type = eth_hdr->h_proto; if (!is_ethertype(be16_to_cpu(type))) { ath6kl_dbg(ATH6KL_DBG_WMI, "%s: pkt is already in 802.3 format\n", __func__); return 0; } new_len = skb->len - sizeof(*eth_hdr) + sizeof(*llc_hdr); skb_push(skb, sizeof(struct ath6kl_llc_snap_hdr)); datap = skb->data; eth_hdr->h_proto = cpu_to_be16(new_len); memcpy(datap, eth_hdr, sizeof(*eth_hdr)); llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap + sizeof(*eth_hdr)); llc_hdr->dsap = 0xAA; llc_hdr->ssap = 0xAA; llc_hdr->cntl = 0x03; llc_hdr->org_code[0] = 0x0; llc_hdr->org_code[1] = 0x0; llc_hdr->org_code[2] = 0x0; llc_hdr->eth_type = type; return 0; } static int ath6kl_wmi_meta_add(struct wmi *wmi, struct sk_buff *skb, u8 *version, void *tx_meta_info) { struct wmi_tx_meta_v1 *v1; struct wmi_tx_meta_v2 *v2; if (WARN_ON(skb == NULL || version == NULL)) return -EINVAL; switch (*version) { case WMI_META_VERSION_1: skb_push(skb, WMI_MAX_TX_META_SZ); v1 = (struct wmi_tx_meta_v1 *) skb->data; v1->pkt_id = 0; v1->rate_plcy_id = 0; *version = WMI_META_VERSION_1; break; case WMI_META_VERSION_2: skb_push(skb, WMI_MAX_TX_META_SZ); v2 = (struct wmi_tx_meta_v2 *) skb->data; memcpy(v2, (struct wmi_tx_meta_v2 *) tx_meta_info, sizeof(struct wmi_tx_meta_v2)); break; } return 0; } int ath6kl_wmi_data_hdr_add(struct wmi *wmi, struct sk_buff *skb, u8 msg_type, bool more_data, enum wmi_data_hdr_data_type data_type, u8 meta_ver, void *tx_meta_info) { struct wmi_data_hdr *data_hdr; int ret; if (WARN_ON(skb == NULL)) return -EINVAL; if (tx_meta_info) { ret = ath6kl_wmi_meta_add(wmi, skb, &meta_ver, tx_meta_info); if (ret) return ret; } skb_push(skb, sizeof(struct wmi_data_hdr)); data_hdr = (struct wmi_data_hdr *)skb->data; memset(data_hdr, 0, sizeof(struct wmi_data_hdr)); data_hdr->info = msg_type << WMI_DATA_HDR_MSG_TYPE_SHIFT; data_hdr->info |= data_type << WMI_DATA_HDR_DATA_TYPE_SHIFT; if (more_data) data_hdr->info |= WMI_DATA_HDR_MORE_MASK << WMI_DATA_HDR_MORE_SHIFT; data_hdr->info2 = cpu_to_le16(meta_ver << WMI_DATA_HDR_META_SHIFT); data_hdr->info3 = 0; return 0; } static u8 ath6kl_wmi_determine_user_priority(u8 *pkt, u32 layer2_pri) { struct iphdr *ip_hdr = (struct iphdr *) pkt; u8 ip_pri; /* * Determine IPTOS priority * * IP-TOS - 8bits * : DSCP(6-bits) ECN(2-bits) * : DSCP - P2 P1 P0 X X X * where (P2 P1 P0) form 802.1D */ ip_pri = ip_hdr->tos >> 5; ip_pri &= 0x7; if ((layer2_pri & 0x7) > ip_pri) return (u8) layer2_pri & 0x7; else return ip_pri; } int ath6kl_wmi_implicit_create_pstream(struct wmi *wmi, struct sk_buff *skb, u32 layer2_priority, bool wmm_enabled, u8 *ac) { struct wmi_data_hdr *data_hdr; struct ath6kl_llc_snap_hdr *llc_hdr; struct wmi_create_pstream_cmd cmd; u32 meta_size, hdr_size; u16 ip_type = IP_ETHERTYPE; u8 stream_exist, usr_pri; u8 traffic_class = WMM_AC_BE; u8 *datap; if (WARN_ON(skb == NULL)) return -EINVAL; datap = skb->data; data_hdr = (struct wmi_data_hdr *) datap; meta_size = ((le16_to_cpu(data_hdr->info2) >> WMI_DATA_HDR_META_SHIFT) & WMI_DATA_HDR_META_MASK) ? WMI_MAX_TX_META_SZ : 0; if (!wmm_enabled) { /* If WMM is disabled all traffic goes as BE traffic */ usr_pri = 0; } else { hdr_size = sizeof(struct ethhdr); llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap + sizeof(struct wmi_data_hdr) + meta_size + hdr_size); if (llc_hdr->eth_type == htons(ip_type)) { /* * Extract the endpoint info from the TOS field * in the IP header. */ usr_pri = ath6kl_wmi_determine_user_priority(((u8 *) llc_hdr) + sizeof(struct ath6kl_llc_snap_hdr), layer2_priority); } else usr_pri = layer2_priority & 0x7; } /* workaround for WMM S5 */ if ((wmi->traffic_class == WMM_AC_VI) && ((usr_pri == 5) || (usr_pri == 4))) usr_pri = 1; /* Convert user priority to traffic class */ traffic_class = up_to_ac[usr_pri & 0x7]; wmi_data_hdr_set_up(data_hdr, usr_pri); spin_lock_bh(&wmi->lock); stream_exist = wmi->fat_pipe_exist; spin_unlock_bh(&wmi->lock); if (!(stream_exist & (1 << traffic_class))) { memset(&cmd, 0, sizeof(cmd)); cmd.traffic_class = traffic_class; cmd.user_pri = usr_pri; cmd.inactivity_int = cpu_to_le32(WMI_IMPLICIT_PSTREAM_INACTIVITY_INT); /* Implicit streams are created with TSID 0xFF */ cmd.tsid = WMI_IMPLICIT_PSTREAM; ath6kl_wmi_create_pstream_cmd(wmi, &cmd); } *ac = traffic_class; return 0; } int ath6kl_wmi_dot11_hdr_remove(struct wmi *wmi, struct sk_buff *skb) { struct ieee80211_hdr_3addr *pwh, wh; struct ath6kl_llc_snap_hdr *llc_hdr; struct ethhdr eth_hdr; u32 hdr_size; u8 *datap; __le16 sub_type; if (WARN_ON(skb == NULL)) return -EINVAL; datap = skb->data; pwh = (struct ieee80211_hdr_3addr *) datap; sub_type = pwh->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); memcpy((u8 *) &wh, datap, sizeof(struct ieee80211_hdr_3addr)); /* Strip off the 802.11 header */ if (sub_type == cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { hdr_size = roundup(sizeof(struct ieee80211_qos_hdr), sizeof(u32)); skb_pull(skb, hdr_size); } else if (sub_type == cpu_to_le16(IEEE80211_STYPE_DATA)) skb_pull(skb, sizeof(struct ieee80211_hdr_3addr)); datap = skb->data; llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap); memset(ð_hdr, 0, sizeof(eth_hdr)); eth_hdr.h_proto = llc_hdr->eth_type; switch ((le16_to_cpu(wh.frame_control)) & (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) { case 0: memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN); memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN); break; case IEEE80211_FCTL_TODS: memcpy(eth_hdr.h_dest, wh.addr3, ETH_ALEN); memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN); break; case IEEE80211_FCTL_FROMDS: memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN); memcpy(eth_hdr.h_source, wh.addr3, ETH_ALEN); break; case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS: break; } skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr)); skb_push(skb, sizeof(eth_hdr)); datap = skb->data; memcpy(datap, ð_hdr, sizeof(eth_hdr)); return 0; } /* * Performs 802.3 to DIX encapsulation for received packets. * Assumes the entire 802.3 header is contigous. */ int ath6kl_wmi_dot3_2_dix(struct sk_buff *skb) { struct ath6kl_llc_snap_hdr *llc_hdr; struct ethhdr eth_hdr; u8 *datap; if (WARN_ON(skb == NULL)) return -EINVAL; datap = skb->data; memcpy(ð_hdr, datap, sizeof(eth_hdr)); llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + sizeof(eth_hdr)); eth_hdr.h_proto = llc_hdr->eth_type; skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr)); datap = skb->data; memcpy(datap, ð_hdr, sizeof(eth_hdr)); return 0; } static void ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(struct sk_buff *skb, u8 *datap) { struct wmi_bss_info_hdr2 bih2; struct wmi_bss_info_hdr *bih; memcpy(&bih2, datap, sizeof(struct wmi_bss_info_hdr2)); skb_push(skb, 4); bih = (struct wmi_bss_info_hdr *) skb->data; bih->ch = bih2.ch; bih->frame_type = bih2.frame_type; bih->snr = bih2.snr; bih->rssi = a_cpu_to_sle16(bih2.snr - 95); bih->ie_mask = cpu_to_le32(le16_to_cpu(bih2.ie_mask)); memcpy(bih->bssid, bih2.bssid, ETH_ALEN); } static int ath6kl_wmi_tx_complete_event_rx(u8 *datap, int len) { struct tx_complete_msg_v1 *msg_v1; struct wmi_tx_complete_event *evt; int index; u16 size; evt = (struct wmi_tx_complete_event *) datap; ath6kl_dbg(ATH6KL_DBG_WMI, "comp: %d %d %d\n", evt->num_msg, evt->msg_len, evt->msg_type); if (!AR_DBG_LVL_CHECK(ATH6KL_DBG_WMI)) return 0; for (index = 0; index < evt->num_msg; index++) { size = sizeof(struct wmi_tx_complete_event) + (index * sizeof(struct tx_complete_msg_v1)); msg_v1 = (struct tx_complete_msg_v1 *)(datap + size); ath6kl_dbg(ATH6KL_DBG_WMI, "msg: %d %d %d %d\n", msg_v1->status, msg_v1->pkt_id, msg_v1->rate_idx, msg_v1->ack_failures); } return 0; } static int ath6kl_wmi_remain_on_chnl_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_remain_on_chnl_event *ev; u32 freq; u32 dur; struct ieee80211_channel *chan; struct ath6kl *ar = wmi->parent_dev; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_remain_on_chnl_event *) datap; freq = le32_to_cpu(ev->freq); dur = le32_to_cpu(ev->duration); ath6kl_dbg(ATH6KL_DBG_WMI, "remain_on_chnl: freq=%u dur=%u\n", freq, dur); chan = ieee80211_get_channel(ar->wdev->wiphy, freq); if (!chan) { ath6kl_dbg(ATH6KL_DBG_WMI, "remain_on_chnl: Unknown channel " "(freq=%u)\n", freq); return -EINVAL; } cfg80211_ready_on_channel(ar->net_dev, 1, chan, NL80211_CHAN_NO_HT, dur, GFP_ATOMIC); return 0; } static int ath6kl_wmi_cancel_remain_on_chnl_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_cancel_remain_on_chnl_event *ev; u32 freq; u32 dur; struct ieee80211_channel *chan; struct ath6kl *ar = wmi->parent_dev; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_cancel_remain_on_chnl_event *) datap; freq = le32_to_cpu(ev->freq); dur = le32_to_cpu(ev->duration); ath6kl_dbg(ATH6KL_DBG_WMI, "cancel_remain_on_chnl: freq=%u dur=%u " "status=%u\n", freq, dur, ev->status); chan = ieee80211_get_channel(ar->wdev->wiphy, freq); if (!chan) { ath6kl_dbg(ATH6KL_DBG_WMI, "cancel_remain_on_chnl: Unknown " "channel (freq=%u)\n", freq); return -EINVAL; } cfg80211_remain_on_channel_expired(ar->net_dev, 1, chan, NL80211_CHAN_NO_HT, GFP_ATOMIC); return 0; } static int ath6kl_wmi_tx_status_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_tx_status_event *ev; u32 id; struct ath6kl *ar = wmi->parent_dev; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_tx_status_event *) datap; id = le32_to_cpu(ev->id); ath6kl_dbg(ATH6KL_DBG_WMI, "tx_status: id=%x ack_status=%u\n", id, ev->ack_status); if (wmi->last_mgmt_tx_frame) { cfg80211_mgmt_tx_status(ar->net_dev, id, wmi->last_mgmt_tx_frame, wmi->last_mgmt_tx_frame_len, !!ev->ack_status, GFP_ATOMIC); kfree(wmi->last_mgmt_tx_frame); wmi->last_mgmt_tx_frame = NULL; wmi->last_mgmt_tx_frame_len = 0; } return 0; } static int ath6kl_wmi_rx_probe_req_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_p2p_rx_probe_req_event *ev; u32 freq; u16 dlen; struct ath6kl *ar = wmi->parent_dev; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_p2p_rx_probe_req_event *) datap; freq = le32_to_cpu(ev->freq); dlen = le16_to_cpu(ev->len); if (datap + len < ev->data + dlen) { ath6kl_err("invalid wmi_p2p_rx_probe_req_event: " "len=%d dlen=%u\n", len, dlen); return -EINVAL; } ath6kl_dbg(ATH6KL_DBG_WMI, "rx_probe_req: len=%u freq=%u " "probe_req_report=%d\n", dlen, freq, ar->probe_req_report); if (ar->probe_req_report || ar->nw_type == AP_NETWORK) cfg80211_rx_mgmt(ar->net_dev, freq, ev->data, dlen, GFP_ATOMIC); return 0; } static int ath6kl_wmi_p2p_capabilities_event_rx(u8 *datap, int len) { struct wmi_p2p_capabilities_event *ev; u16 dlen; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_p2p_capabilities_event *) datap; dlen = le16_to_cpu(ev->len); ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_capab: len=%u\n", dlen); return 0; } static int ath6kl_wmi_rx_action_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_rx_action_event *ev; u32 freq; u16 dlen; struct ath6kl *ar = wmi->parent_dev; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_rx_action_event *) datap; freq = le32_to_cpu(ev->freq); dlen = le16_to_cpu(ev->len); if (datap + len < ev->data + dlen) { ath6kl_err("invalid wmi_rx_action_event: " "len=%d dlen=%u\n", len, dlen); return -EINVAL; } ath6kl_dbg(ATH6KL_DBG_WMI, "rx_action: len=%u freq=%u\n", dlen, freq); cfg80211_rx_mgmt(ar->net_dev, freq, ev->data, dlen, GFP_ATOMIC); return 0; } static int ath6kl_wmi_p2p_info_event_rx(u8 *datap, int len) { struct wmi_p2p_info_event *ev; u32 flags; u16 dlen; if (len < sizeof(*ev)) return -EINVAL; ev = (struct wmi_p2p_info_event *) datap; flags = le32_to_cpu(ev->info_req_flags); dlen = le16_to_cpu(ev->len); ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: flags=%x len=%d\n", flags, dlen); if (flags & P2P_FLAG_CAPABILITIES_REQ) { struct wmi_p2p_capabilities *cap; if (dlen < sizeof(*cap)) return -EINVAL; cap = (struct wmi_p2p_capabilities *) ev->data; ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: GO Power Save = %d\n", cap->go_power_save); } if (flags & P2P_FLAG_MACADDR_REQ) { struct wmi_p2p_macaddr *mac; if (dlen < sizeof(*mac)) return -EINVAL; mac = (struct wmi_p2p_macaddr *) ev->data; ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: MAC Address = %pM\n", mac->mac_addr); } if (flags & P2P_FLAG_HMODEL_REQ) { struct wmi_p2p_hmodel *mod; if (dlen < sizeof(*mod)) return -EINVAL; mod = (struct wmi_p2p_hmodel *) ev->data; ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: P2P Model = %d (%s)\n", mod->p2p_model, mod->p2p_model ? "host" : "firmware"); } return 0; } static inline struct sk_buff *ath6kl_wmi_get_new_buf(u32 size) { struct sk_buff *skb; skb = ath6kl_buf_alloc(size); if (!skb) return NULL; skb_put(skb, size); if (size) memset(skb->data, 0, size); return skb; } /* Send a "simple" wmi command -- one with no arguments */ static int ath6kl_wmi_simple_cmd(struct wmi *wmi, enum wmi_cmd_id cmd_id) { struct sk_buff *skb; int ret; skb = ath6kl_wmi_get_new_buf(0); if (!skb) return -ENOMEM; ret = ath6kl_wmi_cmd_send(wmi, skb, cmd_id, NO_SYNC_WMIFLAG); return ret; } static int ath6kl_wmi_ready_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_ready_event_2 *ev = (struct wmi_ready_event_2 *) datap; if (len < sizeof(struct wmi_ready_event_2)) return -EINVAL; wmi->ready = true; ath6kl_ready_event(wmi->parent_dev, ev->mac_addr, le32_to_cpu(ev->sw_version), le32_to_cpu(ev->abi_version)); return 0; } static int ath6kl_wmi_connect_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_connect_event *ev; u8 *pie, *peie; if (len < sizeof(struct wmi_connect_event)) return -EINVAL; ev = (struct wmi_connect_event *) datap; ath6kl_dbg(ATH6KL_DBG_WMI, "%s: freq %d bssid %pM\n", __func__, ev->ch, ev->bssid); /* Start of assoc rsp IEs */ pie = ev->assoc_info + ev->beacon_ie_len + ev->assoc_req_len + (sizeof(u16) * 3); /* capinfo, status, aid */ /* End of assoc rsp IEs */ peie = ev->assoc_info + ev->beacon_ie_len + ev->assoc_req_len + ev->assoc_resp_len; while (pie < peie) { switch (*pie) { case WLAN_EID_VENDOR_SPECIFIC: if (pie[1] > 3 && pie[2] == 0x00 && pie[3] == 0x50 && pie[4] == 0xf2 && pie[5] == WMM_OUI_TYPE) { /* WMM OUT (00:50:F2) */ if (pie[1] > 5 && pie[6] == WMM_PARAM_OUI_SUBTYPE) wmi->is_wmm_enabled = true; } break; } if (wmi->is_wmm_enabled) break; pie += pie[1] + 2; } ath6kl_connect_event(wmi->parent_dev, le16_to_cpu(ev->ch), ev->bssid, le16_to_cpu(ev->listen_intvl), le16_to_cpu(ev->beacon_intvl), le32_to_cpu(ev->nw_type), ev->beacon_ie_len, ev->assoc_req_len, ev->assoc_resp_len, ev->assoc_info); return 0; } static int ath6kl_wmi_disconnect_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_disconnect_event *ev; wmi->traffic_class = 100; if (len < sizeof(struct wmi_disconnect_event)) return -EINVAL; ev = (struct wmi_disconnect_event *) datap; wmi->is_wmm_enabled = false; wmi->pair_crypto_type = NONE_CRYPT; wmi->grp_crypto_type = NONE_CRYPT; ath6kl_disconnect_event(wmi->parent_dev, ev->disconn_reason, ev->bssid, ev->assoc_resp_len, ev->assoc_info, le16_to_cpu(ev->proto_reason_status)); return 0; } static int ath6kl_wmi_peer_node_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_peer_node_event *ev; if (len < sizeof(struct wmi_peer_node_event)) return -EINVAL; ev = (struct wmi_peer_node_event *) datap; if (ev->event_code == PEER_NODE_JOIN_EVENT) ath6kl_dbg(ATH6KL_DBG_WMI, "joined node with mac addr: %pM\n", ev->peer_mac_addr); else if (ev->event_code == PEER_NODE_LEAVE_EVENT) ath6kl_dbg(ATH6KL_DBG_WMI, "left node with mac addr: %pM\n", ev->peer_mac_addr); return 0; } static int ath6kl_wmi_tkip_micerr_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_tkip_micerr_event *ev; if (len < sizeof(struct wmi_tkip_micerr_event)) return -EINVAL; ev = (struct wmi_tkip_micerr_event *) datap; ath6kl_tkip_micerr_event(wmi->parent_dev, ev->key_id, ev->is_mcast); return 0; } static int ath6kl_wlan_parse_beacon(u8 *buf, int frame_len, struct ath6kl_common_ie *cie) { u8 *frm, *efrm; u8 elemid_ssid = false; frm = buf; efrm = (u8 *) (frm + frame_len); /* * beacon/probe response frame format * [8] time stamp * [2] beacon interval * [2] capability information * [tlv] ssid * [tlv] supported rates * [tlv] country information * [tlv] parameter set (FH/DS) * [tlv] erp information * [tlv] extended supported rates * [tlv] WMM * [tlv] WPA or RSN * [tlv] Atheros Advanced Capabilities */ if ((efrm - frm) < 12) return -EINVAL; memset(cie, 0, sizeof(*cie)); cie->ie_tstamp = frm; frm += 8; cie->ie_beaconInt = *(u16 *) frm; frm += 2; cie->ie_capInfo = *(u16 *) frm; frm += 2; cie->ie_chan = 0; while (frm < efrm) { switch (*frm) { case WLAN_EID_SSID: if (!elemid_ssid) { cie->ie_ssid = frm; elemid_ssid = true; } break; case WLAN_EID_SUPP_RATES: cie->ie_rates = frm; break; case WLAN_EID_COUNTRY: cie->ie_country = frm; break; case WLAN_EID_FH_PARAMS: break; case WLAN_EID_DS_PARAMS: cie->ie_chan = frm[2]; break; case WLAN_EID_TIM: cie->ie_tim = frm; break; case WLAN_EID_IBSS_PARAMS: break; case WLAN_EID_EXT_SUPP_RATES: cie->ie_xrates = frm; break; case WLAN_EID_ERP_INFO: if (frm[1] != 1) return -EINVAL; cie->ie_erp = frm[2]; break; case WLAN_EID_RSN: cie->ie_rsn = frm; break; case WLAN_EID_HT_CAPABILITY: cie->ie_htcap = frm; break; case WLAN_EID_HT_INFORMATION: cie->ie_htop = frm; break; case WLAN_EID_VENDOR_SPECIFIC: if (frm[1] > 3 && frm[2] == 0x00 && frm[3] == 0x50 && frm[4] == 0xf2) { /* OUT Type (00:50:F2) */ if (frm[5] == WPA_OUI_TYPE) { /* WPA OUT */ cie->ie_wpa = frm; } else if (frm[5] == WMM_OUI_TYPE) { /* WMM OUT */ cie->ie_wmm = frm; } else if (frm[5] == WSC_OUT_TYPE) { /* WSC OUT */ cie->ie_wsc = frm; } } else if (frm[1] > 3 && frm[2] == 0x00 && frm[3] == 0x03 && frm[4] == 0x7f && frm[5] == ATH_OUI_TYPE) { /* Atheros OUI (00:03:7f) */ cie->ie_ath = frm; } break; default: break; } frm += frm[1] + 2; } if ((cie->ie_rates == NULL) || (cie->ie_rates[1] > ATH6KL_RATE_MAXSIZE)) return -EINVAL; if ((cie->ie_ssid == NULL) || (cie->ie_ssid[1] > IEEE80211_MAX_SSID_LEN)) return -EINVAL; return 0; } static int ath6kl_wmi_bssinfo_event_rx(struct wmi *wmi, u8 *datap, int len) { struct bss *bss = NULL; struct wmi_bss_info_hdr *bih; u8 cached_ssid_len = 0; u8 cached_ssid[IEEE80211_MAX_SSID_LEN] = { 0 }; u8 beacon_ssid_len = 0; u8 *buf, *ie_ssid; u8 *ni_buf; int buf_len; int ret; if (len <= sizeof(struct wmi_bss_info_hdr)) return -EINVAL; bih = (struct wmi_bss_info_hdr *) datap; bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid); if (a_sle16_to_cpu(bih->rssi) > 0) { if (bss == NULL) return 0; else bih->rssi = a_cpu_to_sle16(bss->ni_rssi); } buf = datap + sizeof(struct wmi_bss_info_hdr); len -= sizeof(struct wmi_bss_info_hdr); ath6kl_dbg(ATH6KL_DBG_WMI, "bss info evt - ch %u, rssi %02x, bssid \"%pM\"\n", bih->ch, a_sle16_to_cpu(bih->rssi), bih->bssid); if (bss != NULL) { /* * Free up the node. We are about to allocate a new node. * In case of hidden AP, beacon will not have ssid, * but a directed probe response will have it, * so cache the probe-resp-ssid if already present. */ if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE)) { ie_ssid = bss->ni_cie.ie_ssid; if (ie_ssid && (ie_ssid[1] <= IEEE80211_MAX_SSID_LEN) && (ie_ssid[2] != 0)) { cached_ssid_len = ie_ssid[1]; memcpy(cached_ssid, ie_ssid + 2, cached_ssid_len); } } /* * Use the current average rssi of associated AP base on * assumption * 1. Most os with GUI will update RSSI by * ath6kl_wmi_get_stats_cmd() periodically. * 2. ath6kl_wmi_get_stats_cmd(..) will be called when calling * ath6kl_wmi_startscan_cmd(...) * The average value of RSSI give end-user better feeling for * instance value of scan result. It also sync up RSSI info * in GUI between scan result and RSSI signal icon. */ if (memcmp(wmi->parent_dev->bssid, bih->bssid, ETH_ALEN) == 0) { bih->rssi = a_cpu_to_sle16(bss->ni_rssi); bih->snr = bss->ni_snr; } wlan_node_reclaim(&wmi->parent_dev->scan_table, bss); } /* * beacon/probe response frame format * [8] time stamp * [2] beacon interval * [2] capability information * [tlv] ssid */ beacon_ssid_len = buf[SSID_IE_LEN_INDEX]; /* * If ssid is cached for this hidden AP, then change * buffer len accordingly. */ if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) && (cached_ssid_len != 0) && (beacon_ssid_len == 0 || (cached_ssid_len > beacon_ssid_len && buf[SSID_IE_LEN_INDEX + 1] == 0))) { len += (cached_ssid_len - beacon_ssid_len); } bss = wlan_node_alloc(len); if (!bss) return -ENOMEM; bss->ni_snr = bih->snr; bss->ni_rssi = a_sle16_to_cpu(bih->rssi); if (WARN_ON(!bss->ni_buf)) return -EINVAL; /* * In case of hidden AP, beacon will not have ssid, * but a directed probe response will have it, * so place the cached-ssid(probe-resp) in the bss info. */ if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) && (cached_ssid_len != 0) && (beacon_ssid_len == 0 || (beacon_ssid_len && buf[SSID_IE_LEN_INDEX + 1] == 0))) { ni_buf = bss->ni_buf; buf_len = len; /* * Copy the first 14 bytes: * time-stamp(8), beacon-interval(2), * cap-info(2), ssid-id(1), ssid-len(1). */ memcpy(ni_buf, buf, SSID_IE_LEN_INDEX + 1); ni_buf[SSID_IE_LEN_INDEX] = cached_ssid_len; ni_buf += (SSID_IE_LEN_INDEX + 1); buf += (SSID_IE_LEN_INDEX + 1); buf_len -= (SSID_IE_LEN_INDEX + 1); memcpy(ni_buf, cached_ssid, cached_ssid_len); ni_buf += cached_ssid_len; buf += beacon_ssid_len; buf_len -= beacon_ssid_len; if (cached_ssid_len > beacon_ssid_len) buf_len -= (cached_ssid_len - beacon_ssid_len); memcpy(ni_buf, buf, buf_len); } else memcpy(bss->ni_buf, buf, len); bss->ni_framelen = len; ret = ath6kl_wlan_parse_beacon(bss->ni_buf, len, &bss->ni_cie); if (ret) { wlan_node_free(bss); return -EINVAL; } /* * Update the frequency in ie_chan, overwriting of channel number * which is done in ath6kl_wlan_parse_beacon */ bss->ni_cie.ie_chan = le16_to_cpu(bih->ch); wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid); return 0; } static int ath6kl_wmi_opt_frame_event_rx(struct wmi *wmi, u8 *datap, int len) { struct bss *bss; struct wmi_opt_rx_info_hdr *bih; u8 *buf; if (len <= sizeof(struct wmi_opt_rx_info_hdr)) return -EINVAL; bih = (struct wmi_opt_rx_info_hdr *) datap; buf = datap + sizeof(struct wmi_opt_rx_info_hdr); len -= sizeof(struct wmi_opt_rx_info_hdr); ath6kl_dbg(ATH6KL_DBG_WMI, "opt frame event %2.2x:%2.2x\n", bih->bssid[4], bih->bssid[5]); bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid); if (bss != NULL) { /* Free up the node. We are about to allocate a new node. */ wlan_node_reclaim(&wmi->parent_dev->scan_table, bss); } bss = wlan_node_alloc(len); if (!bss) return -ENOMEM; bss->ni_snr = bih->snr; bss->ni_cie.ie_chan = le16_to_cpu(bih->ch); if (WARN_ON(!bss->ni_buf)) return -EINVAL; memcpy(bss->ni_buf, buf, len); wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid); return 0; } /* Inactivity timeout of a fatpipe(pstream) at the target */ static int ath6kl_wmi_pstream_timeout_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_pstream_timeout_event *ev; if (len < sizeof(struct wmi_pstream_timeout_event)) return -EINVAL; ev = (struct wmi_pstream_timeout_event *) datap; /* * When the pstream (fat pipe == AC) timesout, it means there were * no thinStreams within this pstream & it got implicitly created * due to data flow on this AC. We start the inactivity timer only * for implicitly created pstream. Just reset the host state. */ spin_lock_bh(&wmi->lock); wmi->stream_exist_for_ac[ev->traffic_class] = 0; wmi->fat_pipe_exist &= ~(1 << ev->traffic_class); spin_unlock_bh(&wmi->lock); /* Indicate inactivity to driver layer for this fatpipe (pstream) */ ath6kl_indicate_tx_activity(wmi->parent_dev, ev->traffic_class, false); return 0; } static int ath6kl_wmi_bitrate_reply_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_bit_rate_reply *reply; s32 rate; u32 sgi, index; if (len < sizeof(struct wmi_bit_rate_reply)) return -EINVAL; reply = (struct wmi_bit_rate_reply *) datap; ath6kl_dbg(ATH6KL_DBG_WMI, "rateindex %d\n", reply->rate_index); if (reply->rate_index == (s8) RATE_AUTO) { rate = RATE_AUTO; } else { index = reply->rate_index & 0x7f; sgi = (reply->rate_index & 0x80) ? 1 : 0; rate = wmi_rate_tbl[index][sgi]; } ath6kl_wakeup_event(wmi->parent_dev); return 0; } static int ath6kl_wmi_ratemask_reply_rx(struct wmi *wmi, u8 *datap, int len) { if (len < sizeof(struct wmi_fix_rates_reply)) return -EINVAL; ath6kl_wakeup_event(wmi->parent_dev); return 0; } static int ath6kl_wmi_ch_list_reply_rx(struct wmi *wmi, u8 *datap, int len) { if (len < sizeof(struct wmi_channel_list_reply)) return -EINVAL; ath6kl_wakeup_event(wmi->parent_dev); return 0; } static int ath6kl_wmi_tx_pwr_reply_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_tx_pwr_reply *reply; if (len < sizeof(struct wmi_tx_pwr_reply)) return -EINVAL; reply = (struct wmi_tx_pwr_reply *) datap; ath6kl_txpwr_rx_evt(wmi->parent_dev, reply->dbM); return 0; } static int ath6kl_wmi_keepalive_reply_rx(struct wmi *wmi, u8 *datap, int len) { if (len < sizeof(struct wmi_get_keepalive_cmd)) return -EINVAL; ath6kl_wakeup_event(wmi->parent_dev); return 0; } static int ath6kl_wmi_scan_complete_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_scan_complete_event *ev; ev = (struct wmi_scan_complete_event *) datap; if (a_sle32_to_cpu(ev->status) == 0) wlan_refresh_inactive_nodes(wmi->parent_dev); ath6kl_scan_complete_evt(wmi->parent_dev, a_sle32_to_cpu(ev->status)); wmi->is_probe_ssid = false; return 0; } /* * Target is reporting a programming error. This is for * developer aid only. Target only checks a few common violations * and it is responsibility of host to do all error checking. * Behavior of target after wmi error event is undefined. * A reset is recommended. */ static int ath6kl_wmi_error_event_rx(struct wmi *wmi, u8 *datap, int len) { const char *type = "unknown error"; struct wmi_cmd_error_event *ev; ev = (struct wmi_cmd_error_event *) datap; switch (ev->err_code) { case INVALID_PARAM: type = "invalid parameter"; break; case ILLEGAL_STATE: type = "invalid state"; break; case INTERNAL_ERROR: type = "internal error"; break; } ath6kl_dbg(ATH6KL_DBG_WMI, "programming error, cmd=%d %s\n", ev->cmd_id, type); return 0; } static int ath6kl_wmi_stats_event_rx(struct wmi *wmi, u8 *datap, int len) { ath6kl_tgt_stats_event(wmi->parent_dev, datap, len); return 0; } static u8 ath6kl_wmi_get_upper_threshold(s16 rssi, struct sq_threshold_params *sq_thresh, u32 size) { u32 index; u8 threshold = (u8) sq_thresh->upper_threshold[size - 1]; /* The list is already in sorted order. Get the next lower value */ for (index = 0; index < size; index++) { if (rssi < sq_thresh->upper_threshold[index]) { threshold = (u8) sq_thresh->upper_threshold[index]; break; } } return threshold; } static u8 ath6kl_wmi_get_lower_threshold(s16 rssi, struct sq_threshold_params *sq_thresh, u32 size) { u32 index; u8 threshold = (u8) sq_thresh->lower_threshold[size - 1]; /* The list is already in sorted order. Get the next lower value */ for (index = 0; index < size; index++) { if (rssi > sq_thresh->lower_threshold[index]) { threshold = (u8) sq_thresh->lower_threshold[index]; break; } } return threshold; } static int ath6kl_wmi_send_rssi_threshold_params(struct wmi *wmi, struct wmi_rssi_threshold_params_cmd *rssi_cmd) { struct sk_buff *skb; struct wmi_rssi_threshold_params_cmd *cmd; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_rssi_threshold_params_cmd *) skb->data; memcpy(cmd, rssi_cmd, sizeof(struct wmi_rssi_threshold_params_cmd)); return ath6kl_wmi_cmd_send(wmi, skb, WMI_RSSI_THRESHOLD_PARAMS_CMDID, NO_SYNC_WMIFLAG); } static int ath6kl_wmi_rssi_threshold_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_rssi_threshold_event *reply; struct wmi_rssi_threshold_params_cmd cmd; struct sq_threshold_params *sq_thresh; enum wmi_rssi_threshold_val new_threshold; u8 upper_rssi_threshold, lower_rssi_threshold; s16 rssi; int ret; if (len < sizeof(struct wmi_rssi_threshold_event)) return -EINVAL; reply = (struct wmi_rssi_threshold_event *) datap; new_threshold = (enum wmi_rssi_threshold_val) reply->range; rssi = a_sle16_to_cpu(reply->rssi); sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_RSSI]; /* * Identify the threshold breached and communicate that to the app. * After that install a new set of thresholds based on the signal * quality reported by the target */ if (new_threshold) { /* Upper threshold breached */ if (rssi < sq_thresh->upper_threshold[0]) { ath6kl_dbg(ATH6KL_DBG_WMI, "spurious upper rssi threshold event: %d\n", rssi); } else if ((rssi < sq_thresh->upper_threshold[1]) && (rssi >= sq_thresh->upper_threshold[0])) { new_threshold = WMI_RSSI_THRESHOLD1_ABOVE; } else if ((rssi < sq_thresh->upper_threshold[2]) && (rssi >= sq_thresh->upper_threshold[1])) { new_threshold = WMI_RSSI_THRESHOLD2_ABOVE; } else if ((rssi < sq_thresh->upper_threshold[3]) && (rssi >= sq_thresh->upper_threshold[2])) { new_threshold = WMI_RSSI_THRESHOLD3_ABOVE; } else if ((rssi < sq_thresh->upper_threshold[4]) && (rssi >= sq_thresh->upper_threshold[3])) { new_threshold = WMI_RSSI_THRESHOLD4_ABOVE; } else if ((rssi < sq_thresh->upper_threshold[5]) && (rssi >= sq_thresh->upper_threshold[4])) { new_threshold = WMI_RSSI_THRESHOLD5_ABOVE; } else if (rssi >= sq_thresh->upper_threshold[5]) { new_threshold = WMI_RSSI_THRESHOLD6_ABOVE; } } else { /* Lower threshold breached */ if (rssi > sq_thresh->lower_threshold[0]) { ath6kl_dbg(ATH6KL_DBG_WMI, "spurious lower rssi threshold event: %d %d\n", rssi, sq_thresh->lower_threshold[0]); } else if ((rssi > sq_thresh->lower_threshold[1]) && (rssi <= sq_thresh->lower_threshold[0])) { new_threshold = WMI_RSSI_THRESHOLD6_BELOW; } else if ((rssi > sq_thresh->lower_threshold[2]) && (rssi <= sq_thresh->lower_threshold[1])) { new_threshold = WMI_RSSI_THRESHOLD5_BELOW; } else if ((rssi > sq_thresh->lower_threshold[3]) && (rssi <= sq_thresh->lower_threshold[2])) { new_threshold = WMI_RSSI_THRESHOLD4_BELOW; } else if ((rssi > sq_thresh->lower_threshold[4]) && (rssi <= sq_thresh->lower_threshold[3])) { new_threshold = WMI_RSSI_THRESHOLD3_BELOW; } else if ((rssi > sq_thresh->lower_threshold[5]) && (rssi <= sq_thresh->lower_threshold[4])) { new_threshold = WMI_RSSI_THRESHOLD2_BELOW; } else if (rssi <= sq_thresh->lower_threshold[5]) { new_threshold = WMI_RSSI_THRESHOLD1_BELOW; } } /* Calculate and install the next set of thresholds */ lower_rssi_threshold = ath6kl_wmi_get_lower_threshold(rssi, sq_thresh, sq_thresh->lower_threshold_valid_count); upper_rssi_threshold = ath6kl_wmi_get_upper_threshold(rssi, sq_thresh, sq_thresh->upper_threshold_valid_count); /* Issue a wmi command to install the thresholds */ cmd.thresh_above1_val = a_cpu_to_sle16(upper_rssi_threshold); cmd.thresh_below1_val = a_cpu_to_sle16(lower_rssi_threshold); cmd.weight = sq_thresh->weight; cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval); ret = ath6kl_wmi_send_rssi_threshold_params(wmi, &cmd); if (ret) { ath6kl_err("unable to configure rssi thresholds\n"); return -EIO; } return 0; } static int ath6kl_wmi_cac_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_cac_event *reply; struct ieee80211_tspec_ie *ts; u16 active_tsids, tsinfo; u8 tsid, index; u8 ts_id; if (len < sizeof(struct wmi_cac_event)) return -EINVAL; reply = (struct wmi_cac_event *) datap; if ((reply->cac_indication == CAC_INDICATION_ADMISSION_RESP) && (reply->status_code != IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED)) { ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion); tsinfo = le16_to_cpu(ts->tsinfo); tsid = (tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) & IEEE80211_WMM_IE_TSPEC_TID_MASK; ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, tsid); } else if (reply->cac_indication == CAC_INDICATION_NO_RESP) { /* * Following assumes that there is only one outstanding * ADDTS request when this event is received */ spin_lock_bh(&wmi->lock); active_tsids = wmi->stream_exist_for_ac[reply->ac]; spin_unlock_bh(&wmi->lock); for (index = 0; index < sizeof(active_tsids) * 8; index++) { if ((active_tsids >> index) & 1) break; } if (index < (sizeof(active_tsids) * 8)) ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, index); } /* * Clear active tsids and Add missing handling * for delete qos stream from AP */ else if (reply->cac_indication == CAC_INDICATION_DELETE) { ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion); tsinfo = le16_to_cpu(ts->tsinfo); ts_id = ((tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) & IEEE80211_WMM_IE_TSPEC_TID_MASK); spin_lock_bh(&wmi->lock); wmi->stream_exist_for_ac[reply->ac] &= ~(1 << ts_id); active_tsids = wmi->stream_exist_for_ac[reply->ac]; spin_unlock_bh(&wmi->lock); /* Indicate stream inactivity to driver layer only if all tsids * within this AC are deleted. */ if (!active_tsids) { ath6kl_indicate_tx_activity(wmi->parent_dev, reply->ac, false); wmi->fat_pipe_exist &= ~(1 << reply->ac); } } return 0; } static int ath6kl_wmi_send_snr_threshold_params(struct wmi *wmi, struct wmi_snr_threshold_params_cmd *snr_cmd) { struct sk_buff *skb; struct wmi_snr_threshold_params_cmd *cmd; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_snr_threshold_params_cmd *) skb->data; memcpy(cmd, snr_cmd, sizeof(struct wmi_snr_threshold_params_cmd)); return ath6kl_wmi_cmd_send(wmi, skb, WMI_SNR_THRESHOLD_PARAMS_CMDID, NO_SYNC_WMIFLAG); } static int ath6kl_wmi_snr_threshold_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_snr_threshold_event *reply; struct sq_threshold_params *sq_thresh; struct wmi_snr_threshold_params_cmd cmd; enum wmi_snr_threshold_val new_threshold; u8 upper_snr_threshold, lower_snr_threshold; s16 snr; int ret; if (len < sizeof(struct wmi_snr_threshold_event)) return -EINVAL; reply = (struct wmi_snr_threshold_event *) datap; new_threshold = (enum wmi_snr_threshold_val) reply->range; snr = reply->snr; sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_SNR]; /* * Identify the threshold breached and communicate that to the app. * After that install a new set of thresholds based on the signal * quality reported by the target. */ if (new_threshold) { /* Upper threshold breached */ if (snr < sq_thresh->upper_threshold[0]) { ath6kl_dbg(ATH6KL_DBG_WMI, "spurious upper snr threshold event: %d\n", snr); } else if ((snr < sq_thresh->upper_threshold[1]) && (snr >= sq_thresh->upper_threshold[0])) { new_threshold = WMI_SNR_THRESHOLD1_ABOVE; } else if ((snr < sq_thresh->upper_threshold[2]) && (snr >= sq_thresh->upper_threshold[1])) { new_threshold = WMI_SNR_THRESHOLD2_ABOVE; } else if ((snr < sq_thresh->upper_threshold[3]) && (snr >= sq_thresh->upper_threshold[2])) { new_threshold = WMI_SNR_THRESHOLD3_ABOVE; } else if (snr >= sq_thresh->upper_threshold[3]) { new_threshold = WMI_SNR_THRESHOLD4_ABOVE; } } else { /* Lower threshold breached */ if (snr > sq_thresh->lower_threshold[0]) { ath6kl_dbg(ATH6KL_DBG_WMI, "spurious lower snr threshold event: %d\n", sq_thresh->lower_threshold[0]); } else if ((snr > sq_thresh->lower_threshold[1]) && (snr <= sq_thresh->lower_threshold[0])) { new_threshold = WMI_SNR_THRESHOLD4_BELOW; } else if ((snr > sq_thresh->lower_threshold[2]) && (snr <= sq_thresh->lower_threshold[1])) { new_threshold = WMI_SNR_THRESHOLD3_BELOW; } else if ((snr > sq_thresh->lower_threshold[3]) && (snr <= sq_thresh->lower_threshold[2])) { new_threshold = WMI_SNR_THRESHOLD2_BELOW; } else if (snr <= sq_thresh->lower_threshold[3]) { new_threshold = WMI_SNR_THRESHOLD1_BELOW; } } /* Calculate and install the next set of thresholds */ lower_snr_threshold = ath6kl_wmi_get_lower_threshold(snr, sq_thresh, sq_thresh->lower_threshold_valid_count); upper_snr_threshold = ath6kl_wmi_get_upper_threshold(snr, sq_thresh, sq_thresh->upper_threshold_valid_count); /* Issue a wmi command to install the thresholds */ cmd.thresh_above1_val = upper_snr_threshold; cmd.thresh_below1_val = lower_snr_threshold; cmd.weight = sq_thresh->weight; cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval); ath6kl_dbg(ATH6KL_DBG_WMI, "snr: %d, threshold: %d, lower: %d, upper: %d\n", snr, new_threshold, lower_snr_threshold, upper_snr_threshold); ret = ath6kl_wmi_send_snr_threshold_params(wmi, &cmd); if (ret) { ath6kl_err("unable to configure snr threshold\n"); return -EIO; } return 0; } static int ath6kl_wmi_aplist_event_rx(struct wmi *wmi, u8 *datap, int len) { u16 ap_info_entry_size; struct wmi_aplist_event *ev = (struct wmi_aplist_event *) datap; struct wmi_ap_info_v1 *ap_info_v1; u8 index; if (len < sizeof(struct wmi_aplist_event) || ev->ap_list_ver != APLIST_VER1) return -EINVAL; ap_info_entry_size = sizeof(struct wmi_ap_info_v1); ap_info_v1 = (struct wmi_ap_info_v1 *) ev->ap_list; ath6kl_dbg(ATH6KL_DBG_WMI, "number of APs in aplist event: %d\n", ev->num_ap); if (len < (int) (sizeof(struct wmi_aplist_event) + (ev->num_ap - 1) * ap_info_entry_size)) return -EINVAL; /* AP list version 1 contents */ for (index = 0; index < ev->num_ap; index++) { ath6kl_dbg(ATH6KL_DBG_WMI, "AP#%d BSSID %pM Channel %d\n", index, ap_info_v1->bssid, ap_info_v1->channel); ap_info_v1++; } return 0; } int ath6kl_wmi_cmd_send(struct wmi *wmi, struct sk_buff *skb, enum wmi_cmd_id cmd_id, enum wmi_sync_flag sync_flag) { struct wmi_cmd_hdr *cmd_hdr; enum htc_endpoint_id ep_id = wmi->ep_id; int ret; ath6kl_dbg(ATH6KL_DBG_WMI, "%s: cmd_id=%d\n", __func__, cmd_id); if (WARN_ON(skb == NULL)) return -EINVAL; if (sync_flag >= END_WMIFLAG) { dev_kfree_skb(skb); return -EINVAL; } if ((sync_flag == SYNC_BEFORE_WMIFLAG) || (sync_flag == SYNC_BOTH_WMIFLAG)) { /* * Make sure all data currently queued is transmitted before * the cmd execution. Establish a new sync point. */ ath6kl_wmi_sync_point(wmi); } skb_push(skb, sizeof(struct wmi_cmd_hdr)); cmd_hdr = (struct wmi_cmd_hdr *) skb->data; cmd_hdr->cmd_id = cpu_to_le16(cmd_id); cmd_hdr->info1 = 0; /* added for virtual interface */ /* Only for OPT_TX_CMD, use BE endpoint. */ if (cmd_id == WMI_OPT_TX_FRAME_CMDID) { ret = ath6kl_wmi_data_hdr_add(wmi, skb, OPT_MSGTYPE, false, false, 0, NULL); if (ret) { dev_kfree_skb(skb); return ret; } ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev, WMM_AC_BE); } ath6kl_control_tx(wmi->parent_dev, skb, ep_id); if ((sync_flag == SYNC_AFTER_WMIFLAG) || (sync_flag == SYNC_BOTH_WMIFLAG)) { /* * Make sure all new data queued waits for the command to * execute. Establish a new sync point. */ ath6kl_wmi_sync_point(wmi); } return 0; } int ath6kl_wmi_connect_cmd(struct wmi *wmi, enum network_type nw_type, enum dot11_auth_mode dot11_auth_mode, enum auth_mode auth_mode, enum crypto_type pairwise_crypto, u8 pairwise_crypto_len, enum crypto_type group_crypto, u8 group_crypto_len, int ssid_len, u8 *ssid, u8 *bssid, u16 channel, u32 ctrl_flags) { struct sk_buff *skb; struct wmi_connect_cmd *cc; int ret; wmi->traffic_class = 100; if ((pairwise_crypto == NONE_CRYPT) && (group_crypto != NONE_CRYPT)) return -EINVAL; if ((pairwise_crypto != NONE_CRYPT) && (group_crypto == NONE_CRYPT)) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_connect_cmd)); if (!skb) return -ENOMEM; cc = (struct wmi_connect_cmd *) skb->data; if (ssid_len) memcpy(cc->ssid, ssid, ssid_len); cc->ssid_len = ssid_len; cc->nw_type = nw_type; cc->dot11_auth_mode = dot11_auth_mode; cc->auth_mode = auth_mode; cc->prwise_crypto_type = pairwise_crypto; cc->prwise_crypto_len = pairwise_crypto_len; cc->grp_crypto_type = group_crypto; cc->grp_crypto_len = group_crypto_len; cc->ch = cpu_to_le16(channel); cc->ctrl_flags = cpu_to_le32(ctrl_flags); if (bssid != NULL) memcpy(cc->bssid, bssid, ETH_ALEN); wmi->pair_crypto_type = pairwise_crypto; wmi->grp_crypto_type = group_crypto; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CONNECT_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_reconnect_cmd(struct wmi *wmi, u8 *bssid, u16 channel) { struct sk_buff *skb; struct wmi_reconnect_cmd *cc; int ret; wmi->traffic_class = 100; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_reconnect_cmd)); if (!skb) return -ENOMEM; cc = (struct wmi_reconnect_cmd *) skb->data; cc->channel = cpu_to_le16(channel); if (bssid != NULL) memcpy(cc->bssid, bssid, ETH_ALEN); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RECONNECT_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_disconnect_cmd(struct wmi *wmi) { int ret; wmi->traffic_class = 100; /* Disconnect command does not need to do a SYNC before. */ ret = ath6kl_wmi_simple_cmd(wmi, WMI_DISCONNECT_CMDID); return ret; } int ath6kl_wmi_startscan_cmd(struct wmi *wmi, enum wmi_scan_type scan_type, u32 force_fgscan, u32 is_legacy, u32 home_dwell_time, u32 force_scan_interval, s8 num_chan, u16 *ch_list) { struct sk_buff *skb; struct wmi_start_scan_cmd *sc; s8 size; int i, ret; size = sizeof(struct wmi_start_scan_cmd); if ((scan_type != WMI_LONG_SCAN) && (scan_type != WMI_SHORT_SCAN)) return -EINVAL; if (num_chan > WMI_MAX_CHANNELS) return -EINVAL; if (num_chan) size += sizeof(u16) * (num_chan - 1); skb = ath6kl_wmi_get_new_buf(size); if (!skb) return -ENOMEM; sc = (struct wmi_start_scan_cmd *) skb->data; sc->scan_type = scan_type; sc->force_fg_scan = cpu_to_le32(force_fgscan); sc->is_legacy = cpu_to_le32(is_legacy); sc->home_dwell_time = cpu_to_le32(home_dwell_time); sc->force_scan_intvl = cpu_to_le32(force_scan_interval); sc->num_ch = num_chan; for (i = 0; i < num_chan; i++) sc->ch_list[i] = cpu_to_le16(ch_list[i]); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_START_SCAN_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_scanparams_cmd(struct wmi *wmi, u16 fg_start_sec, u16 fg_end_sec, u16 bg_sec, u16 minact_chdw_msec, u16 maxact_chdw_msec, u16 pas_chdw_msec, u8 short_scan_ratio, u8 scan_ctrl_flag, u32 max_dfsch_act_time, u16 maxact_scan_per_ssid) { struct sk_buff *skb; struct wmi_scan_params_cmd *sc; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*sc)); if (!skb) return -ENOMEM; sc = (struct wmi_scan_params_cmd *) skb->data; sc->fg_start_period = cpu_to_le16(fg_start_sec); sc->fg_end_period = cpu_to_le16(fg_end_sec); sc->bg_period = cpu_to_le16(bg_sec); sc->minact_chdwell_time = cpu_to_le16(minact_chdw_msec); sc->maxact_chdwell_time = cpu_to_le16(maxact_chdw_msec); sc->pas_chdwell_time = cpu_to_le16(pas_chdw_msec); sc->short_scan_ratio = short_scan_ratio; sc->scan_ctrl_flags = scan_ctrl_flag; sc->max_dfsch_act_time = cpu_to_le32(max_dfsch_act_time); sc->maxact_scan_per_ssid = cpu_to_le16(maxact_scan_per_ssid); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_SCAN_PARAMS_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_bssfilter_cmd(struct wmi *wmi, u8 filter, u32 ie_mask) { struct sk_buff *skb; struct wmi_bss_filter_cmd *cmd; int ret; if (filter >= LAST_BSS_FILTER) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_bss_filter_cmd *) skb->data; cmd->bss_filter = filter; cmd->ie_mask = cpu_to_le32(ie_mask); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_BSS_FILTER_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_probedssid_cmd(struct wmi *wmi, u8 index, u8 flag, u8 ssid_len, u8 *ssid) { struct sk_buff *skb; struct wmi_probed_ssid_cmd *cmd; int ret; if (index > MAX_PROBED_SSID_INDEX) return -EINVAL; if (ssid_len > sizeof(cmd->ssid)) return -EINVAL; if ((flag & (DISABLE_SSID_FLAG | ANY_SSID_FLAG)) && (ssid_len > 0)) return -EINVAL; if ((flag & SPECIFIC_SSID_FLAG) && !ssid_len) return -EINVAL; if (flag & SPECIFIC_SSID_FLAG) wmi->is_probe_ssid = true; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_probed_ssid_cmd *) skb->data; cmd->entry_index = index; cmd->flag = flag; cmd->ssid_len = ssid_len; memcpy(cmd->ssid, ssid, ssid_len); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PROBED_SSID_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_listeninterval_cmd(struct wmi *wmi, u16 listen_interval, u16 listen_beacons) { struct sk_buff *skb; struct wmi_listen_int_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_listen_int_cmd *) skb->data; cmd->listen_intvl = cpu_to_le16(listen_interval); cmd->num_beacons = cpu_to_le16(listen_beacons); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LISTEN_INT_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_powermode_cmd(struct wmi *wmi, u8 pwr_mode) { struct sk_buff *skb; struct wmi_power_mode_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_power_mode_cmd *) skb->data; cmd->pwr_mode = pwr_mode; wmi->pwr_mode = pwr_mode; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_MODE_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_pmparams_cmd(struct wmi *wmi, u16 idle_period, u16 ps_poll_num, u16 dtim_policy, u16 tx_wakeup_policy, u16 num_tx_to_wakeup, u16 ps_fail_event_policy) { struct sk_buff *skb; struct wmi_power_params_cmd *pm; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*pm)); if (!skb) return -ENOMEM; pm = (struct wmi_power_params_cmd *)skb->data; pm->idle_period = cpu_to_le16(idle_period); pm->pspoll_number = cpu_to_le16(ps_poll_num); pm->dtim_policy = cpu_to_le16(dtim_policy); pm->tx_wakeup_policy = cpu_to_le16(tx_wakeup_policy); pm->num_tx_to_wakeup = cpu_to_le16(num_tx_to_wakeup); pm->ps_fail_event_policy = cpu_to_le16(ps_fail_event_policy); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_PARAMS_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_disctimeout_cmd(struct wmi *wmi, u8 timeout) { struct sk_buff *skb; struct wmi_disc_timeout_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_disc_timeout_cmd *) skb->data; cmd->discon_timeout = timeout; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_DISC_TIMEOUT_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_addkey_cmd(struct wmi *wmi, u8 key_index, enum crypto_type key_type, u8 key_usage, u8 key_len, u8 *key_rsc, u8 *key_material, u8 key_op_ctrl, u8 *mac_addr, enum wmi_sync_flag sync_flag) { struct sk_buff *skb; struct wmi_add_cipher_key_cmd *cmd; int ret; ath6kl_dbg(ATH6KL_DBG_WMI, "addkey cmd: key_index=%u key_type=%d " "key_usage=%d key_len=%d key_op_ctrl=%d\n", key_index, key_type, key_usage, key_len, key_op_ctrl); if ((key_index > WMI_MAX_KEY_INDEX) || (key_len > WMI_MAX_KEY_LEN) || (key_material == NULL)) return -EINVAL; if ((WEP_CRYPT != key_type) && (NULL == key_rsc)) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_add_cipher_key_cmd *) skb->data; cmd->key_index = key_index; cmd->key_type = key_type; cmd->key_usage = key_usage; cmd->key_len = key_len; memcpy(cmd->key, key_material, key_len); if (key_rsc != NULL) memcpy(cmd->key_rsc, key_rsc, sizeof(cmd->key_rsc)); cmd->key_op_ctrl = key_op_ctrl; if (mac_addr) memcpy(cmd->key_mac_addr, mac_addr, ETH_ALEN); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_CIPHER_KEY_CMDID, sync_flag); return ret; } int ath6kl_wmi_add_krk_cmd(struct wmi *wmi, u8 *krk) { struct sk_buff *skb; struct wmi_add_krk_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_add_krk_cmd *) skb->data; memcpy(cmd->krk, krk, WMI_KRK_LEN); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_KRK_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_deletekey_cmd(struct wmi *wmi, u8 key_index) { struct sk_buff *skb; struct wmi_delete_cipher_key_cmd *cmd; int ret; if (key_index > WMI_MAX_KEY_INDEX) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_delete_cipher_key_cmd *) skb->data; cmd->key_index = key_index; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_CIPHER_KEY_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_setpmkid_cmd(struct wmi *wmi, const u8 *bssid, const u8 *pmkid, bool set) { struct sk_buff *skb; struct wmi_setpmkid_cmd *cmd; int ret; if (bssid == NULL) return -EINVAL; if (set && pmkid == NULL) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_setpmkid_cmd *) skb->data; memcpy(cmd->bssid, bssid, ETH_ALEN); if (set) { memcpy(cmd->pmkid, pmkid, sizeof(cmd->pmkid)); cmd->enable = PMKID_ENABLE; } else { memset(cmd->pmkid, 0, sizeof(cmd->pmkid)); cmd->enable = PMKID_DISABLE; } ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PMKID_CMDID, NO_SYNC_WMIFLAG); return ret; } static int ath6kl_wmi_data_sync_send(struct wmi *wmi, struct sk_buff *skb, enum htc_endpoint_id ep_id) { struct wmi_data_hdr *data_hdr; int ret; if (WARN_ON(skb == NULL || ep_id == wmi->ep_id)) return -EINVAL; skb_push(skb, sizeof(struct wmi_data_hdr)); data_hdr = (struct wmi_data_hdr *) skb->data; data_hdr->info = SYNC_MSGTYPE << WMI_DATA_HDR_MSG_TYPE_SHIFT; data_hdr->info3 = 0; ret = ath6kl_control_tx(wmi->parent_dev, skb, ep_id); return ret; } static int ath6kl_wmi_sync_point(struct wmi *wmi) { struct sk_buff *skb; struct wmi_sync_cmd *cmd; struct wmi_data_sync_bufs data_sync_bufs[WMM_NUM_AC]; enum htc_endpoint_id ep_id; u8 index, num_pri_streams = 0; int ret = 0; memset(data_sync_bufs, 0, sizeof(data_sync_bufs)); spin_lock_bh(&wmi->lock); for (index = 0; index < WMM_NUM_AC; index++) { if (wmi->fat_pipe_exist & (1 << index)) { num_pri_streams++; data_sync_bufs[num_pri_streams - 1].traffic_class = index; } } spin_unlock_bh(&wmi->lock); skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) { ret = -ENOMEM; goto free_skb; } cmd = (struct wmi_sync_cmd *) skb->data; /* * In the SYNC cmd sent on the control Ep, send a bitmap * of the data eps on which the Data Sync will be sent */ cmd->data_sync_map = wmi->fat_pipe_exist; for (index = 0; index < num_pri_streams; index++) { data_sync_bufs[index].skb = ath6kl_buf_alloc(0); if (data_sync_bufs[index].skb == NULL) { ret = -ENOMEM; break; } } /* * If buffer allocation for any of the dataSync fails, * then do not send the Synchronize cmd on the control ep */ if (ret) goto free_skb; /* * Send sync cmd followed by sync data messages on all * endpoints being used */ ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SYNCHRONIZE_CMDID, NO_SYNC_WMIFLAG); if (ret) goto free_skb; /* cmd buffer sent, we no longer own it */ skb = NULL; for (index = 0; index < num_pri_streams; index++) { if (WARN_ON(!data_sync_bufs[index].skb)) break; ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev, data_sync_bufs[index]. traffic_class); ret = ath6kl_wmi_data_sync_send(wmi, data_sync_bufs[index].skb, ep_id); if (ret) break; data_sync_bufs[index].skb = NULL; } free_skb: /* free up any resources left over (possibly due to an error) */ if (skb) dev_kfree_skb(skb); for (index = 0; index < num_pri_streams; index++) { if (data_sync_bufs[index].skb != NULL) { dev_kfree_skb((struct sk_buff *)data_sync_bufs[index]. skb); } } return ret; } int ath6kl_wmi_create_pstream_cmd(struct wmi *wmi, struct wmi_create_pstream_cmd *params) { struct sk_buff *skb; struct wmi_create_pstream_cmd *cmd; u8 fatpipe_exist_for_ac = 0; s32 min_phy = 0; s32 nominal_phy = 0; int ret; if (!((params->user_pri < 8) && (params->user_pri <= 0x7) && (up_to_ac[params->user_pri & 0x7] == params->traffic_class) && (params->traffic_direc == UPLINK_TRAFFIC || params->traffic_direc == DNLINK_TRAFFIC || params->traffic_direc == BIDIR_TRAFFIC) && (params->traffic_type == TRAFFIC_TYPE_APERIODIC || params->traffic_type == TRAFFIC_TYPE_PERIODIC) && (params->voice_psc_cap == DISABLE_FOR_THIS_AC || params->voice_psc_cap == ENABLE_FOR_THIS_AC || params->voice_psc_cap == ENABLE_FOR_ALL_AC) && (params->tsid == WMI_IMPLICIT_PSTREAM || params->tsid <= WMI_MAX_THINSTREAM))) { return -EINVAL; } /* * Check nominal PHY rate is >= minimalPHY, * so that DUT can allow TSRS IE */ /* Get the physical rate (units of bps) */ min_phy = ((le32_to_cpu(params->min_phy_rate) / 1000) / 1000); /* Check minimal phy < nominal phy rate */ if (params->nominal_phy >= min_phy) { /* unit of 500 kbps */ nominal_phy = (params->nominal_phy * 1000) / 500; ath6kl_dbg(ATH6KL_DBG_WMI, "TSRS IE enabled::MinPhy %x->NominalPhy ===> %x\n", min_phy, nominal_phy); params->nominal_phy = nominal_phy; } else { params->nominal_phy = 0; } skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "sending create_pstream_cmd: ac=%d tsid:%d\n", params->traffic_class, params->tsid); cmd = (struct wmi_create_pstream_cmd *) skb->data; memcpy(cmd, params, sizeof(*cmd)); /* This is an implicitly created Fat pipe */ if ((u32) params->tsid == (u32) WMI_IMPLICIT_PSTREAM) { spin_lock_bh(&wmi->lock); fatpipe_exist_for_ac = (wmi->fat_pipe_exist & (1 << params->traffic_class)); wmi->fat_pipe_exist |= (1 << params->traffic_class); spin_unlock_bh(&wmi->lock); } else { /* explicitly created thin stream within a fat pipe */ spin_lock_bh(&wmi->lock); fatpipe_exist_for_ac = (wmi->fat_pipe_exist & (1 << params->traffic_class)); wmi->stream_exist_for_ac[params->traffic_class] |= (1 << params->tsid); /* * If a thinstream becomes active, the fat pipe automatically * becomes active */ wmi->fat_pipe_exist |= (1 << params->traffic_class); spin_unlock_bh(&wmi->lock); } /* * Indicate activty change to driver layer only if this is the * first TSID to get created in this AC explicitly or an implicit * fat pipe is getting created. */ if (!fatpipe_exist_for_ac) ath6kl_indicate_tx_activity(wmi->parent_dev, params->traffic_class, true); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CREATE_PSTREAM_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_delete_pstream_cmd(struct wmi *wmi, u8 traffic_class, u8 tsid) { struct sk_buff *skb; struct wmi_delete_pstream_cmd *cmd; u16 active_tsids = 0; int ret; if (traffic_class > 3) { ath6kl_err("invalid traffic class: %d\n", traffic_class); return -EINVAL; } skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_delete_pstream_cmd *) skb->data; cmd->traffic_class = traffic_class; cmd->tsid = tsid; spin_lock_bh(&wmi->lock); active_tsids = wmi->stream_exist_for_ac[traffic_class]; spin_unlock_bh(&wmi->lock); if (!(active_tsids & (1 << tsid))) { dev_kfree_skb(skb); ath6kl_dbg(ATH6KL_DBG_WMI, "TSID %d doesn't exist for traffic class: %d\n", tsid, traffic_class); return -ENODATA; } ath6kl_dbg(ATH6KL_DBG_WMI, "sending delete_pstream_cmd: traffic class: %d tsid=%d\n", traffic_class, tsid); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_PSTREAM_CMDID, SYNC_BEFORE_WMIFLAG); spin_lock_bh(&wmi->lock); wmi->stream_exist_for_ac[traffic_class] &= ~(1 << tsid); active_tsids = wmi->stream_exist_for_ac[traffic_class]; spin_unlock_bh(&wmi->lock); /* * Indicate stream inactivity to driver layer only if all tsids * within this AC are deleted. */ if (!active_tsids) { ath6kl_indicate_tx_activity(wmi->parent_dev, traffic_class, false); wmi->fat_pipe_exist &= ~(1 << traffic_class); } return ret; } int ath6kl_wmi_set_ip_cmd(struct wmi *wmi, struct wmi_set_ip_cmd *ip_cmd) { struct sk_buff *skb; struct wmi_set_ip_cmd *cmd; int ret; /* Multicast address are not valid */ if ((*((u8 *) &ip_cmd->ips[0]) >= 0xE0) || (*((u8 *) &ip_cmd->ips[1]) >= 0xE0)) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_ip_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_ip_cmd *) skb->data; memcpy(cmd, ip_cmd, sizeof(struct wmi_set_ip_cmd)); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_IP_CMDID, NO_SYNC_WMIFLAG); return ret; } static int ath6kl_wmi_get_wow_list_event_rx(struct wmi *wmi, u8 * datap, int len) { if (len < sizeof(struct wmi_get_wow_list_reply)) return -EINVAL; return 0; } static int ath6kl_wmi_cmd_send_xtnd(struct wmi *wmi, struct sk_buff *skb, enum wmix_command_id cmd_id, enum wmi_sync_flag sync_flag) { struct wmix_cmd_hdr *cmd_hdr; int ret; skb_push(skb, sizeof(struct wmix_cmd_hdr)); cmd_hdr = (struct wmix_cmd_hdr *) skb->data; cmd_hdr->cmd_id = cpu_to_le32(cmd_id); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_EXTENSION_CMDID, sync_flag); return ret; } int ath6kl_wmi_get_challenge_resp_cmd(struct wmi *wmi, u32 cookie, u32 source) { struct sk_buff *skb; struct wmix_hb_challenge_resp_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmix_hb_challenge_resp_cmd *) skb->data; cmd->cookie = cpu_to_le32(cookie); cmd->source = cpu_to_le32(source); ret = ath6kl_wmi_cmd_send_xtnd(wmi, skb, WMIX_HB_CHALLENGE_RESP_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_get_stats_cmd(struct wmi *wmi) { return ath6kl_wmi_simple_cmd(wmi, WMI_GET_STATISTICS_CMDID); } int ath6kl_wmi_set_tx_pwr_cmd(struct wmi *wmi, u8 dbM) { struct sk_buff *skb; struct wmi_set_tx_pwr_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_tx_pwr_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_tx_pwr_cmd *) skb->data; cmd->dbM = dbM; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_TX_PWR_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_get_tx_pwr_cmd(struct wmi *wmi) { return ath6kl_wmi_simple_cmd(wmi, WMI_GET_TX_PWR_CMDID); } int ath6kl_wmi_set_lpreamble_cmd(struct wmi *wmi, u8 status, u8 preamble_policy) { struct sk_buff *skb; struct wmi_set_lpreamble_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_lpreamble_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_lpreamble_cmd *) skb->data; cmd->status = status; cmd->preamble_policy = preamble_policy; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LPREAMBLE_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_set_rts_cmd(struct wmi *wmi, u16 threshold) { struct sk_buff *skb; struct wmi_set_rts_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_rts_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_rts_cmd *) skb->data; cmd->threshold = cpu_to_le16(threshold); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_RTS_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_set_wmm_txop(struct wmi *wmi, enum wmi_txop_cfg cfg) { struct sk_buff *skb; struct wmi_set_wmm_txop_cmd *cmd; int ret; if (!((cfg == WMI_TXOP_DISABLED) || (cfg == WMI_TXOP_ENABLED))) return -EINVAL; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_wmm_txop_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_wmm_txop_cmd *) skb->data; cmd->txop_enable = cfg; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_WMM_TXOP_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_set_keepalive_cmd(struct wmi *wmi, u8 keep_alive_intvl) { struct sk_buff *skb; struct wmi_set_keepalive_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_set_keepalive_cmd *) skb->data; cmd->keep_alive_intvl = keep_alive_intvl; wmi->keep_alive_intvl = keep_alive_intvl; ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_KEEPALIVE_CMDID, NO_SYNC_WMIFLAG); return ret; } s32 ath6kl_wmi_get_rate(s8 rate_index) { if (rate_index == RATE_AUTO) return 0; return wmi_rate_tbl[(u32) rate_index][0]; } void ath6kl_wmi_node_return(struct wmi *wmi, struct bss *bss) { if (bss) wlan_node_return(&wmi->parent_dev->scan_table, bss); } struct bss *ath6kl_wmi_find_ssid_node(struct wmi *wmi, u8 * ssid, u32 ssid_len, bool is_wpa2, bool match_ssid) { struct bss *node = NULL; node = wlan_find_ssid_node(&wmi->parent_dev->scan_table, ssid, ssid_len, is_wpa2, match_ssid); return node; } struct bss *ath6kl_wmi_find_node(struct wmi *wmi, const u8 * mac_addr) { struct bss *ni = NULL; ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr); return ni; } void ath6kl_wmi_node_free(struct wmi *wmi, const u8 * mac_addr) { struct bss *ni = NULL; ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr); if (ni != NULL) wlan_node_reclaim(&wmi->parent_dev->scan_table, ni); return; } static int ath6kl_wmi_get_pmkid_list_event_rx(struct wmi *wmi, u8 *datap, u32 len) { struct wmi_pmkid_list_reply *reply; u32 expected_len; if (len < sizeof(struct wmi_pmkid_list_reply)) return -EINVAL; reply = (struct wmi_pmkid_list_reply *)datap; expected_len = sizeof(reply->num_pmkid) + le32_to_cpu(reply->num_pmkid) * WMI_PMKID_LEN; if (len < expected_len) return -EINVAL; return 0; } static int ath6kl_wmi_addba_req_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_addba_req_event *cmd = (struct wmi_addba_req_event *) datap; aggr_recv_addba_req_evt(wmi->parent_dev, cmd->tid, le16_to_cpu(cmd->st_seq_no), cmd->win_sz); return 0; } static int ath6kl_wmi_delba_req_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_delba_event *cmd = (struct wmi_delba_event *) datap; aggr_recv_delba_req_evt(wmi->parent_dev, cmd->tid); return 0; } /* AP mode functions */ int ath6kl_wmi_ap_profile_commit(struct wmi *wmip, struct wmi_connect_cmd *p) { struct sk_buff *skb; struct wmi_connect_cmd *cm; int res; skb = ath6kl_wmi_get_new_buf(sizeof(*cm)); if (!skb) return -ENOMEM; cm = (struct wmi_connect_cmd *) skb->data; memcpy(cm, p, sizeof(*cm)); res = ath6kl_wmi_cmd_send(wmip, skb, WMI_AP_CONFIG_COMMIT_CMDID, NO_SYNC_WMIFLAG); ath6kl_dbg(ATH6KL_DBG_WMI, "%s: nw_type=%u auth_mode=%u ch=%u " "ctrl_flags=0x%x-> res=%d\n", __func__, p->nw_type, p->auth_mode, le16_to_cpu(p->ch), le32_to_cpu(p->ctrl_flags), res); return res; } int ath6kl_wmi_ap_set_mlme(struct wmi *wmip, u8 cmd, const u8 *mac, u16 reason) { struct sk_buff *skb; struct wmi_ap_set_mlme_cmd *cm; skb = ath6kl_wmi_get_new_buf(sizeof(*cm)); if (!skb) return -ENOMEM; cm = (struct wmi_ap_set_mlme_cmd *) skb->data; memcpy(cm->mac, mac, ETH_ALEN); cm->reason = cpu_to_le16(reason); cm->cmd = cmd; return ath6kl_wmi_cmd_send(wmip, skb, WMI_AP_SET_MLME_CMDID, NO_SYNC_WMIFLAG); } static int ath6kl_wmi_pspoll_event_rx(struct wmi *wmi, u8 *datap, int len) { struct wmi_pspoll_event *ev; if (len < sizeof(struct wmi_pspoll_event)) return -EINVAL; ev = (struct wmi_pspoll_event *) datap; ath6kl_pspoll_event(wmi->parent_dev, le16_to_cpu(ev->aid)); return 0; } static int ath6kl_wmi_dtimexpiry_event_rx(struct wmi *wmi, u8 *datap, int len) { ath6kl_dtimexpiry_event(wmi->parent_dev); return 0; } int ath6kl_wmi_set_pvb_cmd(struct wmi *wmi, u16 aid, bool flag) { struct sk_buff *skb; struct wmi_ap_set_pvb_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_ap_set_pvb_cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_ap_set_pvb_cmd *) skb->data; cmd->aid = cpu_to_le16(aid); cmd->flag = cpu_to_le32(flag); ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_AP_SET_PVB_CMDID, NO_SYNC_WMIFLAG); return 0; } int ath6kl_wmi_set_rx_frame_format_cmd(struct wmi *wmi, u8 rx_meta_ver, bool rx_dot11_hdr, bool defrag_on_host) { struct sk_buff *skb; struct wmi_rx_frame_format_cmd *cmd; int ret; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; cmd = (struct wmi_rx_frame_format_cmd *) skb->data; cmd->dot11_hdr = rx_dot11_hdr ? 1 : 0; cmd->defrag_on_host = defrag_on_host ? 1 : 0; cmd->meta_ver = rx_meta_ver; /* Delete the local aggr state, on host */ ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RX_FRAME_FORMAT_CMDID, NO_SYNC_WMIFLAG); return ret; } int ath6kl_wmi_set_appie_cmd(struct wmi *wmi, u8 mgmt_frm_type, const u8 *ie, u8 ie_len) { struct sk_buff *skb; struct wmi_set_appie_cmd *p; skb = ath6kl_wmi_get_new_buf(sizeof(*p) + ie_len); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "set_appie_cmd: mgmt_frm_type=%u " "ie_len=%u\n", mgmt_frm_type, ie_len); p = (struct wmi_set_appie_cmd *) skb->data; p->mgmt_frm_type = mgmt_frm_type; p->ie_len = ie_len; memcpy(p->ie_info, ie, ie_len); return ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_APPIE_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_disable_11b_rates_cmd(struct wmi *wmi, bool disable) { struct sk_buff *skb; struct wmi_disable_11b_rates_cmd *cmd; skb = ath6kl_wmi_get_new_buf(sizeof(*cmd)); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "disable_11b_rates_cmd: disable=%u\n", disable); cmd = (struct wmi_disable_11b_rates_cmd *) skb->data; cmd->disable = disable ? 1 : 0; return ath6kl_wmi_cmd_send(wmi, skb, WMI_DISABLE_11B_RATES_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_remain_on_chnl_cmd(struct wmi *wmi, u32 freq, u32 dur) { struct sk_buff *skb; struct wmi_remain_on_chnl_cmd *p; skb = ath6kl_wmi_get_new_buf(sizeof(*p)); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "remain_on_chnl_cmd: freq=%u dur=%u\n", freq, dur); p = (struct wmi_remain_on_chnl_cmd *) skb->data; p->freq = cpu_to_le32(freq); p->duration = cpu_to_le32(dur); return ath6kl_wmi_cmd_send(wmi, skb, WMI_REMAIN_ON_CHNL_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_send_action_cmd(struct wmi *wmi, u32 id, u32 freq, u32 wait, const u8 *data, u16 data_len) { struct sk_buff *skb; struct wmi_send_action_cmd *p; u8 *buf; if (wait) return -EINVAL; /* Offload for wait not supported */ buf = kmalloc(data_len, GFP_KERNEL); if (!buf) return -ENOMEM; skb = ath6kl_wmi_get_new_buf(sizeof(*p) + data_len); if (!skb) { kfree(buf); return -ENOMEM; } kfree(wmi->last_mgmt_tx_frame); wmi->last_mgmt_tx_frame = buf; wmi->last_mgmt_tx_frame_len = data_len; ath6kl_dbg(ATH6KL_DBG_WMI, "send_action_cmd: id=%u freq=%u wait=%u " "len=%u\n", id, freq, wait, data_len); p = (struct wmi_send_action_cmd *) skb->data; p->id = cpu_to_le32(id); p->freq = cpu_to_le32(freq); p->wait = cpu_to_le32(wait); p->len = cpu_to_le16(data_len); memcpy(p->data, data, data_len); return ath6kl_wmi_cmd_send(wmi, skb, WMI_SEND_ACTION_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_send_probe_response_cmd(struct wmi *wmi, u32 freq, const u8 *dst, const u8 *data, u16 data_len) { struct sk_buff *skb; struct wmi_p2p_probe_response_cmd *p; skb = ath6kl_wmi_get_new_buf(sizeof(*p) + data_len); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "send_probe_response_cmd: freq=%u dst=%pM " "len=%u\n", freq, dst, data_len); p = (struct wmi_p2p_probe_response_cmd *) skb->data; p->freq = cpu_to_le32(freq); memcpy(p->destination_addr, dst, ETH_ALEN); p->len = cpu_to_le16(data_len); memcpy(p->data, data, data_len); return ath6kl_wmi_cmd_send(wmi, skb, WMI_SEND_PROBE_RESPONSE_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_probe_report_req_cmd(struct wmi *wmi, bool enable) { struct sk_buff *skb; struct wmi_probe_req_report_cmd *p; skb = ath6kl_wmi_get_new_buf(sizeof(*p)); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "probe_report_req_cmd: enable=%u\n", enable); p = (struct wmi_probe_req_report_cmd *) skb->data; p->enable = enable ? 1 : 0; return ath6kl_wmi_cmd_send(wmi, skb, WMI_PROBE_REQ_REPORT_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_info_req_cmd(struct wmi *wmi, u32 info_req_flags) { struct sk_buff *skb; struct wmi_get_p2p_info *p; skb = ath6kl_wmi_get_new_buf(sizeof(*p)); if (!skb) return -ENOMEM; ath6kl_dbg(ATH6KL_DBG_WMI, "info_req_cmd: flags=%x\n", info_req_flags); p = (struct wmi_get_p2p_info *) skb->data; p->info_req_flags = cpu_to_le32(info_req_flags); return ath6kl_wmi_cmd_send(wmi, skb, WMI_GET_P2P_INFO_CMDID, NO_SYNC_WMIFLAG); } int ath6kl_wmi_cancel_remain_on_chnl_cmd(struct wmi *wmi) { ath6kl_dbg(ATH6KL_DBG_WMI, "cancel_remain_on_chnl_cmd\n"); return ath6kl_wmi_simple_cmd(wmi, WMI_CANCEL_REMAIN_ON_CHNL_CMDID); } static int ath6kl_wmi_control_rx_xtnd(struct wmi *wmi, struct sk_buff *skb) { struct wmix_cmd_hdr *cmd; u32 len; u16 id; u8 *datap; int ret = 0; if (skb->len < sizeof(struct wmix_cmd_hdr)) { ath6kl_err("bad packet 1\n"); wmi->stat.cmd_len_err++; return -EINVAL; } cmd = (struct wmix_cmd_hdr *) skb->data; id = le32_to_cpu(cmd->cmd_id); skb_pull(skb, sizeof(struct wmix_cmd_hdr)); datap = skb->data; len = skb->len; switch (id) { case WMIX_HB_CHALLENGE_RESP_EVENTID: break; case WMIX_DBGLOG_EVENTID: break; default: ath6kl_err("unknown cmd id 0x%x\n", id); wmi->stat.cmd_id_err++; ret = -EINVAL; break; } return ret; } /* Control Path */ int ath6kl_wmi_control_rx(struct wmi *wmi, struct sk_buff *skb) { struct wmi_cmd_hdr *cmd; u32 len; u16 id; u8 *datap; int ret = 0; if (WARN_ON(skb == NULL)) return -EINVAL; if (skb->len < sizeof(struct wmi_cmd_hdr)) { ath6kl_err("bad packet 1\n"); dev_kfree_skb(skb); wmi->stat.cmd_len_err++; return -EINVAL; } cmd = (struct wmi_cmd_hdr *) skb->data; id = le16_to_cpu(cmd->cmd_id); skb_pull(skb, sizeof(struct wmi_cmd_hdr)); datap = skb->data; len = skb->len; ath6kl_dbg(ATH6KL_DBG_WMI, "%s: wmi id: %d\n", __func__, id); ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, "msg payload ", datap, len); switch (id) { case WMI_GET_BITRATE_CMDID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_BITRATE_CMDID\n"); ret = ath6kl_wmi_bitrate_reply_rx(wmi, datap, len); break; case WMI_GET_CHANNEL_LIST_CMDID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_CHANNEL_LIST_CMDID\n"); ret = ath6kl_wmi_ch_list_reply_rx(wmi, datap, len); break; case WMI_GET_TX_PWR_CMDID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_TX_PWR_CMDID\n"); ret = ath6kl_wmi_tx_pwr_reply_rx(wmi, datap, len); break; case WMI_READY_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_READY_EVENTID\n"); ret = ath6kl_wmi_ready_event_rx(wmi, datap, len); break; case WMI_CONNECT_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CONNECT_EVENTID\n"); ret = ath6kl_wmi_connect_event_rx(wmi, datap, len); break; case WMI_DISCONNECT_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DISCONNECT_EVENTID\n"); ret = ath6kl_wmi_disconnect_event_rx(wmi, datap, len); break; case WMI_PEER_NODE_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PEER_NODE_EVENTID\n"); ret = ath6kl_wmi_peer_node_event_rx(wmi, datap, len); break; case WMI_TKIP_MICERR_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TKIP_MICERR_EVENTID\n"); ret = ath6kl_wmi_tkip_micerr_event_rx(wmi, datap, len); break; case WMI_BSSINFO_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_BSSINFO_EVENTID\n"); ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(skb, datap); ret = ath6kl_wmi_bssinfo_event_rx(wmi, skb->data, skb->len); break; case WMI_REGDOMAIN_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REGDOMAIN_EVENTID\n"); break; case WMI_PSTREAM_TIMEOUT_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSTREAM_TIMEOUT_EVENTID\n"); ret = ath6kl_wmi_pstream_timeout_event_rx(wmi, datap, len); break; case WMI_NEIGHBOR_REPORT_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_NEIGHBOR_REPORT_EVENTID\n"); break; case WMI_SCAN_COMPLETE_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SCAN_COMPLETE_EVENTID\n"); ret = ath6kl_wmi_scan_complete_rx(wmi, datap, len); break; case WMI_CMDERROR_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CMDERROR_EVENTID\n"); ret = ath6kl_wmi_error_event_rx(wmi, datap, len); break; case WMI_REPORT_STATISTICS_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_STATISTICS_EVENTID\n"); ret = ath6kl_wmi_stats_event_rx(wmi, datap, len); break; case WMI_RSSI_THRESHOLD_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RSSI_THRESHOLD_EVENTID\n"); ret = ath6kl_wmi_rssi_threshold_event_rx(wmi, datap, len); break; case WMI_ERROR_REPORT_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ERROR_REPORT_EVENTID\n"); break; case WMI_OPT_RX_FRAME_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_OPT_RX_FRAME_EVENTID\n"); ret = ath6kl_wmi_opt_frame_event_rx(wmi, datap, len); break; case WMI_REPORT_ROAM_TBL_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_TBL_EVENTID\n"); break; case WMI_EXTENSION_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_EXTENSION_EVENTID\n"); ret = ath6kl_wmi_control_rx_xtnd(wmi, skb); break; case WMI_CAC_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CAC_EVENTID\n"); ret = ath6kl_wmi_cac_event_rx(wmi, datap, len); break; case WMI_CHANNEL_CHANGE_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CHANNEL_CHANGE_EVENTID\n"); break; case WMI_REPORT_ROAM_DATA_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_DATA_EVENTID\n"); break; case WMI_GET_FIXRATES_CMDID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_FIXRATES_CMDID\n"); ret = ath6kl_wmi_ratemask_reply_rx(wmi, datap, len); break; case WMI_TX_RETRY_ERR_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_RETRY_ERR_EVENTID\n"); break; case WMI_SNR_THRESHOLD_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SNR_THRESHOLD_EVENTID\n"); ret = ath6kl_wmi_snr_threshold_event_rx(wmi, datap, len); break; case WMI_LQ_THRESHOLD_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_LQ_THRESHOLD_EVENTID\n"); break; case WMI_APLIST_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_APLIST_EVENTID\n"); ret = ath6kl_wmi_aplist_event_rx(wmi, datap, len); break; case WMI_GET_KEEPALIVE_CMDID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_KEEPALIVE_CMDID\n"); ret = ath6kl_wmi_keepalive_reply_rx(wmi, datap, len); break; case WMI_GET_WOW_LIST_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_WOW_LIST_EVENTID\n"); ret = ath6kl_wmi_get_wow_list_event_rx(wmi, datap, len); break; case WMI_GET_PMKID_LIST_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_PMKID_LIST_EVENTID\n"); ret = ath6kl_wmi_get_pmkid_list_event_rx(wmi, datap, len); break; case WMI_PSPOLL_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSPOLL_EVENTID\n"); ret = ath6kl_wmi_pspoll_event_rx(wmi, datap, len); break; case WMI_DTIMEXPIRY_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DTIMEXPIRY_EVENTID\n"); ret = ath6kl_wmi_dtimexpiry_event_rx(wmi, datap, len); break; case WMI_SET_PARAMS_REPLY_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SET_PARAMS_REPLY_EVENTID\n"); break; case WMI_ADDBA_REQ_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_REQ_EVENTID\n"); ret = ath6kl_wmi_addba_req_event_rx(wmi, datap, len); break; case WMI_ADDBA_RESP_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_RESP_EVENTID\n"); break; case WMI_DELBA_REQ_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DELBA_REQ_EVENTID\n"); ret = ath6kl_wmi_delba_req_event_rx(wmi, datap, len); break; case WMI_REPORT_BTCOEX_CONFIG_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_BTCOEX_CONFIG_EVENTID\n"); break; case WMI_REPORT_BTCOEX_STATS_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_BTCOEX_STATS_EVENTID\n"); break; case WMI_TX_COMPLETE_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_COMPLETE_EVENTID\n"); ret = ath6kl_wmi_tx_complete_event_rx(datap, len); break; case WMI_REMAIN_ON_CHNL_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REMAIN_ON_CHNL_EVENTID\n"); ret = ath6kl_wmi_remain_on_chnl_event_rx(wmi, datap, len); break; case WMI_CANCEL_REMAIN_ON_CHNL_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CANCEL_REMAIN_ON_CHNL_EVENTID\n"); ret = ath6kl_wmi_cancel_remain_on_chnl_event_rx(wmi, datap, len); break; case WMI_TX_STATUS_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_STATUS_EVENTID\n"); ret = ath6kl_wmi_tx_status_event_rx(wmi, datap, len); break; case WMI_RX_PROBE_REQ_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RX_PROBE_REQ_EVENTID\n"); ret = ath6kl_wmi_rx_probe_req_event_rx(wmi, datap, len); break; case WMI_P2P_CAPABILITIES_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_P2P_CAPABILITIES_EVENTID\n"); ret = ath6kl_wmi_p2p_capabilities_event_rx(datap, len); break; case WMI_RX_ACTION_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RX_ACTION_EVENTID\n"); ret = ath6kl_wmi_rx_action_event_rx(wmi, datap, len); break; case WMI_P2P_INFO_EVENTID: ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_P2P_INFO_EVENTID\n"); ret = ath6kl_wmi_p2p_info_event_rx(datap, len); break; default: ath6kl_dbg(ATH6KL_DBG_WMI, "unknown cmd id 0x%x\n", id); wmi->stat.cmd_id_err++; ret = -EINVAL; break; } dev_kfree_skb(skb); return ret; } static void ath6kl_wmi_qos_state_init(struct wmi *wmi) { if (!wmi) return; spin_lock_bh(&wmi->lock); wmi->fat_pipe_exist = 0; memset(wmi->stream_exist_for_ac, 0, sizeof(wmi->stream_exist_for_ac)); spin_unlock_bh(&wmi->lock); } void *ath6kl_wmi_init(struct ath6kl *dev) { struct wmi *wmi; wmi = kzalloc(sizeof(struct wmi), GFP_KERNEL); if (!wmi) return NULL; spin_lock_init(&wmi->lock); wmi->parent_dev = dev; ath6kl_wmi_qos_state_init(wmi); wmi->pwr_mode = REC_POWER; wmi->phy_mode = WMI_11G_MODE; wmi->pair_crypto_type = NONE_CRYPT; wmi->grp_crypto_type = NONE_CRYPT; wmi->ht_allowed[A_BAND_24GHZ] = 1; wmi->ht_allowed[A_BAND_5GHZ] = 1; return wmi; } void ath6kl_wmi_shutdown(struct wmi *wmi) { if (!wmi) return; kfree(wmi->last_mgmt_tx_frame); kfree(wmi); }