// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include "core.h" #include "debug.h" #include "hal_desc.h" #include "hw.h" #include "dp_rx.h" #include "hal_rx.h" #include "dp_tx.h" #include "peer.h" #include "dp_mon.h" #define ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS (2 * HZ) static enum hal_encrypt_type ath12k_dp_rx_h_enctype(struct ath12k_base *ab, struct hal_rx_desc *desc) { if (!ab->hw_params->hal_ops->rx_desc_encrypt_valid(desc)) return HAL_ENCRYPT_TYPE_OPEN; return ab->hw_params->hal_ops->rx_desc_get_encrypt_type(desc); } u8 ath12k_dp_rx_h_decap_type(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_decap_type(desc); } static u8 ath12k_dp_rx_h_mesh_ctl_present(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mesh_ctl(desc); } static bool ath12k_dp_rx_h_seq_ctrl_valid(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_seq_ctl_vld(desc); } static bool ath12k_dp_rx_h_fc_valid(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_fc_valid(desc); } static bool ath12k_dp_rx_h_more_frags(struct ath12k_base *ab, struct sk_buff *skb) { struct ieee80211_hdr *hdr; hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); return ieee80211_has_morefrags(hdr->frame_control); } static u16 ath12k_dp_rx_h_frag_no(struct ath12k_base *ab, struct sk_buff *skb) { struct ieee80211_hdr *hdr; hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); return le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; } static u16 ath12k_dp_rx_h_seq_no(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_start_seq_no(desc); } static bool ath12k_dp_rx_h_msdu_done(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->dp_rx_h_msdu_done(desc); } static bool ath12k_dp_rx_h_l4_cksum_fail(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->dp_rx_h_l4_cksum_fail(desc); } static bool ath12k_dp_rx_h_ip_cksum_fail(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->dp_rx_h_ip_cksum_fail(desc); } static bool ath12k_dp_rx_h_is_decrypted(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->dp_rx_h_is_decrypted(desc); } u32 ath12k_dp_rx_h_mpdu_err(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->dp_rx_h_mpdu_err(desc); } static u16 ath12k_dp_rx_h_msdu_len(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_len(desc); } static u8 ath12k_dp_rx_h_sgi(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_sgi(desc); } static u8 ath12k_dp_rx_h_rate_mcs(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_rate_mcs(desc); } static u8 ath12k_dp_rx_h_rx_bw(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_rx_bw(desc); } static u32 ath12k_dp_rx_h_freq(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_freq(desc); } static u8 ath12k_dp_rx_h_pkt_type(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_msdu_pkt_type(desc); } static u8 ath12k_dp_rx_h_nss(struct ath12k_base *ab, struct hal_rx_desc *desc) { return hweight8(ab->hw_params->hal_ops->rx_desc_get_msdu_nss(desc)); } static u8 ath12k_dp_rx_h_tid(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_tid(desc); } static u16 ath12k_dp_rx_h_peer_id(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_peer_id(desc); } u8 ath12k_dp_rx_h_l3pad(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_l3_pad_bytes(desc); } static bool ath12k_dp_rx_h_first_msdu(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_first_msdu(desc); } static bool ath12k_dp_rx_h_last_msdu(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_last_msdu(desc); } static void ath12k_dp_rx_desc_end_tlv_copy(struct ath12k_base *ab, struct hal_rx_desc *fdesc, struct hal_rx_desc *ldesc) { ab->hw_params->hal_ops->rx_desc_copy_end_tlv(fdesc, ldesc); } static void ath12k_dp_rxdesc_set_msdu_len(struct ath12k_base *ab, struct hal_rx_desc *desc, u16 len) { ab->hw_params->hal_ops->rx_desc_set_msdu_len(desc, len); } static bool ath12k_dp_rx_h_is_da_mcbc(struct ath12k_base *ab, struct hal_rx_desc *desc) { return (ath12k_dp_rx_h_first_msdu(ab, desc) && ab->hw_params->hal_ops->rx_desc_is_da_mcbc(desc)); } static bool ath12k_dp_rxdesc_mac_addr2_valid(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_mac_addr2_valid(desc); } static u8 *ath12k_dp_rxdesc_get_mpdu_start_addr2(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_mpdu_start_addr2(desc); } static void ath12k_dp_rx_desc_get_dot11_hdr(struct ath12k_base *ab, struct hal_rx_desc *desc, struct ieee80211_hdr *hdr) { ab->hw_params->hal_ops->rx_desc_get_dot11_hdr(desc, hdr); } static void ath12k_dp_rx_desc_get_crypto_header(struct ath12k_base *ab, struct hal_rx_desc *desc, u8 *crypto_hdr, enum hal_encrypt_type enctype) { ab->hw_params->hal_ops->rx_desc_get_crypto_header(desc, crypto_hdr, enctype); } static u16 ath12k_dp_rxdesc_get_mpdu_frame_ctrl(struct ath12k_base *ab, struct hal_rx_desc *desc) { return ab->hw_params->hal_ops->rx_desc_get_mpdu_frame_ctl(desc); } static int ath12k_dp_purge_mon_ring(struct ath12k_base *ab) { int i, reaped = 0; unsigned long timeout = jiffies + msecs_to_jiffies(DP_MON_PURGE_TIMEOUT_MS); do { for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) reaped += ath12k_dp_mon_process_ring(ab, i, NULL, DP_MON_SERVICE_BUDGET, ATH12K_DP_RX_MONITOR_MODE); /* nothing more to reap */ if (reaped < DP_MON_SERVICE_BUDGET) return 0; } while (time_before(jiffies, timeout)); ath12k_warn(ab, "dp mon ring purge timeout"); return -ETIMEDOUT; } /* Returns number of Rx buffers replenished */ int ath12k_dp_rx_bufs_replenish(struct ath12k_base *ab, int mac_id, struct dp_rxdma_ring *rx_ring, int req_entries, enum hal_rx_buf_return_buf_manager mgr, bool hw_cc) { struct ath12k_buffer_addr *desc; struct hal_srng *srng; struct sk_buff *skb; int num_free; int num_remain; int buf_id; u32 cookie; dma_addr_t paddr; struct ath12k_dp *dp = &ab->dp; struct ath12k_rx_desc_info *rx_desc; req_entries = min(req_entries, rx_ring->bufs_max); srng = &ab->hal.srng_list[rx_ring->refill_buf_ring.ring_id]; spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); num_free = ath12k_hal_srng_src_num_free(ab, srng, true); if (!req_entries && (num_free > (rx_ring->bufs_max * 3) / 4)) req_entries = num_free; req_entries = min(num_free, req_entries); num_remain = req_entries; while (num_remain > 0) { skb = dev_alloc_skb(DP_RX_BUFFER_SIZE + DP_RX_BUFFER_ALIGN_SIZE); if (!skb) break; if (!IS_ALIGNED((unsigned long)skb->data, DP_RX_BUFFER_ALIGN_SIZE)) { skb_pull(skb, PTR_ALIGN(skb->data, DP_RX_BUFFER_ALIGN_SIZE) - skb->data); } paddr = dma_map_single(ab->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (dma_mapping_error(ab->dev, paddr)) goto fail_free_skb; if (hw_cc) { spin_lock_bh(&dp->rx_desc_lock); /* Get desc from free list and store in used list * for cleanup purposes * * TODO: pass the removed descs rather than * add/read to optimize */ rx_desc = list_first_entry_or_null(&dp->rx_desc_free_list, struct ath12k_rx_desc_info, list); if (!rx_desc) { spin_unlock_bh(&dp->rx_desc_lock); goto fail_dma_unmap; } rx_desc->skb = skb; cookie = rx_desc->cookie; list_del(&rx_desc->list); list_add_tail(&rx_desc->list, &dp->rx_desc_used_list); spin_unlock_bh(&dp->rx_desc_lock); } else { spin_lock_bh(&rx_ring->idr_lock); buf_id = idr_alloc(&rx_ring->bufs_idr, skb, 0, rx_ring->bufs_max * 3, GFP_ATOMIC); spin_unlock_bh(&rx_ring->idr_lock); if (buf_id < 0) goto fail_dma_unmap; cookie = u32_encode_bits(mac_id, DP_RXDMA_BUF_COOKIE_PDEV_ID) | u32_encode_bits(buf_id, DP_RXDMA_BUF_COOKIE_BUF_ID); } desc = ath12k_hal_srng_src_get_next_entry(ab, srng); if (!desc) goto fail_buf_unassign; ATH12K_SKB_RXCB(skb)->paddr = paddr; num_remain--; ath12k_hal_rx_buf_addr_info_set(desc, paddr, cookie, mgr); } ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); return req_entries - num_remain; fail_buf_unassign: if (hw_cc) { spin_lock_bh(&dp->rx_desc_lock); list_del(&rx_desc->list); list_add_tail(&rx_desc->list, &dp->rx_desc_free_list); rx_desc->skb = NULL; spin_unlock_bh(&dp->rx_desc_lock); } else { spin_lock_bh(&rx_ring->idr_lock); idr_remove(&rx_ring->bufs_idr, buf_id); spin_unlock_bh(&rx_ring->idr_lock); } fail_dma_unmap: dma_unmap_single(ab->dev, paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); fail_free_skb: dev_kfree_skb_any(skb); ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); return req_entries - num_remain; } static int ath12k_dp_rxdma_buf_ring_free(struct ath12k_base *ab, struct dp_rxdma_ring *rx_ring) { struct sk_buff *skb; int buf_id; spin_lock_bh(&rx_ring->idr_lock); idr_for_each_entry(&rx_ring->bufs_idr, skb, buf_id) { idr_remove(&rx_ring->bufs_idr, buf_id); /* TODO: Understand where internal driver does this dma_unmap * of rxdma_buffer. */ dma_unmap_single(ab->dev, ATH12K_SKB_RXCB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } idr_destroy(&rx_ring->bufs_idr); spin_unlock_bh(&rx_ring->idr_lock); return 0; } static int ath12k_dp_rxdma_buf_free(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); rx_ring = &dp->rxdma_mon_buf_ring; ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); rx_ring = &dp->tx_mon_buf_ring; ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); return 0; } static int ath12k_dp_rxdma_ring_buf_setup(struct ath12k_base *ab, struct dp_rxdma_ring *rx_ring, u32 ringtype) { int num_entries; num_entries = rx_ring->refill_buf_ring.size / ath12k_hal_srng_get_entrysize(ab, ringtype); rx_ring->bufs_max = num_entries; if ((ringtype == HAL_RXDMA_MONITOR_BUF) || (ringtype == HAL_TX_MONITOR_BUF)) ath12k_dp_mon_buf_replenish(ab, rx_ring, num_entries); else ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_entries, ab->hw_params->hal_params->rx_buf_rbm, ringtype == HAL_RXDMA_BUF); return 0; } static int ath12k_dp_rxdma_buf_setup(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; int ret; ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, HAL_RXDMA_BUF); if (ret) { ath12k_warn(ab, "failed to setup HAL_RXDMA_BUF\n"); return ret; } if (ab->hw_params->rxdma1_enable) { rx_ring = &dp->rxdma_mon_buf_ring; ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, HAL_RXDMA_MONITOR_BUF); if (ret) { ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n"); return ret; } rx_ring = &dp->tx_mon_buf_ring; ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, HAL_TX_MONITOR_BUF); if (ret) { ath12k_warn(ab, "failed to setup HAL_TX_MONITOR_BUF\n"); return ret; } } return 0; } static void ath12k_dp_rx_pdev_srng_free(struct ath12k *ar) { struct ath12k_pdev_dp *dp = &ar->dp; struct ath12k_base *ab = ar->ab; int i; for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_dst_ring[i]); ath12k_dp_srng_cleanup(ab, &dp->tx_mon_dst_ring[i]); } } void ath12k_dp_rx_pdev_reo_cleanup(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; int i; for (i = 0; i < DP_REO_DST_RING_MAX; i++) ath12k_dp_srng_cleanup(ab, &dp->reo_dst_ring[i]); } int ath12k_dp_rx_pdev_reo_setup(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; int ret; int i; for (i = 0; i < DP_REO_DST_RING_MAX; i++) { ret = ath12k_dp_srng_setup(ab, &dp->reo_dst_ring[i], HAL_REO_DST, i, 0, DP_REO_DST_RING_SIZE); if (ret) { ath12k_warn(ab, "failed to setup reo_dst_ring\n"); goto err_reo_cleanup; } } return 0; err_reo_cleanup: ath12k_dp_rx_pdev_reo_cleanup(ab); return ret; } static int ath12k_dp_rx_pdev_srng_alloc(struct ath12k *ar) { struct ath12k_pdev_dp *dp = &ar->dp; struct ath12k_base *ab = ar->ab; int i; int ret; u32 mac_id = dp->mac_id; for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ret = ath12k_dp_srng_setup(ar->ab, &dp->rxdma_mon_dst_ring[i], HAL_RXDMA_MONITOR_DST, 0, mac_id + i, DP_RXDMA_MONITOR_DST_RING_SIZE); if (ret) { ath12k_warn(ar->ab, "failed to setup HAL_RXDMA_MONITOR_DST\n"); return ret; } ret = ath12k_dp_srng_setup(ar->ab, &dp->tx_mon_dst_ring[i], HAL_TX_MONITOR_DST, 0, mac_id + i, DP_TX_MONITOR_DEST_RING_SIZE); if (ret) { ath12k_warn(ar->ab, "failed to setup HAL_TX_MONITOR_DST\n"); return ret; } } return 0; } void ath12k_dp_rx_reo_cmd_list_cleanup(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct ath12k_dp_rx_reo_cmd *cmd, *tmp; struct ath12k_dp_rx_reo_cache_flush_elem *cmd_cache, *tmp_cache; spin_lock_bh(&dp->reo_cmd_lock); list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { list_del(&cmd->list); dma_unmap_single(ab->dev, cmd->data.paddr, cmd->data.size, DMA_BIDIRECTIONAL); kfree(cmd->data.vaddr); kfree(cmd); } list_for_each_entry_safe(cmd_cache, tmp_cache, &dp->reo_cmd_cache_flush_list, list) { list_del(&cmd_cache->list); dp->reo_cmd_cache_flush_count--; dma_unmap_single(ab->dev, cmd_cache->data.paddr, cmd_cache->data.size, DMA_BIDIRECTIONAL); kfree(cmd_cache->data.vaddr); kfree(cmd_cache); } spin_unlock_bh(&dp->reo_cmd_lock); } static void ath12k_dp_reo_cmd_free(struct ath12k_dp *dp, void *ctx, enum hal_reo_cmd_status status) { struct ath12k_dp_rx_tid *rx_tid = ctx; if (status != HAL_REO_CMD_SUCCESS) ath12k_warn(dp->ab, "failed to flush rx tid hw desc, tid %d status %d\n", rx_tid->tid, status); dma_unmap_single(dp->ab->dev, rx_tid->paddr, rx_tid->size, DMA_BIDIRECTIONAL); kfree(rx_tid->vaddr); rx_tid->vaddr = NULL; } static int ath12k_dp_reo_cmd_send(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid, enum hal_reo_cmd_type type, struct ath12k_hal_reo_cmd *cmd, void (*cb)(struct ath12k_dp *dp, void *ctx, enum hal_reo_cmd_status status)) { struct ath12k_dp *dp = &ab->dp; struct ath12k_dp_rx_reo_cmd *dp_cmd; struct hal_srng *cmd_ring; int cmd_num; cmd_ring = &ab->hal.srng_list[dp->reo_cmd_ring.ring_id]; cmd_num = ath12k_hal_reo_cmd_send(ab, cmd_ring, type, cmd); /* cmd_num should start from 1, during failure return the error code */ if (cmd_num < 0) return cmd_num; /* reo cmd ring descriptors has cmd_num starting from 1 */ if (cmd_num == 0) return -EINVAL; if (!cb) return 0; /* Can this be optimized so that we keep the pending command list only * for tid delete command to free up the resource on the command status * indication? */ dp_cmd = kzalloc(sizeof(*dp_cmd), GFP_ATOMIC); if (!dp_cmd) return -ENOMEM; memcpy(&dp_cmd->data, rx_tid, sizeof(*rx_tid)); dp_cmd->cmd_num = cmd_num; dp_cmd->handler = cb; spin_lock_bh(&dp->reo_cmd_lock); list_add_tail(&dp_cmd->list, &dp->reo_cmd_list); spin_unlock_bh(&dp->reo_cmd_lock); return 0; } static void ath12k_dp_reo_cache_flush(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid) { struct ath12k_hal_reo_cmd cmd = {0}; unsigned long tot_desc_sz, desc_sz; int ret; tot_desc_sz = rx_tid->size; desc_sz = ath12k_hal_reo_qdesc_size(0, HAL_DESC_REO_NON_QOS_TID); while (tot_desc_sz > desc_sz) { tot_desc_sz -= desc_sz; cmd.addr_lo = lower_32_bits(rx_tid->paddr + tot_desc_sz); cmd.addr_hi = upper_32_bits(rx_tid->paddr); ret = ath12k_dp_reo_cmd_send(ab, rx_tid, HAL_REO_CMD_FLUSH_CACHE, &cmd, NULL); if (ret) ath12k_warn(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE, tid %d (%d)\n", rx_tid->tid, ret); } memset(&cmd, 0, sizeof(cmd)); cmd.addr_lo = lower_32_bits(rx_tid->paddr); cmd.addr_hi = upper_32_bits(rx_tid->paddr); cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; ret = ath12k_dp_reo_cmd_send(ab, rx_tid, HAL_REO_CMD_FLUSH_CACHE, &cmd, ath12k_dp_reo_cmd_free); if (ret) { ath12k_err(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE cmd, tid %d (%d)\n", rx_tid->tid, ret); dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, DMA_BIDIRECTIONAL); kfree(rx_tid->vaddr); rx_tid->vaddr = NULL; } } static void ath12k_dp_rx_tid_del_func(struct ath12k_dp *dp, void *ctx, enum hal_reo_cmd_status status) { struct ath12k_base *ab = dp->ab; struct ath12k_dp_rx_tid *rx_tid = ctx; struct ath12k_dp_rx_reo_cache_flush_elem *elem, *tmp; if (status == HAL_REO_CMD_DRAIN) { goto free_desc; } else if (status != HAL_REO_CMD_SUCCESS) { /* Shouldn't happen! Cleanup in case of other failure? */ ath12k_warn(ab, "failed to delete rx tid %d hw descriptor %d\n", rx_tid->tid, status); return; } elem = kzalloc(sizeof(*elem), GFP_ATOMIC); if (!elem) goto free_desc; elem->ts = jiffies; memcpy(&elem->data, rx_tid, sizeof(*rx_tid)); spin_lock_bh(&dp->reo_cmd_lock); list_add_tail(&elem->list, &dp->reo_cmd_cache_flush_list); dp->reo_cmd_cache_flush_count++; /* Flush and invalidate aged REO desc from HW cache */ list_for_each_entry_safe(elem, tmp, &dp->reo_cmd_cache_flush_list, list) { if (dp->reo_cmd_cache_flush_count > ATH12K_DP_RX_REO_DESC_FREE_THRES || time_after(jiffies, elem->ts + msecs_to_jiffies(ATH12K_DP_RX_REO_DESC_FREE_TIMEOUT_MS))) { list_del(&elem->list); dp->reo_cmd_cache_flush_count--; /* Unlock the reo_cmd_lock before using ath12k_dp_reo_cmd_send() * within ath12k_dp_reo_cache_flush. The reo_cmd_cache_flush_list * is used in only two contexts, one is in this function called * from napi and the other in ath12k_dp_free during core destroy. * Before dp_free, the irqs would be disabled and would wait to * synchronize. Hence there wouldn’t be any race against add or * delete to this list. Hence unlock-lock is safe here. */ spin_unlock_bh(&dp->reo_cmd_lock); ath12k_dp_reo_cache_flush(ab, &elem->data); kfree(elem); spin_lock_bh(&dp->reo_cmd_lock); } } spin_unlock_bh(&dp->reo_cmd_lock); return; free_desc: dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, DMA_BIDIRECTIONAL); kfree(rx_tid->vaddr); rx_tid->vaddr = NULL; } static void ath12k_peer_rx_tid_qref_setup(struct ath12k_base *ab, u16 peer_id, u16 tid, dma_addr_t paddr) { struct ath12k_reo_queue_ref *qref; struct ath12k_dp *dp = &ab->dp; if (!ab->hw_params->reoq_lut_support) return; /* TODO: based on ML peer or not, select the LUT. below assumes non * ML peer */ qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); qref->info0 = u32_encode_bits(lower_32_bits(paddr), BUFFER_ADDR_INFO0_ADDR); qref->info1 = u32_encode_bits(upper_32_bits(paddr), BUFFER_ADDR_INFO1_ADDR) | u32_encode_bits(tid, DP_REO_QREF_NUM); } static void ath12k_peer_rx_tid_qref_reset(struct ath12k_base *ab, u16 peer_id, u16 tid) { struct ath12k_reo_queue_ref *qref; struct ath12k_dp *dp = &ab->dp; if (!ab->hw_params->reoq_lut_support) return; /* TODO: based on ML peer or not, select the LUT. below assumes non * ML peer */ qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); qref->info0 = u32_encode_bits(0, BUFFER_ADDR_INFO0_ADDR); qref->info1 = u32_encode_bits(0, BUFFER_ADDR_INFO1_ADDR) | u32_encode_bits(tid, DP_REO_QREF_NUM); } void ath12k_dp_rx_peer_tid_delete(struct ath12k *ar, struct ath12k_peer *peer, u8 tid) { struct ath12k_hal_reo_cmd cmd = {0}; struct ath12k_dp_rx_tid *rx_tid = &peer->rx_tid[tid]; int ret; if (!rx_tid->active) return; cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; cmd.addr_lo = lower_32_bits(rx_tid->paddr); cmd.addr_hi = upper_32_bits(rx_tid->paddr); cmd.upd0 = HAL_REO_CMD_UPD0_VLD; ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, ath12k_dp_rx_tid_del_func); if (ret) { ath12k_err(ar->ab, "failed to send HAL_REO_CMD_UPDATE_RX_QUEUE cmd, tid %d (%d)\n", tid, ret); dma_unmap_single(ar->ab->dev, rx_tid->paddr, rx_tid->size, DMA_BIDIRECTIONAL); kfree(rx_tid->vaddr); rx_tid->vaddr = NULL; } ath12k_peer_rx_tid_qref_reset(ar->ab, peer->peer_id, tid); rx_tid->active = false; } /* TODO: it's strange (and ugly) that struct hal_reo_dest_ring is converted * to struct hal_wbm_release_ring, I couldn't figure out the logic behind * that. */ static int ath12k_dp_rx_link_desc_return(struct ath12k_base *ab, struct hal_reo_dest_ring *ring, enum hal_wbm_rel_bm_act action) { struct hal_wbm_release_ring *link_desc = (struct hal_wbm_release_ring *)ring; struct hal_wbm_release_ring *desc; struct ath12k_dp *dp = &ab->dp; struct hal_srng *srng; int ret = 0; srng = &ab->hal.srng_list[dp->wbm_desc_rel_ring.ring_id]; spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); desc = ath12k_hal_srng_src_get_next_entry(ab, srng); if (!desc) { ret = -ENOBUFS; goto exit; } ath12k_hal_rx_msdu_link_desc_set(ab, desc, link_desc, action); exit: ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); return ret; } static void ath12k_dp_rx_frags_cleanup(struct ath12k_dp_rx_tid *rx_tid, bool rel_link_desc) { struct ath12k_base *ab = rx_tid->ab; lockdep_assert_held(&ab->base_lock); if (rx_tid->dst_ring_desc) { if (rel_link_desc) ath12k_dp_rx_link_desc_return(ab, rx_tid->dst_ring_desc, HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); kfree(rx_tid->dst_ring_desc); rx_tid->dst_ring_desc = NULL; } rx_tid->cur_sn = 0; rx_tid->last_frag_no = 0; rx_tid->rx_frag_bitmap = 0; __skb_queue_purge(&rx_tid->rx_frags); } void ath12k_dp_rx_peer_tid_cleanup(struct ath12k *ar, struct ath12k_peer *peer) { struct ath12k_dp_rx_tid *rx_tid; int i; lockdep_assert_held(&ar->ab->base_lock); for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { rx_tid = &peer->rx_tid[i]; ath12k_dp_rx_peer_tid_delete(ar, peer, i); ath12k_dp_rx_frags_cleanup(rx_tid, true); spin_unlock_bh(&ar->ab->base_lock); del_timer_sync(&rx_tid->frag_timer); spin_lock_bh(&ar->ab->base_lock); } } static int ath12k_peer_rx_tid_reo_update(struct ath12k *ar, struct ath12k_peer *peer, struct ath12k_dp_rx_tid *rx_tid, u32 ba_win_sz, u16 ssn, bool update_ssn) { struct ath12k_hal_reo_cmd cmd = {0}; int ret; cmd.addr_lo = lower_32_bits(rx_tid->paddr); cmd.addr_hi = upper_32_bits(rx_tid->paddr); cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; cmd.upd0 = HAL_REO_CMD_UPD0_BA_WINDOW_SIZE; cmd.ba_window_size = ba_win_sz; if (update_ssn) { cmd.upd0 |= HAL_REO_CMD_UPD0_SSN; cmd.upd2 = u32_encode_bits(ssn, HAL_REO_CMD_UPD2_SSN); } ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, NULL); if (ret) { ath12k_warn(ar->ab, "failed to update rx tid queue, tid %d (%d)\n", rx_tid->tid, ret); return ret; } rx_tid->ba_win_sz = ba_win_sz; return 0; } int ath12k_dp_rx_peer_tid_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id, u8 tid, u32 ba_win_sz, u16 ssn, enum hal_pn_type pn_type) { struct ath12k_base *ab = ar->ab; struct ath12k_dp *dp = &ab->dp; struct hal_rx_reo_queue *addr_aligned; struct ath12k_peer *peer; struct ath12k_dp_rx_tid *rx_tid; u32 hw_desc_sz; void *vaddr; dma_addr_t paddr; int ret; spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, vdev_id, peer_mac); if (!peer) { spin_unlock_bh(&ab->base_lock); ath12k_warn(ab, "failed to find the peer to set up rx tid\n"); return -ENOENT; } if (ab->hw_params->reoq_lut_support && !dp->reoq_lut.vaddr) { spin_unlock_bh(&ab->base_lock); ath12k_warn(ab, "reo qref table is not setup\n"); return -EINVAL; } if (peer->peer_id > DP_MAX_PEER_ID || tid > IEEE80211_NUM_TIDS) { ath12k_warn(ab, "peer id of peer %d or tid %d doesn't allow reoq setup\n", peer->peer_id, tid); spin_unlock_bh(&ab->base_lock); return -EINVAL; } rx_tid = &peer->rx_tid[tid]; /* Update the tid queue if it is already setup */ if (rx_tid->active) { paddr = rx_tid->paddr; ret = ath12k_peer_rx_tid_reo_update(ar, peer, rx_tid, ba_win_sz, ssn, true); spin_unlock_bh(&ab->base_lock); if (ret) { ath12k_warn(ab, "failed to update reo for rx tid %d\n", tid); return ret; } if (!ab->hw_params->reoq_lut_support) { ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac, paddr, tid, 1, ba_win_sz); if (ret) { ath12k_warn(ab, "failed to setup peer rx reorder queuefor tid %d: %d\n", tid, ret); return ret; } } return 0; } rx_tid->tid = tid; rx_tid->ba_win_sz = ba_win_sz; /* TODO: Optimize the memory allocation for qos tid based on * the actual BA window size in REO tid update path. */ if (tid == HAL_DESC_REO_NON_QOS_TID) hw_desc_sz = ath12k_hal_reo_qdesc_size(ba_win_sz, tid); else hw_desc_sz = ath12k_hal_reo_qdesc_size(DP_BA_WIN_SZ_MAX, tid); vaddr = kzalloc(hw_desc_sz + HAL_LINK_DESC_ALIGN - 1, GFP_ATOMIC); if (!vaddr) { spin_unlock_bh(&ab->base_lock); return -ENOMEM; } addr_aligned = PTR_ALIGN(vaddr, HAL_LINK_DESC_ALIGN); ath12k_hal_reo_qdesc_setup(addr_aligned, tid, ba_win_sz, ssn, pn_type); paddr = dma_map_single(ab->dev, addr_aligned, hw_desc_sz, DMA_BIDIRECTIONAL); ret = dma_mapping_error(ab->dev, paddr); if (ret) { spin_unlock_bh(&ab->base_lock); goto err_mem_free; } rx_tid->vaddr = vaddr; rx_tid->paddr = paddr; rx_tid->size = hw_desc_sz; rx_tid->active = true; if (ab->hw_params->reoq_lut_support) { /* Update the REO queue LUT at the corresponding peer id * and tid with qaddr. */ ath12k_peer_rx_tid_qref_setup(ab, peer->peer_id, tid, paddr); spin_unlock_bh(&ab->base_lock); } else { spin_unlock_bh(&ab->base_lock); ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac, paddr, tid, 1, ba_win_sz); } return ret; err_mem_free: kfree(vaddr); return ret; } int ath12k_dp_rx_ampdu_start(struct ath12k *ar, struct ieee80211_ampdu_params *params) { struct ath12k_base *ab = ar->ab; struct ath12k_sta *arsta = (void *)params->sta->drv_priv; int vdev_id = arsta->arvif->vdev_id; int ret; ret = ath12k_dp_rx_peer_tid_setup(ar, params->sta->addr, vdev_id, params->tid, params->buf_size, params->ssn, arsta->pn_type); if (ret) ath12k_warn(ab, "failed to setup rx tid %d\n", ret); return ret; } int ath12k_dp_rx_ampdu_stop(struct ath12k *ar, struct ieee80211_ampdu_params *params) { struct ath12k_base *ab = ar->ab; struct ath12k_peer *peer; struct ath12k_sta *arsta = (void *)params->sta->drv_priv; int vdev_id = arsta->arvif->vdev_id; bool active; int ret; spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, vdev_id, params->sta->addr); if (!peer) { spin_unlock_bh(&ab->base_lock); ath12k_warn(ab, "failed to find the peer to stop rx aggregation\n"); return -ENOENT; } active = peer->rx_tid[params->tid].active; if (!active) { spin_unlock_bh(&ab->base_lock); return 0; } ret = ath12k_peer_rx_tid_reo_update(ar, peer, peer->rx_tid, 1, 0, false); spin_unlock_bh(&ab->base_lock); if (ret) { ath12k_warn(ab, "failed to update reo for rx tid %d: %d\n", params->tid, ret); return ret; } return ret; } int ath12k_dp_rx_peer_pn_replay_config(struct ath12k_vif *arvif, const u8 *peer_addr, enum set_key_cmd key_cmd, struct ieee80211_key_conf *key) { struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; struct ath12k_hal_reo_cmd cmd = {0}; struct ath12k_peer *peer; struct ath12k_dp_rx_tid *rx_tid; u8 tid; int ret = 0; /* NOTE: Enable PN/TSC replay check offload only for unicast frames. * We use mac80211 PN/TSC replay check functionality for bcast/mcast * for now. */ if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return 0; cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; cmd.upd0 = HAL_REO_CMD_UPD0_PN | HAL_REO_CMD_UPD0_PN_SIZE | HAL_REO_CMD_UPD0_PN_VALID | HAL_REO_CMD_UPD0_PN_CHECK | HAL_REO_CMD_UPD0_SVLD; switch (key->cipher) { case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (key_cmd == SET_KEY) { cmd.upd1 |= HAL_REO_CMD_UPD1_PN_CHECK; cmd.pn_size = 48; } break; default: break; } spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr); if (!peer) { spin_unlock_bh(&ab->base_lock); ath12k_warn(ab, "failed to find the peer %pM to configure pn replay detection\n", peer_addr); return -ENOENT; } for (tid = 0; tid <= IEEE80211_NUM_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; if (!rx_tid->active) continue; cmd.addr_lo = lower_32_bits(rx_tid->paddr); cmd.addr_hi = upper_32_bits(rx_tid->paddr); ret = ath12k_dp_reo_cmd_send(ab, rx_tid, HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, NULL); if (ret) { ath12k_warn(ab, "failed to configure rx tid %d queue of peer %pM for pn replay detection %d\n", tid, peer_addr, ret); break; } } spin_unlock_bh(&ab->base_lock); return ret; } static int ath12k_get_ppdu_user_index(struct htt_ppdu_stats *ppdu_stats, u16 peer_id) { int i; for (i = 0; i < HTT_PPDU_STATS_MAX_USERS - 1; i++) { if (ppdu_stats->user_stats[i].is_valid_peer_id) { if (peer_id == ppdu_stats->user_stats[i].peer_id) return i; } else { return i; } } return -EINVAL; } static int ath12k_htt_tlv_ppdu_stats_parse(struct ath12k_base *ab, u16 tag, u16 len, const void *ptr, void *data) { const struct htt_ppdu_stats_usr_cmpltn_ack_ba_status *ba_status; const struct htt_ppdu_stats_usr_cmpltn_cmn *cmplt_cmn; const struct htt_ppdu_stats_user_rate *user_rate; struct htt_ppdu_stats_info *ppdu_info; struct htt_ppdu_user_stats *user_stats; int cur_user; u16 peer_id; ppdu_info = data; switch (tag) { case HTT_PPDU_STATS_TAG_COMMON: if (len < sizeof(struct htt_ppdu_stats_common)) { ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } memcpy(&ppdu_info->ppdu_stats.common, ptr, sizeof(struct htt_ppdu_stats_common)); break; case HTT_PPDU_STATS_TAG_USR_RATE: if (len < sizeof(struct htt_ppdu_stats_user_rate)) { ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } user_rate = ptr; peer_id = le16_to_cpu(user_rate->sw_peer_id); cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, peer_id); if (cur_user < 0) return -EINVAL; user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; user_stats->peer_id = peer_id; user_stats->is_valid_peer_id = true; memcpy(&user_stats->rate, ptr, sizeof(struct htt_ppdu_stats_user_rate)); user_stats->tlv_flags |= BIT(tag); break; case HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON: if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)) { ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } cmplt_cmn = ptr; peer_id = le16_to_cpu(cmplt_cmn->sw_peer_id); cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, peer_id); if (cur_user < 0) return -EINVAL; user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; user_stats->peer_id = peer_id; user_stats->is_valid_peer_id = true; memcpy(&user_stats->cmpltn_cmn, ptr, sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)); user_stats->tlv_flags |= BIT(tag); break; case HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS: if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)) { ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", len, tag); return -EINVAL; } ba_status = ptr; peer_id = le16_to_cpu(ba_status->sw_peer_id); cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, peer_id); if (cur_user < 0) return -EINVAL; user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; user_stats->peer_id = peer_id; user_stats->is_valid_peer_id = true; memcpy(&user_stats->ack_ba, ptr, sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)); user_stats->tlv_flags |= BIT(tag); break; } return 0; } static int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len, int (*iter)(struct ath12k_base *ar, u16 tag, u16 len, const void *ptr, void *data), void *data) { const struct htt_tlv *tlv; const void *begin = ptr; u16 tlv_tag, tlv_len; int ret = -EINVAL; while (len > 0) { if (len < sizeof(*tlv)) { ath12k_err(ab, "htt tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n", ptr - begin, len, sizeof(*tlv)); return -EINVAL; } tlv = (struct htt_tlv *)ptr; tlv_tag = le32_get_bits(tlv->header, HTT_TLV_TAG); tlv_len = le32_get_bits(tlv->header, HTT_TLV_LEN); ptr += sizeof(*tlv); len -= sizeof(*tlv); if (tlv_len > len) { ath12k_err(ab, "htt tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n", tlv_tag, ptr - begin, len, tlv_len); return -EINVAL; } ret = iter(ab, tlv_tag, tlv_len, ptr, data); if (ret == -ENOMEM) return ret; ptr += tlv_len; len -= tlv_len; } return 0; } static void ath12k_update_per_peer_tx_stats(struct ath12k *ar, struct htt_ppdu_stats *ppdu_stats, u8 user) { struct ath12k_base *ab = ar->ab; struct ath12k_peer *peer; struct ieee80211_sta *sta; struct ath12k_sta *arsta; struct htt_ppdu_stats_user_rate *user_rate; struct ath12k_per_peer_tx_stats *peer_stats = &ar->peer_tx_stats; struct htt_ppdu_user_stats *usr_stats = &ppdu_stats->user_stats[user]; struct htt_ppdu_stats_common *common = &ppdu_stats->common; int ret; u8 flags, mcs, nss, bw, sgi, dcm, rate_idx = 0; u32 v, succ_bytes = 0; u16 tones, rate = 0, succ_pkts = 0; u32 tx_duration = 0; u8 tid = HTT_PPDU_STATS_NON_QOS_TID; bool is_ampdu = false; if (!usr_stats) return; if (!(usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_RATE))) return; if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON)) is_ampdu = HTT_USR_CMPLTN_IS_AMPDU(usr_stats->cmpltn_cmn.flags); if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS)) { succ_bytes = le32_to_cpu(usr_stats->ack_ba.success_bytes); succ_pkts = le32_get_bits(usr_stats->ack_ba.info, HTT_PPDU_STATS_ACK_BA_INFO_NUM_MSDU_M); tid = le32_get_bits(usr_stats->ack_ba.info, HTT_PPDU_STATS_ACK_BA_INFO_TID_NUM); } if (common->fes_duration_us) tx_duration = le32_to_cpu(common->fes_duration_us); user_rate = &usr_stats->rate; flags = HTT_USR_RATE_PREAMBLE(user_rate->rate_flags); bw = HTT_USR_RATE_BW(user_rate->rate_flags) - 2; nss = HTT_USR_RATE_NSS(user_rate->rate_flags) + 1; mcs = HTT_USR_RATE_MCS(user_rate->rate_flags); sgi = HTT_USR_RATE_GI(user_rate->rate_flags); dcm = HTT_USR_RATE_DCM(user_rate->rate_flags); /* Note: If host configured fixed rates and in some other special * cases, the broadcast/management frames are sent in different rates. * Firmware rate's control to be skipped for this? */ if (flags == WMI_RATE_PREAMBLE_HE && mcs > ATH12K_HE_MCS_MAX) { ath12k_warn(ab, "Invalid HE mcs %d peer stats", mcs); return; } if (flags == WMI_RATE_PREAMBLE_VHT && mcs > ATH12K_VHT_MCS_MAX) { ath12k_warn(ab, "Invalid VHT mcs %d peer stats", mcs); return; } if (flags == WMI_RATE_PREAMBLE_HT && (mcs > ATH12K_HT_MCS_MAX || nss < 1)) { ath12k_warn(ab, "Invalid HT mcs %d nss %d peer stats", mcs, nss); return; } if (flags == WMI_RATE_PREAMBLE_CCK || flags == WMI_RATE_PREAMBLE_OFDM) { ret = ath12k_mac_hw_ratecode_to_legacy_rate(mcs, flags, &rate_idx, &rate); if (ret < 0) return; } rcu_read_lock(); spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_id(ab, usr_stats->peer_id); if (!peer || !peer->sta) { spin_unlock_bh(&ab->base_lock); rcu_read_unlock(); return; } sta = peer->sta; arsta = (struct ath12k_sta *)sta->drv_priv; memset(&arsta->txrate, 0, sizeof(arsta->txrate)); switch (flags) { case WMI_RATE_PREAMBLE_OFDM: arsta->txrate.legacy = rate; break; case WMI_RATE_PREAMBLE_CCK: arsta->txrate.legacy = rate; break; case WMI_RATE_PREAMBLE_HT: arsta->txrate.mcs = mcs + 8 * (nss - 1); arsta->txrate.flags = RATE_INFO_FLAGS_MCS; if (sgi) arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; break; case WMI_RATE_PREAMBLE_VHT: arsta->txrate.mcs = mcs; arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; if (sgi) arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; break; case WMI_RATE_PREAMBLE_HE: arsta->txrate.mcs = mcs; arsta->txrate.flags = RATE_INFO_FLAGS_HE_MCS; arsta->txrate.he_dcm = dcm; arsta->txrate.he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); tones = le16_to_cpu(user_rate->ru_end) - le16_to_cpu(user_rate->ru_start) + 1; v = ath12k_he_ru_tones_to_nl80211_he_ru_alloc(tones); arsta->txrate.he_ru_alloc = v; break; } arsta->txrate.nss = nss; arsta->txrate.bw = ath12k_mac_bw_to_mac80211_bw(bw); arsta->tx_duration += tx_duration; memcpy(&arsta->last_txrate, &arsta->txrate, sizeof(struct rate_info)); /* PPDU stats reported for mgmt packet doesn't have valid tx bytes. * So skip peer stats update for mgmt packets. */ if (tid < HTT_PPDU_STATS_NON_QOS_TID) { memset(peer_stats, 0, sizeof(*peer_stats)); peer_stats->succ_pkts = succ_pkts; peer_stats->succ_bytes = succ_bytes; peer_stats->is_ampdu = is_ampdu; peer_stats->duration = tx_duration; peer_stats->ba_fails = HTT_USR_CMPLTN_LONG_RETRY(usr_stats->cmpltn_cmn.flags) + HTT_USR_CMPLTN_SHORT_RETRY(usr_stats->cmpltn_cmn.flags); } spin_unlock_bh(&ab->base_lock); rcu_read_unlock(); } static void ath12k_htt_update_ppdu_stats(struct ath12k *ar, struct htt_ppdu_stats *ppdu_stats) { u8 user; for (user = 0; user < HTT_PPDU_STATS_MAX_USERS - 1; user++) ath12k_update_per_peer_tx_stats(ar, ppdu_stats, user); } static struct htt_ppdu_stats_info *ath12k_dp_htt_get_ppdu_desc(struct ath12k *ar, u32 ppdu_id) { struct htt_ppdu_stats_info *ppdu_info; lockdep_assert_held(&ar->data_lock); if (!list_empty(&ar->ppdu_stats_info)) { list_for_each_entry(ppdu_info, &ar->ppdu_stats_info, list) { if (ppdu_info->ppdu_id == ppdu_id) return ppdu_info; } if (ar->ppdu_stat_list_depth > HTT_PPDU_DESC_MAX_DEPTH) { ppdu_info = list_first_entry(&ar->ppdu_stats_info, typeof(*ppdu_info), list); list_del(&ppdu_info->list); ar->ppdu_stat_list_depth--; ath12k_htt_update_ppdu_stats(ar, &ppdu_info->ppdu_stats); kfree(ppdu_info); } } ppdu_info = kzalloc(sizeof(*ppdu_info), GFP_ATOMIC); if (!ppdu_info) return NULL; list_add_tail(&ppdu_info->list, &ar->ppdu_stats_info); ar->ppdu_stat_list_depth++; return ppdu_info; } static void ath12k_copy_to_delay_stats(struct ath12k_peer *peer, struct htt_ppdu_user_stats *usr_stats) { peer->ppdu_stats_delayba.sw_peer_id = le16_to_cpu(usr_stats->rate.sw_peer_id); peer->ppdu_stats_delayba.info0 = le32_to_cpu(usr_stats->rate.info0); peer->ppdu_stats_delayba.ru_end = le16_to_cpu(usr_stats->rate.ru_end); peer->ppdu_stats_delayba.ru_start = le16_to_cpu(usr_stats->rate.ru_start); peer->ppdu_stats_delayba.info1 = le32_to_cpu(usr_stats->rate.info1); peer->ppdu_stats_delayba.rate_flags = le32_to_cpu(usr_stats->rate.rate_flags); peer->ppdu_stats_delayba.resp_rate_flags = le32_to_cpu(usr_stats->rate.resp_rate_flags); peer->delayba_flag = true; } static void ath12k_copy_to_bar(struct ath12k_peer *peer, struct htt_ppdu_user_stats *usr_stats) { usr_stats->rate.sw_peer_id = cpu_to_le16(peer->ppdu_stats_delayba.sw_peer_id); usr_stats->rate.info0 = cpu_to_le32(peer->ppdu_stats_delayba.info0); usr_stats->rate.ru_end = cpu_to_le16(peer->ppdu_stats_delayba.ru_end); usr_stats->rate.ru_start = cpu_to_le16(peer->ppdu_stats_delayba.ru_start); usr_stats->rate.info1 = cpu_to_le32(peer->ppdu_stats_delayba.info1); usr_stats->rate.rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.rate_flags); usr_stats->rate.resp_rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.resp_rate_flags); peer->delayba_flag = false; } static int ath12k_htt_pull_ppdu_stats(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_htt_ppdu_stats_msg *msg; struct htt_ppdu_stats_info *ppdu_info; struct ath12k_peer *peer = NULL; struct htt_ppdu_user_stats *usr_stats = NULL; u32 peer_id = 0; struct ath12k *ar; int ret, i; u8 pdev_id; u32 ppdu_id, len; msg = (struct ath12k_htt_ppdu_stats_msg *)skb->data; len = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PAYLOAD_SIZE); if (len > (skb->len - struct_size(msg, data, 0))) { ath12k_warn(ab, "HTT PPDU STATS event has unexpected payload size %u, should be smaller than %u\n", len, skb->len); return -EINVAL; } pdev_id = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PDEV_ID); ppdu_id = le32_to_cpu(msg->ppdu_id); rcu_read_lock(); ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); if (!ar) { ret = -EINVAL; goto exit; } spin_lock_bh(&ar->data_lock); ppdu_info = ath12k_dp_htt_get_ppdu_desc(ar, ppdu_id); if (!ppdu_info) { spin_unlock_bh(&ar->data_lock); ret = -EINVAL; goto exit; } ppdu_info->ppdu_id = ppdu_id; ret = ath12k_dp_htt_tlv_iter(ab, msg->data, len, ath12k_htt_tlv_ppdu_stats_parse, (void *)ppdu_info); if (ret) { spin_unlock_bh(&ar->data_lock); ath12k_warn(ab, "Failed to parse tlv %d\n", ret); goto exit; } if (ppdu_info->ppdu_stats.common.num_users >= HTT_PPDU_STATS_MAX_USERS) { spin_unlock_bh(&ar->data_lock); ath12k_warn(ab, "HTT PPDU STATS event has unexpected num_users %u, should be smaller than %u\n", ppdu_info->ppdu_stats.common.num_users, HTT_PPDU_STATS_MAX_USERS); ret = -EINVAL; goto exit; } /* back up data rate tlv for all peers */ if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_DATA && (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON)) && ppdu_info->delay_ba) { for (i = 0; i < ppdu_info->ppdu_stats.common.num_users; i++) { peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_id(ab, peer_id); if (!peer) { spin_unlock_bh(&ab->base_lock); continue; } usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; if (usr_stats->delay_ba) ath12k_copy_to_delay_stats(peer, usr_stats); spin_unlock_bh(&ab->base_lock); } } /* restore all peers' data rate tlv to mu-bar tlv */ if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_BAR && (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON))) { for (i = 0; i < ppdu_info->bar_num_users; i++) { peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_id(ab, peer_id); if (!peer) { spin_unlock_bh(&ab->base_lock); continue; } usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; if (peer->delayba_flag) ath12k_copy_to_bar(peer, usr_stats); spin_unlock_bh(&ab->base_lock); } } spin_unlock_bh(&ar->data_lock); exit: rcu_read_unlock(); return ret; } static void ath12k_htt_mlo_offset_event_handler(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_htt_mlo_offset_msg *msg; struct ath12k_pdev *pdev; struct ath12k *ar; u8 pdev_id; msg = (struct ath12k_htt_mlo_offset_msg *)skb->data; pdev_id = u32_get_bits(__le32_to_cpu(msg->info), HTT_T2H_MLO_OFFSET_INFO_PDEV_ID); rcu_read_lock(); ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); if (!ar) { ath12k_warn(ab, "invalid pdev id %d on htt mlo offset\n", pdev_id); goto exit; } spin_lock_bh(&ar->data_lock); pdev = ar->pdev; pdev->timestamp.info = __le32_to_cpu(msg->info); pdev->timestamp.sync_timestamp_lo_us = __le32_to_cpu(msg->sync_timestamp_lo_us); pdev->timestamp.sync_timestamp_hi_us = __le32_to_cpu(msg->sync_timestamp_hi_us); pdev->timestamp.mlo_offset_lo = __le32_to_cpu(msg->mlo_offset_lo); pdev->timestamp.mlo_offset_hi = __le32_to_cpu(msg->mlo_offset_hi); pdev->timestamp.mlo_offset_clks = __le32_to_cpu(msg->mlo_offset_clks); pdev->timestamp.mlo_comp_clks = __le32_to_cpu(msg->mlo_comp_clks); pdev->timestamp.mlo_comp_timer = __le32_to_cpu(msg->mlo_comp_timer); spin_unlock_bh(&ar->data_lock); exit: rcu_read_unlock(); } void ath12k_dp_htt_htc_t2h_msg_handler(struct ath12k_base *ab, struct sk_buff *skb) { struct ath12k_dp *dp = &ab->dp; struct htt_resp_msg *resp = (struct htt_resp_msg *)skb->data; enum htt_t2h_msg_type type; u16 peer_id; u8 vdev_id; u8 mac_addr[ETH_ALEN]; u16 peer_mac_h16; u16 ast_hash = 0; u16 hw_peer_id; type = le32_get_bits(resp->version_msg.version, HTT_T2H_MSG_TYPE); ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt rx msg type :0x%0x\n", type); switch (type) { case HTT_T2H_MSG_TYPE_VERSION_CONF: dp->htt_tgt_ver_major = le32_get_bits(resp->version_msg.version, HTT_T2H_VERSION_CONF_MAJOR); dp->htt_tgt_ver_minor = le32_get_bits(resp->version_msg.version, HTT_T2H_VERSION_CONF_MINOR); complete(&dp->htt_tgt_version_received); break; /* TODO: remove unused peer map versions after testing */ case HTT_T2H_MSG_TYPE_PEER_MAP: vdev_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_VDEV_ID); peer_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_PEER_ID); peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), peer_mac_h16, mac_addr); ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, 0, 0); break; case HTT_T2H_MSG_TYPE_PEER_MAP2: vdev_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_VDEV_ID); peer_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_PEER_ID); peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), peer_mac_h16, mac_addr); ast_hash = le32_get_bits(resp->peer_map_ev.info2, HTT_T2H_PEER_MAP_INFO2_AST_HASH_VAL); hw_peer_id = le32_get_bits(resp->peer_map_ev.info1, HTT_T2H_PEER_MAP_INFO1_HW_PEER_ID); ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, hw_peer_id); break; case HTT_T2H_MSG_TYPE_PEER_MAP3: vdev_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_VDEV_ID); peer_id = le32_get_bits(resp->peer_map_ev.info, HTT_T2H_PEER_MAP_INFO_PEER_ID); peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), peer_mac_h16, mac_addr); ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, peer_id); break; case HTT_T2H_MSG_TYPE_PEER_UNMAP: case HTT_T2H_MSG_TYPE_PEER_UNMAP2: peer_id = le32_get_bits(resp->peer_unmap_ev.info, HTT_T2H_PEER_UNMAP_INFO_PEER_ID); ath12k_peer_unmap_event(ab, peer_id); break; case HTT_T2H_MSG_TYPE_PPDU_STATS_IND: ath12k_htt_pull_ppdu_stats(ab, skb); break; case HTT_T2H_MSG_TYPE_EXT_STATS_CONF: break; case HTT_T2H_MSG_TYPE_MLO_TIMESTAMP_OFFSET_IND: ath12k_htt_mlo_offset_event_handler(ab, skb); break; default: ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt event %d not handled\n", type); break; } dev_kfree_skb_any(skb); } static int ath12k_dp_rx_msdu_coalesce(struct ath12k *ar, struct sk_buff_head *msdu_list, struct sk_buff *first, struct sk_buff *last, u8 l3pad_bytes, int msdu_len) { struct ath12k_base *ab = ar->ab; struct sk_buff *skb; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); int buf_first_hdr_len, buf_first_len; struct hal_rx_desc *ldesc; int space_extra, rem_len, buf_len; u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; /* As the msdu is spread across multiple rx buffers, * find the offset to the start of msdu for computing * the length of the msdu in the first buffer. */ buf_first_hdr_len = hal_rx_desc_sz + l3pad_bytes; buf_first_len = DP_RX_BUFFER_SIZE - buf_first_hdr_len; if (WARN_ON_ONCE(msdu_len <= buf_first_len)) { skb_put(first, buf_first_hdr_len + msdu_len); skb_pull(first, buf_first_hdr_len); return 0; } ldesc = (struct hal_rx_desc *)last->data; rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, ldesc); rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, ldesc); /* MSDU spans over multiple buffers because the length of the MSDU * exceeds DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. So assume the data * in the first buf is of length DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. */ skb_put(first, DP_RX_BUFFER_SIZE); skb_pull(first, buf_first_hdr_len); /* When an MSDU spread over multiple buffers MSDU_END * tlvs are valid only in the last buffer. Copy those tlvs. */ ath12k_dp_rx_desc_end_tlv_copy(ab, rxcb->rx_desc, ldesc); space_extra = msdu_len - (buf_first_len + skb_tailroom(first)); if (space_extra > 0 && (pskb_expand_head(first, 0, space_extra, GFP_ATOMIC) < 0)) { /* Free up all buffers of the MSDU */ while ((skb = __skb_dequeue(msdu_list)) != NULL) { rxcb = ATH12K_SKB_RXCB(skb); if (!rxcb->is_continuation) { dev_kfree_skb_any(skb); break; } dev_kfree_skb_any(skb); } return -ENOMEM; } rem_len = msdu_len - buf_first_len; while ((skb = __skb_dequeue(msdu_list)) != NULL && rem_len > 0) { rxcb = ATH12K_SKB_RXCB(skb); if (rxcb->is_continuation) buf_len = DP_RX_BUFFER_SIZE - hal_rx_desc_sz; else buf_len = rem_len; if (buf_len > (DP_RX_BUFFER_SIZE - hal_rx_desc_sz)) { WARN_ON_ONCE(1); dev_kfree_skb_any(skb); return -EINVAL; } skb_put(skb, buf_len + hal_rx_desc_sz); skb_pull(skb, hal_rx_desc_sz); skb_copy_from_linear_data(skb, skb_put(first, buf_len), buf_len); dev_kfree_skb_any(skb); rem_len -= buf_len; if (!rxcb->is_continuation) break; } return 0; } static struct sk_buff *ath12k_dp_rx_get_msdu_last_buf(struct sk_buff_head *msdu_list, struct sk_buff *first) { struct sk_buff *skb; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); if (!rxcb->is_continuation) return first; skb_queue_walk(msdu_list, skb) { rxcb = ATH12K_SKB_RXCB(skb); if (!rxcb->is_continuation) return skb; } return NULL; } static void ath12k_dp_rx_h_csum_offload(struct ath12k *ar, struct sk_buff *msdu) { struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct ath12k_base *ab = ar->ab; bool ip_csum_fail, l4_csum_fail; ip_csum_fail = ath12k_dp_rx_h_ip_cksum_fail(ab, rxcb->rx_desc); l4_csum_fail = ath12k_dp_rx_h_l4_cksum_fail(ab, rxcb->rx_desc); msdu->ip_summed = (ip_csum_fail || l4_csum_fail) ? CHECKSUM_NONE : CHECKSUM_UNNECESSARY; } static int ath12k_dp_rx_crypto_mic_len(struct ath12k *ar, enum hal_encrypt_type enctype) { switch (enctype) { case HAL_ENCRYPT_TYPE_OPEN: case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: case HAL_ENCRYPT_TYPE_TKIP_MIC: return 0; case HAL_ENCRYPT_TYPE_CCMP_128: return IEEE80211_CCMP_MIC_LEN; case HAL_ENCRYPT_TYPE_CCMP_256: return IEEE80211_CCMP_256_MIC_LEN; case HAL_ENCRYPT_TYPE_GCMP_128: case HAL_ENCRYPT_TYPE_AES_GCMP_256: return IEEE80211_GCMP_MIC_LEN; case HAL_ENCRYPT_TYPE_WEP_40: case HAL_ENCRYPT_TYPE_WEP_104: case HAL_ENCRYPT_TYPE_WEP_128: case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: case HAL_ENCRYPT_TYPE_WAPI: break; } ath12k_warn(ar->ab, "unsupported encryption type %d for mic len\n", enctype); return 0; } static int ath12k_dp_rx_crypto_param_len(struct ath12k *ar, enum hal_encrypt_type enctype) { switch (enctype) { case HAL_ENCRYPT_TYPE_OPEN: return 0; case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: case HAL_ENCRYPT_TYPE_TKIP_MIC: return IEEE80211_TKIP_IV_LEN; case HAL_ENCRYPT_TYPE_CCMP_128: return IEEE80211_CCMP_HDR_LEN; case HAL_ENCRYPT_TYPE_CCMP_256: return IEEE80211_CCMP_256_HDR_LEN; case HAL_ENCRYPT_TYPE_GCMP_128: case HAL_ENCRYPT_TYPE_AES_GCMP_256: return IEEE80211_GCMP_HDR_LEN; case HAL_ENCRYPT_TYPE_WEP_40: case HAL_ENCRYPT_TYPE_WEP_104: case HAL_ENCRYPT_TYPE_WEP_128: case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: case HAL_ENCRYPT_TYPE_WAPI: break; } ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); return 0; } static int ath12k_dp_rx_crypto_icv_len(struct ath12k *ar, enum hal_encrypt_type enctype) { switch (enctype) { case HAL_ENCRYPT_TYPE_OPEN: case HAL_ENCRYPT_TYPE_CCMP_128: case HAL_ENCRYPT_TYPE_CCMP_256: case HAL_ENCRYPT_TYPE_GCMP_128: case HAL_ENCRYPT_TYPE_AES_GCMP_256: return 0; case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: case HAL_ENCRYPT_TYPE_TKIP_MIC: return IEEE80211_TKIP_ICV_LEN; case HAL_ENCRYPT_TYPE_WEP_40: case HAL_ENCRYPT_TYPE_WEP_104: case HAL_ENCRYPT_TYPE_WEP_128: case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: case HAL_ENCRYPT_TYPE_WAPI: break; } ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); return 0; } static void ath12k_dp_rx_h_undecap_nwifi(struct ath12k *ar, struct sk_buff *msdu, enum hal_encrypt_type enctype, struct ieee80211_rx_status *status) { struct ath12k_base *ab = ar->ab; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); u8 decap_hdr[DP_MAX_NWIFI_HDR_LEN]; struct ieee80211_hdr *hdr; size_t hdr_len; u8 *crypto_hdr; u16 qos_ctl; /* pull decapped header */ hdr = (struct ieee80211_hdr *)msdu->data; hdr_len = ieee80211_hdrlen(hdr->frame_control); skb_pull(msdu, hdr_len); /* Rebuild qos header */ hdr->frame_control |= __cpu_to_le16(IEEE80211_STYPE_QOS_DATA); /* Reset the order bit as the HT_Control header is stripped */ hdr->frame_control &= ~(__cpu_to_le16(IEEE80211_FCTL_ORDER)); qos_ctl = rxcb->tid; if (ath12k_dp_rx_h_mesh_ctl_present(ab, rxcb->rx_desc)) qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; /* TODO: Add other QoS ctl fields when required */ /* copy decap header before overwriting for reuse below */ memcpy(decap_hdr, hdr, hdr_len); /* Rebuild crypto header for mac80211 use */ if (!(status->flag & RX_FLAG_IV_STRIPPED)) { crypto_hdr = skb_push(msdu, ath12k_dp_rx_crypto_param_len(ar, enctype)); ath12k_dp_rx_desc_get_crypto_header(ar->ab, rxcb->rx_desc, crypto_hdr, enctype); } memcpy(skb_push(msdu, IEEE80211_QOS_CTL_LEN), &qos_ctl, IEEE80211_QOS_CTL_LEN); memcpy(skb_push(msdu, hdr_len), decap_hdr, hdr_len); } static void ath12k_dp_rx_h_undecap_raw(struct ath12k *ar, struct sk_buff *msdu, enum hal_encrypt_type enctype, struct ieee80211_rx_status *status, bool decrypted) { struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct ieee80211_hdr *hdr; size_t hdr_len; size_t crypto_len; if (!rxcb->is_first_msdu || !(rxcb->is_first_msdu && rxcb->is_last_msdu)) { WARN_ON_ONCE(1); return; } skb_trim(msdu, msdu->len - FCS_LEN); if (!decrypted) return; hdr = (void *)msdu->data; /* Tail */ if (status->flag & RX_FLAG_IV_STRIPPED) { skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_mic_len(ar, enctype)); skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_icv_len(ar, enctype)); } else { /* MIC */ if (status->flag & RX_FLAG_MIC_STRIPPED) skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_mic_len(ar, enctype)); /* ICV */ if (status->flag & RX_FLAG_ICV_STRIPPED) skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_icv_len(ar, enctype)); } /* MMIC */ if ((status->flag & RX_FLAG_MMIC_STRIPPED) && !ieee80211_has_morefrags(hdr->frame_control) && enctype == HAL_ENCRYPT_TYPE_TKIP_MIC) skb_trim(msdu, msdu->len - IEEE80211_CCMP_MIC_LEN); /* Head */ if (status->flag & RX_FLAG_IV_STRIPPED) { hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); memmove(msdu->data + crypto_len, msdu->data, hdr_len); skb_pull(msdu, crypto_len); } } static void ath12k_get_dot11_hdr_from_rx_desc(struct ath12k *ar, struct sk_buff *msdu, struct ath12k_skb_rxcb *rxcb, struct ieee80211_rx_status *status, enum hal_encrypt_type enctype) { struct hal_rx_desc *rx_desc = rxcb->rx_desc; struct ath12k_base *ab = ar->ab; size_t hdr_len, crypto_len; struct ieee80211_hdr *hdr; u16 qos_ctl; __le16 fc; u8 *crypto_hdr; if (!(status->flag & RX_FLAG_IV_STRIPPED)) { crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); crypto_hdr = skb_push(msdu, crypto_len); ath12k_dp_rx_desc_get_crypto_header(ab, rx_desc, crypto_hdr, enctype); } fc = cpu_to_le16(ath12k_dp_rxdesc_get_mpdu_frame_ctrl(ab, rx_desc)); hdr_len = ieee80211_hdrlen(fc); skb_push(msdu, hdr_len); hdr = (struct ieee80211_hdr *)msdu->data; hdr->frame_control = fc; /* Get wifi header from rx_desc */ ath12k_dp_rx_desc_get_dot11_hdr(ab, rx_desc, hdr); if (rxcb->is_mcbc) status->flag &= ~RX_FLAG_PN_VALIDATED; /* Add QOS header */ if (ieee80211_is_data_qos(hdr->frame_control)) { qos_ctl = rxcb->tid; if (ath12k_dp_rx_h_mesh_ctl_present(ab, rx_desc)) qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; /* TODO: Add other QoS ctl fields when required */ memcpy(msdu->data + (hdr_len - IEEE80211_QOS_CTL_LEN), &qos_ctl, IEEE80211_QOS_CTL_LEN); } } static void ath12k_dp_rx_h_undecap_eth(struct ath12k *ar, struct sk_buff *msdu, enum hal_encrypt_type enctype, struct ieee80211_rx_status *status) { struct ieee80211_hdr *hdr; struct ethhdr *eth; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct ath12k_dp_rx_rfc1042_hdr rfc = {0xaa, 0xaa, 0x03, {0x00, 0x00, 0x00}}; eth = (struct ethhdr *)msdu->data; ether_addr_copy(da, eth->h_dest); ether_addr_copy(sa, eth->h_source); rfc.snap_type = eth->h_proto; skb_pull(msdu, sizeof(*eth)); memcpy(skb_push(msdu, sizeof(rfc)), &rfc, sizeof(rfc)); ath12k_get_dot11_hdr_from_rx_desc(ar, msdu, rxcb, status, enctype); /* original 802.11 header has a different DA and in * case of 4addr it may also have different SA */ hdr = (struct ieee80211_hdr *)msdu->data; ether_addr_copy(ieee80211_get_DA(hdr), da); ether_addr_copy(ieee80211_get_SA(hdr), sa); } static void ath12k_dp_rx_h_undecap(struct ath12k *ar, struct sk_buff *msdu, struct hal_rx_desc *rx_desc, enum hal_encrypt_type enctype, struct ieee80211_rx_status *status, bool decrypted) { struct ath12k_base *ab = ar->ab; u8 decap; struct ethhdr *ehdr; decap = ath12k_dp_rx_h_decap_type(ab, rx_desc); switch (decap) { case DP_RX_DECAP_TYPE_NATIVE_WIFI: ath12k_dp_rx_h_undecap_nwifi(ar, msdu, enctype, status); break; case DP_RX_DECAP_TYPE_RAW: ath12k_dp_rx_h_undecap_raw(ar, msdu, enctype, status, decrypted); break; case DP_RX_DECAP_TYPE_ETHERNET2_DIX: ehdr = (struct ethhdr *)msdu->data; /* mac80211 allows fast path only for authorized STA */ if (ehdr->h_proto == cpu_to_be16(ETH_P_PAE)) { ATH12K_SKB_RXCB(msdu)->is_eapol = true; ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); break; } /* PN for mcast packets will be validated in mac80211; * remove eth header and add 802.11 header. */ if (ATH12K_SKB_RXCB(msdu)->is_mcbc && decrypted) ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); break; case DP_RX_DECAP_TYPE_8023: /* TODO: Handle undecap for these formats */ break; } } struct ath12k_peer * ath12k_dp_rx_h_find_peer(struct ath12k_base *ab, struct sk_buff *msdu) { struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct hal_rx_desc *rx_desc = rxcb->rx_desc; struct ath12k_peer *peer = NULL; lockdep_assert_held(&ab->base_lock); if (rxcb->peer_id) peer = ath12k_peer_find_by_id(ab, rxcb->peer_id); if (peer) return peer; if (!rx_desc || !(ath12k_dp_rxdesc_mac_addr2_valid(ab, rx_desc))) return NULL; peer = ath12k_peer_find_by_addr(ab, ath12k_dp_rxdesc_get_mpdu_start_addr2(ab, rx_desc)); return peer; } static void ath12k_dp_rx_h_mpdu(struct ath12k *ar, struct sk_buff *msdu, struct hal_rx_desc *rx_desc, struct ieee80211_rx_status *rx_status) { bool fill_crypto_hdr; struct ath12k_base *ab = ar->ab; struct ath12k_skb_rxcb *rxcb; enum hal_encrypt_type enctype; bool is_decrypted = false; struct ieee80211_hdr *hdr; struct ath12k_peer *peer; u32 err_bitmap; /* PN for multicast packets will be checked in mac80211 */ rxcb = ATH12K_SKB_RXCB(msdu); fill_crypto_hdr = ath12k_dp_rx_h_is_da_mcbc(ar->ab, rx_desc); rxcb->is_mcbc = fill_crypto_hdr; if (rxcb->is_mcbc) rxcb->peer_id = ath12k_dp_rx_h_peer_id(ar->ab, rx_desc); spin_lock_bh(&ar->ab->base_lock); peer = ath12k_dp_rx_h_find_peer(ar->ab, msdu); if (peer) { if (rxcb->is_mcbc) enctype = peer->sec_type_grp; else enctype = peer->sec_type; } else { enctype = HAL_ENCRYPT_TYPE_OPEN; } spin_unlock_bh(&ar->ab->base_lock); err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); if (enctype != HAL_ENCRYPT_TYPE_OPEN && !err_bitmap) is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc); /* Clear per-MPDU flags while leaving per-PPDU flags intact */ rx_status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | RX_FLAG_MMIC_ERROR | RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED); if (err_bitmap & HAL_RX_MPDU_ERR_FCS) rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) rx_status->flag |= RX_FLAG_MMIC_ERROR; if (is_decrypted) { rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED; if (fill_crypto_hdr) rx_status->flag |= RX_FLAG_MIC_STRIPPED | RX_FLAG_ICV_STRIPPED; else rx_status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_PN_VALIDATED; } ath12k_dp_rx_h_csum_offload(ar, msdu); ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, enctype, rx_status, is_decrypted); if (!is_decrypted || fill_crypto_hdr) return; if (ath12k_dp_rx_h_decap_type(ar->ab, rx_desc) != DP_RX_DECAP_TYPE_ETHERNET2_DIX) { hdr = (void *)msdu->data; hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } static void ath12k_dp_rx_h_rate(struct ath12k *ar, struct hal_rx_desc *rx_desc, struct ieee80211_rx_status *rx_status) { struct ath12k_base *ab = ar->ab; struct ieee80211_supported_band *sband; enum rx_msdu_start_pkt_type pkt_type; u8 bw; u8 rate_mcs, nss; u8 sgi; bool is_cck; pkt_type = ath12k_dp_rx_h_pkt_type(ab, rx_desc); bw = ath12k_dp_rx_h_rx_bw(ab, rx_desc); rate_mcs = ath12k_dp_rx_h_rate_mcs(ab, rx_desc); nss = ath12k_dp_rx_h_nss(ab, rx_desc); sgi = ath12k_dp_rx_h_sgi(ab, rx_desc); switch (pkt_type) { case RX_MSDU_START_PKT_TYPE_11A: case RX_MSDU_START_PKT_TYPE_11B: is_cck = (pkt_type == RX_MSDU_START_PKT_TYPE_11B); sband = &ar->mac.sbands[rx_status->band]; rx_status->rate_idx = ath12k_mac_hw_rate_to_idx(sband, rate_mcs, is_cck); break; case RX_MSDU_START_PKT_TYPE_11N: rx_status->encoding = RX_ENC_HT; if (rate_mcs > ATH12K_HT_MCS_MAX) { ath12k_warn(ar->ab, "Received with invalid mcs in HT mode %d\n", rate_mcs); break; } rx_status->rate_idx = rate_mcs + (8 * (nss - 1)); if (sgi) rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); break; case RX_MSDU_START_PKT_TYPE_11AC: rx_status->encoding = RX_ENC_VHT; rx_status->rate_idx = rate_mcs; if (rate_mcs > ATH12K_VHT_MCS_MAX) { ath12k_warn(ar->ab, "Received with invalid mcs in VHT mode %d\n", rate_mcs); break; } rx_status->nss = nss; if (sgi) rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); break; case RX_MSDU_START_PKT_TYPE_11AX: rx_status->rate_idx = rate_mcs; if (rate_mcs > ATH12K_HE_MCS_MAX) { ath12k_warn(ar->ab, "Received with invalid mcs in HE mode %d\n", rate_mcs); break; } rx_status->encoding = RX_ENC_HE; rx_status->nss = nss; rx_status->he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); break; } } void ath12k_dp_rx_h_ppdu(struct ath12k *ar, struct hal_rx_desc *rx_desc, struct ieee80211_rx_status *rx_status) { struct ath12k_base *ab = ar->ab; u8 channel_num; u32 center_freq, meta_data; struct ieee80211_channel *channel; rx_status->freq = 0; rx_status->rate_idx = 0; rx_status->nss = 0; rx_status->encoding = RX_ENC_LEGACY; rx_status->bw = RATE_INFO_BW_20; rx_status->enc_flags = 0; rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; meta_data = ath12k_dp_rx_h_freq(ab, rx_desc); channel_num = meta_data; center_freq = meta_data >> 16; if (center_freq >= 5935 && center_freq <= 7105) { rx_status->band = NL80211_BAND_6GHZ; } else if (channel_num >= 1 && channel_num <= 14) { rx_status->band = NL80211_BAND_2GHZ; } else if (channel_num >= 36 && channel_num <= 173) { rx_status->band = NL80211_BAND_5GHZ; } else { spin_lock_bh(&ar->data_lock); channel = ar->rx_channel; if (channel) { rx_status->band = channel->band; channel_num = ieee80211_frequency_to_channel(channel->center_freq); } spin_unlock_bh(&ar->data_lock); ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "rx_desc: ", rx_desc, sizeof(*rx_desc)); } rx_status->freq = ieee80211_channel_to_frequency(channel_num, rx_status->band); ath12k_dp_rx_h_rate(ar, rx_desc, rx_status); } static void ath12k_dp_rx_deliver_msdu(struct ath12k *ar, struct napi_struct *napi, struct sk_buff *msdu, struct ieee80211_rx_status *status) { struct ath12k_base *ab = ar->ab; static const struct ieee80211_radiotap_he known = { .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN), .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN), }; struct ieee80211_radiotap_he *he; struct ieee80211_rx_status *rx_status; struct ieee80211_sta *pubsta; struct ath12k_peer *peer; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); u8 decap = DP_RX_DECAP_TYPE_RAW; bool is_mcbc = rxcb->is_mcbc; bool is_eapol = rxcb->is_eapol; if (status->encoding == RX_ENC_HE && !(status->flag & RX_FLAG_RADIOTAP_HE) && !(status->flag & RX_FLAG_SKIP_MONITOR)) { he = skb_push(msdu, sizeof(known)); memcpy(he, &known, sizeof(known)); status->flag |= RX_FLAG_RADIOTAP_HE; } if (!(status->flag & RX_FLAG_ONLY_MONITOR)) decap = ath12k_dp_rx_h_decap_type(ab, rxcb->rx_desc); spin_lock_bh(&ab->base_lock); peer = ath12k_dp_rx_h_find_peer(ab, msdu); pubsta = peer ? peer->sta : NULL; spin_unlock_bh(&ab->base_lock); ath12k_dbg(ab, ATH12K_DBG_DATA, "rx skb %pK len %u peer %pM %d %s sn %u %s%s%s%s%s%s%s%s rate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", msdu, msdu->len, peer ? peer->addr : NULL, rxcb->tid, is_mcbc ? "mcast" : "ucast", ath12k_dp_rx_h_seq_no(ab, rxcb->rx_desc), (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", (status->encoding == RX_ENC_HT) ? "ht" : "", (status->encoding == RX_ENC_VHT) ? "vht" : "", (status->encoding == RX_ENC_HE) ? "he" : "", (status->bw == RATE_INFO_BW_40) ? "40" : "", (status->bw == RATE_INFO_BW_80) ? "80" : "", (status->bw == RATE_INFO_BW_160) ? "160" : "", status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", status->rate_idx, status->nss, status->freq, status->band, status->flag, !!(status->flag & RX_FLAG_FAILED_FCS_CRC), !!(status->flag & RX_FLAG_MMIC_ERROR), !!(status->flag & RX_FLAG_AMSDU_MORE)); ath12k_dbg_dump(ab, ATH12K_DBG_DP_RX, NULL, "dp rx msdu: ", msdu->data, msdu->len); rx_status = IEEE80211_SKB_RXCB(msdu); *rx_status = *status; /* TODO: trace rx packet */ /* PN for multicast packets are not validate in HW, * so skip 802.3 rx path * Also, fast_rx expects the STA to be authorized, hence * eapol packets are sent in slow path. */ if (decap == DP_RX_DECAP_TYPE_ETHERNET2_DIX && !is_eapol && !(is_mcbc && rx_status->flag & RX_FLAG_DECRYPTED)) rx_status->flag |= RX_FLAG_8023; ieee80211_rx_napi(ar->hw, pubsta, msdu, napi); } static int ath12k_dp_rx_process_msdu(struct ath12k *ar, struct sk_buff *msdu, struct sk_buff_head *msdu_list, struct ieee80211_rx_status *rx_status) { struct ath12k_base *ab = ar->ab; struct hal_rx_desc *rx_desc, *lrx_desc; struct ath12k_skb_rxcb *rxcb; struct sk_buff *last_buf; u8 l3_pad_bytes; u16 msdu_len; int ret; u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; last_buf = ath12k_dp_rx_get_msdu_last_buf(msdu_list, msdu); if (!last_buf) { ath12k_warn(ab, "No valid Rx buffer to access MSDU_END tlv\n"); ret = -EIO; goto free_out; } rx_desc = (struct hal_rx_desc *)msdu->data; lrx_desc = (struct hal_rx_desc *)last_buf->data; if (!ath12k_dp_rx_h_msdu_done(ab, lrx_desc)) { ath12k_warn(ab, "msdu_done bit in msdu_end is not set\n"); ret = -EIO; goto free_out; } rxcb = ATH12K_SKB_RXCB(msdu); rxcb->rx_desc = rx_desc; msdu_len = ath12k_dp_rx_h_msdu_len(ab, lrx_desc); l3_pad_bytes = ath12k_dp_rx_h_l3pad(ab, lrx_desc); if (rxcb->is_frag) { skb_pull(msdu, hal_rx_desc_sz); } else if (!rxcb->is_continuation) { if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { ret = -EINVAL; ath12k_warn(ab, "invalid msdu len %u\n", msdu_len); ath12k_dbg_dump(ab, ATH12K_DBG_DATA, NULL, "", rx_desc, sizeof(*rx_desc)); goto free_out; } skb_put(msdu, hal_rx_desc_sz + l3_pad_bytes + msdu_len); skb_pull(msdu, hal_rx_desc_sz + l3_pad_bytes); } else { ret = ath12k_dp_rx_msdu_coalesce(ar, msdu_list, msdu, last_buf, l3_pad_bytes, msdu_len); if (ret) { ath12k_warn(ab, "failed to coalesce msdu rx buffer%d\n", ret); goto free_out; } } ath12k_dp_rx_h_ppdu(ar, rx_desc, rx_status); ath12k_dp_rx_h_mpdu(ar, msdu, rx_desc, rx_status); rx_status->flag |= RX_FLAG_SKIP_MONITOR | RX_FLAG_DUP_VALIDATED; return 0; free_out: return ret; } static void ath12k_dp_rx_process_received_packets(struct ath12k_base *ab, struct napi_struct *napi, struct sk_buff_head *msdu_list, int ring_id) { struct ieee80211_rx_status rx_status = {0}; struct ath12k_skb_rxcb *rxcb; struct sk_buff *msdu; struct ath12k *ar; u8 mac_id, pdev_id; int ret; if (skb_queue_empty(msdu_list)) return; rcu_read_lock(); while ((msdu = __skb_dequeue(msdu_list))) { rxcb = ATH12K_SKB_RXCB(msdu); mac_id = rxcb->mac_id; pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); ar = ab->pdevs[pdev_id].ar; if (!rcu_dereference(ab->pdevs_active[pdev_id])) { dev_kfree_skb_any(msdu); continue; } if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { dev_kfree_skb_any(msdu); continue; } ret = ath12k_dp_rx_process_msdu(ar, msdu, msdu_list, &rx_status); if (ret) { ath12k_dbg(ab, ATH12K_DBG_DATA, "Unable to process msdu %d", ret); dev_kfree_skb_any(msdu); continue; } ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rx_status); } rcu_read_unlock(); } int ath12k_dp_rx_process(struct ath12k_base *ab, int ring_id, struct napi_struct *napi, int budget) { struct ath12k_rx_desc_info *desc_info; struct ath12k_dp *dp = &ab->dp; struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; struct hal_reo_dest_ring *desc; int num_buffs_reaped = 0; struct sk_buff_head msdu_list; struct ath12k_skb_rxcb *rxcb; int total_msdu_reaped = 0; struct hal_srng *srng; struct sk_buff *msdu; bool done = false; int mac_id; u64 desc_va; __skb_queue_head_init(&msdu_list); srng = &ab->hal.srng_list[dp->reo_dst_ring[ring_id].ring_id]; spin_lock_bh(&srng->lock); try_again: ath12k_hal_srng_access_begin(ab, srng); while ((desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { enum hal_reo_dest_ring_push_reason push_reason; u32 cookie; cookie = le32_get_bits(desc->buf_addr_info.info1, BUFFER_ADDR_INFO1_SW_COOKIE); mac_id = le32_get_bits(desc->info0, HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | le32_to_cpu(desc->buf_va_lo)); desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); /* retry manual desc retrieval */ if (!desc_info) { desc_info = ath12k_dp_get_rx_desc(ab, cookie); if (!desc_info) { ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); continue; } } if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) ath12k_warn(ab, "Check HW CC implementation"); msdu = desc_info->skb; desc_info->skb = NULL; spin_lock_bh(&dp->rx_desc_lock); list_move_tail(&desc_info->list, &dp->rx_desc_free_list); spin_unlock_bh(&dp->rx_desc_lock); rxcb = ATH12K_SKB_RXCB(msdu); dma_unmap_single(ab->dev, rxcb->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); num_buffs_reaped++; push_reason = le32_get_bits(desc->info0, HAL_REO_DEST_RING_INFO0_PUSH_REASON); if (push_reason != HAL_REO_DEST_RING_PUSH_REASON_ROUTING_INSTRUCTION) { dev_kfree_skb_any(msdu); ab->soc_stats.hal_reo_error[dp->reo_dst_ring[ring_id].ring_id]++; continue; } rxcb->is_first_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU); rxcb->is_last_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU); rxcb->is_continuation = !!(le32_to_cpu(desc->rx_msdu_info.info0) & RX_MSDU_DESC_INFO0_MSDU_CONTINUATION); rxcb->mac_id = mac_id; rxcb->peer_id = le32_get_bits(desc->rx_mpdu_info.peer_meta_data, RX_MPDU_DESC_META_DATA_PEER_ID); rxcb->tid = le32_get_bits(desc->rx_mpdu_info.info0, RX_MPDU_DESC_INFO0_TID); __skb_queue_tail(&msdu_list, msdu); if (!rxcb->is_continuation) { total_msdu_reaped++; done = true; } else { done = false; } if (total_msdu_reaped >= budget) break; } /* Hw might have updated the head pointer after we cached it. * In this case, even though there are entries in the ring we'll * get rx_desc NULL. Give the read another try with updated cached * head pointer so that we can reap complete MPDU in the current * rx processing. */ if (!done && ath12k_hal_srng_dst_num_free(ab, srng, true)) { ath12k_hal_srng_access_end(ab, srng); goto try_again; } ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); if (!total_msdu_reaped) goto exit; /* TODO: Move to implicit BM? */ ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, ab->hw_params->hal_params->rx_buf_rbm, true); ath12k_dp_rx_process_received_packets(ab, napi, &msdu_list, ring_id); exit: return total_msdu_reaped; } static void ath12k_dp_rx_frag_timer(struct timer_list *timer) { struct ath12k_dp_rx_tid *rx_tid = from_timer(rx_tid, timer, frag_timer); spin_lock_bh(&rx_tid->ab->base_lock); if (rx_tid->last_frag_no && rx_tid->rx_frag_bitmap == GENMASK(rx_tid->last_frag_no, 0)) { spin_unlock_bh(&rx_tid->ab->base_lock); return; } ath12k_dp_rx_frags_cleanup(rx_tid, true); spin_unlock_bh(&rx_tid->ab->base_lock); } int ath12k_dp_rx_peer_frag_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id) { struct ath12k_base *ab = ar->ab; struct crypto_shash *tfm; struct ath12k_peer *peer; struct ath12k_dp_rx_tid *rx_tid; int i; tfm = crypto_alloc_shash("michael_mic", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, vdev_id, peer_mac); if (!peer) { spin_unlock_bh(&ab->base_lock); ath12k_warn(ab, "failed to find the peer to set up fragment info\n"); return -ENOENT; } for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { rx_tid = &peer->rx_tid[i]; rx_tid->ab = ab; timer_setup(&rx_tid->frag_timer, ath12k_dp_rx_frag_timer, 0); skb_queue_head_init(&rx_tid->rx_frags); } peer->tfm_mmic = tfm; peer->dp_setup_done = true; spin_unlock_bh(&ab->base_lock); return 0; } static int ath12k_dp_rx_h_michael_mic(struct crypto_shash *tfm, u8 *key, struct ieee80211_hdr *hdr, u8 *data, size_t data_len, u8 *mic) { SHASH_DESC_ON_STACK(desc, tfm); u8 mic_hdr[16] = {0}; u8 tid = 0; int ret; if (!tfm) return -EINVAL; desc->tfm = tfm; ret = crypto_shash_setkey(tfm, key, 8); if (ret) goto out; ret = crypto_shash_init(desc); if (ret) goto out; /* TKIP MIC header */ memcpy(mic_hdr, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(mic_hdr + ETH_ALEN, ieee80211_get_SA(hdr), ETH_ALEN); if (ieee80211_is_data_qos(hdr->frame_control)) tid = ieee80211_get_tid(hdr); mic_hdr[12] = tid; ret = crypto_shash_update(desc, mic_hdr, 16); if (ret) goto out; ret = crypto_shash_update(desc, data, data_len); if (ret) goto out; ret = crypto_shash_final(desc, mic); out: shash_desc_zero(desc); return ret; } static int ath12k_dp_rx_h_verify_tkip_mic(struct ath12k *ar, struct ath12k_peer *peer, struct sk_buff *msdu) { struct ath12k_base *ab = ar->ab; struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; struct ieee80211_rx_status *rxs = IEEE80211_SKB_RXCB(msdu); struct ieee80211_key_conf *key_conf; struct ieee80211_hdr *hdr; u8 mic[IEEE80211_CCMP_MIC_LEN]; int head_len, tail_len, ret; size_t data_len; u32 hdr_len, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; u8 *key, *data; u8 key_idx; if (ath12k_dp_rx_h_enctype(ab, rx_desc) != HAL_ENCRYPT_TYPE_TKIP_MIC) return 0; hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); hdr_len = ieee80211_hdrlen(hdr->frame_control); head_len = hdr_len + hal_rx_desc_sz + IEEE80211_TKIP_IV_LEN; tail_len = IEEE80211_CCMP_MIC_LEN + IEEE80211_TKIP_ICV_LEN + FCS_LEN; if (!is_multicast_ether_addr(hdr->addr1)) key_idx = peer->ucast_keyidx; else key_idx = peer->mcast_keyidx; key_conf = peer->keys[key_idx]; data = msdu->data + head_len; data_len = msdu->len - head_len - tail_len; key = &key_conf->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; ret = ath12k_dp_rx_h_michael_mic(peer->tfm_mmic, key, hdr, data, data_len, mic); if (ret || memcmp(mic, data + data_len, IEEE80211_CCMP_MIC_LEN)) goto mic_fail; return 0; mic_fail: (ATH12K_SKB_RXCB(msdu))->is_first_msdu = true; (ATH12K_SKB_RXCB(msdu))->is_last_msdu = true; rxs->flag |= RX_FLAG_MMIC_ERROR | RX_FLAG_MMIC_STRIPPED | RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED; skb_pull(msdu, hal_rx_desc_sz); ath12k_dp_rx_h_ppdu(ar, rx_desc, rxs); ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, HAL_ENCRYPT_TYPE_TKIP_MIC, rxs, true); ieee80211_rx(ar->hw, msdu); return -EINVAL; } static void ath12k_dp_rx_h_undecap_frag(struct ath12k *ar, struct sk_buff *msdu, enum hal_encrypt_type enctype, u32 flags) { struct ieee80211_hdr *hdr; size_t hdr_len; size_t crypto_len; u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; if (!flags) return; hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); if (flags & RX_FLAG_MIC_STRIPPED) skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_mic_len(ar, enctype)); if (flags & RX_FLAG_ICV_STRIPPED) skb_trim(msdu, msdu->len - ath12k_dp_rx_crypto_icv_len(ar, enctype)); if (flags & RX_FLAG_IV_STRIPPED) { hdr_len = ieee80211_hdrlen(hdr->frame_control); crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); memmove(msdu->data + hal_rx_desc_sz + crypto_len, msdu->data + hal_rx_desc_sz, hdr_len); skb_pull(msdu, crypto_len); } } static int ath12k_dp_rx_h_defrag(struct ath12k *ar, struct ath12k_peer *peer, struct ath12k_dp_rx_tid *rx_tid, struct sk_buff **defrag_skb) { struct ath12k_base *ab = ar->ab; struct hal_rx_desc *rx_desc; struct sk_buff *skb, *first_frag, *last_frag; struct ieee80211_hdr *hdr; enum hal_encrypt_type enctype; bool is_decrypted = false; int msdu_len = 0; int extra_space; u32 flags, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; first_frag = skb_peek(&rx_tid->rx_frags); last_frag = skb_peek_tail(&rx_tid->rx_frags); skb_queue_walk(&rx_tid->rx_frags, skb) { flags = 0; rx_desc = (struct hal_rx_desc *)skb->data; hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); enctype = ath12k_dp_rx_h_enctype(ab, rx_desc); if (enctype != HAL_ENCRYPT_TYPE_OPEN) is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc); if (is_decrypted) { if (skb != first_frag) flags |= RX_FLAG_IV_STRIPPED; if (skb != last_frag) flags |= RX_FLAG_ICV_STRIPPED | RX_FLAG_MIC_STRIPPED; } /* RX fragments are always raw packets */ if (skb != last_frag) skb_trim(skb, skb->len - FCS_LEN); ath12k_dp_rx_h_undecap_frag(ar, skb, enctype, flags); if (skb != first_frag) skb_pull(skb, hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control)); msdu_len += skb->len; } extra_space = msdu_len - (DP_RX_BUFFER_SIZE + skb_tailroom(first_frag)); if (extra_space > 0 && (pskb_expand_head(first_frag, 0, extra_space, GFP_ATOMIC) < 0)) return -ENOMEM; __skb_unlink(first_frag, &rx_tid->rx_frags); while ((skb = __skb_dequeue(&rx_tid->rx_frags))) { skb_put_data(first_frag, skb->data, skb->len); dev_kfree_skb_any(skb); } hdr = (struct ieee80211_hdr *)(first_frag->data + hal_rx_desc_sz); hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); ATH12K_SKB_RXCB(first_frag)->is_frag = 1; if (ath12k_dp_rx_h_verify_tkip_mic(ar, peer, first_frag)) first_frag = NULL; *defrag_skb = first_frag; return 0; } static int ath12k_dp_rx_h_defrag_reo_reinject(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid, struct sk_buff *defrag_skb) { struct ath12k_base *ab = ar->ab; struct ath12k_dp *dp = &ab->dp; struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)defrag_skb->data; struct hal_reo_entrance_ring *reo_ent_ring; struct hal_reo_dest_ring *reo_dest_ring; struct dp_link_desc_bank *link_desc_banks; struct hal_rx_msdu_link *msdu_link; struct hal_rx_msdu_details *msdu0; struct hal_srng *srng; dma_addr_t link_paddr, buf_paddr; u32 desc_bank, msdu_info, msdu_ext_info, mpdu_info; u32 cookie, hal_rx_desc_sz, dest_ring_info0; int ret; struct ath12k_rx_desc_info *desc_info; u8 dst_ind; hal_rx_desc_sz = ab->hw_params->hal_desc_sz; link_desc_banks = dp->link_desc_banks; reo_dest_ring = rx_tid->dst_ring_desc; ath12k_hal_rx_reo_ent_paddr_get(ab, &reo_dest_ring->buf_addr_info, &link_paddr, &cookie); desc_bank = u32_get_bits(cookie, DP_LINK_DESC_BANK_MASK); msdu_link = (struct hal_rx_msdu_link *)(link_desc_banks[desc_bank].vaddr + (link_paddr - link_desc_banks[desc_bank].paddr)); msdu0 = &msdu_link->msdu_link[0]; msdu_ext_info = le32_to_cpu(msdu0->rx_msdu_ext_info.info0); dst_ind = u32_get_bits(msdu_ext_info, RX_MSDU_EXT_DESC_INFO0_REO_DEST_IND); memset(msdu0, 0, sizeof(*msdu0)); msdu_info = u32_encode_bits(1, RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU) | u32_encode_bits(1, RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU) | u32_encode_bits(0, RX_MSDU_DESC_INFO0_MSDU_CONTINUATION) | u32_encode_bits(defrag_skb->len - hal_rx_desc_sz, RX_MSDU_DESC_INFO0_MSDU_LENGTH) | u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_SA) | u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_DA); msdu0->rx_msdu_info.info0 = cpu_to_le32(msdu_info); msdu0->rx_msdu_ext_info.info0 = cpu_to_le32(msdu_ext_info); /* change msdu len in hal rx desc */ ath12k_dp_rxdesc_set_msdu_len(ab, rx_desc, defrag_skb->len - hal_rx_desc_sz); buf_paddr = dma_map_single(ab->dev, defrag_skb->data, defrag_skb->len + skb_tailroom(defrag_skb), DMA_FROM_DEVICE); if (dma_mapping_error(ab->dev, buf_paddr)) return -ENOMEM; spin_lock_bh(&dp->rx_desc_lock); desc_info = list_first_entry_or_null(&dp->rx_desc_free_list, struct ath12k_rx_desc_info, list); if (!desc_info) { spin_unlock_bh(&dp->rx_desc_lock); ath12k_warn(ab, "failed to find rx desc for reinject\n"); ret = -ENOMEM; goto err_unmap_dma; } desc_info->skb = defrag_skb; list_del(&desc_info->list); list_add_tail(&desc_info->list, &dp->rx_desc_used_list); spin_unlock_bh(&dp->rx_desc_lock); ATH12K_SKB_RXCB(defrag_skb)->paddr = buf_paddr; ath12k_hal_rx_buf_addr_info_set(&msdu0->buf_addr_info, buf_paddr, desc_info->cookie, HAL_RX_BUF_RBM_SW3_BM); /* Fill mpdu details into reo entrance ring */ srng = &ab->hal.srng_list[dp->reo_reinject_ring.ring_id]; spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); reo_ent_ring = ath12k_hal_srng_src_get_next_entry(ab, srng); if (!reo_ent_ring) { ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); ret = -ENOSPC; goto err_free_desc; } memset(reo_ent_ring, 0, sizeof(*reo_ent_ring)); ath12k_hal_rx_buf_addr_info_set(&reo_ent_ring->buf_addr_info, link_paddr, cookie, HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST); mpdu_info = u32_encode_bits(1, RX_MPDU_DESC_INFO0_MSDU_COUNT) | u32_encode_bits(0, RX_MPDU_DESC_INFO0_FRAG_FLAG) | u32_encode_bits(1, RX_MPDU_DESC_INFO0_RAW_MPDU) | u32_encode_bits(1, RX_MPDU_DESC_INFO0_VALID_PN) | u32_encode_bits(rx_tid->tid, RX_MPDU_DESC_INFO0_TID); reo_ent_ring->rx_mpdu_info.info0 = cpu_to_le32(mpdu_info); reo_ent_ring->rx_mpdu_info.peer_meta_data = reo_dest_ring->rx_mpdu_info.peer_meta_data; /* Firmware expects physical address to be filled in queue_addr_lo in * the MLO scenario and in case of non MLO peer meta data needs to be * filled. * TODO: Need to handle for MLO scenario. */ reo_ent_ring->queue_addr_lo = reo_dest_ring->rx_mpdu_info.peer_meta_data; reo_ent_ring->info0 = le32_encode_bits(dst_ind, HAL_REO_ENTR_RING_INFO0_DEST_IND); reo_ent_ring->info1 = le32_encode_bits(rx_tid->cur_sn, HAL_REO_ENTR_RING_INFO1_MPDU_SEQ_NUM); dest_ring_info0 = le32_get_bits(reo_dest_ring->info0, HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); reo_ent_ring->info2 = cpu_to_le32(u32_get_bits(dest_ring_info0, HAL_REO_ENTR_RING_INFO2_SRC_LINK_ID)); ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); return 0; err_free_desc: spin_lock_bh(&dp->rx_desc_lock); list_del(&desc_info->list); list_add_tail(&desc_info->list, &dp->rx_desc_free_list); desc_info->skb = NULL; spin_unlock_bh(&dp->rx_desc_lock); err_unmap_dma: dma_unmap_single(ab->dev, buf_paddr, defrag_skb->len + skb_tailroom(defrag_skb), DMA_FROM_DEVICE); return ret; } static int ath12k_dp_rx_h_cmp_frags(struct ath12k_base *ab, struct sk_buff *a, struct sk_buff *b) { int frag1, frag2; frag1 = ath12k_dp_rx_h_frag_no(ab, a); frag2 = ath12k_dp_rx_h_frag_no(ab, b); return frag1 - frag2; } static void ath12k_dp_rx_h_sort_frags(struct ath12k_base *ab, struct sk_buff_head *frag_list, struct sk_buff *cur_frag) { struct sk_buff *skb; int cmp; skb_queue_walk(frag_list, skb) { cmp = ath12k_dp_rx_h_cmp_frags(ab, skb, cur_frag); if (cmp < 0) continue; __skb_queue_before(frag_list, skb, cur_frag); return; } __skb_queue_tail(frag_list, cur_frag); } static u64 ath12k_dp_rx_h_get_pn(struct ath12k *ar, struct sk_buff *skb) { struct ieee80211_hdr *hdr; u64 pn = 0; u8 *ehdr; u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); ehdr = skb->data + hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control); pn = ehdr[0]; pn |= (u64)ehdr[1] << 8; pn |= (u64)ehdr[4] << 16; pn |= (u64)ehdr[5] << 24; pn |= (u64)ehdr[6] << 32; pn |= (u64)ehdr[7] << 40; return pn; } static bool ath12k_dp_rx_h_defrag_validate_incr_pn(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid) { struct ath12k_base *ab = ar->ab; enum hal_encrypt_type encrypt_type; struct sk_buff *first_frag, *skb; struct hal_rx_desc *desc; u64 last_pn; u64 cur_pn; first_frag = skb_peek(&rx_tid->rx_frags); desc = (struct hal_rx_desc *)first_frag->data; encrypt_type = ath12k_dp_rx_h_enctype(ab, desc); if (encrypt_type != HAL_ENCRYPT_TYPE_CCMP_128 && encrypt_type != HAL_ENCRYPT_TYPE_CCMP_256 && encrypt_type != HAL_ENCRYPT_TYPE_GCMP_128 && encrypt_type != HAL_ENCRYPT_TYPE_AES_GCMP_256) return true; last_pn = ath12k_dp_rx_h_get_pn(ar, first_frag); skb_queue_walk(&rx_tid->rx_frags, skb) { if (skb == first_frag) continue; cur_pn = ath12k_dp_rx_h_get_pn(ar, skb); if (cur_pn != last_pn + 1) return false; last_pn = cur_pn; } return true; } static int ath12k_dp_rx_frag_h_mpdu(struct ath12k *ar, struct sk_buff *msdu, struct hal_reo_dest_ring *ring_desc) { struct ath12k_base *ab = ar->ab; struct hal_rx_desc *rx_desc; struct ath12k_peer *peer; struct ath12k_dp_rx_tid *rx_tid; struct sk_buff *defrag_skb = NULL; u32 peer_id; u16 seqno, frag_no; u8 tid; int ret = 0; bool more_frags; rx_desc = (struct hal_rx_desc *)msdu->data; peer_id = ath12k_dp_rx_h_peer_id(ab, rx_desc); tid = ath12k_dp_rx_h_tid(ab, rx_desc); seqno = ath12k_dp_rx_h_seq_no(ab, rx_desc); frag_no = ath12k_dp_rx_h_frag_no(ab, msdu); more_frags = ath12k_dp_rx_h_more_frags(ab, msdu); if (!ath12k_dp_rx_h_seq_ctrl_valid(ab, rx_desc) || !ath12k_dp_rx_h_fc_valid(ab, rx_desc) || tid > IEEE80211_NUM_TIDS) return -EINVAL; /* received unfragmented packet in reo * exception ring, this shouldn't happen * as these packets typically come from * reo2sw srngs. */ if (WARN_ON_ONCE(!frag_no && !more_frags)) return -EINVAL; spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_id(ab, peer_id); if (!peer) { ath12k_warn(ab, "failed to find the peer to de-fragment received fragment peer_id %d\n", peer_id); ret = -ENOENT; goto out_unlock; } if (!peer->dp_setup_done) { ath12k_warn(ab, "The peer %pM [%d] has uninitialized datapath\n", peer->addr, peer_id); ret = -ENOENT; goto out_unlock; } rx_tid = &peer->rx_tid[tid]; if ((!skb_queue_empty(&rx_tid->rx_frags) && seqno != rx_tid->cur_sn) || skb_queue_empty(&rx_tid->rx_frags)) { /* Flush stored fragments and start a new sequence */ ath12k_dp_rx_frags_cleanup(rx_tid, true); rx_tid->cur_sn = seqno; } if (rx_tid->rx_frag_bitmap & BIT(frag_no)) { /* Fragment already present */ ret = -EINVAL; goto out_unlock; } if ((!rx_tid->rx_frag_bitmap || frag_no > __fls(rx_tid->rx_frag_bitmap))) __skb_queue_tail(&rx_tid->rx_frags, msdu); else ath12k_dp_rx_h_sort_frags(ab, &rx_tid->rx_frags, msdu); rx_tid->rx_frag_bitmap |= BIT(frag_no); if (!more_frags) rx_tid->last_frag_no = frag_no; if (frag_no == 0) { rx_tid->dst_ring_desc = kmemdup(ring_desc, sizeof(*rx_tid->dst_ring_desc), GFP_ATOMIC); if (!rx_tid->dst_ring_desc) { ret = -ENOMEM; goto out_unlock; } } else { ath12k_dp_rx_link_desc_return(ab, ring_desc, HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); } if (!rx_tid->last_frag_no || rx_tid->rx_frag_bitmap != GENMASK(rx_tid->last_frag_no, 0)) { mod_timer(&rx_tid->frag_timer, jiffies + ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS); goto out_unlock; } spin_unlock_bh(&ab->base_lock); del_timer_sync(&rx_tid->frag_timer); spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find_by_id(ab, peer_id); if (!peer) goto err_frags_cleanup; if (!ath12k_dp_rx_h_defrag_validate_incr_pn(ar, rx_tid)) goto err_frags_cleanup; if (ath12k_dp_rx_h_defrag(ar, peer, rx_tid, &defrag_skb)) goto err_frags_cleanup; if (!defrag_skb) goto err_frags_cleanup; if (ath12k_dp_rx_h_defrag_reo_reinject(ar, rx_tid, defrag_skb)) goto err_frags_cleanup; ath12k_dp_rx_frags_cleanup(rx_tid, false); goto out_unlock; err_frags_cleanup: dev_kfree_skb_any(defrag_skb); ath12k_dp_rx_frags_cleanup(rx_tid, true); out_unlock: spin_unlock_bh(&ab->base_lock); return ret; } static int ath12k_dp_process_rx_err_buf(struct ath12k *ar, struct hal_reo_dest_ring *desc, bool drop, u32 cookie) { struct ath12k_base *ab = ar->ab; struct sk_buff *msdu; struct ath12k_skb_rxcb *rxcb; struct hal_rx_desc *rx_desc; u16 msdu_len; u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; struct ath12k_rx_desc_info *desc_info; u64 desc_va; desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | le32_to_cpu(desc->buf_va_lo)); desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); /* retry manual desc retrieval */ if (!desc_info) { desc_info = ath12k_dp_get_rx_desc(ab, cookie); if (!desc_info) { ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); return -EINVAL; } } if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) ath12k_warn(ab, " RX Exception, Check HW CC implementation"); msdu = desc_info->skb; desc_info->skb = NULL; spin_lock_bh(&ab->dp.rx_desc_lock); list_move_tail(&desc_info->list, &ab->dp.rx_desc_free_list); spin_unlock_bh(&ab->dp.rx_desc_lock); rxcb = ATH12K_SKB_RXCB(msdu); dma_unmap_single(ar->ab->dev, rxcb->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); if (drop) { dev_kfree_skb_any(msdu); return 0; } rcu_read_lock(); if (!rcu_dereference(ar->ab->pdevs_active[ar->pdev_idx])) { dev_kfree_skb_any(msdu); goto exit; } if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { dev_kfree_skb_any(msdu); goto exit; } rx_desc = (struct hal_rx_desc *)msdu->data; msdu_len = ath12k_dp_rx_h_msdu_len(ar->ab, rx_desc); if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { ath12k_warn(ar->ab, "invalid msdu leng %u", msdu_len); ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "", rx_desc, sizeof(*rx_desc)); dev_kfree_skb_any(msdu); goto exit; } skb_put(msdu, hal_rx_desc_sz + msdu_len); if (ath12k_dp_rx_frag_h_mpdu(ar, msdu, desc)) { dev_kfree_skb_any(msdu); ath12k_dp_rx_link_desc_return(ar->ab, desc, HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); } exit: rcu_read_unlock(); return 0; } int ath12k_dp_rx_process_err(struct ath12k_base *ab, struct napi_struct *napi, int budget) { u32 msdu_cookies[HAL_NUM_RX_MSDUS_PER_LINK_DESC]; struct dp_link_desc_bank *link_desc_banks; enum hal_rx_buf_return_buf_manager rbm; struct hal_rx_msdu_link *link_desc_va; int tot_n_bufs_reaped, quota, ret, i; struct hal_reo_dest_ring *reo_desc; struct dp_rxdma_ring *rx_ring; struct dp_srng *reo_except; u32 desc_bank, num_msdus; struct hal_srng *srng; struct ath12k_dp *dp; int mac_id; struct ath12k *ar; dma_addr_t paddr; bool is_frag; bool drop = false; int pdev_id; tot_n_bufs_reaped = 0; quota = budget; dp = &ab->dp; reo_except = &dp->reo_except_ring; link_desc_banks = dp->link_desc_banks; srng = &ab->hal.srng_list[reo_except->ring_id]; spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); while (budget && (reo_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { ab->soc_stats.err_ring_pkts++; ret = ath12k_hal_desc_reo_parse_err(ab, reo_desc, &paddr, &desc_bank); if (ret) { ath12k_warn(ab, "failed to parse error reo desc %d\n", ret); continue; } link_desc_va = link_desc_banks[desc_bank].vaddr + (paddr - link_desc_banks[desc_bank].paddr); ath12k_hal_rx_msdu_link_info_get(link_desc_va, &num_msdus, msdu_cookies, &rbm); if (rbm != HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST && rbm != HAL_RX_BUF_RBM_SW3_BM && rbm != ab->hw_params->hal_params->rx_buf_rbm) { ab->soc_stats.invalid_rbm++; ath12k_warn(ab, "invalid return buffer manager %d\n", rbm); ath12k_dp_rx_link_desc_return(ab, reo_desc, HAL_WBM_REL_BM_ACT_REL_MSDU); continue; } is_frag = !!(le32_to_cpu(reo_desc->rx_mpdu_info.info0) & RX_MPDU_DESC_INFO0_FRAG_FLAG); /* Process only rx fragments with one msdu per link desc below, and drop * msdu's indicated due to error reasons. */ if (!is_frag || num_msdus > 1) { drop = true; /* Return the link desc back to wbm idle list */ ath12k_dp_rx_link_desc_return(ab, reo_desc, HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); } for (i = 0; i < num_msdus; i++) { mac_id = le32_get_bits(reo_desc->info0, HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); ar = ab->pdevs[pdev_id].ar; if (!ath12k_dp_process_rx_err_buf(ar, reo_desc, drop, msdu_cookies[i])) tot_n_bufs_reaped++; } if (tot_n_bufs_reaped >= quota) { tot_n_bufs_reaped = quota; goto exit; } budget = quota - tot_n_bufs_reaped; } exit: ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); rx_ring = &dp->rx_refill_buf_ring; ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, tot_n_bufs_reaped, ab->hw_params->hal_params->rx_buf_rbm, true); return tot_n_bufs_reaped; } static void ath12k_dp_rx_null_q_desc_sg_drop(struct ath12k *ar, int msdu_len, struct sk_buff_head *msdu_list) { struct sk_buff *skb, *tmp; struct ath12k_skb_rxcb *rxcb; int n_buffs; n_buffs = DIV_ROUND_UP(msdu_len, (DP_RX_BUFFER_SIZE - ar->ab->hw_params->hal_desc_sz)); skb_queue_walk_safe(msdu_list, skb, tmp) { rxcb = ATH12K_SKB_RXCB(skb); if (rxcb->err_rel_src == HAL_WBM_REL_SRC_MODULE_REO && rxcb->err_code == HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO) { if (!n_buffs) break; __skb_unlink(skb, msdu_list); dev_kfree_skb_any(skb); n_buffs--; } } } static int ath12k_dp_rx_h_null_q_desc(struct ath12k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, struct sk_buff_head *msdu_list) { struct ath12k_base *ab = ar->ab; u16 msdu_len, peer_id; struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; u8 l3pad_bytes; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); peer_id = ath12k_dp_rx_h_peer_id(ab, desc); spin_lock(&ab->base_lock); if (!ath12k_peer_find_by_id(ab, peer_id)) { spin_unlock(&ab->base_lock); ath12k_dbg(ab, ATH12K_DBG_DATA, "invalid peer id received in wbm err pkt%d\n", peer_id); return -EINVAL; } spin_unlock(&ab->base_lock); if (!rxcb->is_frag && ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE)) { /* First buffer will be freed by the caller, so deduct it's length */ msdu_len = msdu_len - (DP_RX_BUFFER_SIZE - hal_rx_desc_sz); ath12k_dp_rx_null_q_desc_sg_drop(ar, msdu_len, msdu_list); return -EINVAL; } /* Even after cleaning up the sg buffers in the msdu list with above check * any msdu received with continuation flag needs to be dropped as invalid. * This protects against some random err frame with continuation flag. */ if (rxcb->is_continuation) return -EINVAL; if (!ath12k_dp_rx_h_msdu_done(ab, desc)) { ath12k_warn(ar->ab, "msdu_done bit not set in null_q_des processing\n"); __skb_queue_purge(msdu_list); return -EIO; } /* Handle NULL queue descriptor violations arising out a missing * REO queue for a given peer or a given TID. This typically * may happen if a packet is received on a QOS enabled TID before the * ADDBA negotiation for that TID, when the TID queue is setup. Or * it may also happen for MC/BC frames if they are not routed to the * non-QOS TID queue, in the absence of any other default TID queue. * This error can show up both in a REO destination or WBM release ring. */ if (rxcb->is_frag) { skb_pull(msdu, hal_rx_desc_sz); } else { l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); if ((hal_rx_desc_sz + l3pad_bytes + msdu_len) > DP_RX_BUFFER_SIZE) return -EINVAL; skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); } ath12k_dp_rx_h_ppdu(ar, desc, status); ath12k_dp_rx_h_mpdu(ar, msdu, desc, status); rxcb->tid = ath12k_dp_rx_h_tid(ab, desc); /* Please note that caller will having the access to msdu and completing * rx with mac80211. Need not worry about cleaning up amsdu_list. */ return 0; } static bool ath12k_dp_rx_h_reo_err(struct ath12k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status, struct sk_buff_head *msdu_list) { struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); bool drop = false; ar->ab->soc_stats.reo_error[rxcb->err_code]++; switch (rxcb->err_code) { case HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO: if (ath12k_dp_rx_h_null_q_desc(ar, msdu, status, msdu_list)) drop = true; break; case HAL_REO_DEST_RING_ERROR_CODE_PN_CHECK_FAILED: /* TODO: Do not drop PN failed packets in the driver; * instead, it is good to drop such packets in mac80211 * after incrementing the replay counters. */ fallthrough; default: /* TODO: Review other errors and process them to mac80211 * as appropriate. */ drop = true; break; } return drop; } static void ath12k_dp_rx_h_tkip_mic_err(struct ath12k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status) { struct ath12k_base *ab = ar->ab; u16 msdu_len; struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; u8 l3pad_bytes; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, desc); rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, desc); l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); ath12k_dp_rx_h_ppdu(ar, desc, status); status->flag |= (RX_FLAG_MMIC_STRIPPED | RX_FLAG_MMIC_ERROR | RX_FLAG_DECRYPTED); ath12k_dp_rx_h_undecap(ar, msdu, desc, HAL_ENCRYPT_TYPE_TKIP_MIC, status, false); } static bool ath12k_dp_rx_h_rxdma_err(struct ath12k *ar, struct sk_buff *msdu, struct ieee80211_rx_status *status) { struct ath12k_base *ab = ar->ab; struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; bool drop = false; u32 err_bitmap; ar->ab->soc_stats.rxdma_error[rxcb->err_code]++; switch (rxcb->err_code) { case HAL_REO_ENTR_RING_RXDMA_ECODE_DECRYPT_ERR: case HAL_REO_ENTR_RING_RXDMA_ECODE_TKIP_MIC_ERR: err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) { ath12k_dp_rx_h_tkip_mic_err(ar, msdu, status); break; } fallthrough; default: /* TODO: Review other rxdma error code to check if anything is * worth reporting to mac80211 */ drop = true; break; } return drop; } static void ath12k_dp_rx_wbm_err(struct ath12k *ar, struct napi_struct *napi, struct sk_buff *msdu, struct sk_buff_head *msdu_list) { struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); struct ieee80211_rx_status rxs = {0}; bool drop = true; switch (rxcb->err_rel_src) { case HAL_WBM_REL_SRC_MODULE_REO: drop = ath12k_dp_rx_h_reo_err(ar, msdu, &rxs, msdu_list); break; case HAL_WBM_REL_SRC_MODULE_RXDMA: drop = ath12k_dp_rx_h_rxdma_err(ar, msdu, &rxs); break; default: /* msdu will get freed */ break; } if (drop) { dev_kfree_skb_any(msdu); return; } ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rxs); } int ath12k_dp_rx_process_wbm_err(struct ath12k_base *ab, struct napi_struct *napi, int budget) { struct ath12k *ar; struct ath12k_dp *dp = &ab->dp; struct dp_rxdma_ring *rx_ring; struct hal_rx_wbm_rel_info err_info; struct hal_srng *srng; struct sk_buff *msdu; struct sk_buff_head msdu_list[MAX_RADIOS]; struct ath12k_skb_rxcb *rxcb; void *rx_desc; int mac_id; int num_buffs_reaped = 0; struct ath12k_rx_desc_info *desc_info; int ret, i; for (i = 0; i < ab->num_radios; i++) __skb_queue_head_init(&msdu_list[i]); srng = &ab->hal.srng_list[dp->rx_rel_ring.ring_id]; rx_ring = &dp->rx_refill_buf_ring; spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); while (budget) { rx_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng); if (!rx_desc) break; ret = ath12k_hal_wbm_desc_parse_err(ab, rx_desc, &err_info); if (ret) { ath12k_warn(ab, "failed to parse rx error in wbm_rel ring desc %d\n", ret); continue; } desc_info = (struct ath12k_rx_desc_info *)err_info.rx_desc; /* retry manual desc retrieval if hw cc is not done */ if (!desc_info) { desc_info = ath12k_dp_get_rx_desc(ab, err_info.cookie); if (!desc_info) { ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); continue; } } /* FIXME: Extract mac id correctly. Since descs are not tied * to mac, we can extract from vdev id in ring desc. */ mac_id = 0; if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) ath12k_warn(ab, "WBM RX err, Check HW CC implementation"); msdu = desc_info->skb; desc_info->skb = NULL; spin_lock_bh(&dp->rx_desc_lock); list_move_tail(&desc_info->list, &dp->rx_desc_free_list); spin_unlock_bh(&dp->rx_desc_lock); rxcb = ATH12K_SKB_RXCB(msdu); dma_unmap_single(ab->dev, rxcb->paddr, msdu->len + skb_tailroom(msdu), DMA_FROM_DEVICE); num_buffs_reaped++; if (!err_info.continuation) budget--; if (err_info.push_reason != HAL_REO_DEST_RING_PUSH_REASON_ERR_DETECTED) { dev_kfree_skb_any(msdu); continue; } rxcb->err_rel_src = err_info.err_rel_src; rxcb->err_code = err_info.err_code; rxcb->rx_desc = (struct hal_rx_desc *)msdu->data; __skb_queue_tail(&msdu_list[mac_id], msdu); rxcb->is_first_msdu = err_info.first_msdu; rxcb->is_last_msdu = err_info.last_msdu; rxcb->is_continuation = err_info.continuation; } ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); if (!num_buffs_reaped) goto done; ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, ab->hw_params->hal_params->rx_buf_rbm, true); rcu_read_lock(); for (i = 0; i < ab->num_radios; i++) { if (!rcu_dereference(ab->pdevs_active[i])) { __skb_queue_purge(&msdu_list[i]); continue; } ar = ab->pdevs[i].ar; if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { __skb_queue_purge(&msdu_list[i]); continue; } while ((msdu = __skb_dequeue(&msdu_list[i])) != NULL) ath12k_dp_rx_wbm_err(ar, napi, msdu, &msdu_list[i]); } rcu_read_unlock(); done: return num_buffs_reaped; } void ath12k_dp_rx_process_reo_status(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct hal_tlv_64_hdr *hdr; struct hal_srng *srng; struct ath12k_dp_rx_reo_cmd *cmd, *tmp; bool found = false; u16 tag; struct hal_reo_status reo_status; srng = &ab->hal.srng_list[dp->reo_status_ring.ring_id]; memset(&reo_status, 0, sizeof(reo_status)); spin_lock_bh(&srng->lock); ath12k_hal_srng_access_begin(ab, srng); while ((hdr = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { tag = u64_get_bits(hdr->tl, HAL_SRNG_TLV_HDR_TAG); switch (tag) { case HAL_REO_GET_QUEUE_STATS_STATUS: ath12k_hal_reo_status_queue_stats(ab, hdr, &reo_status); break; case HAL_REO_FLUSH_QUEUE_STATUS: ath12k_hal_reo_flush_queue_status(ab, hdr, &reo_status); break; case HAL_REO_FLUSH_CACHE_STATUS: ath12k_hal_reo_flush_cache_status(ab, hdr, &reo_status); break; case HAL_REO_UNBLOCK_CACHE_STATUS: ath12k_hal_reo_unblk_cache_status(ab, hdr, &reo_status); break; case HAL_REO_FLUSH_TIMEOUT_LIST_STATUS: ath12k_hal_reo_flush_timeout_list_status(ab, hdr, &reo_status); break; case HAL_REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS: ath12k_hal_reo_desc_thresh_reached_status(ab, hdr, &reo_status); break; case HAL_REO_UPDATE_RX_REO_QUEUE_STATUS: ath12k_hal_reo_update_rx_reo_queue_status(ab, hdr, &reo_status); break; default: ath12k_warn(ab, "Unknown reo status type %d\n", tag); continue; } spin_lock_bh(&dp->reo_cmd_lock); list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { if (reo_status.uniform_hdr.cmd_num == cmd->cmd_num) { found = true; list_del(&cmd->list); break; } } spin_unlock_bh(&dp->reo_cmd_lock); if (found) { cmd->handler(dp, (void *)&cmd->data, reo_status.uniform_hdr.cmd_status); kfree(cmd); } found = false; } ath12k_hal_srng_access_end(ab, srng); spin_unlock_bh(&srng->lock); } void ath12k_dp_rx_free(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; int i; ath12k_dp_srng_cleanup(ab, &dp->rx_refill_buf_ring.refill_buf_ring); for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { if (ab->hw_params->rx_mac_buf_ring) ath12k_dp_srng_cleanup(ab, &dp->rx_mac_buf_ring[i]); } for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) ath12k_dp_srng_cleanup(ab, &dp->rxdma_err_dst_ring[i]); ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring); ath12k_dp_srng_cleanup(ab, &dp->tx_mon_buf_ring.refill_buf_ring); ath12k_dp_rxdma_buf_free(ab); } void ath12k_dp_rx_pdev_free(struct ath12k_base *ab, int mac_id) { struct ath12k *ar = ab->pdevs[mac_id].ar; ath12k_dp_rx_pdev_srng_free(ar); } int ath12k_dp_rxdma_ring_sel_config_qcn9274(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct htt_rx_ring_tlv_filter tlv_filter = {0}; u32 ring_id; int ret; u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; tlv_filter.offset_valid = true; tlv_filter.rx_packet_offset = hal_rx_desc_sz; tlv_filter.rx_mpdu_start_offset = ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); tlv_filter.rx_msdu_end_offset = ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); /* TODO: Selectively subscribe to required qwords within msdu_end * and mpdu_start and setup the mask in below msg * and modify the rx_desc struct */ ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, 0, HAL_RXDMA_BUF, DP_RXDMA_REFILL_RING_SIZE, &tlv_filter); return ret; } int ath12k_dp_rxdma_ring_sel_config_wcn7850(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; struct htt_rx_ring_tlv_filter tlv_filter = {0}; u32 ring_id; int ret; u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; int i; ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; tlv_filter.offset_valid = true; tlv_filter.rx_packet_offset = hal_rx_desc_sz; tlv_filter.rx_header_offset = offsetof(struct hal_rx_desc_wcn7850, pkt_hdr_tlv); tlv_filter.rx_mpdu_start_offset = ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); tlv_filter.rx_msdu_end_offset = ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); /* TODO: Selectively subscribe to required qwords within msdu_end * and mpdu_start and setup the mask in below msg * and modify the rx_desc struct */ for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ring_id = dp->rx_mac_buf_ring[i].ring_id; ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, i, HAL_RXDMA_BUF, DP_RXDMA_REFILL_RING_SIZE, &tlv_filter); } return ret; } int ath12k_dp_rx_htt_setup(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; u32 ring_id; int i, ret; /* TODO: Need to verify the HTT setup for QCN9224 */ ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_BUF); if (ret) { ath12k_warn(ab, "failed to configure rx_refill_buf_ring %d\n", ret); return ret; } if (ab->hw_params->rx_mac_buf_ring) { for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ring_id = dp->rx_mac_buf_ring[i].ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, i, HAL_RXDMA_BUF); if (ret) { ath12k_warn(ab, "failed to configure rx_mac_buf_ring%d %d\n", i, ret); return ret; } } } for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { ring_id = dp->rxdma_err_dst_ring[i].ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, i, HAL_RXDMA_DST); if (ret) { ath12k_warn(ab, "failed to configure rxdma_err_dest_ring%d %d\n", i, ret); return ret; } } if (ab->hw_params->rxdma1_enable) { ring_id = dp->rxdma_mon_buf_ring.refill_buf_ring.ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_MONITOR_BUF); if (ret) { ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", ret); return ret; } ring_id = dp->tx_mon_buf_ring.refill_buf_ring.ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_TX_MONITOR_BUF); if (ret) { ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", ret); return ret; } } ret = ab->hw_params->hw_ops->rxdma_ring_sel_config(ab); if (ret) { ath12k_warn(ab, "failed to setup rxdma ring selection config\n"); return ret; } return 0; } int ath12k_dp_rx_alloc(struct ath12k_base *ab) { struct ath12k_dp *dp = &ab->dp; int i, ret; idr_init(&dp->rx_refill_buf_ring.bufs_idr); spin_lock_init(&dp->rx_refill_buf_ring.idr_lock); idr_init(&dp->rxdma_mon_buf_ring.bufs_idr); spin_lock_init(&dp->rxdma_mon_buf_ring.idr_lock); idr_init(&dp->tx_mon_buf_ring.bufs_idr); spin_lock_init(&dp->tx_mon_buf_ring.idr_lock); ret = ath12k_dp_srng_setup(ab, &dp->rx_refill_buf_ring.refill_buf_ring, HAL_RXDMA_BUF, 0, 0, DP_RXDMA_BUF_RING_SIZE); if (ret) { ath12k_warn(ab, "failed to setup rx_refill_buf_ring\n"); return ret; } if (ab->hw_params->rx_mac_buf_ring) { for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ret = ath12k_dp_srng_setup(ab, &dp->rx_mac_buf_ring[i], HAL_RXDMA_BUF, 1, i, 1024); if (ret) { ath12k_warn(ab, "failed to setup rx_mac_buf_ring %d\n", i); return ret; } } } for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { ret = ath12k_dp_srng_setup(ab, &dp->rxdma_err_dst_ring[i], HAL_RXDMA_DST, 0, i, DP_RXDMA_ERR_DST_RING_SIZE); if (ret) { ath12k_warn(ab, "failed to setup rxdma_err_dst_ring %d\n", i); return ret; } } if (ab->hw_params->rxdma1_enable) { ret = ath12k_dp_srng_setup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring, HAL_RXDMA_MONITOR_BUF, 0, 0, DP_RXDMA_MONITOR_BUF_RING_SIZE); if (ret) { ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n"); return ret; } ret = ath12k_dp_srng_setup(ab, &dp->tx_mon_buf_ring.refill_buf_ring, HAL_TX_MONITOR_BUF, 0, 0, DP_TX_MONITOR_BUF_RING_SIZE); if (ret) { ath12k_warn(ab, "failed to setup DP_TX_MONITOR_BUF_RING_SIZE\n"); return ret; } } ret = ath12k_dp_rxdma_buf_setup(ab); if (ret) { ath12k_warn(ab, "failed to setup rxdma ring\n"); return ret; } return 0; } int ath12k_dp_rx_pdev_alloc(struct ath12k_base *ab, int mac_id) { struct ath12k *ar = ab->pdevs[mac_id].ar; struct ath12k_pdev_dp *dp = &ar->dp; u32 ring_id; int i; int ret; if (!ab->hw_params->rxdma1_enable) goto out; ret = ath12k_dp_rx_pdev_srng_alloc(ar); if (ret) { ath12k_warn(ab, "failed to setup rx srngs\n"); return ret; } for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { ring_id = dp->rxdma_mon_dst_ring[i].ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, mac_id + i, HAL_RXDMA_MONITOR_DST); if (ret) { ath12k_warn(ab, "failed to configure rxdma_mon_dst_ring %d %d\n", i, ret); return ret; } ring_id = dp->tx_mon_dst_ring[i].ring_id; ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, mac_id + i, HAL_TX_MONITOR_DST); if (ret) { ath12k_warn(ab, "failed to configure tx_mon_dst_ring %d %d\n", i, ret); return ret; } } out: return 0; } static int ath12k_dp_rx_pdev_mon_status_attach(struct ath12k *ar) { struct ath12k_pdev_dp *dp = &ar->dp; struct ath12k_mon_data *pmon = (struct ath12k_mon_data *)&dp->mon_data; skb_queue_head_init(&pmon->rx_status_q); pmon->mon_ppdu_status = DP_PPDU_STATUS_START; memset(&pmon->rx_mon_stats, 0, sizeof(pmon->rx_mon_stats)); return 0; } int ath12k_dp_rx_pdev_mon_attach(struct ath12k *ar) { struct ath12k_pdev_dp *dp = &ar->dp; struct ath12k_mon_data *pmon = &dp->mon_data; int ret = 0; ret = ath12k_dp_rx_pdev_mon_status_attach(ar); if (ret) { ath12k_warn(ar->ab, "pdev_mon_status_attach() failed"); return ret; } /* if rxdma1_enable is false, no need to setup * rxdma_mon_desc_ring. */ if (!ar->ab->hw_params->rxdma1_enable) return 0; pmon->mon_last_linkdesc_paddr = 0; pmon->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1; spin_lock_init(&pmon->mon_lock); return 0; } int ath12k_dp_rx_pktlog_start(struct ath12k_base *ab) { /* start reap timer */ mod_timer(&ab->mon_reap_timer, jiffies + msecs_to_jiffies(ATH12K_MON_TIMER_INTERVAL)); return 0; } int ath12k_dp_rx_pktlog_stop(struct ath12k_base *ab, bool stop_timer) { int ret; if (stop_timer) del_timer_sync(&ab->mon_reap_timer); /* reap all the monitor related rings */ ret = ath12k_dp_purge_mon_ring(ab); if (ret) { ath12k_warn(ab, "failed to purge dp mon ring: %d\n", ret); return ret; } return 0; }