// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2018-2022 Linaro Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipa.h" #include "ipa_power.h" #include "ipa_data.h" #include "ipa_endpoint.h" #include "ipa_resource.h" #include "ipa_cmd.h" #include "ipa_reg.h" #include "ipa_mem.h" #include "ipa_table.h" #include "ipa_smp2p.h" #include "ipa_modem.h" #include "ipa_uc.h" #include "ipa_interrupt.h" #include "gsi_trans.h" #include "ipa_sysfs.h" /** * DOC: The IP Accelerator * * This driver supports the Qualcomm IP Accelerator (IPA), which is a * networking component found in many Qualcomm SoCs. The IPA is connected * to the application processor (AP), but is also connected (and partially * controlled by) other "execution environments" (EEs), such as a modem. * * The IPA is the conduit between the AP and the modem that carries network * traffic. This driver presents a network interface representing the * connection of the modem to external (e.g. LTE) networks. * * The IPA provides protocol checksum calculation, offloading this work * from the AP. The IPA offers additional functionality, including routing, * filtering, and NAT support, but that more advanced functionality is not * currently supported. Despite that, some resources--including routing * tables and filter tables--are defined in this driver because they must * be initialized even when the advanced hardware features are not used. * * There are two distinct layers that implement the IPA hardware, and this * is reflected in the organization of the driver. The generic software * interface (GSI) is an integral component of the IPA, providing a * well-defined communication layer between the AP subsystem and the IPA * core. The GSI implements a set of "channels" used for communication * between the AP and the IPA. * * The IPA layer uses GSI channels to implement its "endpoints". And while * a GSI channel carries data between the AP and the IPA, a pair of IPA * endpoints is used to carry traffic between two EEs. Specifically, the main * modem network interface is implemented by two pairs of endpoints: a TX * endpoint on the AP coupled with an RX endpoint on the modem; and another * RX endpoint on the AP receiving data from a TX endpoint on the modem. */ /* The name of the GSI firmware file relative to /lib/firmware */ #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt" #define IPA_PAS_ID 15 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */ #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */ #define TAG_TIMESTAMP_SHIFT 14 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */ /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */ #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */ /** * ipa_setup() - Set up IPA hardware * @ipa: IPA pointer * * Perform initialization that requires issuing immediate commands on * the command TX endpoint. If the modem is doing GSI firmware load * and initialization, this function will be called when an SMP2P * interrupt has been signaled by the modem. Otherwise it will be * called from ipa_probe() after GSI firmware has been successfully * loaded, authenticated, and started by Trust Zone. */ int ipa_setup(struct ipa *ipa) { struct ipa_endpoint *exception_endpoint; struct ipa_endpoint *command_endpoint; struct device *dev = &ipa->pdev->dev; int ret; ret = gsi_setup(&ipa->gsi); if (ret) return ret; ret = ipa_power_setup(ipa); if (ret) goto err_gsi_teardown; ipa_endpoint_setup(ipa); /* We need to use the AP command TX endpoint to perform other * initialization, so we enable first. */ command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; ret = ipa_endpoint_enable_one(command_endpoint); if (ret) goto err_endpoint_teardown; ret = ipa_mem_setup(ipa); /* No matching teardown required */ if (ret) goto err_command_disable; ret = ipa_table_setup(ipa); /* No matching teardown required */ if (ret) goto err_command_disable; /* Enable the exception handling endpoint, and tell the hardware * to use it by default. */ exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; ret = ipa_endpoint_enable_one(exception_endpoint); if (ret) goto err_command_disable; ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id); /* We're all set. Now prepare for communication with the modem */ ret = ipa_qmi_setup(ipa); if (ret) goto err_default_route_clear; ipa->setup_complete = true; dev_info(dev, "IPA driver setup completed successfully\n"); return 0; err_default_route_clear: ipa_endpoint_default_route_clear(ipa); ipa_endpoint_disable_one(exception_endpoint); err_command_disable: ipa_endpoint_disable_one(command_endpoint); err_endpoint_teardown: ipa_endpoint_teardown(ipa); ipa_power_teardown(ipa); err_gsi_teardown: gsi_teardown(&ipa->gsi); return ret; } /** * ipa_teardown() - Inverse of ipa_setup() * @ipa: IPA pointer */ static void ipa_teardown(struct ipa *ipa) { struct ipa_endpoint *exception_endpoint; struct ipa_endpoint *command_endpoint; /* We're going to tear everything down, as if setup never completed */ ipa->setup_complete = false; ipa_qmi_teardown(ipa); ipa_endpoint_default_route_clear(ipa); exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]; ipa_endpoint_disable_one(exception_endpoint); command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; ipa_endpoint_disable_one(command_endpoint); ipa_endpoint_teardown(ipa); ipa_power_teardown(ipa); gsi_teardown(&ipa->gsi); } static void ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data) { const struct ipa_reg *reg; u32 val; /* IPA v4.5+ has no backward compatibility register */ if (ipa->version >= IPA_VERSION_4_5) return; reg = ipa_reg(ipa, IPA_BCR); val = data->backward_compat; iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); } static void ipa_hardware_config_tx(struct ipa *ipa) { enum ipa_version version = ipa->version; const struct ipa_reg *reg; u32 offset; u32 val; if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5) return; /* Disable PA mask to allow HOLB drop */ reg = ipa_reg(ipa, IPA_TX_CFG); offset = ipa_reg_offset(reg); val = ioread32(ipa->reg_virt + offset); val &= ~ipa_reg_bit(reg, PA_MASK_EN); iowrite32(val, ipa->reg_virt + offset); } static void ipa_hardware_config_clkon(struct ipa *ipa) { enum ipa_version version = ipa->version; const struct ipa_reg *reg; u32 val; if (version >= IPA_VERSION_4_5) return; if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1) return; /* Implement some hardware workarounds */ reg = ipa_reg(ipa, CLKON_CFG); if (version == IPA_VERSION_3_1) { /* Disable MISC clock gating */ val = ipa_reg_bit(reg, CLKON_MISC); } else { /* IPA v4.0+ */ /* Enable open global clocks in the CLKON configuration */ val = ipa_reg_bit(reg, CLKON_GLOBAL); val |= ipa_reg_bit(reg, GLOBAL_2X_CLK); } iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); } /* Configure bus access behavior for IPA components */ static void ipa_hardware_config_comp(struct ipa *ipa) { const struct ipa_reg *reg; u32 offset; u32 val; /* Nothing to configure prior to IPA v4.0 */ if (ipa->version < IPA_VERSION_4_0) return; reg = ipa_reg(ipa, COMP_CFG); offset = ipa_reg_offset(reg); val = ioread32(ipa->reg_virt + offset); if (ipa->version == IPA_VERSION_4_0) { val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_CONS_EN); val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_PROD_EN); val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN); } else if (ipa->version < IPA_VERSION_4_5) { val |= ipa_reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS); } else { /* For IPA v4.5 FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */ } val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_RD_DIS); val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_WR_DIS); iowrite32(val, ipa->reg_virt + offset); } /* Configure DDR and (possibly) PCIe max read/write QSB values */ static void ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data) { const struct ipa_qsb_data *data0; const struct ipa_qsb_data *data1; const struct ipa_reg *reg; u32 val; /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */ data0 = &data->qsb_data[IPA_QSB_MASTER_DDR]; if (data->qsb_count > 1) data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE]; /* Max outstanding write accesses for QSB masters */ reg = ipa_reg(ipa, QSB_MAX_WRITES); val = ipa_reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes); if (data->qsb_count > 1) val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes); iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); /* Max outstanding read accesses for QSB masters */ reg = ipa_reg(ipa, QSB_MAX_READS); val = ipa_reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads); if (ipa->version >= IPA_VERSION_4_0) val |= ipa_reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS, data0->max_reads_beats); if (data->qsb_count > 1) { val = ipa_reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads); if (ipa->version >= IPA_VERSION_4_0) val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS, data1->max_reads_beats); } iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); } /* The internal inactivity timer clock is used for the aggregation timer */ #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */ /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY * field to represent the given number of microseconds. The value is one * less than the number of timer ticks in the requested period. 0 is not * a valid granularity value (so for example @usec must be at least 16 for * a TIMER_FREQUENCY of 32000). */ static __always_inline u32 ipa_aggr_granularity_val(u32 usec) { return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1; } /* IPA uses unified Qtime starting at IPA v4.5, implementing various * timestamps and timers independent of the IPA core clock rate. The * Qtimer is based on a 56-bit timestamp incremented at each tick of * a 19.2 MHz SoC crystal oscillator (XO clock). * * For IPA timestamps (tag, NAT, data path logging) a lower resolution * timestamp is achieved by shifting the Qtimer timestamp value right * some number of bits to produce the low-order bits of the coarser * granularity timestamp. * * For timers, a common timer clock is derived from the XO clock using * a divider (we use 192, to produce a 100kHz timer clock). From * this common clock, three "pulse generators" are used to produce * timer ticks at a configurable frequency. IPA timers (such as * those used for aggregation or head-of-line block handling) now * define their period based on one of these pulse generators. */ static void ipa_qtime_config(struct ipa *ipa) { const struct ipa_reg *reg; u32 offset; u32 val; /* Timer clock divider must be disabled when we change the rate */ reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg)); reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG); /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */ val = ipa_reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT); val |= ipa_reg_bit(reg, DPL_TIMESTAMP_SEL); /* Configure tag and NAT Qtime timestamp resolution as well */ val = ipa_reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT); val = ipa_reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT); iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); /* Set granularity of pulse generators used for other timers */ reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG); val = ipa_reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US); val |= ipa_reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS); val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS); iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); /* Actual divider is 1 more than value supplied here */ reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG); offset = ipa_reg_offset(reg); val = ipa_reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1); iowrite32(val, ipa->reg_virt + offset); /* Divider value is set; re-enable the common timer clock divider */ val |= ipa_reg_bit(reg, DIV_ENABLE); iowrite32(val, ipa->reg_virt + offset); } /* Before IPA v4.5 timing is controlled by a counter register */ static void ipa_hardware_config_counter(struct ipa *ipa) { u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY); const struct ipa_reg *reg; u32 val; reg = ipa_reg(ipa, COUNTER_CFG); /* If defined, EOT_COAL_GRANULARITY is 0 */ val = ipa_reg_encode(reg, AGGR_GRANULARITY, granularity); iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); } static void ipa_hardware_config_timing(struct ipa *ipa) { if (ipa->version < IPA_VERSION_4_5) ipa_hardware_config_counter(ipa); else ipa_qtime_config(ipa); } static void ipa_hardware_config_hashing(struct ipa *ipa) { const struct ipa_reg *reg; if (ipa->version != IPA_VERSION_4_2) return; /* IPA v4.2 does not support hashed tables, so disable them */ reg = ipa_reg(ipa, FILT_ROUT_HASH_EN); /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH, * IPV4_FILTER_HASH are all zero. */ iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg)); } static void ipa_idle_indication_cfg(struct ipa *ipa, u32 enter_idle_debounce_thresh, bool const_non_idle_enable) { const struct ipa_reg *reg; u32 val; if (ipa->version < IPA_VERSION_3_5_1) return; reg = ipa_reg(ipa, IDLE_INDICATION_CFG); val = ipa_reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH, enter_idle_debounce_thresh); if (const_non_idle_enable) val |= ipa_reg_bit(reg, CONST_NON_IDLE_ENABLE); iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg)); } /** * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA * @ipa: IPA pointer * * Configures when the IPA signals it is idle to the global clock * controller, which can respond by scaling down the clock to save * power. */ static void ipa_hardware_dcd_config(struct ipa *ipa) { /* Recommended values for IPA 3.5 and later according to IPA HPG */ ipa_idle_indication_cfg(ipa, 256, false); } static void ipa_hardware_dcd_deconfig(struct ipa *ipa) { /* Power-on reset values */ ipa_idle_indication_cfg(ipa, 0, true); } /** * ipa_hardware_config() - Primitive hardware initialization * @ipa: IPA pointer * @data: IPA configuration data */ static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data) { ipa_hardware_config_bcr(ipa, data); ipa_hardware_config_tx(ipa); ipa_hardware_config_clkon(ipa); ipa_hardware_config_comp(ipa); ipa_hardware_config_qsb(ipa, data); ipa_hardware_config_timing(ipa); ipa_hardware_config_hashing(ipa); ipa_hardware_dcd_config(ipa); } /** * ipa_hardware_deconfig() - Inverse of ipa_hardware_config() * @ipa: IPA pointer * * This restores the power-on reset values (even if they aren't different) */ static void ipa_hardware_deconfig(struct ipa *ipa) { /* Mostly we just leave things as we set them. */ ipa_hardware_dcd_deconfig(ipa); } /** * ipa_config() - Configure IPA hardware * @ipa: IPA pointer * @data: IPA configuration data * * Perform initialization requiring IPA power to be enabled. */ static int ipa_config(struct ipa *ipa, const struct ipa_data *data) { int ret; ipa_hardware_config(ipa, data); ret = ipa_mem_config(ipa); if (ret) goto err_hardware_deconfig; ipa->interrupt = ipa_interrupt_config(ipa); if (IS_ERR(ipa->interrupt)) { ret = PTR_ERR(ipa->interrupt); ipa->interrupt = NULL; goto err_mem_deconfig; } ipa_uc_config(ipa); ret = ipa_endpoint_config(ipa); if (ret) goto err_uc_deconfig; ipa_table_config(ipa); /* No deconfig required */ /* Assign resource limitation to each group; no deconfig required */ ret = ipa_resource_config(ipa, data->resource_data); if (ret) goto err_endpoint_deconfig; ret = ipa_modem_config(ipa); if (ret) goto err_endpoint_deconfig; return 0; err_endpoint_deconfig: ipa_endpoint_deconfig(ipa); err_uc_deconfig: ipa_uc_deconfig(ipa); ipa_interrupt_deconfig(ipa->interrupt); ipa->interrupt = NULL; err_mem_deconfig: ipa_mem_deconfig(ipa); err_hardware_deconfig: ipa_hardware_deconfig(ipa); return ret; } /** * ipa_deconfig() - Inverse of ipa_config() * @ipa: IPA pointer */ static void ipa_deconfig(struct ipa *ipa) { ipa_modem_deconfig(ipa); ipa_endpoint_deconfig(ipa); ipa_uc_deconfig(ipa); ipa_interrupt_deconfig(ipa->interrupt); ipa->interrupt = NULL; ipa_mem_deconfig(ipa); ipa_hardware_deconfig(ipa); } static int ipa_firmware_load(struct device *dev) { const struct firmware *fw; struct device_node *node; struct resource res; phys_addr_t phys; const char *path; ssize_t size; void *virt; int ret; node = of_parse_phandle(dev->of_node, "memory-region", 0); if (!node) { dev_err(dev, "DT error getting \"memory-region\" property\n"); return -EINVAL; } ret = of_address_to_resource(node, 0, &res); of_node_put(node); if (ret) { dev_err(dev, "error %d getting \"memory-region\" resource\n", ret); return ret; } /* Use name from DTB if specified; use default for *any* error */ ret = of_property_read_string(dev->of_node, "firmware-name", &path); if (ret) { dev_dbg(dev, "error %d getting \"firmware-name\" resource\n", ret); path = IPA_FW_PATH_DEFAULT; } ret = request_firmware(&fw, path, dev); if (ret) { dev_err(dev, "error %d requesting \"%s\"\n", ret, path); return ret; } phys = res.start; size = (size_t)resource_size(&res); virt = memremap(phys, size, MEMREMAP_WC); if (!virt) { dev_err(dev, "unable to remap firmware memory\n"); ret = -ENOMEM; goto out_release_firmware; } ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL); if (ret) dev_err(dev, "error %d loading \"%s\"\n", ret, path); else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID))) dev_err(dev, "error %d authenticating \"%s\"\n", ret, path); memunmap(virt); out_release_firmware: release_firmware(fw); return ret; } static const struct of_device_id ipa_match[] = { { .compatible = "qcom,msm8998-ipa", .data = &ipa_data_v3_1, }, { .compatible = "qcom,sdm845-ipa", .data = &ipa_data_v3_5_1, }, { .compatible = "qcom,sc7180-ipa", .data = &ipa_data_v4_2, }, { .compatible = "qcom,sdx55-ipa", .data = &ipa_data_v4_5, }, { .compatible = "qcom,sm8350-ipa", .data = &ipa_data_v4_9, }, { .compatible = "qcom,sc7280-ipa", .data = &ipa_data_v4_11, }, { }, }; MODULE_DEVICE_TABLE(of, ipa_match); /* Check things that can be validated at build time. This just * groups these things BUILD_BUG_ON() calls don't clutter the rest * of the code. * */ static void ipa_validate_build(void) { /* At one time we assumed a 64-bit build, allowing some do_div() * calls to be replaced by simple division or modulo operations. * We currently only perform divide and modulo operations on u32, * u16, or size_t objects, and of those only size_t has any chance * of being a 64-bit value. (It should be guaranteed 32 bits wide * on a 32-bit build, but there is no harm in verifying that.) */ BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4); /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */ BUILD_BUG_ON(GSI_EE_AP != 0); /* There's no point if we have no channels or event rings */ BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX); BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX); /* GSI hardware design limits */ BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32); BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31); /* The number of TREs in a transaction is limited by the channel's * TLV FIFO size. A transaction structure uses 8-bit fields * to represents the number of TREs it has allocated and used. */ BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX); /* This is used as a divisor */ BUILD_BUG_ON(!IPA_AGGR_GRANULARITY); /* Aggregation granularity value can't be 0, and must fit */ BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY)); } /** * ipa_probe() - IPA platform driver probe function * @pdev: Platform device pointer * * Return: 0 if successful, or a negative error code (possibly * EPROBE_DEFER) * * This is the main entry point for the IPA driver. Initialization proceeds * in several stages: * - The "init" stage involves activities that can be initialized without * access to the IPA hardware. * - The "config" stage requires IPA power to be active so IPA registers * can be accessed, but does not require the use of IPA immediate commands. * - The "setup" stage uses IPA immediate commands, and so requires the GSI * layer to be initialized. * * A Boolean Device Tree "modem-init" property determines whether GSI * initialization will be performed by the AP (Trust Zone) or the modem. * If the AP does GSI initialization, the setup phase is entered after * this has completed successfully. Otherwise the modem initializes * the GSI layer and signals it has finished by sending an SMP2P interrupt * to the AP; this triggers the start if IPA setup. */ static int ipa_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct ipa_data *data; struct ipa_power *power; bool modem_init; struct ipa *ipa; int ret; ipa_validate_build(); /* Get configuration data early; needed for power initialization */ data = of_device_get_match_data(dev); if (!data) { dev_err(dev, "matched hardware not supported\n"); return -ENODEV; } if (!ipa_version_supported(data->version)) { dev_err(dev, "unsupported IPA version %u\n", data->version); return -EINVAL; } if (!data->modem_route_count) { dev_err(dev, "modem_route_count cannot be zero\n"); return -EINVAL; } /* If we need Trust Zone, make sure it's available */ modem_init = of_property_read_bool(dev->of_node, "modem-init"); if (!modem_init) if (!qcom_scm_is_available()) return -EPROBE_DEFER; /* The clock and interconnects might not be ready when we're * probed, so might return -EPROBE_DEFER. */ power = ipa_power_init(dev, data->power_data); if (IS_ERR(power)) return PTR_ERR(power); /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */ ipa = kzalloc(sizeof(*ipa), GFP_KERNEL); if (!ipa) { ret = -ENOMEM; goto err_power_exit; } ipa->pdev = pdev; dev_set_drvdata(dev, ipa); ipa->power = power; ipa->version = data->version; ipa->modem_route_count = data->modem_route_count; init_completion(&ipa->completion); ret = ipa_reg_init(ipa); if (ret) goto err_kfree_ipa; ret = ipa_mem_init(ipa, data->mem_data); if (ret) goto err_reg_exit; ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count, data->endpoint_data); if (ret) goto err_mem_exit; /* Result is a non-zero mask of endpoints that support filtering */ ipa->filter_map = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data); if (!ipa->filter_map) { ret = -EINVAL; goto err_gsi_exit; } ret = ipa_table_init(ipa); if (ret) goto err_endpoint_exit; ret = ipa_smp2p_init(ipa, modem_init); if (ret) goto err_table_exit; /* Power needs to be active for config and setup */ ret = pm_runtime_get_sync(dev); if (WARN_ON(ret < 0)) goto err_power_put; ret = ipa_config(ipa, data); if (ret) goto err_power_put; dev_info(dev, "IPA driver initialized"); /* If the modem is doing early initialization, it will trigger a * call to ipa_setup() when it has finished. In that case we're * done here. */ if (modem_init) goto done; /* Otherwise we need to load the firmware and have Trust Zone validate * and install it. If that succeeds we can proceed with setup. */ ret = ipa_firmware_load(dev); if (ret) goto err_deconfig; ret = ipa_setup(ipa); if (ret) goto err_deconfig; done: pm_runtime_mark_last_busy(dev); (void)pm_runtime_put_autosuspend(dev); return 0; err_deconfig: ipa_deconfig(ipa); err_power_put: pm_runtime_put_noidle(dev); ipa_smp2p_exit(ipa); err_table_exit: ipa_table_exit(ipa); err_endpoint_exit: ipa_endpoint_exit(ipa); err_gsi_exit: gsi_exit(&ipa->gsi); err_mem_exit: ipa_mem_exit(ipa); err_reg_exit: ipa_reg_exit(ipa); err_kfree_ipa: kfree(ipa); err_power_exit: ipa_power_exit(power); return ret; } static int ipa_remove(struct platform_device *pdev) { struct ipa *ipa = dev_get_drvdata(&pdev->dev); struct ipa_power *power = ipa->power; struct device *dev = &pdev->dev; int ret; /* Prevent the modem from triggering a call to ipa_setup(). This * also ensures a modem-initiated setup that's underway completes. */ ipa_smp2p_irq_disable_setup(ipa); ret = pm_runtime_get_sync(dev); if (WARN_ON(ret < 0)) goto out_power_put; if (ipa->setup_complete) { ret = ipa_modem_stop(ipa); /* If starting or stopping is in progress, try once more */ if (ret == -EBUSY) { usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); ret = ipa_modem_stop(ipa); } if (ret) return ret; ipa_teardown(ipa); } ipa_deconfig(ipa); out_power_put: pm_runtime_put_noidle(dev); ipa_smp2p_exit(ipa); ipa_table_exit(ipa); ipa_endpoint_exit(ipa); gsi_exit(&ipa->gsi); ipa_mem_exit(ipa); ipa_reg_exit(ipa); kfree(ipa); ipa_power_exit(power); dev_info(dev, "IPA driver removed"); return 0; } static void ipa_shutdown(struct platform_device *pdev) { int ret; ret = ipa_remove(pdev); if (ret) dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret); } static const struct attribute_group *ipa_attribute_groups[] = { &ipa_attribute_group, &ipa_feature_attribute_group, &ipa_endpoint_id_attribute_group, &ipa_modem_attribute_group, NULL, }; static struct platform_driver ipa_driver = { .probe = ipa_probe, .remove = ipa_remove, .shutdown = ipa_shutdown, .driver = { .name = "ipa", .pm = &ipa_pm_ops, .of_match_table = ipa_match, .dev_groups = ipa_attribute_groups, }, }; module_platform_driver(ipa_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");