// SPDX-License-Identifier: GPL-2.0-only /* * Xilinx Axi Ethernet device driver * * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. * Copyright (c) 2010 - 2011 Michal Simek * Copyright (c) 2010 - 2011 PetaLogix * Copyright (c) 2019 - 2022 Calian Advanced Technologies * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. * * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 * and Spartan6. * * TODO: * - Add Axi Fifo support. * - Factor out Axi DMA code into separate driver. * - Test and fix basic multicast filtering. * - Add support for extended multicast filtering. * - Test basic VLAN support. * - Add support for extended VLAN support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xilinx_axienet.h" /* Descriptors defines for Tx and Rx DMA */ #define TX_BD_NUM_DEFAULT 128 #define RX_BD_NUM_DEFAULT 1024 #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) #define TX_BD_NUM_MAX 4096 #define RX_BD_NUM_MAX 4096 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ #define DRIVER_NAME "xaxienet" #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" #define DRIVER_VERSION "1.00a" #define AXIENET_REGS_N 40 /* Match table for of_platform binding */ static const struct of_device_id axienet_of_match[] = { { .compatible = "xlnx,axi-ethernet-1.00.a", }, { .compatible = "xlnx,axi-ethernet-1.01.a", }, { .compatible = "xlnx,axi-ethernet-2.01.a", }, {}, }; MODULE_DEVICE_TABLE(of, axienet_of_match); /* Option table for setting up Axi Ethernet hardware options */ static struct axienet_option axienet_options[] = { /* Turn on jumbo packet support for both Rx and Tx */ { .opt = XAE_OPTION_JUMBO, .reg = XAE_TC_OFFSET, .m_or = XAE_TC_JUM_MASK, }, { .opt = XAE_OPTION_JUMBO, .reg = XAE_RCW1_OFFSET, .m_or = XAE_RCW1_JUM_MASK, }, { /* Turn on VLAN packet support for both Rx and Tx */ .opt = XAE_OPTION_VLAN, .reg = XAE_TC_OFFSET, .m_or = XAE_TC_VLAN_MASK, }, { .opt = XAE_OPTION_VLAN, .reg = XAE_RCW1_OFFSET, .m_or = XAE_RCW1_VLAN_MASK, }, { /* Turn on FCS stripping on receive packets */ .opt = XAE_OPTION_FCS_STRIP, .reg = XAE_RCW1_OFFSET, .m_or = XAE_RCW1_FCS_MASK, }, { /* Turn on FCS insertion on transmit packets */ .opt = XAE_OPTION_FCS_INSERT, .reg = XAE_TC_OFFSET, .m_or = XAE_TC_FCS_MASK, }, { /* Turn off length/type field checking on receive packets */ .opt = XAE_OPTION_LENTYPE_ERR, .reg = XAE_RCW1_OFFSET, .m_or = XAE_RCW1_LT_DIS_MASK, }, { /* Turn on Rx flow control */ .opt = XAE_OPTION_FLOW_CONTROL, .reg = XAE_FCC_OFFSET, .m_or = XAE_FCC_FCRX_MASK, }, { /* Turn on Tx flow control */ .opt = XAE_OPTION_FLOW_CONTROL, .reg = XAE_FCC_OFFSET, .m_or = XAE_FCC_FCTX_MASK, }, { /* Turn on promiscuous frame filtering */ .opt = XAE_OPTION_PROMISC, .reg = XAE_FMI_OFFSET, .m_or = XAE_FMI_PM_MASK, }, { /* Enable transmitter */ .opt = XAE_OPTION_TXEN, .reg = XAE_TC_OFFSET, .m_or = XAE_TC_TX_MASK, }, { /* Enable receiver */ .opt = XAE_OPTION_RXEN, .reg = XAE_RCW1_OFFSET, .m_or = XAE_RCW1_RX_MASK, }, {} }; /** * axienet_dma_in32 - Memory mapped Axi DMA register read * @lp: Pointer to axienet local structure * @reg: Address offset from the base address of the Axi DMA core * * Return: The contents of the Axi DMA register * * This function returns the contents of the corresponding Axi DMA register. */ static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) { return ioread32(lp->dma_regs + reg); } static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, struct axidma_bd *desc) { desc->phys = lower_32_bits(addr); if (lp->features & XAE_FEATURE_DMA_64BIT) desc->phys_msb = upper_32_bits(addr); } static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, struct axidma_bd *desc) { dma_addr_t ret = desc->phys; if (lp->features & XAE_FEATURE_DMA_64BIT) ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; return ret; } /** * axienet_dma_bd_release - Release buffer descriptor rings * @ndev: Pointer to the net_device structure * * This function is used to release the descriptors allocated in * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet * driver stop api is called. */ static void axienet_dma_bd_release(struct net_device *ndev) { int i; struct axienet_local *lp = netdev_priv(ndev); /* If we end up here, tx_bd_v must have been DMA allocated. */ dma_free_coherent(lp->dev, sizeof(*lp->tx_bd_v) * lp->tx_bd_num, lp->tx_bd_v, lp->tx_bd_p); if (!lp->rx_bd_v) return; for (i = 0; i < lp->rx_bd_num; i++) { dma_addr_t phys; /* A NULL skb means this descriptor has not been initialised * at all. */ if (!lp->rx_bd_v[i].skb) break; dev_kfree_skb(lp->rx_bd_v[i].skb); /* For each descriptor, we programmed cntrl with the (non-zero) * descriptor size, after it had been successfully allocated. * So a non-zero value in there means we need to unmap it. */ if (lp->rx_bd_v[i].cntrl) { phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); dma_unmap_single(lp->dev, phys, lp->max_frm_size, DMA_FROM_DEVICE); } } dma_free_coherent(lp->dev, sizeof(*lp->rx_bd_v) * lp->rx_bd_num, lp->rx_bd_v, lp->rx_bd_p); } /** * axienet_usec_to_timer - Calculate IRQ delay timer value * @lp: Pointer to the axienet_local structure * @coalesce_usec: Microseconds to convert into timer value */ static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) { u32 result; u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ if (lp->axi_clk) clk_rate = clk_get_rate(lp->axi_clk); /* 1 Timeout Interval = 125 * (clock period of SG clock) */ result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, (u64)125000000); if (result > 255) result = 255; return result; } /** * axienet_dma_start - Set up DMA registers and start DMA operation * @lp: Pointer to the axienet_local structure */ static void axienet_dma_start(struct axienet_local *lp) { /* Start updating the Rx channel control register */ lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; /* Only set interrupt delay timer if not generating an interrupt on * the first RX packet. Otherwise leave at 0 to disable delay interrupt. */ if (lp->coalesce_count_rx > 1) lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) << XAXIDMA_DELAY_SHIFT) | XAXIDMA_IRQ_DELAY_MASK; axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); /* Start updating the Tx channel control register */ lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; /* Only set interrupt delay timer if not generating an interrupt on * the first TX packet. Otherwise leave at 0 to disable delay interrupt. */ if (lp->coalesce_count_tx > 1) lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) << XAXIDMA_DELAY_SHIFT) | XAXIDMA_IRQ_DELAY_MASK; axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); /* Populate the tail pointer and bring the Rx Axi DMA engine out of * halted state. This will make the Rx side ready for reception. */ axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); /* Write to the RS (Run-stop) bit in the Tx channel control register. * Tx channel is now ready to run. But only after we write to the * tail pointer register that the Tx channel will start transmitting. */ axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); } /** * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA * @ndev: Pointer to the net_device structure * * Return: 0, on success -ENOMEM, on failure * * This function is called to initialize the Rx and Tx DMA descriptor * rings. This initializes the descriptors with required default values * and is called when Axi Ethernet driver reset is called. */ static int axienet_dma_bd_init(struct net_device *ndev) { int i; struct sk_buff *skb; struct axienet_local *lp = netdev_priv(ndev); /* Reset the indexes which are used for accessing the BDs */ lp->tx_bd_ci = 0; lp->tx_bd_tail = 0; lp->rx_bd_ci = 0; /* Allocate the Tx and Rx buffer descriptors. */ lp->tx_bd_v = dma_alloc_coherent(lp->dev, sizeof(*lp->tx_bd_v) * lp->tx_bd_num, &lp->tx_bd_p, GFP_KERNEL); if (!lp->tx_bd_v) return -ENOMEM; lp->rx_bd_v = dma_alloc_coherent(lp->dev, sizeof(*lp->rx_bd_v) * lp->rx_bd_num, &lp->rx_bd_p, GFP_KERNEL); if (!lp->rx_bd_v) goto out; for (i = 0; i < lp->tx_bd_num; i++) { dma_addr_t addr = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num); lp->tx_bd_v[i].next = lower_32_bits(addr); if (lp->features & XAE_FEATURE_DMA_64BIT) lp->tx_bd_v[i].next_msb = upper_32_bits(addr); } for (i = 0; i < lp->rx_bd_num; i++) { dma_addr_t addr; addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num); lp->rx_bd_v[i].next = lower_32_bits(addr); if (lp->features & XAE_FEATURE_DMA_64BIT) lp->rx_bd_v[i].next_msb = upper_32_bits(addr); skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); if (!skb) goto out; lp->rx_bd_v[i].skb = skb; addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); if (dma_mapping_error(lp->dev, addr)) { netdev_err(ndev, "DMA mapping error\n"); goto out; } desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); lp->rx_bd_v[i].cntrl = lp->max_frm_size; } axienet_dma_start(lp); return 0; out: axienet_dma_bd_release(ndev); return -ENOMEM; } /** * axienet_set_mac_address - Write the MAC address * @ndev: Pointer to the net_device structure * @address: 6 byte Address to be written as MAC address * * This function is called to initialize the MAC address of the Axi Ethernet * core. It writes to the UAW0 and UAW1 registers of the core. */ static void axienet_set_mac_address(struct net_device *ndev, const void *address) { struct axienet_local *lp = netdev_priv(ndev); if (address) eth_hw_addr_set(ndev, address); if (!is_valid_ether_addr(ndev->dev_addr)) eth_hw_addr_random(ndev); /* Set up unicast MAC address filter set its mac address */ axienet_iow(lp, XAE_UAW0_OFFSET, (ndev->dev_addr[0]) | (ndev->dev_addr[1] << 8) | (ndev->dev_addr[2] << 16) | (ndev->dev_addr[3] << 24)); axienet_iow(lp, XAE_UAW1_OFFSET, (((axienet_ior(lp, XAE_UAW1_OFFSET)) & ~XAE_UAW1_UNICASTADDR_MASK) | (ndev->dev_addr[4] | (ndev->dev_addr[5] << 8)))); } /** * netdev_set_mac_address - Write the MAC address (from outside the driver) * @ndev: Pointer to the net_device structure * @p: 6 byte Address to be written as MAC address * * Return: 0 for all conditions. Presently, there is no failure case. * * This function is called to initialize the MAC address of the Axi Ethernet * core. It calls the core specific axienet_set_mac_address. This is the * function that goes into net_device_ops structure entry ndo_set_mac_address. */ static int netdev_set_mac_address(struct net_device *ndev, void *p) { struct sockaddr *addr = p; axienet_set_mac_address(ndev, addr->sa_data); return 0; } /** * axienet_set_multicast_list - Prepare the multicast table * @ndev: Pointer to the net_device structure * * This function is called to initialize the multicast table during * initialization. The Axi Ethernet basic multicast support has a four-entry * multicast table which is initialized here. Additionally this function * goes into the net_device_ops structure entry ndo_set_multicast_list. This * means whenever the multicast table entries need to be updated this * function gets called. */ static void axienet_set_multicast_list(struct net_device *ndev) { int i = 0; u32 reg, af0reg, af1reg; struct axienet_local *lp = netdev_priv(ndev); if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { /* We must make the kernel realize we had to move into * promiscuous mode. If it was a promiscuous mode request * the flag is already set. If not we set it. */ ndev->flags |= IFF_PROMISC; reg = axienet_ior(lp, XAE_FMI_OFFSET); reg |= XAE_FMI_PM_MASK; axienet_iow(lp, XAE_FMI_OFFSET, reg); dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); } else if (!netdev_mc_empty(ndev)) { struct netdev_hw_addr *ha; reg = axienet_ior(lp, XAE_FMI_OFFSET); reg &= ~XAE_FMI_PM_MASK; axienet_iow(lp, XAE_FMI_OFFSET, reg); netdev_for_each_mc_addr(ha, ndev) { if (i >= XAE_MULTICAST_CAM_TABLE_NUM) break; af0reg = (ha->addr[0]); af0reg |= (ha->addr[1] << 8); af0reg |= (ha->addr[2] << 16); af0reg |= (ha->addr[3] << 24); af1reg = (ha->addr[4]); af1reg |= (ha->addr[5] << 8); reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; reg |= i; axienet_iow(lp, XAE_FMI_OFFSET, reg); axienet_iow(lp, XAE_AF0_OFFSET, af0reg); axienet_iow(lp, XAE_AF1_OFFSET, af1reg); axienet_iow(lp, XAE_FFE_OFFSET, 1); i++; } } else { reg = axienet_ior(lp, XAE_FMI_OFFSET); reg &= ~XAE_FMI_PM_MASK; axienet_iow(lp, XAE_FMI_OFFSET, reg); dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); } for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; reg |= i; axienet_iow(lp, XAE_FMI_OFFSET, reg); axienet_iow(lp, XAE_FFE_OFFSET, 0); } } /** * axienet_setoptions - Set an Axi Ethernet option * @ndev: Pointer to the net_device structure * @options: Option to be enabled/disabled * * The Axi Ethernet core has multiple features which can be selectively turned * on or off. The typical options could be jumbo frame option, basic VLAN * option, promiscuous mode option etc. This function is used to set or clear * these options in the Axi Ethernet hardware. This is done through * axienet_option structure . */ static void axienet_setoptions(struct net_device *ndev, u32 options) { int reg; struct axienet_local *lp = netdev_priv(ndev); struct axienet_option *tp = &axienet_options[0]; while (tp->opt) { reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); if (options & tp->opt) reg |= tp->m_or; axienet_iow(lp, tp->reg, reg); tp++; } lp->options |= options; } static int __axienet_device_reset(struct axienet_local *lp) { u32 value; int ret; /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset * process of Axi DMA takes a while to complete as all pending * commands/transfers will be flushed or completed during this * reset process. * Note that even though both TX and RX have their own reset register, * they both reset the entire DMA core, so only one needs to be used. */ axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); ret = read_poll_timeout(axienet_dma_in32, value, !(value & XAXIDMA_CR_RESET_MASK), DELAY_OF_ONE_MILLISEC, 50000, false, lp, XAXIDMA_TX_CR_OFFSET); if (ret) { dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); return ret; } /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ ret = read_poll_timeout(axienet_ior, value, value & XAE_INT_PHYRSTCMPLT_MASK, DELAY_OF_ONE_MILLISEC, 50000, false, lp, XAE_IS_OFFSET); if (ret) { dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); return ret; } return 0; } /** * axienet_dma_stop - Stop DMA operation * @lp: Pointer to the axienet_local structure */ static void axienet_dma_stop(struct axienet_local *lp) { int count; u32 cr, sr; cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); synchronize_irq(lp->rx_irq); cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); synchronize_irq(lp->tx_irq); /* Give DMAs a chance to halt gracefully */ sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { msleep(20); sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); } sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { msleep(20); sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); } /* Do a reset to ensure DMA is really stopped */ axienet_lock_mii(lp); __axienet_device_reset(lp); axienet_unlock_mii(lp); } /** * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. * @ndev: Pointer to the net_device structure * * This function is called to reset and initialize the Axi Ethernet core. This * is typically called during initialization. It does a reset of the Axi DMA * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines * are connected to Axi Ethernet reset lines, this in turn resets the Axi * Ethernet core. No separate hardware reset is done for the Axi Ethernet * core. * Returns 0 on success or a negative error number otherwise. */ static int axienet_device_reset(struct net_device *ndev) { u32 axienet_status; struct axienet_local *lp = netdev_priv(ndev); int ret; ret = __axienet_device_reset(lp); if (ret) return ret; lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; lp->options |= XAE_OPTION_VLAN; lp->options &= (~XAE_OPTION_JUMBO); if ((ndev->mtu > XAE_MTU) && (ndev->mtu <= XAE_JUMBO_MTU)) { lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + XAE_TRL_SIZE; if (lp->max_frm_size <= lp->rxmem) lp->options |= XAE_OPTION_JUMBO; } ret = axienet_dma_bd_init(ndev); if (ret) { netdev_err(ndev, "%s: descriptor allocation failed\n", __func__); return ret; } axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); axienet_status &= ~XAE_RCW1_RX_MASK; axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); axienet_status = axienet_ior(lp, XAE_IP_OFFSET); if (axienet_status & XAE_INT_RXRJECT_MASK) axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? XAE_INT_RECV_ERROR_MASK : 0); axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); /* Sync default options with HW but leave receiver and * transmitter disabled. */ axienet_setoptions(ndev, lp->options & ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); axienet_set_mac_address(ndev, NULL); axienet_set_multicast_list(ndev); axienet_setoptions(ndev, lp->options); netif_trans_update(ndev); return 0; } /** * axienet_free_tx_chain - Clean up a series of linked TX descriptors. * @lp: Pointer to the axienet_local structure * @first_bd: Index of first descriptor to clean up * @nr_bds: Max number of descriptors to clean up * @force: Whether to clean descriptors even if not complete * @sizep: Pointer to a u32 filled with the total sum of all bytes * in all cleaned-up descriptors. Ignored if NULL. * @budget: NAPI budget (use 0 when not called from NAPI poll) * * Would either be called after a successful transmit operation, or after * there was an error when setting up the chain. * Returns the number of packets handled. */ static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, int nr_bds, bool force, u32 *sizep, int budget) { struct axidma_bd *cur_p; unsigned int status; int i, packets = 0; dma_addr_t phys; for (i = 0; i < nr_bds; i++) { cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; status = cur_p->status; /* If force is not specified, clean up only descriptors * that have been completed by the MAC. */ if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) break; /* Ensure we see complete descriptor update */ dma_rmb(); phys = desc_get_phys_addr(lp, cur_p); dma_unmap_single(lp->dev, phys, (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), DMA_TO_DEVICE); if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) { napi_consume_skb(cur_p->skb, budget); packets++; } cur_p->app0 = 0; cur_p->app1 = 0; cur_p->app2 = 0; cur_p->app4 = 0; cur_p->skb = NULL; /* ensure our transmit path and device don't prematurely see status cleared */ wmb(); cur_p->cntrl = 0; cur_p->status = 0; if (sizep) *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; } if (!force) { lp->tx_bd_ci += i; if (lp->tx_bd_ci >= lp->tx_bd_num) lp->tx_bd_ci %= lp->tx_bd_num; } return packets; } /** * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy * @lp: Pointer to the axienet_local structure * @num_frag: The number of BDs to check for * * Return: 0, on success * NETDEV_TX_BUSY, if any of the descriptors are not free * * This function is invoked before BDs are allocated and transmission starts. * This function returns 0 if a BD or group of BDs can be allocated for * transmission. If the BD or any of the BDs are not free the function * returns a busy status. */ static inline int axienet_check_tx_bd_space(struct axienet_local *lp, int num_frag) { struct axidma_bd *cur_p; /* Ensure we see all descriptor updates from device or TX polling */ rmb(); cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % lp->tx_bd_num]; if (cur_p->cntrl) return NETDEV_TX_BUSY; return 0; } /** * axienet_tx_poll - Invoked once a transmit is completed by the * Axi DMA Tx channel. * @napi: Pointer to NAPI structure. * @budget: Max number of TX packets to process. * * Return: Number of TX packets processed. * * This function is invoked from the NAPI processing to notify the completion * of transmit operation. It clears fields in the corresponding Tx BDs and * unmaps the corresponding buffer so that CPU can regain ownership of the * buffer. It finally invokes "netif_wake_queue" to restart transmission if * required. */ static int axienet_tx_poll(struct napi_struct *napi, int budget) { struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); struct net_device *ndev = lp->ndev; u32 size = 0; int packets; packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false, &size, budget); if (packets) { u64_stats_update_begin(&lp->tx_stat_sync); u64_stats_add(&lp->tx_packets, packets); u64_stats_add(&lp->tx_bytes, size); u64_stats_update_end(&lp->tx_stat_sync); /* Matches barrier in axienet_start_xmit */ smp_mb(); if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) netif_wake_queue(ndev); } if (packets < budget && napi_complete_done(napi, packets)) { /* Re-enable TX completion interrupts. This should * cause an immediate interrupt if any TX packets are * already pending. */ axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); } return packets; } /** * axienet_start_xmit - Starts the transmission. * @skb: sk_buff pointer that contains data to be Txed. * @ndev: Pointer to net_device structure. * * Return: NETDEV_TX_OK, on success * NETDEV_TX_BUSY, if any of the descriptors are not free * * This function is invoked from upper layers to initiate transmission. The * function uses the next available free BDs and populates their fields to * start the transmission. Additionally if checksum offloading is supported, * it populates AXI Stream Control fields with appropriate values. */ static netdev_tx_t axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) { u32 ii; u32 num_frag; u32 csum_start_off; u32 csum_index_off; skb_frag_t *frag; dma_addr_t tail_p, phys; u32 orig_tail_ptr, new_tail_ptr; struct axienet_local *lp = netdev_priv(ndev); struct axidma_bd *cur_p; orig_tail_ptr = lp->tx_bd_tail; new_tail_ptr = orig_tail_ptr; num_frag = skb_shinfo(skb)->nr_frags; cur_p = &lp->tx_bd_v[orig_tail_ptr]; if (axienet_check_tx_bd_space(lp, num_frag + 1)) { /* Should not happen as last start_xmit call should have * checked for sufficient space and queue should only be * woken when sufficient space is available. */ netif_stop_queue(ndev); if (net_ratelimit()) netdev_warn(ndev, "TX ring unexpectedly full\n"); return NETDEV_TX_BUSY; } if (skb->ip_summed == CHECKSUM_PARTIAL) { if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { /* Tx Full Checksum Offload Enabled */ cur_p->app0 |= 2; } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { csum_start_off = skb_transport_offset(skb); csum_index_off = csum_start_off + skb->csum_offset; /* Tx Partial Checksum Offload Enabled */ cur_p->app0 |= 1; cur_p->app1 = (csum_start_off << 16) | csum_index_off; } } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ } phys = dma_map_single(lp->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(lp->dev, phys))) { if (net_ratelimit()) netdev_err(ndev, "TX DMA mapping error\n"); ndev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } desc_set_phys_addr(lp, phys, cur_p); cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; for (ii = 0; ii < num_frag; ii++) { if (++new_tail_ptr >= lp->tx_bd_num) new_tail_ptr = 0; cur_p = &lp->tx_bd_v[new_tail_ptr]; frag = &skb_shinfo(skb)->frags[ii]; phys = dma_map_single(lp->dev, skb_frag_address(frag), skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(lp->dev, phys))) { if (net_ratelimit()) netdev_err(ndev, "TX DMA mapping error\n"); ndev->stats.tx_dropped++; axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, true, NULL, 0); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } desc_set_phys_addr(lp, phys, cur_p); cur_p->cntrl = skb_frag_size(frag); } cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; cur_p->skb = skb; tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; if (++new_tail_ptr >= lp->tx_bd_num) new_tail_ptr = 0; WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); /* Start the transfer */ axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); /* Stop queue if next transmit may not have space */ if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { netif_stop_queue(ndev); /* Matches barrier in axienet_tx_poll */ smp_mb(); /* Space might have just been freed - check again */ if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) netif_wake_queue(ndev); } return NETDEV_TX_OK; } /** * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. * @napi: Pointer to NAPI structure. * @budget: Max number of RX packets to process. * * Return: Number of RX packets processed. */ static int axienet_rx_poll(struct napi_struct *napi, int budget) { u32 length; u32 csumstatus; u32 size = 0; int packets = 0; dma_addr_t tail_p = 0; struct axidma_bd *cur_p; struct sk_buff *skb, *new_skb; struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { dma_addr_t phys; /* Ensure we see complete descriptor update */ dma_rmb(); skb = cur_p->skb; cur_p->skb = NULL; /* skb could be NULL if a previous pass already received the * packet for this slot in the ring, but failed to refill it * with a newly allocated buffer. In this case, don't try to * receive it again. */ if (likely(skb)) { length = cur_p->app4 & 0x0000FFFF; phys = desc_get_phys_addr(lp, cur_p); dma_unmap_single(lp->dev, phys, lp->max_frm_size, DMA_FROM_DEVICE); skb_put(skb, length); skb->protocol = eth_type_trans(skb, lp->ndev); /*skb_checksum_none_assert(skb);*/ skb->ip_summed = CHECKSUM_NONE; /* if we're doing Rx csum offload, set it up */ if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { csumstatus = (cur_p->app2 & XAE_FULL_CSUM_STATUS_MASK) >> 3; if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { skb->ip_summed = CHECKSUM_UNNECESSARY; } } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && skb->protocol == htons(ETH_P_IP) && skb->len > 64) { skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); skb->ip_summed = CHECKSUM_COMPLETE; } napi_gro_receive(napi, skb); size += length; packets++; } new_skb = napi_alloc_skb(napi, lp->max_frm_size); if (!new_skb) break; phys = dma_map_single(lp->dev, new_skb->data, lp->max_frm_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(lp->dev, phys))) { if (net_ratelimit()) netdev_err(lp->ndev, "RX DMA mapping error\n"); dev_kfree_skb(new_skb); break; } desc_set_phys_addr(lp, phys, cur_p); cur_p->cntrl = lp->max_frm_size; cur_p->status = 0; cur_p->skb = new_skb; /* Only update tail_p to mark this slot as usable after it has * been successfully refilled. */ tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; if (++lp->rx_bd_ci >= lp->rx_bd_num) lp->rx_bd_ci = 0; cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; } u64_stats_update_begin(&lp->rx_stat_sync); u64_stats_add(&lp->rx_packets, packets); u64_stats_add(&lp->rx_bytes, size); u64_stats_update_end(&lp->rx_stat_sync); if (tail_p) axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); if (packets < budget && napi_complete_done(napi, packets)) { /* Re-enable RX completion interrupts. This should * cause an immediate interrupt if any RX packets are * already pending. */ axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); } return packets; } /** * axienet_tx_irq - Tx Done Isr. * @irq: irq number * @_ndev: net_device pointer * * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. * * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the * TX BD processing. */ static irqreturn_t axienet_tx_irq(int irq, void *_ndev) { unsigned int status; struct net_device *ndev = _ndev; struct axienet_local *lp = netdev_priv(ndev); status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); if (!(status & XAXIDMA_IRQ_ALL_MASK)) return IRQ_NONE; axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { netdev_err(ndev, "DMA Tx error 0x%x\n", status); netdev_err(ndev, "Current BD is at: 0x%x%08x\n", (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, (lp->tx_bd_v[lp->tx_bd_ci]).phys); schedule_work(&lp->dma_err_task); } else { /* Disable further TX completion interrupts and schedule * NAPI to handle the completions. */ u32 cr = lp->tx_dma_cr; cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); if (napi_schedule_prep(&lp->napi_tx)) { axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); __napi_schedule(&lp->napi_tx); } } return IRQ_HANDLED; } /** * axienet_rx_irq - Rx Isr. * @irq: irq number * @_ndev: net_device pointer * * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. * * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD * processing. */ static irqreturn_t axienet_rx_irq(int irq, void *_ndev) { unsigned int status; struct net_device *ndev = _ndev; struct axienet_local *lp = netdev_priv(ndev); status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); if (!(status & XAXIDMA_IRQ_ALL_MASK)) return IRQ_NONE; axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { netdev_err(ndev, "DMA Rx error 0x%x\n", status); netdev_err(ndev, "Current BD is at: 0x%x%08x\n", (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, (lp->rx_bd_v[lp->rx_bd_ci]).phys); schedule_work(&lp->dma_err_task); } else { /* Disable further RX completion interrupts and schedule * NAPI receive. */ u32 cr = lp->rx_dma_cr; cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); if (napi_schedule_prep(&lp->napi_rx)) { axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); __napi_schedule(&lp->napi_rx); } } return IRQ_HANDLED; } /** * axienet_eth_irq - Ethernet core Isr. * @irq: irq number * @_ndev: net_device pointer * * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. * * Handle miscellaneous conditions indicated by Ethernet core IRQ. */ static irqreturn_t axienet_eth_irq(int irq, void *_ndev) { struct net_device *ndev = _ndev; struct axienet_local *lp = netdev_priv(ndev); unsigned int pending; pending = axienet_ior(lp, XAE_IP_OFFSET); if (!pending) return IRQ_NONE; if (pending & XAE_INT_RXFIFOOVR_MASK) ndev->stats.rx_missed_errors++; if (pending & XAE_INT_RXRJECT_MASK) ndev->stats.rx_frame_errors++; axienet_iow(lp, XAE_IS_OFFSET, pending); return IRQ_HANDLED; } static void axienet_dma_err_handler(struct work_struct *work); /** * axienet_open - Driver open routine. * @ndev: Pointer to net_device structure * * Return: 0, on success. * non-zero error value on failure * * This is the driver open routine. It calls phylink_start to start the * PHY device. * It also allocates interrupt service routines, enables the interrupt lines * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer * descriptors are initialized. */ static int axienet_open(struct net_device *ndev) { int ret; struct axienet_local *lp = netdev_priv(ndev); dev_dbg(&ndev->dev, "axienet_open()\n"); /* When we do an Axi Ethernet reset, it resets the complete core * including the MDIO. MDIO must be disabled before resetting. * Hold MDIO bus lock to avoid MDIO accesses during the reset. */ axienet_lock_mii(lp); ret = axienet_device_reset(ndev); axienet_unlock_mii(lp); ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); if (ret) { dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); return ret; } phylink_start(lp->phylink); /* Enable worker thread for Axi DMA error handling */ lp->stopping = false; INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); napi_enable(&lp->napi_rx); napi_enable(&lp->napi_tx); /* Enable interrupts for Axi DMA Tx */ ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, ndev->name, ndev); if (ret) goto err_tx_irq; /* Enable interrupts for Axi DMA Rx */ ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, ndev->name, ndev); if (ret) goto err_rx_irq; /* Enable interrupts for Axi Ethernet core (if defined) */ if (lp->eth_irq > 0) { ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, ndev->name, ndev); if (ret) goto err_eth_irq; } return 0; err_eth_irq: free_irq(lp->rx_irq, ndev); err_rx_irq: free_irq(lp->tx_irq, ndev); err_tx_irq: napi_disable(&lp->napi_tx); napi_disable(&lp->napi_rx); phylink_stop(lp->phylink); phylink_disconnect_phy(lp->phylink); cancel_work_sync(&lp->dma_err_task); dev_err(lp->dev, "request_irq() failed\n"); return ret; } /** * axienet_stop - Driver stop routine. * @ndev: Pointer to net_device structure * * Return: 0, on success. * * This is the driver stop routine. It calls phylink_disconnect to stop the PHY * device. It also removes the interrupt handlers and disables the interrupts. * The Axi DMA Tx/Rx BDs are released. */ static int axienet_stop(struct net_device *ndev) { struct axienet_local *lp = netdev_priv(ndev); dev_dbg(&ndev->dev, "axienet_close()\n"); WRITE_ONCE(lp->stopping, true); flush_work(&lp->dma_err_task); napi_disable(&lp->napi_tx); napi_disable(&lp->napi_rx); phylink_stop(lp->phylink); phylink_disconnect_phy(lp->phylink); axienet_setoptions(ndev, lp->options & ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); axienet_dma_stop(lp); axienet_iow(lp, XAE_IE_OFFSET, 0); cancel_work_sync(&lp->dma_err_task); if (lp->eth_irq > 0) free_irq(lp->eth_irq, ndev); free_irq(lp->tx_irq, ndev); free_irq(lp->rx_irq, ndev); axienet_dma_bd_release(ndev); return 0; } /** * axienet_change_mtu - Driver change mtu routine. * @ndev: Pointer to net_device structure * @new_mtu: New mtu value to be applied * * Return: Always returns 0 (success). * * This is the change mtu driver routine. It checks if the Axi Ethernet * hardware supports jumbo frames before changing the mtu. This can be * called only when the device is not up. */ static int axienet_change_mtu(struct net_device *ndev, int new_mtu) { struct axienet_local *lp = netdev_priv(ndev); if (netif_running(ndev)) return -EBUSY; if ((new_mtu + VLAN_ETH_HLEN + XAE_TRL_SIZE) > lp->rxmem) return -EINVAL; ndev->mtu = new_mtu; return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * axienet_poll_controller - Axi Ethernet poll mechanism. * @ndev: Pointer to net_device structure * * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior * to polling the ISRs and are enabled back after the polling is done. */ static void axienet_poll_controller(struct net_device *ndev) { struct axienet_local *lp = netdev_priv(ndev); disable_irq(lp->tx_irq); disable_irq(lp->rx_irq); axienet_rx_irq(lp->tx_irq, ndev); axienet_tx_irq(lp->rx_irq, ndev); enable_irq(lp->tx_irq); enable_irq(lp->rx_irq); } #endif static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct axienet_local *lp = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return phylink_mii_ioctl(lp->phylink, rq, cmd); } static void axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct axienet_local *lp = netdev_priv(dev); unsigned int start; netdev_stats_to_stats64(stats, &dev->stats); do { start = u64_stats_fetch_begin(&lp->rx_stat_sync); stats->rx_packets = u64_stats_read(&lp->rx_packets); stats->rx_bytes = u64_stats_read(&lp->rx_bytes); } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); do { start = u64_stats_fetch_begin(&lp->tx_stat_sync); stats->tx_packets = u64_stats_read(&lp->tx_packets); stats->tx_bytes = u64_stats_read(&lp->tx_bytes); } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); } static const struct net_device_ops axienet_netdev_ops = { .ndo_open = axienet_open, .ndo_stop = axienet_stop, .ndo_start_xmit = axienet_start_xmit, .ndo_get_stats64 = axienet_get_stats64, .ndo_change_mtu = axienet_change_mtu, .ndo_set_mac_address = netdev_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = axienet_ioctl, .ndo_set_rx_mode = axienet_set_multicast_list, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = axienet_poll_controller, #endif }; /** * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. * @ndev: Pointer to net_device structure * @ed: Pointer to ethtool_drvinfo structure * * This implements ethtool command for getting the driver information. * Issue "ethtool -i ethX" under linux prompt to execute this function. */ static void axienet_ethtools_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *ed) { strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); } /** * axienet_ethtools_get_regs_len - Get the total regs length present in the * AxiEthernet core. * @ndev: Pointer to net_device structure * * This implements ethtool command for getting the total register length * information. * * Return: the total regs length */ static int axienet_ethtools_get_regs_len(struct net_device *ndev) { return sizeof(u32) * AXIENET_REGS_N; } /** * axienet_ethtools_get_regs - Dump the contents of all registers present * in AxiEthernet core. * @ndev: Pointer to net_device structure * @regs: Pointer to ethtool_regs structure * @ret: Void pointer used to return the contents of the registers. * * This implements ethtool command for getting the Axi Ethernet register dump. * Issue "ethtool -d ethX" to execute this function. */ static void axienet_ethtools_get_regs(struct net_device *ndev, struct ethtool_regs *regs, void *ret) { u32 *data = (u32 *)ret; size_t len = sizeof(u32) * AXIENET_REGS_N; struct axienet_local *lp = netdev_priv(ndev); regs->version = 0; regs->len = len; memset(data, 0, len); data[0] = axienet_ior(lp, XAE_RAF_OFFSET); data[1] = axienet_ior(lp, XAE_TPF_OFFSET); data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); data[3] = axienet_ior(lp, XAE_IS_OFFSET); data[4] = axienet_ior(lp, XAE_IP_OFFSET); data[5] = axienet_ior(lp, XAE_IE_OFFSET); data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); data[12] = axienet_ior(lp, XAE_PPST_OFFSET); data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); data[15] = axienet_ior(lp, XAE_TC_OFFSET); data[16] = axienet_ior(lp, XAE_FCC_OFFSET); data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); data[29] = axienet_ior(lp, XAE_FMI_OFFSET); data[30] = axienet_ior(lp, XAE_AF0_OFFSET); data[31] = axienet_ior(lp, XAE_AF1_OFFSET); data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); } static void axienet_ethtools_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering, struct kernel_ethtool_ringparam *kernel_ering, struct netlink_ext_ack *extack) { struct axienet_local *lp = netdev_priv(ndev); ering->rx_max_pending = RX_BD_NUM_MAX; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->tx_max_pending = TX_BD_NUM_MAX; ering->rx_pending = lp->rx_bd_num; ering->rx_mini_pending = 0; ering->rx_jumbo_pending = 0; ering->tx_pending = lp->tx_bd_num; } static int axienet_ethtools_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering, struct kernel_ethtool_ringparam *kernel_ering, struct netlink_ext_ack *extack) { struct axienet_local *lp = netdev_priv(ndev); if (ering->rx_pending > RX_BD_NUM_MAX || ering->rx_mini_pending || ering->rx_jumbo_pending || ering->tx_pending < TX_BD_NUM_MIN || ering->tx_pending > TX_BD_NUM_MAX) return -EINVAL; if (netif_running(ndev)) return -EBUSY; lp->rx_bd_num = ering->rx_pending; lp->tx_bd_num = ering->tx_pending; return 0; } /** * axienet_ethtools_get_pauseparam - Get the pause parameter setting for * Tx and Rx paths. * @ndev: Pointer to net_device structure * @epauseparm: Pointer to ethtool_pauseparam structure. * * This implements ethtool command for getting axi ethernet pause frame * setting. Issue "ethtool -a ethX" to execute this function. */ static void axienet_ethtools_get_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *epauseparm) { struct axienet_local *lp = netdev_priv(ndev); phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); } /** * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) * settings. * @ndev: Pointer to net_device structure * @epauseparm:Pointer to ethtool_pauseparam structure * * This implements ethtool command for enabling flow control on Rx and Tx * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this * function. * * Return: 0 on success, -EFAULT if device is running */ static int axienet_ethtools_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *epauseparm) { struct axienet_local *lp = netdev_priv(ndev); return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); } /** * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. * @ndev: Pointer to net_device structure * @ecoalesce: Pointer to ethtool_coalesce structure * @kernel_coal: ethtool CQE mode setting structure * @extack: extack for reporting error messages * * This implements ethtool command for getting the DMA interrupt coalescing * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to * execute this function. * * Return: 0 always */ static int axienet_ethtools_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ecoalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct axienet_local *lp = netdev_priv(ndev); ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; return 0; } /** * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. * @ndev: Pointer to net_device structure * @ecoalesce: Pointer to ethtool_coalesce structure * @kernel_coal: ethtool CQE mode setting structure * @extack: extack for reporting error messages * * This implements ethtool command for setting the DMA interrupt coalescing * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux * prompt to execute this function. * * Return: 0, on success, Non-zero error value on failure. */ static int axienet_ethtools_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ecoalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct axienet_local *lp = netdev_priv(ndev); if (netif_running(ndev)) { netdev_err(ndev, "Please stop netif before applying configuration\n"); return -EFAULT; } if (ecoalesce->rx_max_coalesced_frames) lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; if (ecoalesce->rx_coalesce_usecs) lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; if (ecoalesce->tx_max_coalesced_frames) lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; if (ecoalesce->tx_coalesce_usecs) lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; return 0; } static int axienet_ethtools_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct axienet_local *lp = netdev_priv(ndev); return phylink_ethtool_ksettings_get(lp->phylink, cmd); } static int axienet_ethtools_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct axienet_local *lp = netdev_priv(ndev); return phylink_ethtool_ksettings_set(lp->phylink, cmd); } static int axienet_ethtools_nway_reset(struct net_device *dev) { struct axienet_local *lp = netdev_priv(dev); return phylink_ethtool_nway_reset(lp->phylink); } static const struct ethtool_ops axienet_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | ETHTOOL_COALESCE_USECS, .get_drvinfo = axienet_ethtools_get_drvinfo, .get_regs_len = axienet_ethtools_get_regs_len, .get_regs = axienet_ethtools_get_regs, .get_link = ethtool_op_get_link, .get_ringparam = axienet_ethtools_get_ringparam, .set_ringparam = axienet_ethtools_set_ringparam, .get_pauseparam = axienet_ethtools_get_pauseparam, .set_pauseparam = axienet_ethtools_set_pauseparam, .get_coalesce = axienet_ethtools_get_coalesce, .set_coalesce = axienet_ethtools_set_coalesce, .get_link_ksettings = axienet_ethtools_get_link_ksettings, .set_link_ksettings = axienet_ethtools_set_link_ksettings, .nway_reset = axienet_ethtools_nway_reset, }; static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) { return container_of(pcs, struct axienet_local, pcs); } static void axienet_pcs_get_state(struct phylink_pcs *pcs, struct phylink_link_state *state) { struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; phylink_mii_c22_pcs_get_state(pcs_phy, state); } static void axienet_pcs_an_restart(struct phylink_pcs *pcs) { struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; phylink_mii_c22_pcs_an_restart(pcs_phy); } static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, phy_interface_t interface, const unsigned long *advertising, bool permit_pause_to_mac) { struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; struct axienet_local *lp = netdev_priv(ndev); int ret; if (lp->switch_x_sgmii) { ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, interface == PHY_INTERFACE_MODE_SGMII ? XLNX_MII_STD_SELECT_SGMII : 0); if (ret < 0) { netdev_warn(ndev, "Failed to switch PHY interface: %d\n", ret); return ret; } } ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, neg_mode); if (ret < 0) netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); return ret; } static const struct phylink_pcs_ops axienet_pcs_ops = { .pcs_get_state = axienet_pcs_get_state, .pcs_config = axienet_pcs_config, .pcs_an_restart = axienet_pcs_an_restart, }; static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct net_device *ndev = to_net_dev(config->dev); struct axienet_local *lp = netdev_priv(ndev); if (interface == PHY_INTERFACE_MODE_1000BASEX || interface == PHY_INTERFACE_MODE_SGMII) return &lp->pcs; return NULL; } static void axienet_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { /* nothing meaningful to do */ } static void axienet_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { /* nothing meaningful to do */ } static void axienet_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct net_device *ndev = to_net_dev(config->dev); struct axienet_local *lp = netdev_priv(ndev); u32 emmc_reg, fcc_reg; emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; switch (speed) { case SPEED_1000: emmc_reg |= XAE_EMMC_LINKSPD_1000; break; case SPEED_100: emmc_reg |= XAE_EMMC_LINKSPD_100; break; case SPEED_10: emmc_reg |= XAE_EMMC_LINKSPD_10; break; default: dev_err(&ndev->dev, "Speed other than 10, 100 or 1Gbps is not supported\n"); break; } axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); if (tx_pause) fcc_reg |= XAE_FCC_FCTX_MASK; else fcc_reg &= ~XAE_FCC_FCTX_MASK; if (rx_pause) fcc_reg |= XAE_FCC_FCRX_MASK; else fcc_reg &= ~XAE_FCC_FCRX_MASK; axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); } static const struct phylink_mac_ops axienet_phylink_ops = { .mac_select_pcs = axienet_mac_select_pcs, .mac_config = axienet_mac_config, .mac_link_down = axienet_mac_link_down, .mac_link_up = axienet_mac_link_up, }; /** * axienet_dma_err_handler - Work queue task for Axi DMA Error * @work: pointer to work_struct * * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the * Tx/Rx BDs. */ static void axienet_dma_err_handler(struct work_struct *work) { u32 i; u32 axienet_status; struct axidma_bd *cur_p; struct axienet_local *lp = container_of(work, struct axienet_local, dma_err_task); struct net_device *ndev = lp->ndev; /* Don't bother if we are going to stop anyway */ if (READ_ONCE(lp->stopping)) return; napi_disable(&lp->napi_tx); napi_disable(&lp->napi_rx); axienet_setoptions(ndev, lp->options & ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); axienet_dma_stop(lp); for (i = 0; i < lp->tx_bd_num; i++) { cur_p = &lp->tx_bd_v[i]; if (cur_p->cntrl) { dma_addr_t addr = desc_get_phys_addr(lp, cur_p); dma_unmap_single(lp->dev, addr, (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), DMA_TO_DEVICE); } if (cur_p->skb) dev_kfree_skb_irq(cur_p->skb); cur_p->phys = 0; cur_p->phys_msb = 0; cur_p->cntrl = 0; cur_p->status = 0; cur_p->app0 = 0; cur_p->app1 = 0; cur_p->app2 = 0; cur_p->app3 = 0; cur_p->app4 = 0; cur_p->skb = NULL; } for (i = 0; i < lp->rx_bd_num; i++) { cur_p = &lp->rx_bd_v[i]; cur_p->status = 0; cur_p->app0 = 0; cur_p->app1 = 0; cur_p->app2 = 0; cur_p->app3 = 0; cur_p->app4 = 0; } lp->tx_bd_ci = 0; lp->tx_bd_tail = 0; lp->rx_bd_ci = 0; axienet_dma_start(lp); axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); axienet_status &= ~XAE_RCW1_RX_MASK; axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); axienet_status = axienet_ior(lp, XAE_IP_OFFSET); if (axienet_status & XAE_INT_RXRJECT_MASK) axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? XAE_INT_RECV_ERROR_MASK : 0); axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); /* Sync default options with HW but leave receiver and * transmitter disabled. */ axienet_setoptions(ndev, lp->options & ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); axienet_set_mac_address(ndev, NULL); axienet_set_multicast_list(ndev); napi_enable(&lp->napi_rx); napi_enable(&lp->napi_tx); axienet_setoptions(ndev, lp->options); } /** * axienet_probe - Axi Ethernet probe function. * @pdev: Pointer to platform device structure. * * Return: 0, on success * Non-zero error value on failure. * * This is the probe routine for Axi Ethernet driver. This is called before * any other driver routines are invoked. It allocates and sets up the Ethernet * device. Parses through device tree and populates fields of * axienet_local. It registers the Ethernet device. */ static int axienet_probe(struct platform_device *pdev) { int ret; struct device_node *np; struct axienet_local *lp; struct net_device *ndev; struct resource *ethres; u8 mac_addr[ETH_ALEN]; int addr_width = 32; u32 value; ndev = alloc_etherdev(sizeof(*lp)); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ ndev->features = NETIF_F_SG; ndev->netdev_ops = &axienet_netdev_ops; ndev->ethtool_ops = &axienet_ethtool_ops; /* MTU range: 64 - 9000 */ ndev->min_mtu = 64; ndev->max_mtu = XAE_JUMBO_MTU; lp = netdev_priv(ndev); lp->ndev = ndev; lp->dev = &pdev->dev; lp->options = XAE_OPTION_DEFAULTS; lp->rx_bd_num = RX_BD_NUM_DEFAULT; lp->tx_bd_num = TX_BD_NUM_DEFAULT; u64_stats_init(&lp->rx_stat_sync); u64_stats_init(&lp->tx_stat_sync); netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); if (!lp->axi_clk) { /* For backward compatibility, if named AXI clock is not present, * treat the first clock specified as the AXI clock. */ lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); } if (IS_ERR(lp->axi_clk)) { ret = PTR_ERR(lp->axi_clk); goto free_netdev; } ret = clk_prepare_enable(lp->axi_clk); if (ret) { dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); goto free_netdev; } lp->misc_clks[0].id = "axis_clk"; lp->misc_clks[1].id = "ref_clk"; lp->misc_clks[2].id = "mgt_clk"; ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); if (ret) goto cleanup_clk; ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); if (ret) goto cleanup_clk; /* Map device registers */ lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); if (IS_ERR(lp->regs)) { ret = PTR_ERR(lp->regs); goto cleanup_clk; } lp->regs_start = ethres->start; /* Setup checksum offload, but default to off if not specified */ lp->features = 0; ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); if (!ret) { switch (value) { case 1: lp->csum_offload_on_tx_path = XAE_FEATURE_PARTIAL_TX_CSUM; lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; /* Can checksum TCP/UDP over IPv4. */ ndev->features |= NETIF_F_IP_CSUM; break; case 2: lp->csum_offload_on_tx_path = XAE_FEATURE_FULL_TX_CSUM; lp->features |= XAE_FEATURE_FULL_TX_CSUM; /* Can checksum TCP/UDP over IPv4. */ ndev->features |= NETIF_F_IP_CSUM; break; default: lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; } } ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); if (!ret) { switch (value) { case 1: lp->csum_offload_on_rx_path = XAE_FEATURE_PARTIAL_RX_CSUM; lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; break; case 2: lp->csum_offload_on_rx_path = XAE_FEATURE_FULL_RX_CSUM; lp->features |= XAE_FEATURE_FULL_RX_CSUM; break; default: lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; } } /* For supporting jumbo frames, the Axi Ethernet hardware must have * a larger Rx/Tx Memory. Typically, the size must be large so that * we can enable jumbo option and start supporting jumbo frames. * Here we check for memory allocated for Rx/Tx in the hardware from * the device-tree and accordingly set flags. */ of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, "xlnx,switch-x-sgmii"); /* Start with the proprietary, and broken phy_type */ ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); if (!ret) { netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); switch (value) { case XAE_PHY_TYPE_MII: lp->phy_mode = PHY_INTERFACE_MODE_MII; break; case XAE_PHY_TYPE_GMII: lp->phy_mode = PHY_INTERFACE_MODE_GMII; break; case XAE_PHY_TYPE_RGMII_2_0: lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; break; case XAE_PHY_TYPE_SGMII: lp->phy_mode = PHY_INTERFACE_MODE_SGMII; break; case XAE_PHY_TYPE_1000BASE_X: lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; break; default: ret = -EINVAL; goto cleanup_clk; } } else { ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); if (ret) goto cleanup_clk; } if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); ret = -EINVAL; goto cleanup_clk; } /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); if (np) { struct resource dmares; ret = of_address_to_resource(np, 0, &dmares); if (ret) { dev_err(&pdev->dev, "unable to get DMA resource\n"); of_node_put(np); goto cleanup_clk; } lp->dma_regs = devm_ioremap_resource(&pdev->dev, &dmares); lp->rx_irq = irq_of_parse_and_map(np, 1); lp->tx_irq = irq_of_parse_and_map(np, 0); of_node_put(np); lp->eth_irq = platform_get_irq_optional(pdev, 0); } else { /* Check for these resources directly on the Ethernet node. */ lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); lp->rx_irq = platform_get_irq(pdev, 1); lp->tx_irq = platform_get_irq(pdev, 0); lp->eth_irq = platform_get_irq_optional(pdev, 2); } if (IS_ERR(lp->dma_regs)) { dev_err(&pdev->dev, "could not map DMA regs\n"); ret = PTR_ERR(lp->dma_regs); goto cleanup_clk; } if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) { dev_err(&pdev->dev, "could not determine irqs\n"); ret = -ENOMEM; goto cleanup_clk; } /* Reset core now that clocks are enabled, prior to accessing MDIO */ ret = __axienet_device_reset(lp); if (ret) goto cleanup_clk; /* Autodetect the need for 64-bit DMA pointers. * When the IP is configured for a bus width bigger than 32 bits, * writing the MSB registers is mandatory, even if they are all 0. * We can detect this case by writing all 1's to one such register * and see if that sticks: when the IP is configured for 32 bits * only, those registers are RES0. * Those MSB registers were introduced in IP v7.1, which we check first. */ if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; iowrite32(0x0, desc); if (ioread32(desc) == 0) { /* sanity check */ iowrite32(0xffffffff, desc); if (ioread32(desc) > 0) { lp->features |= XAE_FEATURE_DMA_64BIT; addr_width = 64; dev_info(&pdev->dev, "autodetected 64-bit DMA range\n"); } iowrite32(0x0, desc); } } if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); ret = -EINVAL; goto cleanup_clk; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); if (ret) { dev_err(&pdev->dev, "No suitable DMA available\n"); goto cleanup_clk; } /* Check for Ethernet core IRQ (optional) */ if (lp->eth_irq <= 0) dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); /* Retrieve the MAC address */ ret = of_get_mac_address(pdev->dev.of_node, mac_addr); if (!ret) { axienet_set_mac_address(ndev, mac_addr); } else { dev_warn(&pdev->dev, "could not find MAC address property: %d\n", ret); axienet_set_mac_address(ndev, NULL); } lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; ret = axienet_mdio_setup(lp); if (ret) dev_warn(&pdev->dev, "error registering MDIO bus: %d\n", ret); if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); if (!np) { /* Deprecated: Always use "pcs-handle" for pcs_phy. * Falling back to "phy-handle" here is only for * backward compatibility with old device trees. */ np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); } if (!np) { dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); ret = -EINVAL; goto cleanup_mdio; } lp->pcs_phy = of_mdio_find_device(np); if (!lp->pcs_phy) { ret = -EPROBE_DEFER; of_node_put(np); goto cleanup_mdio; } of_node_put(np); lp->pcs.ops = &axienet_pcs_ops; lp->pcs.neg_mode = true; lp->pcs.poll = true; } lp->phylink_config.dev = &ndev->dev; lp->phylink_config.type = PHYLINK_NETDEV; lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | MAC_10FD | MAC_100FD | MAC_1000FD; __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); if (lp->switch_x_sgmii) { __set_bit(PHY_INTERFACE_MODE_1000BASEX, lp->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_SGMII, lp->phylink_config.supported_interfaces); } lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, lp->phy_mode, &axienet_phylink_ops); if (IS_ERR(lp->phylink)) { ret = PTR_ERR(lp->phylink); dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); goto cleanup_mdio; } ret = register_netdev(lp->ndev); if (ret) { dev_err(lp->dev, "register_netdev() error (%i)\n", ret); goto cleanup_phylink; } return 0; cleanup_phylink: phylink_destroy(lp->phylink); cleanup_mdio: if (lp->pcs_phy) put_device(&lp->pcs_phy->dev); if (lp->mii_bus) axienet_mdio_teardown(lp); cleanup_clk: clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); clk_disable_unprepare(lp->axi_clk); free_netdev: free_netdev(ndev); return ret; } static int axienet_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct axienet_local *lp = netdev_priv(ndev); unregister_netdev(ndev); if (lp->phylink) phylink_destroy(lp->phylink); if (lp->pcs_phy) put_device(&lp->pcs_phy->dev); axienet_mdio_teardown(lp); clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); clk_disable_unprepare(lp->axi_clk); free_netdev(ndev); return 0; } static void axienet_shutdown(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); rtnl_lock(); netif_device_detach(ndev); if (netif_running(ndev)) dev_close(ndev); rtnl_unlock(); } static int axienet_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); if (!netif_running(ndev)) return 0; netif_device_detach(ndev); rtnl_lock(); axienet_stop(ndev); rtnl_unlock(); return 0; } static int axienet_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); if (!netif_running(ndev)) return 0; rtnl_lock(); axienet_open(ndev); rtnl_unlock(); netif_device_attach(ndev); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, axienet_suspend, axienet_resume); static struct platform_driver axienet_driver = { .probe = axienet_probe, .remove = axienet_remove, .shutdown = axienet_shutdown, .driver = { .name = "xilinx_axienet", .pm = &axienet_pm_ops, .of_match_table = axienet_of_match, }, }; module_platform_driver(axienet_driver); MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); MODULE_AUTHOR("Xilinx"); MODULE_LICENSE("GPL");