// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */ #include #include #include #include #include #include #include "wx_type.h" #include "wx_lib.h" #include "wx_hw.h" static void wx_intr_disable(struct wx *wx, u64 qmask) { u32 mask; mask = (qmask & U32_MAX); if (mask) wr32(wx, WX_PX_IMS(0), mask); if (wx->mac.type == wx_mac_sp) { mask = (qmask >> 32); if (mask) wr32(wx, WX_PX_IMS(1), mask); } } void wx_intr_enable(struct wx *wx, u64 qmask) { u32 mask; mask = (qmask & U32_MAX); if (mask) wr32(wx, WX_PX_IMC(0), mask); if (wx->mac.type == wx_mac_sp) { mask = (qmask >> 32); if (mask) wr32(wx, WX_PX_IMC(1), mask); } } EXPORT_SYMBOL(wx_intr_enable); /** * wx_irq_disable - Mask off interrupt generation on the NIC * @wx: board private structure **/ void wx_irq_disable(struct wx *wx) { struct pci_dev *pdev = wx->pdev; wr32(wx, WX_PX_MISC_IEN, 0); wx_intr_disable(wx, WX_INTR_ALL); if (pdev->msix_enabled) { int vector; for (vector = 0; vector < wx->num_q_vectors; vector++) synchronize_irq(wx->msix_entries[vector].vector); synchronize_irq(wx->msix_entries[vector].vector); } else { synchronize_irq(pdev->irq); } } EXPORT_SYMBOL(wx_irq_disable); /* cmd_addr is used for some special command: * 1. to be sector address, when implemented erase sector command * 2. to be flash address when implemented read, write flash address */ static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr) { u32 cmd_val = 0, val = 0; cmd_val = WX_SPI_CMD_CMD(cmd) | WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) | cmd_addr; wr32(wx, WX_SPI_CMD, cmd_val); return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000, false, wx, WX_SPI_STATUS); } static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data) { int ret = 0; ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr); if (ret < 0) return ret; *data = rd32(wx, WX_SPI_DATA); return ret; } int wx_check_flash_load(struct wx *hw, u32 check_bit) { u32 reg = 0; int err = 0; /* if there's flash existing */ if (!(rd32(hw, WX_SPI_STATUS) & WX_SPI_STATUS_FLASH_BYPASS)) { /* wait hw load flash done */ err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000, false, hw, WX_SPI_ILDR_STATUS); if (err < 0) wx_err(hw, "Check flash load timeout.\n"); } return err; } EXPORT_SYMBOL(wx_check_flash_load); void wx_control_hw(struct wx *wx, bool drv) { /* True : Let firmware know the driver has taken over * False : Let firmware take over control of hw */ wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD, drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0); } EXPORT_SYMBOL(wx_control_hw); /** * wx_mng_present - returns 0 when management capability is present * @wx: pointer to hardware structure */ int wx_mng_present(struct wx *wx) { u32 fwsm; fwsm = rd32(wx, WX_MIS_ST); if (fwsm & WX_MIS_ST_MNG_INIT_DN) return 0; else return -EACCES; } EXPORT_SYMBOL(wx_mng_present); /* Software lock to be held while software semaphore is being accessed. */ static DEFINE_MUTEX(wx_sw_sync_lock); /** * wx_release_sw_sync - Release SW semaphore * @wx: pointer to hardware structure * @mask: Mask to specify which semaphore to release * * Releases the SW semaphore for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ static void wx_release_sw_sync(struct wx *wx, u32 mask) { mutex_lock(&wx_sw_sync_lock); wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0); mutex_unlock(&wx_sw_sync_lock); } /** * wx_acquire_sw_sync - Acquire SW semaphore * @wx: pointer to hardware structure * @mask: Mask to specify which semaphore to acquire * * Acquires the SW semaphore for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ static int wx_acquire_sw_sync(struct wx *wx, u32 mask) { u32 sem = 0; int ret = 0; mutex_lock(&wx_sw_sync_lock); ret = read_poll_timeout(rd32, sem, !(sem & mask), 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC); if (!ret) { sem |= mask; wr32(wx, WX_MNG_SWFW_SYNC, sem); } else { wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem); } mutex_unlock(&wx_sw_sync_lock); return ret; } /** * wx_host_interface_command - Issue command to manageability block * @wx: pointer to the HW structure * @buffer: contains the command to write and where the return status will * be placed * @length: length of buffer, must be multiple of 4 bytes * @timeout: time in ms to wait for command completion * @return_data: read and return data from the buffer (true) or not (false) * Needed because FW structures are big endian and decoding of * these fields can be 8 bit or 16 bit based on command. Decoding * is not easily understood without making a table of commands. * So we will leave this up to the caller to read back the data * in these cases. **/ int wx_host_interface_command(struct wx *wx, u32 *buffer, u32 length, u32 timeout, bool return_data) { u32 hdr_size = sizeof(struct wx_hic_hdr); u32 hicr, i, bi, buf[64] = {}; int status = 0; u32 dword_len; u16 buf_len; if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) { wx_err(wx, "Buffer length failure buffersize=%d.\n", length); return -EINVAL; } status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); if (status != 0) return status; /* Calculate length in DWORDs. We must be DWORD aligned */ if ((length % (sizeof(u32))) != 0) { wx_err(wx, "Buffer length failure, not aligned to dword"); status = -EINVAL; goto rel_out; } dword_len = length >> 2; /* The device driver writes the relevant command block * into the ram area. */ for (i = 0; i < dword_len; i++) { wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i])); /* write flush */ buf[i] = rd32a(wx, WX_MNG_MBOX, i); } /* Setting this bit tells the ARC that a new command is pending. */ wr32m(wx, WX_MNG_MBOX_CTL, WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY); status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000, timeout * 1000, false, wx, WX_MNG_MBOX_CTL); /* Check command completion */ if (status) { wx_dbg(wx, "Command has failed with no status valid.\n"); buf[0] = rd32(wx, WX_MNG_MBOX); if ((buffer[0] & 0xff) != (~buf[0] >> 24)) { status = -EINVAL; goto rel_out; } if ((buf[0] & 0xff0000) >> 16 == 0x80) { wx_dbg(wx, "It's unknown cmd.\n"); status = -EINVAL; goto rel_out; } wx_dbg(wx, "write value:\n"); for (i = 0; i < dword_len; i++) wx_dbg(wx, "%x ", buffer[i]); wx_dbg(wx, "read value:\n"); for (i = 0; i < dword_len; i++) wx_dbg(wx, "%x ", buf[i]); } if (!return_data) goto rel_out; /* Calculate length in DWORDs */ dword_len = hdr_size >> 2; /* first pull in the header so we know the buffer length */ for (bi = 0; bi < dword_len; bi++) { buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); le32_to_cpus(&buffer[bi]); } /* If there is any thing in data position pull it in */ buf_len = ((struct wx_hic_hdr *)buffer)->buf_len; if (buf_len == 0) goto rel_out; if (length < buf_len + hdr_size) { wx_err(wx, "Buffer not large enough for reply message.\n"); status = -EFAULT; goto rel_out; } /* Calculate length in DWORDs, add 3 for odd lengths */ dword_len = (buf_len + 3) >> 2; /* Pull in the rest of the buffer (bi is where we left off) */ for (; bi <= dword_len; bi++) { buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi); le32_to_cpus(&buffer[bi]); } rel_out: wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB); return status; } EXPORT_SYMBOL(wx_host_interface_command); /** * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd * assuming that the semaphore is already obtained. * @wx: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the hostif. **/ static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data) { struct wx_hic_read_shadow_ram buffer; int status; buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; buffer.hdr.req.buf_lenh = 0; buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; /* convert offset from words to bytes */ buffer.address = (__force u32)cpu_to_be32(offset * 2); /* one word */ buffer.length = (__force u16)cpu_to_be16(sizeof(u16)); status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), WX_HI_COMMAND_TIMEOUT, false); if (status != 0) return status; *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET); return status; } /** * wx_read_ee_hostif - Read EEPROM word using a host interface cmd * @wx: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the hostif. **/ int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data) { int status = 0; status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); if (status == 0) { status = wx_read_ee_hostif_data(wx, offset, data); wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); } return status; } EXPORT_SYMBOL(wx_read_ee_hostif); /** * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif * @wx: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @words: number of words * @data: word(s) read from the EEPROM * * Reads a 16 bit word(s) from the EEPROM using the hostif. **/ int wx_read_ee_hostif_buffer(struct wx *wx, u16 offset, u16 words, u16 *data) { struct wx_hic_read_shadow_ram buffer; u32 current_word = 0; u16 words_to_read; u32 value = 0; int status; u32 i; /* Take semaphore for the entire operation. */ status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); if (status != 0) return status; while (words) { if (words > FW_MAX_READ_BUFFER_SIZE / 2) words_to_read = FW_MAX_READ_BUFFER_SIZE / 2; else words_to_read = words; buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD; buffer.hdr.req.buf_lenh = 0; buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN; buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM; /* convert offset from words to bytes */ buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2); buffer.length = (__force u16)cpu_to_be16(words_to_read * 2); status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer), WX_HI_COMMAND_TIMEOUT, false); if (status != 0) { wx_err(wx, "Host interface command failed\n"); goto out; } for (i = 0; i < words_to_read; i++) { u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i; value = rd32(wx, reg); data[current_word] = (u16)(value & 0xffff); current_word++; i++; if (i < words_to_read) { value >>= 16; data[current_word] = (u16)(value & 0xffff); current_word++; } } words -= words_to_read; } out: wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH); return status; } EXPORT_SYMBOL(wx_read_ee_hostif_buffer); /** * wx_init_eeprom_params - Initialize EEPROM params * @wx: pointer to hardware structure * * Initializes the EEPROM parameters wx_eeprom_info within the * wx_hw struct in order to set up EEPROM access. **/ void wx_init_eeprom_params(struct wx *wx) { struct wx_eeprom_info *eeprom = &wx->eeprom; u16 eeprom_size; u16 data = 0x80; if (eeprom->type == wx_eeprom_uninitialized) { eeprom->semaphore_delay = 10; eeprom->type = wx_eeprom_none; if (!(rd32(wx, WX_SPI_STATUS) & WX_SPI_STATUS_FLASH_BYPASS)) { eeprom->type = wx_flash; eeprom_size = 4096; eeprom->word_size = eeprom_size >> 1; wx_dbg(wx, "Eeprom params: type = %d, size = %d\n", eeprom->type, eeprom->word_size); } } if (wx->mac.type == wx_mac_sp) { if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) { wx_err(wx, "NVM Read Error\n"); return; } data = data >> 1; } eeprom->sw_region_offset = data; } EXPORT_SYMBOL(wx_init_eeprom_params); /** * wx_get_mac_addr - Generic get MAC address * @wx: pointer to hardware structure * @mac_addr: Adapter MAC address * * Reads the adapter's MAC address from first Receive Address Register (RAR0) * A reset of the adapter must be performed prior to calling this function * in order for the MAC address to have been loaded from the EEPROM into RAR0 **/ void wx_get_mac_addr(struct wx *wx, u8 *mac_addr) { u32 rar_high; u32 rar_low; u16 i; wr32(wx, WX_PSR_MAC_SWC_IDX, 0); rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H); rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L); for (i = 0; i < 2; i++) mac_addr[i] = (u8)(rar_high >> (1 - i) * 8); for (i = 0; i < 4; i++) mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8); } EXPORT_SYMBOL(wx_get_mac_addr); /** * wx_set_rar - Set Rx address register * @wx: pointer to hardware structure * @index: Receive address register to write * @addr: Address to put into receive address register * @pools: VMDq "set" or "pool" index * @enable_addr: set flag that address is active * * Puts an ethernet address into a receive address register. **/ static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools, u32 enable_addr) { u32 rar_entries = wx->mac.num_rar_entries; u32 rar_low, rar_high; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wx, "RAR index %d is out of range.\n", index); return -EINVAL; } /* select the MAC address */ wr32(wx, WX_PSR_MAC_SWC_IDX, index); /* setup VMDq pool mapping */ wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF); if (wx->mac.type == wx_mac_sp) wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32); /* HW expects these in little endian so we reverse the byte * order from network order (big endian) to little endian * * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_low = ((u32)addr[5] | ((u32)addr[4] << 8) | ((u32)addr[3] << 16) | ((u32)addr[2] << 24)); rar_high = ((u32)addr[1] | ((u32)addr[0] << 8)); if (enable_addr != 0) rar_high |= WX_PSR_MAC_SWC_AD_H_AV; wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low); wr32m(wx, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | WX_PSR_MAC_SWC_AD_H_AV), rar_high); return 0; } /** * wx_clear_rar - Remove Rx address register * @wx: pointer to hardware structure * @index: Receive address register to write * * Clears an ethernet address from a receive address register. **/ static int wx_clear_rar(struct wx *wx, u32 index) { u32 rar_entries = wx->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { wx_err(wx, "RAR index %d is out of range.\n", index); return -EINVAL; } /* Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ wr32(wx, WX_PSR_MAC_SWC_IDX, index); wr32(wx, WX_PSR_MAC_SWC_VM_L, 0); wr32(wx, WX_PSR_MAC_SWC_VM_H, 0); wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); wr32m(wx, WX_PSR_MAC_SWC_AD_H, (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) | WX_PSR_MAC_SWC_AD_H_ADTYPE(1) | WX_PSR_MAC_SWC_AD_H_AV), 0); return 0; } /** * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address * @wx: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar **/ static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq) { u32 rar_entries = wx->mac.num_rar_entries; u32 mpsar_lo, mpsar_hi; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { wx_err(wx, "RAR index %d is out of range.\n", rar); return -EINVAL; } wr32(wx, WX_PSR_MAC_SWC_IDX, rar); mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L); mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H); if (!mpsar_lo && !mpsar_hi) return 0; /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) wx_clear_rar(wx, rar); return 0; } /** * wx_init_uta_tables - Initialize the Unicast Table Array * @wx: pointer to hardware structure **/ static void wx_init_uta_tables(struct wx *wx) { int i; wx_dbg(wx, " Clearing UTA\n"); for (i = 0; i < 128; i++) wr32(wx, WX_PSR_UC_TBL(i), 0); } /** * wx_init_rx_addrs - Initializes receive address filters. * @wx: pointer to hardware structure * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. **/ void wx_init_rx_addrs(struct wx *wx) { u32 rar_entries = wx->mac.num_rar_entries; u32 psrctl; int i; /* If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (!is_valid_ether_addr(wx->mac.addr)) { /* Get the MAC address from the RAR0 for later reference */ wx_get_mac_addr(wx, wx->mac.addr); wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr); } else { /* Setup the receive address. */ wx_dbg(wx, "Overriding MAC Address in RAR[0]\n"); wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr); wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV); if (wx->mac.type == wx_mac_sp) { /* clear VMDq pool/queue selection for RAR 0 */ wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL); } } /* Zero out the other receive addresses. */ wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1); for (i = 1; i < rar_entries; i++) { wr32(wx, WX_PSR_MAC_SWC_IDX, i); wr32(wx, WX_PSR_MAC_SWC_AD_L, 0); wr32(wx, WX_PSR_MAC_SWC_AD_H, 0); } /* Clear the MTA */ wx->addr_ctrl.mta_in_use = 0; psrctl = rd32(wx, WX_PSR_CTL); psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT; wr32(wx, WX_PSR_CTL, psrctl); wx_dbg(wx, " Clearing MTA\n"); for (i = 0; i < wx->mac.mcft_size; i++) wr32(wx, WX_PSR_MC_TBL(i), 0); wx_init_uta_tables(wx); } EXPORT_SYMBOL(wx_init_rx_addrs); static void wx_sync_mac_table(struct wx *wx) { int i; for (i = 0; i < wx->mac.num_rar_entries; i++) { if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) { if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { wx_set_rar(wx, i, wx->mac_table[i].addr, wx->mac_table[i].pools, WX_PSR_MAC_SWC_AD_H_AV); } else { wx_clear_rar(wx, i); } wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED); } } } /* this function destroys the first RAR entry */ void wx_mac_set_default_filter(struct wx *wx, u8 *addr) { memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN); wx->mac_table[0].pools = 1ULL; wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE); wx_set_rar(wx, 0, wx->mac_table[0].addr, wx->mac_table[0].pools, WX_PSR_MAC_SWC_AD_H_AV); } EXPORT_SYMBOL(wx_mac_set_default_filter); void wx_flush_sw_mac_table(struct wx *wx) { u32 i; for (i = 0; i < wx->mac.num_rar_entries; i++) { if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE)) continue; wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; memset(wx->mac_table[i].addr, 0, ETH_ALEN); wx->mac_table[i].pools = 0; } wx_sync_mac_table(wx); } EXPORT_SYMBOL(wx_flush_sw_mac_table); static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool) { u32 i; if (is_zero_ether_addr(addr)) return -EINVAL; for (i = 0; i < wx->mac.num_rar_entries; i++) { if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) { if (ether_addr_equal(addr, wx->mac_table[i].addr)) { if (wx->mac_table[i].pools != (1ULL << pool)) { memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); wx->mac_table[i].pools |= (1ULL << pool); wx_sync_mac_table(wx); return i; } } } if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) continue; wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED | WX_MAC_STATE_IN_USE); memcpy(wx->mac_table[i].addr, addr, ETH_ALEN); wx->mac_table[i].pools |= (1ULL << pool); wx_sync_mac_table(wx); return i; } return -ENOMEM; } static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool) { u32 i; if (is_zero_ether_addr(addr)) return -EINVAL; /* search table for addr, if found, set to 0 and sync */ for (i = 0; i < wx->mac.num_rar_entries; i++) { if (!ether_addr_equal(addr, wx->mac_table[i].addr)) continue; wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED; wx->mac_table[i].pools &= ~(1ULL << pool); if (!wx->mac_table[i].pools) { wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE; memset(wx->mac_table[i].addr, 0, ETH_ALEN); } wx_sync_mac_table(wx); return 0; } return -ENOMEM; } static int wx_available_rars(struct wx *wx) { u32 i, count = 0; for (i = 0; i < wx->mac.num_rar_entries; i++) { if (wx->mac_table[i].state == 0) count++; } return count; } /** * wx_write_uc_addr_list - write unicast addresses to RAR table * @netdev: network interface device structure * @pool: index for mac table * * Writes unicast address list to the RAR table. * Returns: -ENOMEM on failure/insufficient address space * 0 on no addresses written * X on writing X addresses to the RAR table **/ static int wx_write_uc_addr_list(struct net_device *netdev, int pool) { struct wx *wx = netdev_priv(netdev); int count = 0; /* return ENOMEM indicating insufficient memory for addresses */ if (netdev_uc_count(netdev) > wx_available_rars(wx)) return -ENOMEM; if (!netdev_uc_empty(netdev)) { struct netdev_hw_addr *ha; netdev_for_each_uc_addr(ha, netdev) { wx_del_mac_filter(wx, ha->addr, pool); wx_add_mac_filter(wx, ha->addr, pool); count++; } } return count; } /** * wx_mta_vector - Determines bit-vector in multicast table to set * @wx: pointer to private structure * @mc_addr: the multicast address * * Extracts the 12 bits, from a multicast address, to determine which * bit-vector to set in the multicast table. The hardware uses 12 bits, from * incoming rx multicast addresses, to determine the bit-vector to check in * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set * by the MO field of the MCSTCTRL. The MO field is set during initialization * to mc_filter_type. **/ static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr) { u32 vector = 0; switch (wx->mac.mc_filter_type) { case 0: /* use bits [47:36] of the address */ vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); break; case 1: /* use bits [46:35] of the address */ vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); break; case 2: /* use bits [45:34] of the address */ vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); break; case 3: /* use bits [43:32] of the address */ vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); break; default: /* Invalid mc_filter_type */ wx_err(wx, "MC filter type param set incorrectly\n"); break; } /* vector can only be 12-bits or boundary will be exceeded */ vector &= 0xFFF; return vector; } /** * wx_set_mta - Set bit-vector in multicast table * @wx: pointer to private structure * @mc_addr: Multicast address * * Sets the bit-vector in the multicast table. **/ static void wx_set_mta(struct wx *wx, u8 *mc_addr) { u32 vector, vector_bit, vector_reg; wx->addr_ctrl.mta_in_use++; vector = wx_mta_vector(wx, mc_addr); wx_dbg(wx, " bit-vector = 0x%03X\n", vector); /* The MTA is a register array of 128 32-bit registers. It is treated * like an array of 4096 bits. We want to set bit * BitArray[vector_value]. So we figure out what register the bit is * in, read it, OR in the new bit, then write back the new value. The * register is determined by the upper 7 bits of the vector value and * the bit within that register are determined by the lower 5 bits of * the value. */ vector_reg = (vector >> 5) & 0x7F; vector_bit = vector & 0x1F; wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit); } /** * wx_update_mc_addr_list - Updates MAC list of multicast addresses * @wx: pointer to private structure * @netdev: pointer to net device structure * * The given list replaces any existing list. Clears the MC addrs from receive * address registers and the multicast table. Uses unused receive address * registers for the first multicast addresses, and hashes the rest into the * multicast table. **/ static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev) { struct netdev_hw_addr *ha; u32 i, psrctl; /* Set the new number of MC addresses that we are being requested to * use. */ wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); wx->addr_ctrl.mta_in_use = 0; /* Clear mta_shadow */ wx_dbg(wx, " Clearing MTA\n"); memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow)); /* Update mta_shadow */ netdev_for_each_mc_addr(ha, netdev) { wx_dbg(wx, " Adding the multicast addresses:\n"); wx_set_mta(wx, ha->addr); } /* Enable mta */ for (i = 0; i < wx->mac.mcft_size; i++) wr32a(wx, WX_PSR_MC_TBL(0), i, wx->mac.mta_shadow[i]); if (wx->addr_ctrl.mta_in_use > 0) { psrctl = rd32(wx, WX_PSR_CTL); psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE); psrctl |= WX_PSR_CTL_MFE | (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT); wr32(wx, WX_PSR_CTL, psrctl); } wx_dbg(wx, "Update mc addr list Complete\n"); } /** * wx_write_mc_addr_list - write multicast addresses to MTA * @netdev: network interface device structure * * Writes multicast address list to the MTA hash table. * Returns: 0 on no addresses written * X on writing X addresses to MTA **/ static int wx_write_mc_addr_list(struct net_device *netdev) { struct wx *wx = netdev_priv(netdev); if (!netif_running(netdev)) return 0; wx_update_mc_addr_list(wx, netdev); return netdev_mc_count(netdev); } /** * wx_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ int wx_set_mac(struct net_device *netdev, void *p) { struct wx *wx = netdev_priv(netdev); struct sockaddr *addr = p; int retval; retval = eth_prepare_mac_addr_change(netdev, addr); if (retval) return retval; wx_del_mac_filter(wx, wx->mac.addr, 0); eth_hw_addr_set(netdev, addr->sa_data); memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len); wx_mac_set_default_filter(wx, wx->mac.addr); return 0; } EXPORT_SYMBOL(wx_set_mac); void wx_disable_rx(struct wx *wx) { u32 pfdtxgswc; u32 rxctrl; rxctrl = rd32(wx, WX_RDB_PB_CTL); if (rxctrl & WX_RDB_PB_CTL_RXEN) { pfdtxgswc = rd32(wx, WX_PSR_CTL); if (pfdtxgswc & WX_PSR_CTL_SW_EN) { pfdtxgswc &= ~WX_PSR_CTL_SW_EN; wr32(wx, WX_PSR_CTL, pfdtxgswc); wx->mac.set_lben = true; } else { wx->mac.set_lben = false; } rxctrl &= ~WX_RDB_PB_CTL_RXEN; wr32(wx, WX_RDB_PB_CTL, rxctrl); if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) || ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) { /* disable mac receiver */ wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_RE, 0); } } } EXPORT_SYMBOL(wx_disable_rx); static void wx_enable_rx(struct wx *wx) { u32 psrctl; /* enable mac receiver */ wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE); wr32m(wx, WX_RDB_PB_CTL, WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN); if (wx->mac.set_lben) { psrctl = rd32(wx, WX_PSR_CTL); psrctl |= WX_PSR_CTL_SW_EN; wr32(wx, WX_PSR_CTL, psrctl); wx->mac.set_lben = false; } } /** * wx_set_rxpba - Initialize Rx packet buffer * @wx: pointer to private structure **/ static void wx_set_rxpba(struct wx *wx) { u32 rxpktsize, txpktsize, txpbthresh; rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT; wr32(wx, WX_RDB_PB_SZ(0), rxpktsize); /* Only support an equally distributed Tx packet buffer strategy. */ txpktsize = wx->mac.tx_pb_size; txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX; wr32(wx, WX_TDB_PB_SZ(0), txpktsize); wr32(wx, WX_TDM_PB_THRE(0), txpbthresh); } static void wx_configure_port(struct wx *wx) { u32 value, i; value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ; wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ, value); wr32(wx, WX_CFG_TAG_TPID(0), ETH_P_8021Q | ETH_P_8021AD << 16); wx->tpid[0] = ETH_P_8021Q; wx->tpid[1] = ETH_P_8021AD; for (i = 1; i < 4; i++) wr32(wx, WX_CFG_TAG_TPID(i), ETH_P_8021Q | ETH_P_8021Q << 16); for (i = 2; i < 8; i++) wx->tpid[i] = ETH_P_8021Q; } /** * wx_disable_sec_rx_path - Stops the receive data path * @wx: pointer to private structure * * Stops the receive data path and waits for the HW to internally empty * the Rx security block **/ static int wx_disable_sec_rx_path(struct wx *wx) { u32 secrx; wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS); return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY, 1000, 40000, false, wx, WX_RSC_ST); } /** * wx_enable_sec_rx_path - Enables the receive data path * @wx: pointer to private structure * * Enables the receive data path. **/ static void wx_enable_sec_rx_path(struct wx *wx) { wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0); WX_WRITE_FLUSH(wx); } static void wx_vlan_strip_control(struct wx *wx, bool enable) { int i, j; for (i = 0; i < wx->num_rx_queues; i++) { struct wx_ring *ring = wx->rx_ring[i]; j = ring->reg_idx; wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN, enable ? WX_PX_RR_CFG_VLAN : 0); } } void wx_set_rx_mode(struct net_device *netdev) { struct wx *wx = netdev_priv(netdev); netdev_features_t features; u32 fctrl, vmolr, vlnctrl; int count; features = netdev->features; /* Check for Promiscuous and All Multicast modes */ fctrl = rd32(wx, WX_PSR_CTL); fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE); vmolr = rd32(wx, WX_PSR_VM_L2CTL(0)); vmolr &= ~(WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE | WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE); vlnctrl = rd32(wx, WX_PSR_VLAN_CTL); vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN); /* set all bits that we expect to always be set */ fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE; vmolr |= WX_PSR_VM_L2CTL_BAM | WX_PSR_VM_L2CTL_AUPE | WX_PSR_VM_L2CTL_VACC; vlnctrl |= WX_PSR_VLAN_CTL_VFE; wx->addr_ctrl.user_set_promisc = false; if (netdev->flags & IFF_PROMISC) { wx->addr_ctrl.user_set_promisc = true; fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE; /* pf don't want packets routing to vf, so clear UPE */ vmolr |= WX_PSR_VM_L2CTL_MPE; vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; } if (netdev->flags & IFF_ALLMULTI) { fctrl |= WX_PSR_CTL_MPE; vmolr |= WX_PSR_VM_L2CTL_MPE; } if (netdev->features & NETIF_F_RXALL) { vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE); vlnctrl &= ~WX_PSR_VLAN_CTL_VFE; /* receive bad packets */ wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_SAVE_MAC_ERR, WX_RSC_CTL_SAVE_MAC_ERR); } else { vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE; } /* Write addresses to available RAR registers, if there is not * sufficient space to store all the addresses then enable * unicast promiscuous mode */ count = wx_write_uc_addr_list(netdev, 0); if (count < 0) { vmolr &= ~WX_PSR_VM_L2CTL_ROPE; vmolr |= WX_PSR_VM_L2CTL_UPE; } /* Write addresses to the MTA, if the attempt fails * then we should just turn on promiscuous mode so * that we can at least receive multicast traffic */ count = wx_write_mc_addr_list(netdev); if (count < 0) { vmolr &= ~WX_PSR_VM_L2CTL_ROMPE; vmolr |= WX_PSR_VM_L2CTL_MPE; } wr32(wx, WX_PSR_VLAN_CTL, vlnctrl); wr32(wx, WX_PSR_CTL, fctrl); wr32(wx, WX_PSR_VM_L2CTL(0), vmolr); if ((features & NETIF_F_HW_VLAN_CTAG_RX) && (features & NETIF_F_HW_VLAN_STAG_RX)) wx_vlan_strip_control(wx, true); else wx_vlan_strip_control(wx, false); } EXPORT_SYMBOL(wx_set_rx_mode); static void wx_set_rx_buffer_len(struct wx *wx) { struct net_device *netdev = wx->netdev; u32 mhadd, max_frame; max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; /* adjust max frame to be at least the size of a standard frame */ if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN); mhadd = rd32(wx, WX_PSR_MAX_SZ); if (max_frame != mhadd) wr32(wx, WX_PSR_MAX_SZ, max_frame); } /** * wx_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ int wx_change_mtu(struct net_device *netdev, int new_mtu) { struct wx *wx = netdev_priv(netdev); netdev->mtu = new_mtu; wx_set_rx_buffer_len(wx); return 0; } EXPORT_SYMBOL(wx_change_mtu); /* Disable the specified rx queue */ void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring) { u8 reg_idx = ring->reg_idx; u32 rxdctl; int ret; /* write value back with RRCFG.EN bit cleared */ wr32m(wx, WX_PX_RR_CFG(reg_idx), WX_PX_RR_CFG_RR_EN, 0); /* the hardware may take up to 100us to really disable the rx queue */ ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN), 10, 100, true, wx, WX_PX_RR_CFG(reg_idx)); if (ret == -ETIMEDOUT) { /* Just for information */ wx_err(wx, "RRCFG.EN on Rx queue %d not cleared within the polling period\n", reg_idx); } } EXPORT_SYMBOL(wx_disable_rx_queue); static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring) { u8 reg_idx = ring->reg_idx; u32 rxdctl; int ret; ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN, 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx)); if (ret == -ETIMEDOUT) { /* Just for information */ wx_err(wx, "RRCFG.EN on Rx queue %d not set within the polling period\n", reg_idx); } } static void wx_configure_srrctl(struct wx *wx, struct wx_ring *rx_ring) { u16 reg_idx = rx_ring->reg_idx; u32 srrctl; srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ | WX_PX_RR_CFG_RR_BUF_SZ | WX_PX_RR_CFG_SPLIT_MODE); /* configure header buffer length, needed for RSC */ srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT; /* configure the packet buffer length */ srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT; wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl); } static void wx_configure_tx_ring(struct wx *wx, struct wx_ring *ring) { u32 txdctl = WX_PX_TR_CFG_ENABLE; u8 reg_idx = ring->reg_idx; u64 tdba = ring->dma; int ret; /* disable queue to avoid issues while updating state */ wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH); WX_WRITE_FLUSH(wx); wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32)); wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba)); /* reset head and tail pointers */ wr32(wx, WX_PX_TR_RP(reg_idx), 0); wr32(wx, WX_PX_TR_WP(reg_idx), 0); ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx); if (ring->count < WX_MAX_TXD) txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT; txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT; /* reinitialize tx_buffer_info */ memset(ring->tx_buffer_info, 0, sizeof(struct wx_tx_buffer) * ring->count); /* enable queue */ wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl); /* poll to verify queue is enabled */ ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE, 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx)); if (ret == -ETIMEDOUT) wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx); } static void wx_configure_rx_ring(struct wx *wx, struct wx_ring *ring) { u16 reg_idx = ring->reg_idx; union wx_rx_desc *rx_desc; u64 rdba = ring->dma; u32 rxdctl; /* disable queue to avoid issues while updating state */ rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx)); wx_disable_rx_queue(wx, ring); wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32)); wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba)); if (ring->count == WX_MAX_RXD) rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT; else rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT; rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT; wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl); /* reset head and tail pointers */ wr32(wx, WX_PX_RR_RP(reg_idx), 0); wr32(wx, WX_PX_RR_WP(reg_idx), 0); ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx); wx_configure_srrctl(wx, ring); /* initialize rx_buffer_info */ memset(ring->rx_buffer_info, 0, sizeof(struct wx_rx_buffer) * ring->count); /* initialize Rx descriptor 0 */ rx_desc = WX_RX_DESC(ring, 0); rx_desc->wb.upper.length = 0; /* enable receive descriptor ring */ wr32m(wx, WX_PX_RR_CFG(reg_idx), WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN); wx_enable_rx_queue(wx, ring); wx_alloc_rx_buffers(ring, wx_desc_unused(ring)); } /** * wx_configure_tx - Configure Transmit Unit after Reset * @wx: pointer to private structure * * Configure the Tx unit of the MAC after a reset. **/ static void wx_configure_tx(struct wx *wx) { u32 i; /* TDM_CTL.TE must be before Tx queues are enabled */ wr32m(wx, WX_TDM_CTL, WX_TDM_CTL_TE, WX_TDM_CTL_TE); /* Setup the HW Tx Head and Tail descriptor pointers */ for (i = 0; i < wx->num_tx_queues; i++) wx_configure_tx_ring(wx, wx->tx_ring[i]); wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10); if (wx->mac.type == wx_mac_em) wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1); /* enable mac transmitter */ wr32m(wx, WX_MAC_TX_CFG, WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE); } static void wx_restore_vlan(struct wx *wx) { u16 vid = 1; wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0); for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID) wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid); } /** * wx_configure_rx - Configure Receive Unit after Reset * @wx: pointer to private structure * * Configure the Rx unit of the MAC after a reset. **/ void wx_configure_rx(struct wx *wx) { u32 psrtype, i; int ret; wx_disable_rx(wx); psrtype = WX_RDB_PL_CFG_L4HDR | WX_RDB_PL_CFG_L3HDR | WX_RDB_PL_CFG_L2HDR | WX_RDB_PL_CFG_TUN_TUNHDR; wr32(wx, WX_RDB_PL_CFG(0), psrtype); /* enable hw crc stripping */ wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP); if (wx->mac.type == wx_mac_sp) { u32 psrctl; /* RSC Setup */ psrctl = rd32(wx, WX_PSR_CTL); psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */ psrctl |= WX_PSR_CTL_RSC_DIS; wr32(wx, WX_PSR_CTL, psrctl); } /* set_rx_buffer_len must be called before ring initialization */ wx_set_rx_buffer_len(wx); /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ for (i = 0; i < wx->num_rx_queues; i++) wx_configure_rx_ring(wx, wx->rx_ring[i]); /* Enable all receives, disable security engine prior to block traffic */ ret = wx_disable_sec_rx_path(wx); if (ret < 0) wx_err(wx, "The register status is abnormal, please check device."); wx_enable_rx(wx); wx_enable_sec_rx_path(wx); } EXPORT_SYMBOL(wx_configure_rx); static void wx_configure_isb(struct wx *wx) { /* set ISB Address */ wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32)); if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma)); } void wx_configure(struct wx *wx) { wx_set_rxpba(wx); wx_configure_port(wx); wx_set_rx_mode(wx->netdev); wx_restore_vlan(wx); wx_enable_sec_rx_path(wx); wx_configure_tx(wx); wx_configure_rx(wx); wx_configure_isb(wx); } EXPORT_SYMBOL(wx_configure); /** * wx_disable_pcie_master - Disable PCI-express master access * @wx: pointer to hardware structure * * Disables PCI-Express master access and verifies there are no pending * requests. **/ int wx_disable_pcie_master(struct wx *wx) { int status = 0; u32 val; /* Always set this bit to ensure any future transactions are blocked */ pci_clear_master(wx->pdev); /* Exit if master requests are blocked */ if (!(rd32(wx, WX_PX_TRANSACTION_PENDING))) return 0; /* Poll for master request bit to clear */ status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT, false, wx, WX_PX_TRANSACTION_PENDING); if (status < 0) wx_err(wx, "PCIe transaction pending bit did not clear.\n"); return status; } EXPORT_SYMBOL(wx_disable_pcie_master); /** * wx_stop_adapter - Generic stop Tx/Rx units * @wx: pointer to hardware structure * * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts, * disables transmit and receive units. The adapter_stopped flag is used by * the shared code and drivers to determine if the adapter is in a stopped * state and should not touch the hardware. **/ int wx_stop_adapter(struct wx *wx) { u16 i; /* Set the adapter_stopped flag so other driver functions stop touching * the hardware */ wx->adapter_stopped = true; /* Disable the receive unit */ wx_disable_rx(wx); /* Set interrupt mask to stop interrupts from being generated */ wx_intr_disable(wx, WX_INTR_ALL); /* Clear any pending interrupts, flush previous writes */ wr32(wx, WX_PX_MISC_IC, 0xffffffff); wr32(wx, WX_BME_CTL, 0x3); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < wx->mac.max_tx_queues; i++) { wr32m(wx, WX_PX_TR_CFG(i), WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE, WX_PX_TR_CFG_SWFLSH); } /* Disable the receive unit by stopping each queue */ for (i = 0; i < wx->mac.max_rx_queues; i++) { wr32m(wx, WX_PX_RR_CFG(i), WX_PX_RR_CFG_RR_EN, 0); } /* flush all queues disables */ WX_WRITE_FLUSH(wx); /* Prevent the PCI-E bus from hanging by disabling PCI-E master * access and verify no pending requests */ return wx_disable_pcie_master(wx); } EXPORT_SYMBOL(wx_stop_adapter); void wx_reset_misc(struct wx *wx) { int i; /* receive packets that size > 2048 */ wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE); /* clear counters on read */ wr32m(wx, WX_MMC_CONTROL, WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD); wr32m(wx, WX_MAC_RX_FLOW_CTRL, WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE); wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR); wr32m(wx, WX_MIS_RST_ST, WX_MIS_RST_ST_RST_INIT, 0x1E00); /* errata 4: initialize mng flex tbl and wakeup flex tbl*/ wr32(wx, WX_PSR_MNG_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0); wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0); wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0); } wr32(wx, WX_PSR_LAN_FLEX_SEL, 0); for (i = 0; i < 16; i++) { wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0); wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0); wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0); } /* set pause frame dst mac addr */ wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001); wr32(wx, WX_RDB_PFCMACDAH, 0x0180); } EXPORT_SYMBOL(wx_reset_misc); /** * wx_get_pcie_msix_counts - Gets MSI-X vector count * @wx: pointer to hardware structure * @msix_count: number of MSI interrupts that can be obtained * @max_msix_count: number of MSI interrupts that mac need * * Read PCIe configuration space, and get the MSI-X vector count from * the capabilities table. **/ int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count) { struct pci_dev *pdev = wx->pdev; struct device *dev = &pdev->dev; int pos; *msix_count = 1; pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); if (!pos) { dev_err(dev, "Unable to find MSI-X Capabilities\n"); return -EINVAL; } pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, msix_count); *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK; /* MSI-X count is zero-based in HW */ *msix_count += 1; if (*msix_count > max_msix_count) *msix_count = max_msix_count; return 0; } EXPORT_SYMBOL(wx_get_pcie_msix_counts); int wx_sw_init(struct wx *wx) { struct pci_dev *pdev = wx->pdev; u32 ssid = 0; int err = 0; wx->vendor_id = pdev->vendor; wx->device_id = pdev->device; wx->revision_id = pdev->revision; wx->oem_svid = pdev->subsystem_vendor; wx->oem_ssid = pdev->subsystem_device; wx->bus.device = PCI_SLOT(pdev->devfn); wx->bus.func = PCI_FUNC(pdev->devfn); if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) { wx->subsystem_vendor_id = pdev->subsystem_vendor; wx->subsystem_device_id = pdev->subsystem_device; } else { err = wx_flash_read_dword(wx, 0xfffdc, &ssid); if (!err) wx->subsystem_device_id = swab16((u16)ssid); return err; } wx->mac_table = kcalloc(wx->mac.num_rar_entries, sizeof(struct wx_mac_addr), GFP_KERNEL); if (!wx->mac_table) { wx_err(wx, "mac_table allocation failed\n"); return -ENOMEM; } return 0; } EXPORT_SYMBOL(wx_sw_init); /** * wx_find_vlvf_slot - find the vlanid or the first empty slot * @wx: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * * return the VLVF index where this VLAN id should be placed * **/ static int wx_find_vlvf_slot(struct wx *wx, u32 vlan) { u32 bits = 0, first_empty_slot = 0; int regindex; /* short cut the special case */ if (vlan == 0) return 0; /* Search for the vlan id in the VLVF entries. Save off the first empty * slot found along the way */ for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) { wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex); bits = rd32(wx, WX_PSR_VLAN_SWC); if (!bits && !(first_empty_slot)) first_empty_slot = regindex; else if ((bits & 0x0FFF) == vlan) break; } if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) { if (first_empty_slot) regindex = first_empty_slot; else regindex = -ENOMEM; } return regindex; } /** * wx_set_vlvf - Set VLAN Pool Filter * @wx: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vind: VMDq output index that maps queue to VLAN id in VFVFB * @vlan_on: boolean flag to turn on/off VLAN in VFVF * @vfta_changed: pointer to boolean flag which indicates whether VFTA * should be changed * * Turn on/off specified bit in VLVF table. **/ static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on, bool *vfta_changed) { int vlvf_index; u32 vt, bits; /* If VT Mode is set * Either vlan_on * make sure the vlan is in VLVF * set the vind bit in the matching VLVFB * Or !vlan_on * clear the pool bit and possibly the vind */ vt = rd32(wx, WX_CFG_PORT_CTL); if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK)) return 0; vlvf_index = wx_find_vlvf_slot(wx, vlan); if (vlvf_index < 0) return vlvf_index; wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index); if (vlan_on) { /* set the pool bit */ if (vind < 32) { bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); bits |= (1 << vind); wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); } else { bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); bits |= (1 << (vind - 32)); wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); } } else { /* clear the pool bit */ if (vind < 32) { bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L); bits &= ~(1 << vind); wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits); bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H); } else { bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H); bits &= ~(1 << (vind - 32)); wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits); bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L); } } if (bits) { wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan)); if (!vlan_on && vfta_changed) *vfta_changed = false; } else { wr32(wx, WX_PSR_VLAN_SWC, 0); } return 0; } /** * wx_set_vfta - Set VLAN filter table * @wx: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vind: VMDq output index that maps queue to VLAN id in VFVFB * @vlan_on: boolean flag to turn on/off VLAN in VFVF * * Turn on/off specified VLAN in the VLAN filter table. **/ static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on) { u32 bitindex, vfta, targetbit; bool vfta_changed = false; int regindex, ret; /* this is a 2 part operation - first the VFTA, then the * VLVF and VLVFB if VT Mode is set * We don't write the VFTA until we know the VLVF part succeeded. */ /* Part 1 * The VFTA is a bitstring made up of 128 32-bit registers * that enable the particular VLAN id, much like the MTA: * bits[11-5]: which register * bits[4-0]: which bit in the register */ regindex = (vlan >> 5) & 0x7F; bitindex = vlan & 0x1F; targetbit = (1 << bitindex); /* errata 5 */ vfta = wx->mac.vft_shadow[regindex]; if (vlan_on) { if (!(vfta & targetbit)) { vfta |= targetbit; vfta_changed = true; } } else { if ((vfta & targetbit)) { vfta &= ~targetbit; vfta_changed = true; } } /* Part 2 * Call wx_set_vlvf to set VLVFB and VLVF */ ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed); if (ret != 0) return ret; if (vfta_changed) wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta); wx->mac.vft_shadow[regindex] = vfta; return 0; } /** * wx_clear_vfta - Clear VLAN filter table * @wx: pointer to hardware structure * * Clears the VLAN filer table, and the VMDq index associated with the filter **/ static void wx_clear_vfta(struct wx *wx) { u32 offset; for (offset = 0; offset < wx->mac.vft_size; offset++) { wr32(wx, WX_PSR_VLAN_TBL(offset), 0); wx->mac.vft_shadow[offset] = 0; } for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) { wr32(wx, WX_PSR_VLAN_SWC_IDX, offset); wr32(wx, WX_PSR_VLAN_SWC, 0); wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0); wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0); } } int wx_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct wx *wx = netdev_priv(netdev); /* add VID to filter table */ wx_set_vfta(wx, vid, VMDQ_P(0), true); set_bit(vid, wx->active_vlans); return 0; } EXPORT_SYMBOL(wx_vlan_rx_add_vid); int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct wx *wx = netdev_priv(netdev); /* remove VID from filter table */ if (vid) wx_set_vfta(wx, vid, VMDQ_P(0), false); clear_bit(vid, wx->active_vlans); return 0; } EXPORT_SYMBOL(wx_vlan_rx_kill_vid); /** * wx_start_hw - Prepare hardware for Tx/Rx * @wx: pointer to hardware structure * * Starts the hardware using the generic start_hw function * and the generation start_hw function. * Then performs revision-specific operations, if any. **/ void wx_start_hw(struct wx *wx) { int i; /* Clear the VLAN filter table */ wx_clear_vfta(wx); WX_WRITE_FLUSH(wx); /* Clear the rate limiters */ for (i = 0; i < wx->mac.max_tx_queues; i++) { wr32(wx, WX_TDM_RP_IDX, i); wr32(wx, WX_TDM_RP_RATE, 0); } } EXPORT_SYMBOL(wx_start_hw); MODULE_LICENSE("GPL");