// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* This contains the functions to handle the platform driver. Copyright (C) 2007-2011 STMicroelectronics Ltd Author: Giuseppe Cavallaro *******************************************************************************/ #include #include #include #include #include #include #include #include "stmmac.h" #include "stmmac_platform.h" #ifdef CONFIG_OF /** * dwmac1000_validate_mcast_bins - validates the number of Multicast filter bins * @dev: struct device of the platform device * @mcast_bins: Multicast filtering bins * Description: * this function validates the number of Multicast filtering bins specified * by the configuration through the device tree. The Synopsys GMAC supports * 64 bins, 128 bins, or 256 bins. "bins" refer to the division of CRC * number space. 64 bins correspond to 6 bits of the CRC, 128 corresponds * to 7 bits, and 256 refers to 8 bits of the CRC. Any other setting is * invalid and will cause the filtering algorithm to use Multicast * promiscuous mode. */ static int dwmac1000_validate_mcast_bins(struct device *dev, int mcast_bins) { int x = mcast_bins; switch (x) { case HASH_TABLE_SIZE: case 128: case 256: break; default: x = 0; dev_info(dev, "Hash table entries set to unexpected value %d\n", mcast_bins); break; } return x; } /** * dwmac1000_validate_ucast_entries - validate the Unicast address entries * @dev: struct device of the platform device * @ucast_entries: number of Unicast address entries * Description: * This function validates the number of Unicast address entries supported * by a particular Synopsys 10/100/1000 controller. The Synopsys controller * supports 1..32, 64, or 128 Unicast filter entries for it's Unicast filter * logic. This function validates a valid, supported configuration is * selected, and defaults to 1 Unicast address if an unsupported * configuration is selected. */ static int dwmac1000_validate_ucast_entries(struct device *dev, int ucast_entries) { int x = ucast_entries; switch (x) { case 1 ... 32: case 64: case 128: break; default: x = 1; dev_info(dev, "Unicast table entries set to unexpected value %d\n", ucast_entries); break; } return x; } /** * stmmac_axi_setup - parse DT parameters for programming the AXI register * @pdev: platform device * Description: * if required, from device-tree the AXI internal register can be tuned * by using platform parameters. */ static struct stmmac_axi *stmmac_axi_setup(struct platform_device *pdev) { struct device_node *np; struct stmmac_axi *axi; np = of_parse_phandle(pdev->dev.of_node, "snps,axi-config", 0); if (!np) return NULL; axi = devm_kzalloc(&pdev->dev, sizeof(*axi), GFP_KERNEL); if (!axi) { of_node_put(np); return ERR_PTR(-ENOMEM); } axi->axi_lpi_en = of_property_read_bool(np, "snps,lpi_en"); axi->axi_xit_frm = of_property_read_bool(np, "snps,xit_frm"); axi->axi_kbbe = of_property_read_bool(np, "snps,axi_kbbe"); axi->axi_fb = of_property_read_bool(np, "snps,axi_fb"); axi->axi_mb = of_property_read_bool(np, "snps,axi_mb"); axi->axi_rb = of_property_read_bool(np, "snps,axi_rb"); if (of_property_read_u32(np, "snps,wr_osr_lmt", &axi->axi_wr_osr_lmt)) axi->axi_wr_osr_lmt = 1; if (of_property_read_u32(np, "snps,rd_osr_lmt", &axi->axi_rd_osr_lmt)) axi->axi_rd_osr_lmt = 1; of_property_read_u32_array(np, "snps,blen", axi->axi_blen, AXI_BLEN); of_node_put(np); return axi; } /** * stmmac_mtl_setup - parse DT parameters for multiple queues configuration * @pdev: platform device * @plat: enet data */ static int stmmac_mtl_setup(struct platform_device *pdev, struct plat_stmmacenet_data *plat) { struct device_node *q_node; struct device_node *rx_node; struct device_node *tx_node; u8 queue = 0; int ret = 0; /* For backwards-compatibility with device trees that don't have any * snps,mtl-rx-config or snps,mtl-tx-config properties, we fall back * to one RX and TX queues each. */ plat->rx_queues_to_use = 1; plat->tx_queues_to_use = 1; /* First Queue must always be in DCB mode. As MTL_QUEUE_DCB = 1 we need * to always set this, otherwise Queue will be classified as AVB * (because MTL_QUEUE_AVB = 0). */ plat->rx_queues_cfg[0].mode_to_use = MTL_QUEUE_DCB; plat->tx_queues_cfg[0].mode_to_use = MTL_QUEUE_DCB; rx_node = of_parse_phandle(pdev->dev.of_node, "snps,mtl-rx-config", 0); if (!rx_node) return ret; tx_node = of_parse_phandle(pdev->dev.of_node, "snps,mtl-tx-config", 0); if (!tx_node) { of_node_put(rx_node); return ret; } /* Processing RX queues common config */ if (of_property_read_u32(rx_node, "snps,rx-queues-to-use", &plat->rx_queues_to_use)) plat->rx_queues_to_use = 1; if (of_property_read_bool(rx_node, "snps,rx-sched-sp")) plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; else if (of_property_read_bool(rx_node, "snps,rx-sched-wsp")) plat->rx_sched_algorithm = MTL_RX_ALGORITHM_WSP; else plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP; /* Processing individual RX queue config */ for_each_child_of_node(rx_node, q_node) { if (queue >= plat->rx_queues_to_use) break; if (of_property_read_bool(q_node, "snps,dcb-algorithm")) plat->rx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB; else if (of_property_read_bool(q_node, "snps,avb-algorithm")) plat->rx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB; else plat->rx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB; if (of_property_read_u32(q_node, "snps,map-to-dma-channel", &plat->rx_queues_cfg[queue].chan)) plat->rx_queues_cfg[queue].chan = queue; /* TODO: Dynamic mapping to be included in the future */ if (of_property_read_u32(q_node, "snps,priority", &plat->rx_queues_cfg[queue].prio)) { plat->rx_queues_cfg[queue].prio = 0; plat->rx_queues_cfg[queue].use_prio = false; } else { plat->rx_queues_cfg[queue].use_prio = true; } /* RX queue specific packet type routing */ if (of_property_read_bool(q_node, "snps,route-avcp")) plat->rx_queues_cfg[queue].pkt_route = PACKET_AVCPQ; else if (of_property_read_bool(q_node, "snps,route-ptp")) plat->rx_queues_cfg[queue].pkt_route = PACKET_PTPQ; else if (of_property_read_bool(q_node, "snps,route-dcbcp")) plat->rx_queues_cfg[queue].pkt_route = PACKET_DCBCPQ; else if (of_property_read_bool(q_node, "snps,route-up")) plat->rx_queues_cfg[queue].pkt_route = PACKET_UPQ; else if (of_property_read_bool(q_node, "snps,route-multi-broad")) plat->rx_queues_cfg[queue].pkt_route = PACKET_MCBCQ; else plat->rx_queues_cfg[queue].pkt_route = 0x0; queue++; } if (queue != plat->rx_queues_to_use) { ret = -EINVAL; dev_err(&pdev->dev, "Not all RX queues were configured\n"); goto out; } /* Processing TX queues common config */ if (of_property_read_u32(tx_node, "snps,tx-queues-to-use", &plat->tx_queues_to_use)) plat->tx_queues_to_use = 1; if (of_property_read_bool(tx_node, "snps,tx-sched-wrr")) plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR; else if (of_property_read_bool(tx_node, "snps,tx-sched-wfq")) plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WFQ; else if (of_property_read_bool(tx_node, "snps,tx-sched-dwrr")) plat->tx_sched_algorithm = MTL_TX_ALGORITHM_DWRR; else plat->tx_sched_algorithm = MTL_TX_ALGORITHM_SP; queue = 0; /* Processing individual TX queue config */ for_each_child_of_node(tx_node, q_node) { if (queue >= plat->tx_queues_to_use) break; if (of_property_read_u32(q_node, "snps,weight", &plat->tx_queues_cfg[queue].weight)) plat->tx_queues_cfg[queue].weight = 0x10 + queue; if (of_property_read_bool(q_node, "snps,dcb-algorithm")) { plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB; } else if (of_property_read_bool(q_node, "snps,avb-algorithm")) { plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB; /* Credit Base Shaper parameters used by AVB */ if (of_property_read_u32(q_node, "snps,send_slope", &plat->tx_queues_cfg[queue].send_slope)) plat->tx_queues_cfg[queue].send_slope = 0x0; if (of_property_read_u32(q_node, "snps,idle_slope", &plat->tx_queues_cfg[queue].idle_slope)) plat->tx_queues_cfg[queue].idle_slope = 0x0; if (of_property_read_u32(q_node, "snps,high_credit", &plat->tx_queues_cfg[queue].high_credit)) plat->tx_queues_cfg[queue].high_credit = 0x0; if (of_property_read_u32(q_node, "snps,low_credit", &plat->tx_queues_cfg[queue].low_credit)) plat->tx_queues_cfg[queue].low_credit = 0x0; } else { plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB; } if (of_property_read_u32(q_node, "snps,priority", &plat->tx_queues_cfg[queue].prio)) { plat->tx_queues_cfg[queue].prio = 0; plat->tx_queues_cfg[queue].use_prio = false; } else { plat->tx_queues_cfg[queue].use_prio = true; } queue++; } if (queue != plat->tx_queues_to_use) { ret = -EINVAL; dev_err(&pdev->dev, "Not all TX queues were configured\n"); goto out; } out: of_node_put(rx_node); of_node_put(tx_node); of_node_put(q_node); return ret; } /** * stmmac_dt_phy - parse device-tree driver parameters to allocate PHY resources * @plat: driver data platform structure * @np: device tree node * @dev: device pointer * Description: * The mdio bus will be allocated in case of a phy transceiver is on board; * it will be NULL if the fixed-link is configured. * If there is the "snps,dwmac-mdio" sub-node the mdio will be allocated * in any case (for DSA, mdio must be registered even if fixed-link). * The table below sums the supported configurations: * ------------------------------- * snps,phy-addr | Y * ------------------------------- * phy-handle | Y * ------------------------------- * fixed-link | N * ------------------------------- * snps,dwmac-mdio | * even if | Y * fixed-link | * ------------------------------- * * It returns 0 in case of success otherwise -ENODEV. */ static int stmmac_dt_phy(struct plat_stmmacenet_data *plat, struct device_node *np, struct device *dev) { bool mdio = !of_phy_is_fixed_link(np); static const struct of_device_id need_mdio_ids[] = { { .compatible = "snps,dwc-qos-ethernet-4.10" }, {}, }; if (of_match_node(need_mdio_ids, np)) { plat->mdio_node = of_get_child_by_name(np, "mdio"); } else { /** * If snps,dwmac-mdio is passed from DT, always register * the MDIO */ for_each_child_of_node(np, plat->mdio_node) { if (of_device_is_compatible(plat->mdio_node, "snps,dwmac-mdio")) break; } } if (plat->mdio_node) { dev_dbg(dev, "Found MDIO subnode\n"); mdio = true; } if (mdio) { plat->mdio_bus_data = devm_kzalloc(dev, sizeof(struct stmmac_mdio_bus_data), GFP_KERNEL); if (!plat->mdio_bus_data) return -ENOMEM; plat->mdio_bus_data->needs_reset = true; } return 0; } /** * stmmac_of_get_mac_mode - retrieves the interface of the MAC * @np: - device-tree node * Description: * Similar to `of_get_phy_mode()`, this function will retrieve (from * the device-tree) the interface mode on the MAC side. This assumes * that there is mode converter in-between the MAC & PHY * (e.g. GMII-to-RGMII). */ static int stmmac_of_get_mac_mode(struct device_node *np) { const char *pm; int err, i; err = of_property_read_string(np, "mac-mode", &pm); if (err < 0) return err; for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) { if (!strcasecmp(pm, phy_modes(i))) return i; } return -ENODEV; } /** * stmmac_probe_config_dt - parse device-tree driver parameters * @pdev: platform_device structure * @mac: MAC address to use * Description: * this function is to read the driver parameters from device-tree and * set some private fields that will be used by the main at runtime. */ struct plat_stmmacenet_data * stmmac_probe_config_dt(struct platform_device *pdev, u8 *mac) { struct device_node *np = pdev->dev.of_node; struct plat_stmmacenet_data *plat; struct stmmac_dma_cfg *dma_cfg; void *ret; int rc; plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL); if (!plat) return ERR_PTR(-ENOMEM); rc = of_get_mac_address(np, mac); if (rc) { if (rc == -EPROBE_DEFER) return ERR_PTR(rc); eth_zero_addr(mac); } plat->phy_interface = device_get_phy_mode(&pdev->dev); if (plat->phy_interface < 0) return ERR_PTR(plat->phy_interface); plat->interface = stmmac_of_get_mac_mode(np); if (plat->interface < 0) plat->interface = plat->phy_interface; /* Some wrapper drivers still rely on phy_node. Let's save it while * they are not converted to phylink. */ plat->phy_node = of_parse_phandle(np, "phy-handle", 0); /* PHYLINK automatically parses the phy-handle property */ plat->phylink_node = np; /* Get max speed of operation from device tree */ if (of_property_read_u32(np, "max-speed", &plat->max_speed)) plat->max_speed = -1; plat->bus_id = of_alias_get_id(np, "ethernet"); if (plat->bus_id < 0) plat->bus_id = 0; /* Default to phy auto-detection */ plat->phy_addr = -1; /* Default to get clk_csr from stmmac_clk_crs_set(), * or get clk_csr from device tree. */ plat->clk_csr = -1; of_property_read_u32(np, "clk_csr", &plat->clk_csr); /* "snps,phy-addr" is not a standard property. Mark it as deprecated * and warn of its use. Remove this when phy node support is added. */ if (of_property_read_u32(np, "snps,phy-addr", &plat->phy_addr) == 0) dev_warn(&pdev->dev, "snps,phy-addr property is deprecated\n"); /* To Configure PHY by using all device-tree supported properties */ rc = stmmac_dt_phy(plat, np, &pdev->dev); if (rc) return ERR_PTR(rc); of_property_read_u32(np, "tx-fifo-depth", &plat->tx_fifo_size); of_property_read_u32(np, "rx-fifo-depth", &plat->rx_fifo_size); plat->force_sf_dma_mode = of_property_read_bool(np, "snps,force_sf_dma_mode"); plat->en_tx_lpi_clockgating = of_property_read_bool(np, "snps,en-tx-lpi-clockgating"); /* Set the maxmtu to a default of JUMBO_LEN in case the * parameter is not present in the device tree. */ plat->maxmtu = JUMBO_LEN; /* Set default value for multicast hash bins */ plat->multicast_filter_bins = HASH_TABLE_SIZE; /* Set default value for unicast filter entries */ plat->unicast_filter_entries = 1; /* * Currently only the properties needed on SPEAr600 * are provided. All other properties should be added * once needed on other platforms. */ if (of_device_is_compatible(np, "st,spear600-gmac") || of_device_is_compatible(np, "snps,dwmac-3.50a") || of_device_is_compatible(np, "snps,dwmac-3.70a") || of_device_is_compatible(np, "snps,dwmac")) { /* Note that the max-frame-size parameter as defined in the * ePAPR v1.1 spec is defined as max-frame-size, it's * actually used as the IEEE definition of MAC Client * data, or MTU. The ePAPR specification is confusing as * the definition is max-frame-size, but usage examples * are clearly MTUs */ of_property_read_u32(np, "max-frame-size", &plat->maxmtu); of_property_read_u32(np, "snps,multicast-filter-bins", &plat->multicast_filter_bins); of_property_read_u32(np, "snps,perfect-filter-entries", &plat->unicast_filter_entries); plat->unicast_filter_entries = dwmac1000_validate_ucast_entries( &pdev->dev, plat->unicast_filter_entries); plat->multicast_filter_bins = dwmac1000_validate_mcast_bins( &pdev->dev, plat->multicast_filter_bins); plat->has_gmac = 1; plat->pmt = 1; } if (of_device_is_compatible(np, "snps,dwmac-4.00") || of_device_is_compatible(np, "snps,dwmac-4.10a") || of_device_is_compatible(np, "snps,dwmac-4.20a") || of_device_is_compatible(np, "snps,dwmac-5.10a")) { plat->has_gmac4 = 1; plat->has_gmac = 0; plat->pmt = 1; plat->tso_en = of_property_read_bool(np, "snps,tso"); } if (of_device_is_compatible(np, "snps,dwmac-3.610") || of_device_is_compatible(np, "snps,dwmac-3.710")) { plat->enh_desc = 1; plat->bugged_jumbo = 1; plat->force_sf_dma_mode = 1; } if (of_device_is_compatible(np, "snps,dwxgmac")) { plat->has_xgmac = 1; plat->pmt = 1; plat->tso_en = of_property_read_bool(np, "snps,tso"); } dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*dma_cfg), GFP_KERNEL); if (!dma_cfg) { stmmac_remove_config_dt(pdev, plat); return ERR_PTR(-ENOMEM); } plat->dma_cfg = dma_cfg; of_property_read_u32(np, "snps,pbl", &dma_cfg->pbl); if (!dma_cfg->pbl) dma_cfg->pbl = DEFAULT_DMA_PBL; of_property_read_u32(np, "snps,txpbl", &dma_cfg->txpbl); of_property_read_u32(np, "snps,rxpbl", &dma_cfg->rxpbl); dma_cfg->pblx8 = !of_property_read_bool(np, "snps,no-pbl-x8"); dma_cfg->aal = of_property_read_bool(np, "snps,aal"); dma_cfg->fixed_burst = of_property_read_bool(np, "snps,fixed-burst"); dma_cfg->mixed_burst = of_property_read_bool(np, "snps,mixed-burst"); plat->force_thresh_dma_mode = of_property_read_bool(np, "snps,force_thresh_dma_mode"); if (plat->force_thresh_dma_mode) { plat->force_sf_dma_mode = 0; dev_warn(&pdev->dev, "force_sf_dma_mode is ignored if force_thresh_dma_mode is set.\n"); } of_property_read_u32(np, "snps,ps-speed", &plat->mac_port_sel_speed); plat->axi = stmmac_axi_setup(pdev); rc = stmmac_mtl_setup(pdev, plat); if (rc) { stmmac_remove_config_dt(pdev, plat); return ERR_PTR(rc); } /* clock setup */ if (!of_device_is_compatible(np, "snps,dwc-qos-ethernet-4.10")) { plat->stmmac_clk = devm_clk_get(&pdev->dev, STMMAC_RESOURCE_NAME); if (IS_ERR(plat->stmmac_clk)) { dev_warn(&pdev->dev, "Cannot get CSR clock\n"); plat->stmmac_clk = NULL; } clk_prepare_enable(plat->stmmac_clk); } plat->pclk = devm_clk_get_optional(&pdev->dev, "pclk"); if (IS_ERR(plat->pclk)) { ret = plat->pclk; goto error_pclk_get; } clk_prepare_enable(plat->pclk); /* Fall-back to main clock in case of no PTP ref is passed */ plat->clk_ptp_ref = devm_clk_get(&pdev->dev, "ptp_ref"); if (IS_ERR(plat->clk_ptp_ref)) { plat->clk_ptp_rate = clk_get_rate(plat->stmmac_clk); plat->clk_ptp_ref = NULL; dev_info(&pdev->dev, "PTP uses main clock\n"); } else { plat->clk_ptp_rate = clk_get_rate(plat->clk_ptp_ref); dev_dbg(&pdev->dev, "PTP rate %d\n", plat->clk_ptp_rate); } plat->stmmac_rst = devm_reset_control_get_optional(&pdev->dev, STMMAC_RESOURCE_NAME); if (IS_ERR(plat->stmmac_rst)) { ret = plat->stmmac_rst; goto error_hw_init; } plat->stmmac_ahb_rst = devm_reset_control_get_optional_shared( &pdev->dev, "ahb"); if (IS_ERR(plat->stmmac_ahb_rst)) { ret = plat->stmmac_ahb_rst; goto error_hw_init; } return plat; error_hw_init: clk_disable_unprepare(plat->pclk); error_pclk_get: clk_disable_unprepare(plat->stmmac_clk); return ret; } /** * stmmac_remove_config_dt - undo the effects of stmmac_probe_config_dt() * @pdev: platform_device structure * @plat: driver data platform structure * * Release resources claimed by stmmac_probe_config_dt(). */ void stmmac_remove_config_dt(struct platform_device *pdev, struct plat_stmmacenet_data *plat) { clk_disable_unprepare(plat->stmmac_clk); clk_disable_unprepare(plat->pclk); of_node_put(plat->phy_node); of_node_put(plat->mdio_node); } #else struct plat_stmmacenet_data * stmmac_probe_config_dt(struct platform_device *pdev, u8 *mac) { return ERR_PTR(-EINVAL); } void stmmac_remove_config_dt(struct platform_device *pdev, struct plat_stmmacenet_data *plat) { } #endif /* CONFIG_OF */ EXPORT_SYMBOL_GPL(stmmac_probe_config_dt); EXPORT_SYMBOL_GPL(stmmac_remove_config_dt); int stmmac_get_platform_resources(struct platform_device *pdev, struct stmmac_resources *stmmac_res) { memset(stmmac_res, 0, sizeof(*stmmac_res)); /* Get IRQ information early to have an ability to ask for deferred * probe if needed before we went too far with resource allocation. */ stmmac_res->irq = platform_get_irq_byname(pdev, "macirq"); if (stmmac_res->irq < 0) return stmmac_res->irq; /* On some platforms e.g. SPEAr the wake up irq differs from the mac irq * The external wake up irq can be passed through the platform code * named as "eth_wake_irq" * * In case the wake up interrupt is not passed from the platform * so the driver will continue to use the mac irq (ndev->irq) */ stmmac_res->wol_irq = platform_get_irq_byname_optional(pdev, "eth_wake_irq"); if (stmmac_res->wol_irq < 0) { if (stmmac_res->wol_irq == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(&pdev->dev, "IRQ eth_wake_irq not found\n"); stmmac_res->wol_irq = stmmac_res->irq; } stmmac_res->lpi_irq = platform_get_irq_byname_optional(pdev, "eth_lpi"); if (stmmac_res->lpi_irq < 0) { if (stmmac_res->lpi_irq == -EPROBE_DEFER) return -EPROBE_DEFER; dev_info(&pdev->dev, "IRQ eth_lpi not found\n"); } stmmac_res->addr = devm_platform_ioremap_resource(pdev, 0); return PTR_ERR_OR_ZERO(stmmac_res->addr); } EXPORT_SYMBOL_GPL(stmmac_get_platform_resources); /** * stmmac_pltfr_remove * @pdev: platform device pointer * Description: this function calls the main to free the net resources * and calls the platforms hook and release the resources (e.g. mem). */ int stmmac_pltfr_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct stmmac_priv *priv = netdev_priv(ndev); struct plat_stmmacenet_data *plat = priv->plat; int ret = stmmac_dvr_remove(&pdev->dev); if (plat->exit) plat->exit(pdev, plat->bsp_priv); stmmac_remove_config_dt(pdev, plat); return ret; } EXPORT_SYMBOL_GPL(stmmac_pltfr_remove); /** * stmmac_pltfr_suspend * @dev: device pointer * Description: this function is invoked when suspend the driver and it direcly * call the main suspend function and then, if required, on some platform, it * can call an exit helper. */ static int __maybe_unused stmmac_pltfr_suspend(struct device *dev) { int ret; struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); struct platform_device *pdev = to_platform_device(dev); ret = stmmac_suspend(dev); if (priv->plat->exit) priv->plat->exit(pdev, priv->plat->bsp_priv); return ret; } /** * stmmac_pltfr_resume * @dev: device pointer * Description: this function is invoked when resume the driver before calling * the main resume function, on some platforms, it can call own init helper * if required. */ static int __maybe_unused stmmac_pltfr_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); struct platform_device *pdev = to_platform_device(dev); if (priv->plat->init) priv->plat->init(pdev, priv->plat->bsp_priv); return stmmac_resume(dev); } static int __maybe_unused stmmac_runtime_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); stmmac_bus_clks_config(priv, false); return 0; } static int __maybe_unused stmmac_runtime_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); return stmmac_bus_clks_config(priv, true); } const struct dev_pm_ops stmmac_pltfr_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stmmac_pltfr_suspend, stmmac_pltfr_resume) SET_RUNTIME_PM_OPS(stmmac_runtime_suspend, stmmac_runtime_resume, NULL) }; EXPORT_SYMBOL_GPL(stmmac_pltfr_pm_ops); MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet platform support"); MODULE_AUTHOR("Giuseppe Cavallaro "); MODULE_LICENSE("GPL");