// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ #include #include #include #include #include "../nfp_app.h" #include "../nfp_net.h" #include "../nfp_net_dp.h" #include "../nfp_net_xsk.h" #include "../crypto/crypto.h" #include "../crypto/fw.h" #include "nfd3.h" /* Transmit processing * * One queue controller peripheral queue is used for transmit. The * driver en-queues packets for transmit by advancing the write * pointer. The device indicates that packets have transmitted by * advancing the read pointer. The driver maintains a local copy of * the read and write pointer in @struct nfp_net_tx_ring. The driver * keeps @wr_p in sync with the queue controller write pointer and can * determine how many packets have been transmitted by comparing its * copy of the read pointer @rd_p with the read pointer maintained by * the queue controller peripheral. */ /* Wrappers for deciding when to stop and restart TX queues */ static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) { return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); } static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) { return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); } /** * nfp_nfd3_tx_ring_stop() - stop tx ring * @nd_q: netdev queue * @tx_ring: driver tx queue structure * * Safely stop TX ring. Remember that while we are running .start_xmit() * someone else may be cleaning the TX ring completions so we need to be * extra careful here. */ static void nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q, struct nfp_net_tx_ring *tx_ring) { netif_tx_stop_queue(nd_q); /* We can race with the TX completion out of NAPI so recheck */ smp_mb(); if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring))) netif_tx_start_queue(nd_q); } /** * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO * @r_vec: per-ring structure * @txbuf: Pointer to driver soft TX descriptor * @txd: Pointer to HW TX descriptor * @skb: Pointer to SKB * @md_bytes: Prepend length * * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. * Return error on packet header greater than maximum supported LSO header size. */ static void nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes) { u32 l3_offset, l4_offset, hdrlen; u16 mss; if (!skb_is_gso(skb)) return; if (!skb->encapsulation) { l3_offset = skb_network_offset(skb); l4_offset = skb_transport_offset(skb); hdrlen = skb_tcp_all_headers(skb); } else { l3_offset = skb_inner_network_offset(skb); l4_offset = skb_inner_transport_offset(skb); hdrlen = skb_inner_tcp_all_headers(skb); } txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK; txd->l3_offset = l3_offset - md_bytes; txd->l4_offset = l4_offset - md_bytes; txd->lso_hdrlen = hdrlen - md_bytes; txd->mss = cpu_to_le16(mss); txd->flags |= NFD3_DESC_TX_LSO; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_lso++; u64_stats_update_end(&r_vec->tx_sync); } /** * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor * @dp: NFP Net data path struct * @r_vec: per-ring structure * @txbuf: Pointer to driver soft TX descriptor * @txd: Pointer to TX descriptor * @skb: Pointer to SKB * * This function sets the TX checksum flags in the TX descriptor based * on the configuration and the protocol of the packet to be transmitted. */ static void nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb) { struct ipv6hdr *ipv6h; struct iphdr *iph; u8 l4_hdr; if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) return; if (skb->ip_summed != CHECKSUM_PARTIAL) return; txd->flags |= NFD3_DESC_TX_CSUM; if (skb->encapsulation) txd->flags |= NFD3_DESC_TX_ENCAP; iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); if (iph->version == 4) { txd->flags |= NFD3_DESC_TX_IP4_CSUM; l4_hdr = iph->protocol; } else if (ipv6h->version == 6) { l4_hdr = ipv6h->nexthdr; } else { nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); return; } switch (l4_hdr) { case IPPROTO_TCP: txd->flags |= NFD3_DESC_TX_TCP_CSUM; break; case IPPROTO_UDP: txd->flags |= NFD3_DESC_TX_UDP_CSUM; break; default: nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); return; } u64_stats_update_begin(&r_vec->tx_sync); if (skb->encapsulation) r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; else r_vec->hw_csum_tx += txbuf->pkt_cnt; u64_stats_update_end(&r_vec->tx_sync); } static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb, u64 tls_handle, bool *ipsec) { struct metadata_dst *md_dst = skb_metadata_dst(skb); struct nfp_ipsec_offload offload_info; unsigned char *data; bool vlan_insert; u32 meta_id = 0; int md_bytes; #ifdef CONFIG_NFP_NET_IPSEC if (xfrm_offload(skb)) *ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info); #endif if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) md_dst = NULL; vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2); if (!(md_dst || tls_handle || vlan_insert || *ipsec)) return 0; md_bytes = sizeof(meta_id) + (!!md_dst ? NFP_NET_META_PORTID_SIZE : 0) + (!!tls_handle ? NFP_NET_META_CONN_HANDLE_SIZE : 0) + (vlan_insert ? NFP_NET_META_VLAN_SIZE : 0) + (*ipsec ? NFP_NET_META_IPSEC_FIELD_SIZE : 0); if (unlikely(skb_cow_head(skb, md_bytes))) return -ENOMEM; data = skb_push(skb, md_bytes) + md_bytes; if (md_dst) { data -= NFP_NET_META_PORTID_SIZE; put_unaligned_be32(md_dst->u.port_info.port_id, data); meta_id = NFP_NET_META_PORTID; } if (tls_handle) { /* conn handle is opaque, we just use u64 to be able to quickly * compare it to zero */ data -= NFP_NET_META_CONN_HANDLE_SIZE; memcpy(data, &tls_handle, sizeof(tls_handle)); meta_id <<= NFP_NET_META_FIELD_SIZE; meta_id |= NFP_NET_META_CONN_HANDLE; } if (vlan_insert) { data -= NFP_NET_META_VLAN_SIZE; /* data type of skb->vlan_proto is __be16 * so it fills metadata without calling put_unaligned_be16 */ memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto)); put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto)); meta_id <<= NFP_NET_META_FIELD_SIZE; meta_id |= NFP_NET_META_VLAN; } if (*ipsec) { data -= NFP_NET_META_IPSEC_SIZE; put_unaligned_be32(offload_info.seq_hi, data); data -= NFP_NET_META_IPSEC_SIZE; put_unaligned_be32(offload_info.seq_low, data); data -= NFP_NET_META_IPSEC_SIZE; put_unaligned_be32(offload_info.handle - 1, data); meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE; meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC; } data -= sizeof(meta_id); put_unaligned_be32(meta_id, data); return md_bytes; } /** * nfp_nfd3_tx() - Main transmit entry point * @skb: SKB to transmit * @netdev: netdev structure * * Return: NETDEV_TX_OK on success. */ netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); int f, nr_frags, wr_idx, md_bytes; struct nfp_net_tx_ring *tx_ring; struct nfp_net_r_vector *r_vec; struct nfp_nfd3_tx_buf *txbuf; struct nfp_nfd3_tx_desc *txd; struct netdev_queue *nd_q; const skb_frag_t *frag; struct nfp_net_dp *dp; dma_addr_t dma_addr; unsigned int fsize; u64 tls_handle = 0; bool ipsec = false; u16 qidx; dp = &nn->dp; qidx = skb_get_queue_mapping(skb); tx_ring = &dp->tx_rings[qidx]; r_vec = tx_ring->r_vec; nr_frags = skb_shinfo(skb)->nr_frags; if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", qidx, tx_ring->wr_p, tx_ring->rd_p); nd_q = netdev_get_tx_queue(dp->netdev, qidx); netif_tx_stop_queue(nd_q); nfp_net_tx_xmit_more_flush(tx_ring); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_busy++; u64_stats_update_end(&r_vec->tx_sync); return NETDEV_TX_BUSY; } skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); if (unlikely(!skb)) { nfp_net_tx_xmit_more_flush(tx_ring); return NETDEV_TX_OK; } md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec); if (unlikely(md_bytes < 0)) goto err_flush; /* Start with the head skbuf */ dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_dma_err; wr_idx = D_IDX(tx_ring, tx_ring->wr_p); /* Stash the soft descriptor of the head then initialize it */ txbuf = &tx_ring->txbufs[wr_idx]; txbuf->skb = skb; txbuf->dma_addr = dma_addr; txbuf->fidx = -1; txbuf->pkt_cnt = 1; txbuf->real_len = skb->len; /* Build TX descriptor */ txd = &tx_ring->txds[wr_idx]; txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes; txd->dma_len = cpu_to_le16(skb_headlen(skb)); nfp_desc_set_dma_addr_40b(txd, dma_addr); txd->data_len = cpu_to_le16(skb->len); txd->flags = 0; txd->mss = 0; txd->lso_hdrlen = 0; /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes); nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb); if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { txd->flags |= NFD3_DESC_TX_VLAN; txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); } if (ipsec) nfp_nfd3_ipsec_tx(txd, skb); /* Gather DMA */ if (nr_frags > 0) { __le64 second_half; /* all descs must match except for in addr, length and eop */ second_half = txd->vals8[1]; for (f = 0; f < nr_frags; f++) { frag = &skb_shinfo(skb)->frags[f]; fsize = skb_frag_size(frag); dma_addr = skb_frag_dma_map(dp->dev, frag, 0, fsize, DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_unmap; wr_idx = D_IDX(tx_ring, wr_idx + 1); tx_ring->txbufs[wr_idx].skb = skb; tx_ring->txbufs[wr_idx].dma_addr = dma_addr; tx_ring->txbufs[wr_idx].fidx = f; txd = &tx_ring->txds[wr_idx]; txd->dma_len = cpu_to_le16(fsize); nfp_desc_set_dma_addr_40b(txd, dma_addr); txd->offset_eop = md_bytes | ((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0); txd->vals8[1] = second_half; } u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_gather++; u64_stats_update_end(&r_vec->tx_sync); } skb_tx_timestamp(skb); nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); tx_ring->wr_p += nr_frags + 1; if (nfp_nfd3_tx_ring_should_stop(tx_ring)) nfp_nfd3_tx_ring_stop(nd_q, tx_ring); tx_ring->wr_ptr_add += nr_frags + 1; if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) nfp_net_tx_xmit_more_flush(tx_ring); return NETDEV_TX_OK; err_unmap: while (--f >= 0) { frag = &skb_shinfo(skb)->frags[f]; dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); tx_ring->txbufs[wr_idx].skb = NULL; tx_ring->txbufs[wr_idx].dma_addr = 0; tx_ring->txbufs[wr_idx].fidx = -2; wr_idx = wr_idx - 1; if (wr_idx < 0) wr_idx += tx_ring->cnt; } dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, skb_headlen(skb), DMA_TO_DEVICE); tx_ring->txbufs[wr_idx].skb = NULL; tx_ring->txbufs[wr_idx].dma_addr = 0; tx_ring->txbufs[wr_idx].fidx = -2; err_dma_err: nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); err_flush: nfp_net_tx_xmit_more_flush(tx_ring); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); nfp_net_tls_tx_undo(skb, tls_handle); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /** * nfp_nfd3_tx_complete() - Handled completed TX packets * @tx_ring: TX ring structure * @budget: NAPI budget (only used as bool to determine if in NAPI context) */ void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; u32 done_pkts = 0, done_bytes = 0; struct netdev_queue *nd_q; u32 qcp_rd_p; int todo; if (tx_ring->wr_p == tx_ring->rd_p) return; /* Work out how many descriptors have been transmitted */ qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); if (qcp_rd_p == tx_ring->qcp_rd_p) return; todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); while (todo--) { const skb_frag_t *frag; struct nfp_nfd3_tx_buf *tx_buf; struct sk_buff *skb; int fidx, nr_frags; int idx; idx = D_IDX(tx_ring, tx_ring->rd_p++); tx_buf = &tx_ring->txbufs[idx]; skb = tx_buf->skb; if (!skb) continue; nr_frags = skb_shinfo(skb)->nr_frags; fidx = tx_buf->fidx; if (fidx == -1) { /* unmap head */ dma_unmap_single(dp->dev, tx_buf->dma_addr, skb_headlen(skb), DMA_TO_DEVICE); done_pkts += tx_buf->pkt_cnt; done_bytes += tx_buf->real_len; } else { /* unmap fragment */ frag = &skb_shinfo(skb)->frags[fidx]; dma_unmap_page(dp->dev, tx_buf->dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); } /* check for last gather fragment */ if (fidx == nr_frags - 1) napi_consume_skb(skb, budget); tx_buf->dma_addr = 0; tx_buf->skb = NULL; tx_buf->fidx = -2; } tx_ring->qcp_rd_p = qcp_rd_p; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_bytes += done_bytes; r_vec->tx_pkts += done_pkts; u64_stats_update_end(&r_vec->tx_sync); if (!dp->netdev) return; nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); if (nfp_nfd3_tx_ring_should_wake(tx_ring)) { /* Make sure TX thread will see updated tx_ring->rd_p */ smp_mb(); if (unlikely(netif_tx_queue_stopped(nd_q))) netif_tx_wake_queue(nd_q); } WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); } static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; u32 done_pkts = 0, done_bytes = 0; bool done_all; int idx, todo; u32 qcp_rd_p; /* Work out how many descriptors have been transmitted */ qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); if (qcp_rd_p == tx_ring->qcp_rd_p) return true; todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); done_pkts = todo; while (todo--) { idx = D_IDX(tx_ring, tx_ring->rd_p); tx_ring->rd_p++; done_bytes += tx_ring->txbufs[idx].real_len; } u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_bytes += done_bytes; r_vec->tx_pkts += done_pkts; u64_stats_update_end(&r_vec->tx_sync); WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); return done_all; } /* Receive processing */ static void * nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) { void *frag; if (!dp->xdp_prog) { frag = napi_alloc_frag(dp->fl_bufsz); if (unlikely(!frag)) return NULL; } else { struct page *page; page = dev_alloc_page(); if (unlikely(!page)) return NULL; frag = page_address(page); } *dma_addr = nfp_net_dma_map_rx(dp, frag); if (dma_mapping_error(dp->dev, *dma_addr)) { nfp_net_free_frag(frag, dp->xdp_prog); nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); return NULL; } return frag; } /** * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings * @dp: NFP Net data path struct * @rx_ring: RX ring structure * @frag: page fragment buffer * @dma_addr: DMA address of skb mapping */ static void nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, void *frag, dma_addr_t dma_addr) { unsigned int wr_idx; wr_idx = D_IDX(rx_ring, rx_ring->wr_p); nfp_net_dma_sync_dev_rx(dp, dma_addr); /* Stash SKB and DMA address away */ rx_ring->rxbufs[wr_idx].frag = frag; rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; /* Fill freelist descriptor */ rx_ring->rxds[wr_idx].fld.reserved = 0; rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; /* DMA address is expanded to 48-bit width in freelist for NFP3800, * so the *_48b macro is used accordingly, it's also OK to fill * a 40-bit address since the top 8 bits are get set to 0. */ nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld, dma_addr + dp->rx_dma_off); rx_ring->wr_p++; if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { /* Update write pointer of the freelist queue. Make * sure all writes are flushed before telling the hardware. */ wmb(); nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); } } /** * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW * @dp: NFP Net data path struct * @rx_ring: RX ring to fill */ void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) { unsigned int i; if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) return nfp_net_xsk_rx_ring_fill_freelist(rx_ring); for (i = 0; i < rx_ring->cnt - 1; i++) nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, rx_ring->rxbufs[i].dma_addr); } /** * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors * @flags: RX descriptor flags field in CPU byte order */ static int nfp_nfd3_rx_csum_has_errors(u16 flags) { u16 csum_all_checked, csum_all_ok; csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); } /** * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags * @dp: NFP Net data path struct * @r_vec: per-ring structure * @rxd: Pointer to RX descriptor * @meta: Parsed metadata prepend * @skb: Pointer to SKB */ void nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, const struct nfp_net_rx_desc *rxd, const struct nfp_meta_parsed *meta, struct sk_buff *skb) { skb_checksum_none_assert(skb); if (!(dp->netdev->features & NETIF_F_RXCSUM)) return; if (meta->csum_type) { skb->ip_summed = meta->csum_type; skb->csum = meta->csum; u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_complete++; u64_stats_update_end(&r_vec->rx_sync); return; } if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_error++; u64_stats_update_end(&r_vec->rx_sync); return; } /* Assume that the firmware will never report inner CSUM_OK unless outer * L4 headers were successfully parsed. FW will always report zero UDP * checksum as CSUM_OK. */ if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_ok++; u64_stats_update_end(&r_vec->rx_sync); } if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_inner_ok++; u64_stats_update_end(&r_vec->rx_sync); } } static void nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, unsigned int type, __be32 *hash) { if (!(netdev->features & NETIF_F_RXHASH)) return; switch (type) { case NFP_NET_RSS_IPV4: case NFP_NET_RSS_IPV6: case NFP_NET_RSS_IPV6_EX: meta->hash_type = PKT_HASH_TYPE_L3; break; default: meta->hash_type = PKT_HASH_TYPE_L4; break; } meta->hash = get_unaligned_be32(hash); } static void nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, void *data, struct nfp_net_rx_desc *rxd) { struct nfp_net_rx_hash *rx_hash = data; if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) return; nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), &rx_hash->hash); } bool nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, void *data, void *pkt, unsigned int pkt_len, int meta_len) { u32 meta_info, vlan_info; meta_info = get_unaligned_be32(data); data += 4; while (meta_info) { switch (meta_info & NFP_NET_META_FIELD_MASK) { case NFP_NET_META_HASH: meta_info >>= NFP_NET_META_FIELD_SIZE; nfp_nfd3_set_hash(netdev, meta, meta_info & NFP_NET_META_FIELD_MASK, (__be32 *)data); data += 4; break; case NFP_NET_META_MARK: meta->mark = get_unaligned_be32(data); data += 4; break; case NFP_NET_META_VLAN: vlan_info = get_unaligned_be32(data); if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) { meta->vlan.stripped = true; meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK, vlan_info); meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK, vlan_info); } data += 4; break; case NFP_NET_META_PORTID: meta->portid = get_unaligned_be32(data); data += 4; break; case NFP_NET_META_CSUM: meta->csum_type = CHECKSUM_COMPLETE; meta->csum = (__force __wsum)__get_unaligned_cpu32(data); data += 4; break; case NFP_NET_META_RESYNC_INFO: if (nfp_net_tls_rx_resync_req(netdev, data, pkt, pkt_len)) return false; data += sizeof(struct nfp_net_tls_resync_req); break; #ifdef CONFIG_NFP_NET_IPSEC case NFP_NET_META_IPSEC: /* Note: IPsec packet will have zero saidx, so need add 1 * to indicate packet is IPsec packet within driver. */ meta->ipsec_saidx = get_unaligned_be32(data) + 1; data += 4; break; #endif default: return true; } meta_info >>= NFP_NET_META_FIELD_SIZE; } return data != pkt; } static void nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_drops++; /* If we have both skb and rxbuf the replacement buffer allocation * must have failed, count this as an alloc failure. */ if (skb && rxbuf) r_vec->rx_replace_buf_alloc_fail++; u64_stats_update_end(&r_vec->rx_sync); /* skb is build based on the frag, free_skb() would free the frag * so to be able to reuse it we need an extra ref. */ if (skb && rxbuf && skb->head == rxbuf->frag) page_ref_inc(virt_to_head_page(rxbuf->frag)); if (rxbuf) nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); if (skb) dev_kfree_skb_any(skb); } static bool nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, struct nfp_net_tx_ring *tx_ring, struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, unsigned int pkt_len, bool *completed) { unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; struct nfp_nfd3_tx_buf *txbuf; struct nfp_nfd3_tx_desc *txd; int wr_idx; /* Reject if xdp_adjust_tail grow packet beyond DMA area */ if (pkt_len + dma_off > dma_map_sz) return false; if (unlikely(nfp_net_tx_full(tx_ring, 1))) { if (!*completed) { nfp_nfd3_xdp_complete(tx_ring); *completed = true; } if (unlikely(nfp_net_tx_full(tx_ring, 1))) { nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL); return false; } } wr_idx = D_IDX(tx_ring, tx_ring->wr_p); /* Stash the soft descriptor of the head then initialize it */ txbuf = &tx_ring->txbufs[wr_idx]; nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); txbuf->frag = rxbuf->frag; txbuf->dma_addr = rxbuf->dma_addr; txbuf->fidx = -1; txbuf->pkt_cnt = 1; txbuf->real_len = pkt_len; dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, pkt_len, DMA_BIDIRECTIONAL); /* Build TX descriptor */ txd = &tx_ring->txds[wr_idx]; txd->offset_eop = NFD3_DESC_TX_EOP; txd->dma_len = cpu_to_le16(pkt_len); nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off); txd->data_len = cpu_to_le16(pkt_len); txd->flags = 0; txd->mss = 0; txd->lso_hdrlen = 0; tx_ring->wr_p++; tx_ring->wr_ptr_add++; return true; } /** * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring * @rx_ring: RX ring to receive from * @budget: NAPI budget * * Note, this function is separated out from the napi poll function to * more cleanly separate packet receive code from other bookkeeping * functions performed in the napi poll function. * * Return: Number of packets received. */ static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget) { struct nfp_net_r_vector *r_vec = rx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; struct nfp_net_tx_ring *tx_ring; struct bpf_prog *xdp_prog; int idx, pkts_polled = 0; bool xdp_tx_cmpl = false; unsigned int true_bufsz; struct sk_buff *skb; struct xdp_buff xdp; xdp_prog = READ_ONCE(dp->xdp_prog); true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, &rx_ring->xdp_rxq); tx_ring = r_vec->xdp_ring; while (pkts_polled < budget) { unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; struct nfp_net_rx_buf *rxbuf; struct nfp_net_rx_desc *rxd; struct nfp_meta_parsed meta; bool redir_egress = false; struct net_device *netdev; dma_addr_t new_dma_addr; u32 meta_len_xdp = 0; void *new_frag; idx = D_IDX(rx_ring, rx_ring->rd_p); rxd = &rx_ring->rxds[idx]; if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) break; /* Memory barrier to ensure that we won't do other reads * before the DD bit. */ dma_rmb(); memset(&meta, 0, sizeof(meta)); rx_ring->rd_p++; pkts_polled++; rxbuf = &rx_ring->rxbufs[idx]; /* < meta_len > * <-- [rx_offset] --> * --------------------------------------------------------- * | [XX] | metadata | packet | XXXX | * --------------------------------------------------------- * <---------------- data_len ---------------> * * The rx_offset is fixed for all packets, the meta_len can vary * on a packet by packet basis. If rx_offset is set to zero * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the * buffer and is immediately followed by the packet (no [XX]). */ meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; data_len = le16_to_cpu(rxd->rxd.data_len); pkt_len = data_len - meta_len; pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) pkt_off += meta_len; else pkt_off += dp->rx_offset; meta_off = pkt_off - meta_len; /* Stats update */ u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_pkts++; r_vec->rx_bytes += pkt_len; u64_stats_update_end(&r_vec->rx_sync); if (unlikely(meta_len > NFP_NET_MAX_PREPEND || (dp->rx_offset && meta_len > dp->rx_offset))) { nn_dp_warn(dp, "oversized RX packet metadata %u\n", meta_len); nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); if (!dp->chained_metadata_format) { nfp_nfd3_set_hash_desc(dp->netdev, &meta, rxbuf->frag + meta_off, rxd); } else if (meta_len) { if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta, rxbuf->frag + meta_off, rxbuf->frag + pkt_off, pkt_len, meta_len))) { nn_dp_warn(dp, "invalid RX packet metadata\n"); nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } } if (xdp_prog && !meta.portid) { void *orig_data = rxbuf->frag + pkt_off; unsigned int dma_off; int act; xdp_prepare_buff(&xdp, rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, pkt_off - NFP_NET_RX_BUF_HEADROOM, pkt_len, true); act = bpf_prog_run_xdp(xdp_prog, &xdp); pkt_len = xdp.data_end - xdp.data; pkt_off += xdp.data - orig_data; switch (act) { case XDP_PASS: meta_len_xdp = xdp.data - xdp.data_meta; break; case XDP_TX: dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring, tx_ring, rxbuf, dma_off, pkt_len, &xdp_tx_cmpl))) trace_xdp_exception(dp->netdev, xdp_prog, act); continue; default: bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(dp->netdev, xdp_prog, act); fallthrough; case XDP_DROP: nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); continue; } } if (likely(!meta.portid)) { netdev = dp->netdev; } else if (meta.portid == NFP_META_PORT_ID_CTRL) { struct nfp_net *nn = netdev_priv(dp->netdev); nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, pkt_len); nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); continue; } else { struct nfp_net *nn; nn = netdev_priv(dp->netdev); netdev = nfp_app_dev_get(nn->app, meta.portid, &redir_egress); if (unlikely(!netdev)) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } if (nfp_netdev_is_nfp_repr(netdev)) nfp_repr_inc_rx_stats(netdev, pkt_len); } skb = build_skb(rxbuf->frag, true_bufsz); if (unlikely(!skb)) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); if (unlikely(!new_frag)) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); continue; } nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); skb_reserve(skb, pkt_off); skb_put(skb, pkt_len); skb->mark = meta.mark; skb_set_hash(skb, meta.hash, meta.hash_type); skb_record_rx_queue(skb, rx_ring->idx); skb->protocol = eth_type_trans(skb, netdev); nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb); #ifdef CONFIG_TLS_DEVICE if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { skb->decrypted = true; u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_tls_rx++; u64_stats_update_end(&r_vec->rx_sync); } #endif if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); continue; } #ifdef CONFIG_NFP_NET_IPSEC if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); continue; } #endif if (meta_len_xdp) skb_metadata_set(skb, meta_len_xdp); if (likely(!redir_egress)) { napi_gro_receive(&rx_ring->r_vec->napi, skb); } else { skb->dev = netdev; skb_reset_network_header(skb); __skb_push(skb, ETH_HLEN); dev_queue_xmit(skb); } } if (xdp_prog) { if (tx_ring->wr_ptr_add) nfp_net_tx_xmit_more_flush(tx_ring); else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && !xdp_tx_cmpl) if (!nfp_nfd3_xdp_complete(tx_ring)) pkts_polled = budget; } return pkts_polled; } /** * nfp_nfd3_poll() - napi poll function * @napi: NAPI structure * @budget: NAPI budget * * Return: number of packets polled. */ int nfp_nfd3_poll(struct napi_struct *napi, int budget) { struct nfp_net_r_vector *r_vec = container_of(napi, struct nfp_net_r_vector, napi); unsigned int pkts_polled = 0; if (r_vec->tx_ring) nfp_nfd3_tx_complete(r_vec->tx_ring, budget); if (r_vec->rx_ring) pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget); if (pkts_polled < budget) if (napi_complete_done(napi, pkts_polled)) nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) { struct dim_sample dim_sample = {}; unsigned int start; u64 pkts, bytes; do { start = u64_stats_fetch_begin(&r_vec->rx_sync); pkts = r_vec->rx_pkts; bytes = r_vec->rx_bytes; } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); net_dim(&r_vec->rx_dim, dim_sample); } if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) { struct dim_sample dim_sample = {}; unsigned int start; u64 pkts, bytes; do { start = u64_stats_fetch_begin(&r_vec->tx_sync); pkts = r_vec->tx_pkts; bytes = r_vec->tx_bytes; } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); net_dim(&r_vec->tx_dim, dim_sample); } return pkts_polled; } /* Control device data path */ bool nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, struct sk_buff *skb, bool old) { unsigned int real_len = skb->len, meta_len = 0; struct nfp_net_tx_ring *tx_ring; struct nfp_nfd3_tx_buf *txbuf; struct nfp_nfd3_tx_desc *txd; struct nfp_net_dp *dp; dma_addr_t dma_addr; int wr_idx; dp = &r_vec->nfp_net->dp; tx_ring = r_vec->tx_ring; if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); goto err_free; } if (unlikely(nfp_net_tx_full(tx_ring, 1))) { u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_busy++; u64_stats_update_end(&r_vec->tx_sync); if (!old) __skb_queue_tail(&r_vec->queue, skb); else __skb_queue_head(&r_vec->queue, skb); return true; } if (nfp_app_ctrl_has_meta(nn->app)) { if (unlikely(skb_headroom(skb) < 8)) { nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); goto err_free; } meta_len = 8; put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); } /* Start with the head skbuf */ dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_dma_warn; wr_idx = D_IDX(tx_ring, tx_ring->wr_p); /* Stash the soft descriptor of the head then initialize it */ txbuf = &tx_ring->txbufs[wr_idx]; txbuf->skb = skb; txbuf->dma_addr = dma_addr; txbuf->fidx = -1; txbuf->pkt_cnt = 1; txbuf->real_len = real_len; /* Build TX descriptor */ txd = &tx_ring->txds[wr_idx]; txd->offset_eop = meta_len | NFD3_DESC_TX_EOP; txd->dma_len = cpu_to_le16(skb_headlen(skb)); nfp_desc_set_dma_addr_40b(txd, dma_addr); txd->data_len = cpu_to_le16(skb->len); txd->flags = 0; txd->mss = 0; txd->lso_hdrlen = 0; tx_ring->wr_p++; tx_ring->wr_ptr_add++; nfp_net_tx_xmit_more_flush(tx_ring); return false; err_dma_warn: nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); err_free: u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); dev_kfree_skb_any(skb); return false; } static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) { struct sk_buff *skb; while ((skb = __skb_dequeue(&r_vec->queue))) if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) return; } static bool nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) { u32 meta_type, meta_tag; if (!nfp_app_ctrl_has_meta(nn->app)) return !meta_len; if (meta_len != 8) return false; meta_type = get_unaligned_be32(data); meta_tag = get_unaligned_be32(data + 4); return (meta_type == NFP_NET_META_PORTID && meta_tag == NFP_META_PORT_ID_CTRL); } static bool nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) { unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; struct nfp_net_rx_buf *rxbuf; struct nfp_net_rx_desc *rxd; dma_addr_t new_dma_addr; struct sk_buff *skb; void *new_frag; int idx; idx = D_IDX(rx_ring, rx_ring->rd_p); rxd = &rx_ring->rxds[idx]; if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) return false; /* Memory barrier to ensure that we won't do other reads * before the DD bit. */ dma_rmb(); rx_ring->rd_p++; rxbuf = &rx_ring->rxbufs[idx]; meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; data_len = le16_to_cpu(rxd->rxd.data_len); pkt_len = data_len - meta_len; pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) pkt_off += meta_len; else pkt_off += dp->rx_offset; meta_off = pkt_off - meta_len; /* Stats update */ u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_pkts++; r_vec->rx_bytes += pkt_len; u64_stats_update_end(&r_vec->rx_sync); nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", meta_len); nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); return true; } skb = build_skb(rxbuf->frag, dp->fl_bufsz); if (unlikely(!skb)) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); return true; } new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); if (unlikely(!new_frag)) { nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); return true; } nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); skb_reserve(skb, pkt_off); skb_put(skb, pkt_len); nfp_app_ctrl_rx(nn->app, skb); return true; } static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) { struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; struct nfp_net *nn = r_vec->nfp_net; struct nfp_net_dp *dp = &nn->dp; unsigned int budget = 512; while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) continue; return budget; } void nfp_nfd3_ctrl_poll(struct tasklet_struct *t) { struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); spin_lock(&r_vec->lock); nfp_nfd3_tx_complete(r_vec->tx_ring, 0); __nfp_ctrl_tx_queued(r_vec); spin_unlock(&r_vec->lock); if (nfp_ctrl_rx(r_vec)) { nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); } else { tasklet_schedule(&r_vec->tasklet); nn_dp_warn(&r_vec->nfp_net->dp, "control message budget exceeded!\n"); } }