// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright (c) 2021, Microsoft Corporation. */ #include #include #include #include #include #include #include #include #include #include static DEFINE_IDA(mana_adev_ida); static int mana_adev_idx_alloc(void) { return ida_alloc(&mana_adev_ida, GFP_KERNEL); } static void mana_adev_idx_free(int idx) { ida_free(&mana_adev_ida, idx); } /* Microsoft Azure Network Adapter (MANA) functions */ static int mana_open(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); int err; err = mana_alloc_queues(ndev); if (err) return err; apc->port_is_up = true; /* Ensure port state updated before txq state */ smp_wmb(); netif_carrier_on(ndev); netif_tx_wake_all_queues(ndev); return 0; } static int mana_close(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); if (!apc->port_is_up) return 0; return mana_detach(ndev, true); } static bool mana_can_tx(struct gdma_queue *wq) { return mana_gd_wq_avail_space(wq) >= MAX_TX_WQE_SIZE; } static unsigned int mana_checksum_info(struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) return IPPROTO_TCP; if (ip->protocol == IPPROTO_UDP) return IPPROTO_UDP; } else if (skb->protocol == htons(ETH_P_IPV6)) { struct ipv6hdr *ip6 = ipv6_hdr(skb); if (ip6->nexthdr == IPPROTO_TCP) return IPPROTO_TCP; if (ip6->nexthdr == IPPROTO_UDP) return IPPROTO_UDP; } /* No csum offloading */ return 0; } static int mana_map_skb(struct sk_buff *skb, struct mana_port_context *apc, struct mana_tx_package *tp) { struct mana_skb_head *ash = (struct mana_skb_head *)skb->head; struct gdma_dev *gd = apc->ac->gdma_dev; struct gdma_context *gc; struct device *dev; skb_frag_t *frag; dma_addr_t da; int i; gc = gd->gdma_context; dev = gc->dev; da = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(dev, da)) return -ENOMEM; ash->dma_handle[0] = da; ash->size[0] = skb_headlen(skb); tp->wqe_req.sgl[0].address = ash->dma_handle[0]; tp->wqe_req.sgl[0].mem_key = gd->gpa_mkey; tp->wqe_req.sgl[0].size = ash->size[0]; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; da = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(dev, da)) goto frag_err; ash->dma_handle[i + 1] = da; ash->size[i + 1] = skb_frag_size(frag); tp->wqe_req.sgl[i + 1].address = ash->dma_handle[i + 1]; tp->wqe_req.sgl[i + 1].mem_key = gd->gpa_mkey; tp->wqe_req.sgl[i + 1].size = ash->size[i + 1]; } return 0; frag_err: for (i = i - 1; i >= 0; i--) dma_unmap_page(dev, ash->dma_handle[i + 1], ash->size[i + 1], DMA_TO_DEVICE); dma_unmap_single(dev, ash->dma_handle[0], ash->size[0], DMA_TO_DEVICE); return -ENOMEM; } netdev_tx_t mana_start_xmit(struct sk_buff *skb, struct net_device *ndev) { enum mana_tx_pkt_format pkt_fmt = MANA_SHORT_PKT_FMT; struct mana_port_context *apc = netdev_priv(ndev); u16 txq_idx = skb_get_queue_mapping(skb); struct gdma_dev *gd = apc->ac->gdma_dev; bool ipv4 = false, ipv6 = false; struct mana_tx_package pkg = {}; struct netdev_queue *net_txq; struct mana_stats_tx *tx_stats; struct gdma_queue *gdma_sq; unsigned int csum_type; struct mana_txq *txq; struct mana_cq *cq; int err, len; u16 ihs; if (unlikely(!apc->port_is_up)) goto tx_drop; if (skb_cow_head(skb, MANA_HEADROOM)) goto tx_drop_count; txq = &apc->tx_qp[txq_idx].txq; gdma_sq = txq->gdma_sq; cq = &apc->tx_qp[txq_idx].tx_cq; tx_stats = &txq->stats; pkg.tx_oob.s_oob.vcq_num = cq->gdma_id; pkg.tx_oob.s_oob.vsq_frame = txq->vsq_frame; if (txq->vp_offset > MANA_SHORT_VPORT_OFFSET_MAX) { pkg.tx_oob.l_oob.long_vp_offset = txq->vp_offset; pkt_fmt = MANA_LONG_PKT_FMT; } else { pkg.tx_oob.s_oob.short_vp_offset = txq->vp_offset; } pkg.tx_oob.s_oob.pkt_fmt = pkt_fmt; if (pkt_fmt == MANA_SHORT_PKT_FMT) { pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_short_oob); u64_stats_update_begin(&tx_stats->syncp); tx_stats->short_pkt_fmt++; u64_stats_update_end(&tx_stats->syncp); } else { pkg.wqe_req.inline_oob_size = sizeof(struct mana_tx_oob); u64_stats_update_begin(&tx_stats->syncp); tx_stats->long_pkt_fmt++; u64_stats_update_end(&tx_stats->syncp); } pkg.wqe_req.inline_oob_data = &pkg.tx_oob; pkg.wqe_req.flags = 0; pkg.wqe_req.client_data_unit = 0; pkg.wqe_req.num_sge = 1 + skb_shinfo(skb)->nr_frags; WARN_ON_ONCE(pkg.wqe_req.num_sge > MAX_TX_WQE_SGL_ENTRIES); if (pkg.wqe_req.num_sge <= ARRAY_SIZE(pkg.sgl_array)) { pkg.wqe_req.sgl = pkg.sgl_array; } else { pkg.sgl_ptr = kmalloc_array(pkg.wqe_req.num_sge, sizeof(struct gdma_sge), GFP_ATOMIC); if (!pkg.sgl_ptr) goto tx_drop_count; pkg.wqe_req.sgl = pkg.sgl_ptr; } if (skb->protocol == htons(ETH_P_IP)) ipv4 = true; else if (skb->protocol == htons(ETH_P_IPV6)) ipv6 = true; if (skb_is_gso(skb)) { pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4; pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6; pkg.tx_oob.s_oob.comp_iphdr_csum = 1; pkg.tx_oob.s_oob.comp_tcp_csum = 1; pkg.tx_oob.s_oob.trans_off = skb_transport_offset(skb); pkg.wqe_req.client_data_unit = skb_shinfo(skb)->gso_size; pkg.wqe_req.flags = GDMA_WR_OOB_IN_SGL | GDMA_WR_PAD_BY_SGE0; if (ipv4) { ip_hdr(skb)->tot_len = 0; ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else { ipv6_hdr(skb)->payload_len = 0; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } if (skb->encapsulation) { ihs = skb_inner_tcp_all_headers(skb); u64_stats_update_begin(&tx_stats->syncp); tx_stats->tso_inner_packets++; tx_stats->tso_inner_bytes += skb->len - ihs; u64_stats_update_end(&tx_stats->syncp); } else { if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { ihs = skb_transport_offset(skb) + sizeof(struct udphdr); } else { ihs = skb_tcp_all_headers(skb); if (ipv6_has_hopopt_jumbo(skb)) ihs -= sizeof(struct hop_jumbo_hdr); } u64_stats_update_begin(&tx_stats->syncp); tx_stats->tso_packets++; tx_stats->tso_bytes += skb->len - ihs; u64_stats_update_end(&tx_stats->syncp); } } else if (skb->ip_summed == CHECKSUM_PARTIAL) { csum_type = mana_checksum_info(skb); u64_stats_update_begin(&tx_stats->syncp); tx_stats->csum_partial++; u64_stats_update_end(&tx_stats->syncp); if (csum_type == IPPROTO_TCP) { pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4; pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6; pkg.tx_oob.s_oob.comp_tcp_csum = 1; pkg.tx_oob.s_oob.trans_off = skb_transport_offset(skb); } else if (csum_type == IPPROTO_UDP) { pkg.tx_oob.s_oob.is_outer_ipv4 = ipv4; pkg.tx_oob.s_oob.is_outer_ipv6 = ipv6; pkg.tx_oob.s_oob.comp_udp_csum = 1; } else { /* Can't do offload of this type of checksum */ if (skb_checksum_help(skb)) goto free_sgl_ptr; } } if (mana_map_skb(skb, apc, &pkg)) { u64_stats_update_begin(&tx_stats->syncp); tx_stats->mana_map_err++; u64_stats_update_end(&tx_stats->syncp); goto free_sgl_ptr; } skb_queue_tail(&txq->pending_skbs, skb); len = skb->len; net_txq = netdev_get_tx_queue(ndev, txq_idx); err = mana_gd_post_work_request(gdma_sq, &pkg.wqe_req, (struct gdma_posted_wqe_info *)skb->cb); if (!mana_can_tx(gdma_sq)) { netif_tx_stop_queue(net_txq); apc->eth_stats.stop_queue++; } if (err) { (void)skb_dequeue_tail(&txq->pending_skbs); netdev_warn(ndev, "Failed to post TX OOB: %d\n", err); err = NETDEV_TX_BUSY; goto tx_busy; } err = NETDEV_TX_OK; atomic_inc(&txq->pending_sends); mana_gd_wq_ring_doorbell(gd->gdma_context, gdma_sq); /* skb may be freed after mana_gd_post_work_request. Do not use it. */ skb = NULL; tx_stats = &txq->stats; u64_stats_update_begin(&tx_stats->syncp); tx_stats->packets++; tx_stats->bytes += len; u64_stats_update_end(&tx_stats->syncp); tx_busy: if (netif_tx_queue_stopped(net_txq) && mana_can_tx(gdma_sq)) { netif_tx_wake_queue(net_txq); apc->eth_stats.wake_queue++; } kfree(pkg.sgl_ptr); return err; free_sgl_ptr: kfree(pkg.sgl_ptr); tx_drop_count: ndev->stats.tx_dropped++; tx_drop: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static void mana_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *st) { struct mana_port_context *apc = netdev_priv(ndev); unsigned int num_queues = apc->num_queues; struct mana_stats_rx *rx_stats; struct mana_stats_tx *tx_stats; unsigned int start; u64 packets, bytes; int q; if (!apc->port_is_up) return; netdev_stats_to_stats64(st, &ndev->stats); for (q = 0; q < num_queues; q++) { rx_stats = &apc->rxqs[q]->stats; do { start = u64_stats_fetch_begin(&rx_stats->syncp); packets = rx_stats->packets; bytes = rx_stats->bytes; } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); st->rx_packets += packets; st->rx_bytes += bytes; } for (q = 0; q < num_queues; q++) { tx_stats = &apc->tx_qp[q].txq.stats; do { start = u64_stats_fetch_begin(&tx_stats->syncp); packets = tx_stats->packets; bytes = tx_stats->bytes; } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); st->tx_packets += packets; st->tx_bytes += bytes; } } static int mana_get_tx_queue(struct net_device *ndev, struct sk_buff *skb, int old_q) { struct mana_port_context *apc = netdev_priv(ndev); u32 hash = skb_get_hash(skb); struct sock *sk = skb->sk; int txq; txq = apc->indir_table[hash & MANA_INDIRECT_TABLE_MASK]; if (txq != old_q && sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) sk_tx_queue_set(sk, txq); return txq; } static u16 mana_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev) { int txq; if (ndev->real_num_tx_queues == 1) return 0; txq = sk_tx_queue_get(skb->sk); if (txq < 0 || skb->ooo_okay || txq >= ndev->real_num_tx_queues) { if (skb_rx_queue_recorded(skb)) txq = skb_get_rx_queue(skb); else txq = mana_get_tx_queue(ndev, skb, txq); } return txq; } /* Release pre-allocated RX buffers */ static void mana_pre_dealloc_rxbufs(struct mana_port_context *mpc) { struct device *dev; int i; dev = mpc->ac->gdma_dev->gdma_context->dev; if (!mpc->rxbufs_pre) goto out1; if (!mpc->das_pre) goto out2; while (mpc->rxbpre_total) { i = --mpc->rxbpre_total; dma_unmap_single(dev, mpc->das_pre[i], mpc->rxbpre_datasize, DMA_FROM_DEVICE); put_page(virt_to_head_page(mpc->rxbufs_pre[i])); } kfree(mpc->das_pre); mpc->das_pre = NULL; out2: kfree(mpc->rxbufs_pre); mpc->rxbufs_pre = NULL; out1: mpc->rxbpre_datasize = 0; mpc->rxbpre_alloc_size = 0; mpc->rxbpre_headroom = 0; } /* Get a buffer from the pre-allocated RX buffers */ static void *mana_get_rxbuf_pre(struct mana_rxq *rxq, dma_addr_t *da) { struct net_device *ndev = rxq->ndev; struct mana_port_context *mpc; void *va; mpc = netdev_priv(ndev); if (!mpc->rxbufs_pre || !mpc->das_pre || !mpc->rxbpre_total) { netdev_err(ndev, "No RX pre-allocated bufs\n"); return NULL; } /* Check sizes to catch unexpected coding error */ if (mpc->rxbpre_datasize != rxq->datasize) { netdev_err(ndev, "rxbpre_datasize mismatch: %u: %u\n", mpc->rxbpre_datasize, rxq->datasize); return NULL; } if (mpc->rxbpre_alloc_size != rxq->alloc_size) { netdev_err(ndev, "rxbpre_alloc_size mismatch: %u: %u\n", mpc->rxbpre_alloc_size, rxq->alloc_size); return NULL; } if (mpc->rxbpre_headroom != rxq->headroom) { netdev_err(ndev, "rxbpre_headroom mismatch: %u: %u\n", mpc->rxbpre_headroom, rxq->headroom); return NULL; } mpc->rxbpre_total--; *da = mpc->das_pre[mpc->rxbpre_total]; va = mpc->rxbufs_pre[mpc->rxbpre_total]; mpc->rxbufs_pre[mpc->rxbpre_total] = NULL; /* Deallocate the array after all buffers are gone */ if (!mpc->rxbpre_total) mana_pre_dealloc_rxbufs(mpc); return va; } /* Get RX buffer's data size, alloc size, XDP headroom based on MTU */ static void mana_get_rxbuf_cfg(int mtu, u32 *datasize, u32 *alloc_size, u32 *headroom) { if (mtu > MANA_XDP_MTU_MAX) *headroom = 0; /* no support for XDP */ else *headroom = XDP_PACKET_HEADROOM; *alloc_size = mtu + MANA_RXBUF_PAD + *headroom; *datasize = ALIGN(mtu + ETH_HLEN, MANA_RX_DATA_ALIGN); } static int mana_pre_alloc_rxbufs(struct mana_port_context *mpc, int new_mtu) { struct device *dev; struct page *page; dma_addr_t da; int num_rxb; void *va; int i; mana_get_rxbuf_cfg(new_mtu, &mpc->rxbpre_datasize, &mpc->rxbpre_alloc_size, &mpc->rxbpre_headroom); dev = mpc->ac->gdma_dev->gdma_context->dev; num_rxb = mpc->num_queues * RX_BUFFERS_PER_QUEUE; WARN(mpc->rxbufs_pre, "mana rxbufs_pre exists\n"); mpc->rxbufs_pre = kmalloc_array(num_rxb, sizeof(void *), GFP_KERNEL); if (!mpc->rxbufs_pre) goto error; mpc->das_pre = kmalloc_array(num_rxb, sizeof(dma_addr_t), GFP_KERNEL); if (!mpc->das_pre) goto error; mpc->rxbpre_total = 0; for (i = 0; i < num_rxb; i++) { if (mpc->rxbpre_alloc_size > PAGE_SIZE) { va = netdev_alloc_frag(mpc->rxbpre_alloc_size); if (!va) goto error; page = virt_to_head_page(va); /* Check if the frag falls back to single page */ if (compound_order(page) < get_order(mpc->rxbpre_alloc_size)) { put_page(page); goto error; } } else { page = dev_alloc_page(); if (!page) goto error; va = page_to_virt(page); } da = dma_map_single(dev, va + mpc->rxbpre_headroom, mpc->rxbpre_datasize, DMA_FROM_DEVICE); if (dma_mapping_error(dev, da)) { put_page(virt_to_head_page(va)); goto error; } mpc->rxbufs_pre[i] = va; mpc->das_pre[i] = da; mpc->rxbpre_total = i + 1; } return 0; error: mana_pre_dealloc_rxbufs(mpc); return -ENOMEM; } static int mana_change_mtu(struct net_device *ndev, int new_mtu) { struct mana_port_context *mpc = netdev_priv(ndev); unsigned int old_mtu = ndev->mtu; int err; /* Pre-allocate buffers to prevent failure in mana_attach later */ err = mana_pre_alloc_rxbufs(mpc, new_mtu); if (err) { netdev_err(ndev, "Insufficient memory for new MTU\n"); return err; } err = mana_detach(ndev, false); if (err) { netdev_err(ndev, "mana_detach failed: %d\n", err); goto out; } ndev->mtu = new_mtu; err = mana_attach(ndev); if (err) { netdev_err(ndev, "mana_attach failed: %d\n", err); ndev->mtu = old_mtu; } out: mana_pre_dealloc_rxbufs(mpc); return err; } static const struct net_device_ops mana_devops = { .ndo_open = mana_open, .ndo_stop = mana_close, .ndo_select_queue = mana_select_queue, .ndo_start_xmit = mana_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_get_stats64 = mana_get_stats64, .ndo_bpf = mana_bpf, .ndo_xdp_xmit = mana_xdp_xmit, .ndo_change_mtu = mana_change_mtu, }; static void mana_cleanup_port_context(struct mana_port_context *apc) { kfree(apc->rxqs); apc->rxqs = NULL; } static int mana_init_port_context(struct mana_port_context *apc) { apc->rxqs = kcalloc(apc->num_queues, sizeof(struct mana_rxq *), GFP_KERNEL); return !apc->rxqs ? -ENOMEM : 0; } static int mana_send_request(struct mana_context *ac, void *in_buf, u32 in_len, void *out_buf, u32 out_len) { struct gdma_context *gc = ac->gdma_dev->gdma_context; struct gdma_resp_hdr *resp = out_buf; struct gdma_req_hdr *req = in_buf; struct device *dev = gc->dev; static atomic_t activity_id; int err; req->dev_id = gc->mana.dev_id; req->activity_id = atomic_inc_return(&activity_id); err = mana_gd_send_request(gc, in_len, in_buf, out_len, out_buf); if (err || resp->status) { dev_err(dev, "Failed to send mana message: %d, 0x%x\n", err, resp->status); return err ? err : -EPROTO; } if (req->dev_id.as_uint32 != resp->dev_id.as_uint32 || req->activity_id != resp->activity_id) { dev_err(dev, "Unexpected mana message response: %x,%x,%x,%x\n", req->dev_id.as_uint32, resp->dev_id.as_uint32, req->activity_id, resp->activity_id); return -EPROTO; } return 0; } static int mana_verify_resp_hdr(const struct gdma_resp_hdr *resp_hdr, const enum mana_command_code expected_code, const u32 min_size) { if (resp_hdr->response.msg_type != expected_code) return -EPROTO; if (resp_hdr->response.msg_version < GDMA_MESSAGE_V1) return -EPROTO; if (resp_hdr->response.msg_size < min_size) return -EPROTO; return 0; } static int mana_pf_register_hw_vport(struct mana_port_context *apc) { struct mana_register_hw_vport_resp resp = {}; struct mana_register_hw_vport_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, MANA_REGISTER_HW_PORT, sizeof(req), sizeof(resp)); req.attached_gfid = 1; req.is_pf_default_vport = 1; req.allow_all_ether_types = 1; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to register hw vPort: %d\n", err); return err; } err = mana_verify_resp_hdr(&resp.hdr, MANA_REGISTER_HW_PORT, sizeof(resp)); if (err || resp.hdr.status) { netdev_err(apc->ndev, "Failed to register hw vPort: %d, 0x%x\n", err, resp.hdr.status); return err ? err : -EPROTO; } apc->port_handle = resp.hw_vport_handle; return 0; } static void mana_pf_deregister_hw_vport(struct mana_port_context *apc) { struct mana_deregister_hw_vport_resp resp = {}; struct mana_deregister_hw_vport_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, MANA_DEREGISTER_HW_PORT, sizeof(req), sizeof(resp)); req.hw_vport_handle = apc->port_handle; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to unregister hw vPort: %d\n", err); return; } err = mana_verify_resp_hdr(&resp.hdr, MANA_DEREGISTER_HW_PORT, sizeof(resp)); if (err || resp.hdr.status) netdev_err(apc->ndev, "Failed to deregister hw vPort: %d, 0x%x\n", err, resp.hdr.status); } static int mana_pf_register_filter(struct mana_port_context *apc) { struct mana_register_filter_resp resp = {}; struct mana_register_filter_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, MANA_REGISTER_FILTER, sizeof(req), sizeof(resp)); req.vport = apc->port_handle; memcpy(req.mac_addr, apc->mac_addr, ETH_ALEN); err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to register filter: %d\n", err); return err; } err = mana_verify_resp_hdr(&resp.hdr, MANA_REGISTER_FILTER, sizeof(resp)); if (err || resp.hdr.status) { netdev_err(apc->ndev, "Failed to register filter: %d, 0x%x\n", err, resp.hdr.status); return err ? err : -EPROTO; } apc->pf_filter_handle = resp.filter_handle; return 0; } static void mana_pf_deregister_filter(struct mana_port_context *apc) { struct mana_deregister_filter_resp resp = {}; struct mana_deregister_filter_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, MANA_DEREGISTER_FILTER, sizeof(req), sizeof(resp)); req.filter_handle = apc->pf_filter_handle; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to unregister filter: %d\n", err); return; } err = mana_verify_resp_hdr(&resp.hdr, MANA_DEREGISTER_FILTER, sizeof(resp)); if (err || resp.hdr.status) netdev_err(apc->ndev, "Failed to deregister filter: %d, 0x%x\n", err, resp.hdr.status); } static int mana_query_device_cfg(struct mana_context *ac, u32 proto_major_ver, u32 proto_minor_ver, u32 proto_micro_ver, u16 *max_num_vports) { struct gdma_context *gc = ac->gdma_dev->gdma_context; struct mana_query_device_cfg_resp resp = {}; struct mana_query_device_cfg_req req = {}; struct device *dev = gc->dev; int err = 0; mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_DEV_CONFIG, sizeof(req), sizeof(resp)); req.hdr.resp.msg_version = GDMA_MESSAGE_V2; req.proto_major_ver = proto_major_ver; req.proto_minor_ver = proto_minor_ver; req.proto_micro_ver = proto_micro_ver; err = mana_send_request(ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { dev_err(dev, "Failed to query config: %d", err); return err; } err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_DEV_CONFIG, sizeof(resp)); if (err || resp.hdr.status) { dev_err(dev, "Invalid query result: %d, 0x%x\n", err, resp.hdr.status); if (!err) err = -EPROTO; return err; } *max_num_vports = resp.max_num_vports; if (resp.hdr.response.msg_version == GDMA_MESSAGE_V2) gc->adapter_mtu = resp.adapter_mtu; else gc->adapter_mtu = ETH_FRAME_LEN; return 0; } static int mana_query_vport_cfg(struct mana_port_context *apc, u32 vport_index, u32 *max_sq, u32 *max_rq, u32 *num_indir_entry) { struct mana_query_vport_cfg_resp resp = {}; struct mana_query_vport_cfg_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, MANA_QUERY_VPORT_CONFIG, sizeof(req), sizeof(resp)); req.vport_index = vport_index; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) return err; err = mana_verify_resp_hdr(&resp.hdr, MANA_QUERY_VPORT_CONFIG, sizeof(resp)); if (err) return err; if (resp.hdr.status) return -EPROTO; *max_sq = resp.max_num_sq; *max_rq = resp.max_num_rq; *num_indir_entry = resp.num_indirection_ent; apc->port_handle = resp.vport; ether_addr_copy(apc->mac_addr, resp.mac_addr); return 0; } void mana_uncfg_vport(struct mana_port_context *apc) { mutex_lock(&apc->vport_mutex); apc->vport_use_count--; WARN_ON(apc->vport_use_count < 0); mutex_unlock(&apc->vport_mutex); } EXPORT_SYMBOL_NS(mana_uncfg_vport, NET_MANA); int mana_cfg_vport(struct mana_port_context *apc, u32 protection_dom_id, u32 doorbell_pg_id) { struct mana_config_vport_resp resp = {}; struct mana_config_vport_req req = {}; int err; /* This function is used to program the Ethernet port in the hardware * table. It can be called from the Ethernet driver or the RDMA driver. * * For Ethernet usage, the hardware supports only one active user on a * physical port. The driver checks on the port usage before programming * the hardware when creating the RAW QP (RDMA driver) or exposing the * device to kernel NET layer (Ethernet driver). * * Because the RDMA driver doesn't know in advance which QP type the * user will create, it exposes the device with all its ports. The user * may not be able to create RAW QP on a port if this port is already * in used by the Ethernet driver from the kernel. * * This physical port limitation only applies to the RAW QP. For RC QP, * the hardware doesn't have this limitation. The user can create RC * QPs on a physical port up to the hardware limits independent of the * Ethernet usage on the same port. */ mutex_lock(&apc->vport_mutex); if (apc->vport_use_count > 0) { mutex_unlock(&apc->vport_mutex); return -EBUSY; } apc->vport_use_count++; mutex_unlock(&apc->vport_mutex); mana_gd_init_req_hdr(&req.hdr, MANA_CONFIG_VPORT_TX, sizeof(req), sizeof(resp)); req.vport = apc->port_handle; req.pdid = protection_dom_id; req.doorbell_pageid = doorbell_pg_id; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to configure vPort: %d\n", err); goto out; } err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_TX, sizeof(resp)); if (err || resp.hdr.status) { netdev_err(apc->ndev, "Failed to configure vPort: %d, 0x%x\n", err, resp.hdr.status); if (!err) err = -EPROTO; goto out; } apc->tx_shortform_allowed = resp.short_form_allowed; apc->tx_vp_offset = resp.tx_vport_offset; netdev_info(apc->ndev, "Configured vPort %llu PD %u DB %u\n", apc->port_handle, protection_dom_id, doorbell_pg_id); out: if (err) mana_uncfg_vport(apc); return err; } EXPORT_SYMBOL_NS(mana_cfg_vport, NET_MANA); static int mana_cfg_vport_steering(struct mana_port_context *apc, enum TRI_STATE rx, bool update_default_rxobj, bool update_key, bool update_tab) { u16 num_entries = MANA_INDIRECT_TABLE_SIZE; struct mana_cfg_rx_steer_req *req = NULL; struct mana_cfg_rx_steer_resp resp = {}; struct net_device *ndev = apc->ndev; mana_handle_t *req_indir_tab; u32 req_buf_size; int err; req_buf_size = sizeof(*req) + sizeof(mana_handle_t) * num_entries; req = kzalloc(req_buf_size, GFP_KERNEL); if (!req) return -ENOMEM; mana_gd_init_req_hdr(&req->hdr, MANA_CONFIG_VPORT_RX, req_buf_size, sizeof(resp)); req->vport = apc->port_handle; req->num_indir_entries = num_entries; req->indir_tab_offset = sizeof(*req); req->rx_enable = rx; req->rss_enable = apc->rss_state; req->update_default_rxobj = update_default_rxobj; req->update_hashkey = update_key; req->update_indir_tab = update_tab; req->default_rxobj = apc->default_rxobj; if (update_key) memcpy(&req->hashkey, apc->hashkey, MANA_HASH_KEY_SIZE); if (update_tab) { req_indir_tab = (mana_handle_t *)(req + 1); memcpy(req_indir_tab, apc->rxobj_table, req->num_indir_entries * sizeof(mana_handle_t)); } err = mana_send_request(apc->ac, req, req_buf_size, &resp, sizeof(resp)); if (err) { netdev_err(ndev, "Failed to configure vPort RX: %d\n", err); goto out; } err = mana_verify_resp_hdr(&resp.hdr, MANA_CONFIG_VPORT_RX, sizeof(resp)); if (err) { netdev_err(ndev, "vPort RX configuration failed: %d\n", err); goto out; } if (resp.hdr.status) { netdev_err(ndev, "vPort RX configuration failed: 0x%x\n", resp.hdr.status); err = -EPROTO; } netdev_info(ndev, "Configured steering vPort %llu entries %u\n", apc->port_handle, num_entries); out: kfree(req); return err; } int mana_create_wq_obj(struct mana_port_context *apc, mana_handle_t vport, u32 wq_type, struct mana_obj_spec *wq_spec, struct mana_obj_spec *cq_spec, mana_handle_t *wq_obj) { struct mana_create_wqobj_resp resp = {}; struct mana_create_wqobj_req req = {}; struct net_device *ndev = apc->ndev; int err; mana_gd_init_req_hdr(&req.hdr, MANA_CREATE_WQ_OBJ, sizeof(req), sizeof(resp)); req.vport = vport; req.wq_type = wq_type; req.wq_gdma_region = wq_spec->gdma_region; req.cq_gdma_region = cq_spec->gdma_region; req.wq_size = wq_spec->queue_size; req.cq_size = cq_spec->queue_size; req.cq_moderation_ctx_id = cq_spec->modr_ctx_id; req.cq_parent_qid = cq_spec->attached_eq; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(ndev, "Failed to create WQ object: %d\n", err); goto out; } err = mana_verify_resp_hdr(&resp.hdr, MANA_CREATE_WQ_OBJ, sizeof(resp)); if (err || resp.hdr.status) { netdev_err(ndev, "Failed to create WQ object: %d, 0x%x\n", err, resp.hdr.status); if (!err) err = -EPROTO; goto out; } if (resp.wq_obj == INVALID_MANA_HANDLE) { netdev_err(ndev, "Got an invalid WQ object handle\n"); err = -EPROTO; goto out; } *wq_obj = resp.wq_obj; wq_spec->queue_index = resp.wq_id; cq_spec->queue_index = resp.cq_id; return 0; out: return err; } EXPORT_SYMBOL_NS(mana_create_wq_obj, NET_MANA); void mana_destroy_wq_obj(struct mana_port_context *apc, u32 wq_type, mana_handle_t wq_obj) { struct mana_destroy_wqobj_resp resp = {}; struct mana_destroy_wqobj_req req = {}; struct net_device *ndev = apc->ndev; int err; mana_gd_init_req_hdr(&req.hdr, MANA_DESTROY_WQ_OBJ, sizeof(req), sizeof(resp)); req.wq_type = wq_type; req.wq_obj_handle = wq_obj; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(ndev, "Failed to destroy WQ object: %d\n", err); return; } err = mana_verify_resp_hdr(&resp.hdr, MANA_DESTROY_WQ_OBJ, sizeof(resp)); if (err || resp.hdr.status) netdev_err(ndev, "Failed to destroy WQ object: %d, 0x%x\n", err, resp.hdr.status); } EXPORT_SYMBOL_NS(mana_destroy_wq_obj, NET_MANA); static void mana_destroy_eq(struct mana_context *ac) { struct gdma_context *gc = ac->gdma_dev->gdma_context; struct gdma_queue *eq; int i; if (!ac->eqs) return; for (i = 0; i < gc->max_num_queues; i++) { eq = ac->eqs[i].eq; if (!eq) continue; mana_gd_destroy_queue(gc, eq); } kfree(ac->eqs); ac->eqs = NULL; } static int mana_create_eq(struct mana_context *ac) { struct gdma_dev *gd = ac->gdma_dev; struct gdma_context *gc = gd->gdma_context; struct gdma_queue_spec spec = {}; int err; int i; ac->eqs = kcalloc(gc->max_num_queues, sizeof(struct mana_eq), GFP_KERNEL); if (!ac->eqs) return -ENOMEM; spec.type = GDMA_EQ; spec.monitor_avl_buf = false; spec.queue_size = EQ_SIZE; spec.eq.callback = NULL; spec.eq.context = ac->eqs; spec.eq.log2_throttle_limit = LOG2_EQ_THROTTLE; for (i = 0; i < gc->max_num_queues; i++) { err = mana_gd_create_mana_eq(gd, &spec, &ac->eqs[i].eq); if (err) goto out; } return 0; out: mana_destroy_eq(ac); return err; } static int mana_fence_rq(struct mana_port_context *apc, struct mana_rxq *rxq) { struct mana_fence_rq_resp resp = {}; struct mana_fence_rq_req req = {}; int err; init_completion(&rxq->fence_event); mana_gd_init_req_hdr(&req.hdr, MANA_FENCE_RQ, sizeof(req), sizeof(resp)); req.wq_obj_handle = rxq->rxobj; err = mana_send_request(apc->ac, &req, sizeof(req), &resp, sizeof(resp)); if (err) { netdev_err(apc->ndev, "Failed to fence RQ %u: %d\n", rxq->rxq_idx, err); return err; } err = mana_verify_resp_hdr(&resp.hdr, MANA_FENCE_RQ, sizeof(resp)); if (err || resp.hdr.status) { netdev_err(apc->ndev, "Failed to fence RQ %u: %d, 0x%x\n", rxq->rxq_idx, err, resp.hdr.status); if (!err) err = -EPROTO; return err; } if (wait_for_completion_timeout(&rxq->fence_event, 10 * HZ) == 0) { netdev_err(apc->ndev, "Failed to fence RQ %u: timed out\n", rxq->rxq_idx); return -ETIMEDOUT; } return 0; } static void mana_fence_rqs(struct mana_port_context *apc) { unsigned int rxq_idx; struct mana_rxq *rxq; int err; for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) { rxq = apc->rxqs[rxq_idx]; err = mana_fence_rq(apc, rxq); /* In case of any error, use sleep instead. */ if (err) msleep(100); } } static int mana_move_wq_tail(struct gdma_queue *wq, u32 num_units) { u32 used_space_old; u32 used_space_new; used_space_old = wq->head - wq->tail; used_space_new = wq->head - (wq->tail + num_units); if (WARN_ON_ONCE(used_space_new > used_space_old)) return -ERANGE; wq->tail += num_units; return 0; } static void mana_unmap_skb(struct sk_buff *skb, struct mana_port_context *apc) { struct mana_skb_head *ash = (struct mana_skb_head *)skb->head; struct gdma_context *gc = apc->ac->gdma_dev->gdma_context; struct device *dev = gc->dev; int i; dma_unmap_single(dev, ash->dma_handle[0], ash->size[0], DMA_TO_DEVICE); for (i = 1; i < skb_shinfo(skb)->nr_frags + 1; i++) dma_unmap_page(dev, ash->dma_handle[i], ash->size[i], DMA_TO_DEVICE); } static void mana_poll_tx_cq(struct mana_cq *cq) { struct gdma_comp *completions = cq->gdma_comp_buf; struct gdma_posted_wqe_info *wqe_info; unsigned int pkt_transmitted = 0; unsigned int wqe_unit_cnt = 0; struct mana_txq *txq = cq->txq; struct mana_port_context *apc; struct netdev_queue *net_txq; struct gdma_queue *gdma_wq; unsigned int avail_space; struct net_device *ndev; struct sk_buff *skb; bool txq_stopped; int comp_read; int i; ndev = txq->ndev; apc = netdev_priv(ndev); comp_read = mana_gd_poll_cq(cq->gdma_cq, completions, CQE_POLLING_BUFFER); if (comp_read < 1) return; apc->eth_stats.tx_cqes = comp_read; for (i = 0; i < comp_read; i++) { struct mana_tx_comp_oob *cqe_oob; if (WARN_ON_ONCE(!completions[i].is_sq)) return; cqe_oob = (struct mana_tx_comp_oob *)completions[i].cqe_data; if (WARN_ON_ONCE(cqe_oob->cqe_hdr.client_type != MANA_CQE_COMPLETION)) return; switch (cqe_oob->cqe_hdr.cqe_type) { case CQE_TX_OKAY: break; case CQE_TX_SA_DROP: case CQE_TX_MTU_DROP: case CQE_TX_INVALID_OOB: case CQE_TX_INVALID_ETH_TYPE: case CQE_TX_HDR_PROCESSING_ERROR: case CQE_TX_VF_DISABLED: case CQE_TX_VPORT_IDX_OUT_OF_RANGE: case CQE_TX_VPORT_DISABLED: case CQE_TX_VLAN_TAGGING_VIOLATION: WARN_ONCE(1, "TX: CQE error %d: ignored.\n", cqe_oob->cqe_hdr.cqe_type); apc->eth_stats.tx_cqe_err++; break; default: /* If the CQE type is unexpected, log an error, assert, * and go through the error path. */ WARN_ONCE(1, "TX: Unexpected CQE type %d: HW BUG?\n", cqe_oob->cqe_hdr.cqe_type); apc->eth_stats.tx_cqe_unknown_type++; return; } if (WARN_ON_ONCE(txq->gdma_txq_id != completions[i].wq_num)) return; skb = skb_dequeue(&txq->pending_skbs); if (WARN_ON_ONCE(!skb)) return; wqe_info = (struct gdma_posted_wqe_info *)skb->cb; wqe_unit_cnt += wqe_info->wqe_size_in_bu; mana_unmap_skb(skb, apc); napi_consume_skb(skb, cq->budget); pkt_transmitted++; } if (WARN_ON_ONCE(wqe_unit_cnt == 0)) return; mana_move_wq_tail(txq->gdma_sq, wqe_unit_cnt); gdma_wq = txq->gdma_sq; avail_space = mana_gd_wq_avail_space(gdma_wq); /* Ensure tail updated before checking q stop */ smp_mb(); net_txq = txq->net_txq; txq_stopped = netif_tx_queue_stopped(net_txq); /* Ensure checking txq_stopped before apc->port_is_up. */ smp_rmb(); if (txq_stopped && apc->port_is_up && avail_space >= MAX_TX_WQE_SIZE) { netif_tx_wake_queue(net_txq); apc->eth_stats.wake_queue++; } if (atomic_sub_return(pkt_transmitted, &txq->pending_sends) < 0) WARN_ON_ONCE(1); cq->work_done = pkt_transmitted; apc->eth_stats.tx_cqes -= pkt_transmitted; } static void mana_post_pkt_rxq(struct mana_rxq *rxq) { struct mana_recv_buf_oob *recv_buf_oob; u32 curr_index; int err; curr_index = rxq->buf_index++; if (rxq->buf_index == rxq->num_rx_buf) rxq->buf_index = 0; recv_buf_oob = &rxq->rx_oobs[curr_index]; err = mana_gd_post_and_ring(rxq->gdma_rq, &recv_buf_oob->wqe_req, &recv_buf_oob->wqe_inf); if (WARN_ON_ONCE(err)) return; WARN_ON_ONCE(recv_buf_oob->wqe_inf.wqe_size_in_bu != 1); } static struct sk_buff *mana_build_skb(struct mana_rxq *rxq, void *buf_va, uint pkt_len, struct xdp_buff *xdp) { struct sk_buff *skb = napi_build_skb(buf_va, rxq->alloc_size); if (!skb) return NULL; if (xdp->data_hard_start) { skb_reserve(skb, xdp->data - xdp->data_hard_start); skb_put(skb, xdp->data_end - xdp->data); return skb; } skb_reserve(skb, rxq->headroom); skb_put(skb, pkt_len); return skb; } static void mana_rx_skb(void *buf_va, struct mana_rxcomp_oob *cqe, struct mana_rxq *rxq) { struct mana_stats_rx *rx_stats = &rxq->stats; struct net_device *ndev = rxq->ndev; uint pkt_len = cqe->ppi[0].pkt_len; u16 rxq_idx = rxq->rxq_idx; struct napi_struct *napi; struct xdp_buff xdp = {}; struct sk_buff *skb; u32 hash_value; u32 act; rxq->rx_cq.work_done++; napi = &rxq->rx_cq.napi; if (!buf_va) { ++ndev->stats.rx_dropped; return; } act = mana_run_xdp(ndev, rxq, &xdp, buf_va, pkt_len); if (act == XDP_REDIRECT && !rxq->xdp_rc) return; if (act != XDP_PASS && act != XDP_TX) goto drop_xdp; skb = mana_build_skb(rxq, buf_va, pkt_len, &xdp); if (!skb) goto drop; skb->dev = napi->dev; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); skb_record_rx_queue(skb, rxq_idx); if ((ndev->features & NETIF_F_RXCSUM) && cqe->rx_iphdr_csum_succeed) { if (cqe->rx_tcp_csum_succeed || cqe->rx_udp_csum_succeed) skb->ip_summed = CHECKSUM_UNNECESSARY; } if (cqe->rx_hashtype != 0 && (ndev->features & NETIF_F_RXHASH)) { hash_value = cqe->ppi[0].pkt_hash; if (cqe->rx_hashtype & MANA_HASH_L4) skb_set_hash(skb, hash_value, PKT_HASH_TYPE_L4); else skb_set_hash(skb, hash_value, PKT_HASH_TYPE_L3); } u64_stats_update_begin(&rx_stats->syncp); rx_stats->packets++; rx_stats->bytes += pkt_len; if (act == XDP_TX) rx_stats->xdp_tx++; u64_stats_update_end(&rx_stats->syncp); if (act == XDP_TX) { skb_set_queue_mapping(skb, rxq_idx); mana_xdp_tx(skb, ndev); return; } napi_gro_receive(napi, skb); return; drop_xdp: u64_stats_update_begin(&rx_stats->syncp); rx_stats->xdp_drop++; u64_stats_update_end(&rx_stats->syncp); drop: WARN_ON_ONCE(rxq->xdp_save_va); /* Save for reuse */ rxq->xdp_save_va = buf_va; ++ndev->stats.rx_dropped; return; } static void *mana_get_rxfrag(struct mana_rxq *rxq, struct device *dev, dma_addr_t *da, bool is_napi) { struct page *page; void *va; /* Reuse XDP dropped page if available */ if (rxq->xdp_save_va) { va = rxq->xdp_save_va; rxq->xdp_save_va = NULL; } else if (rxq->alloc_size > PAGE_SIZE) { if (is_napi) va = napi_alloc_frag(rxq->alloc_size); else va = netdev_alloc_frag(rxq->alloc_size); if (!va) return NULL; page = virt_to_head_page(va); /* Check if the frag falls back to single page */ if (compound_order(page) < get_order(rxq->alloc_size)) { put_page(page); return NULL; } } else { page = dev_alloc_page(); if (!page) return NULL; va = page_to_virt(page); } *da = dma_map_single(dev, va + rxq->headroom, rxq->datasize, DMA_FROM_DEVICE); if (dma_mapping_error(dev, *da)) { put_page(virt_to_head_page(va)); return NULL; } return va; } /* Allocate frag for rx buffer, and save the old buf */ static void mana_refill_rx_oob(struct device *dev, struct mana_rxq *rxq, struct mana_recv_buf_oob *rxoob, void **old_buf) { dma_addr_t da; void *va; va = mana_get_rxfrag(rxq, dev, &da, true); if (!va) return; dma_unmap_single(dev, rxoob->sgl[0].address, rxq->datasize, DMA_FROM_DEVICE); *old_buf = rxoob->buf_va; rxoob->buf_va = va; rxoob->sgl[0].address = da; } static void mana_process_rx_cqe(struct mana_rxq *rxq, struct mana_cq *cq, struct gdma_comp *cqe) { struct mana_rxcomp_oob *oob = (struct mana_rxcomp_oob *)cqe->cqe_data; struct gdma_context *gc = rxq->gdma_rq->gdma_dev->gdma_context; struct net_device *ndev = rxq->ndev; struct mana_recv_buf_oob *rxbuf_oob; struct mana_port_context *apc; struct device *dev = gc->dev; void *old_buf = NULL; u32 curr, pktlen; apc = netdev_priv(ndev); switch (oob->cqe_hdr.cqe_type) { case CQE_RX_OKAY: break; case CQE_RX_TRUNCATED: ++ndev->stats.rx_dropped; rxbuf_oob = &rxq->rx_oobs[rxq->buf_index]; netdev_warn_once(ndev, "Dropped a truncated packet\n"); goto drop; case CQE_RX_COALESCED_4: netdev_err(ndev, "RX coalescing is unsupported\n"); apc->eth_stats.rx_coalesced_err++; return; case CQE_RX_OBJECT_FENCE: complete(&rxq->fence_event); return; default: netdev_err(ndev, "Unknown RX CQE type = %d\n", oob->cqe_hdr.cqe_type); apc->eth_stats.rx_cqe_unknown_type++; return; } pktlen = oob->ppi[0].pkt_len; if (pktlen == 0) { /* data packets should never have packetlength of zero */ netdev_err(ndev, "RX pkt len=0, rq=%u, cq=%u, rxobj=0x%llx\n", rxq->gdma_id, cq->gdma_id, rxq->rxobj); return; } curr = rxq->buf_index; rxbuf_oob = &rxq->rx_oobs[curr]; WARN_ON_ONCE(rxbuf_oob->wqe_inf.wqe_size_in_bu != 1); mana_refill_rx_oob(dev, rxq, rxbuf_oob, &old_buf); /* Unsuccessful refill will have old_buf == NULL. * In this case, mana_rx_skb() will drop the packet. */ mana_rx_skb(old_buf, oob, rxq); drop: mana_move_wq_tail(rxq->gdma_rq, rxbuf_oob->wqe_inf.wqe_size_in_bu); mana_post_pkt_rxq(rxq); } static void mana_poll_rx_cq(struct mana_cq *cq) { struct gdma_comp *comp = cq->gdma_comp_buf; struct mana_rxq *rxq = cq->rxq; struct mana_port_context *apc; int comp_read, i; apc = netdev_priv(rxq->ndev); comp_read = mana_gd_poll_cq(cq->gdma_cq, comp, CQE_POLLING_BUFFER); WARN_ON_ONCE(comp_read > CQE_POLLING_BUFFER); apc->eth_stats.rx_cqes = comp_read; rxq->xdp_flush = false; for (i = 0; i < comp_read; i++) { if (WARN_ON_ONCE(comp[i].is_sq)) return; /* verify recv cqe references the right rxq */ if (WARN_ON_ONCE(comp[i].wq_num != cq->rxq->gdma_id)) return; mana_process_rx_cqe(rxq, cq, &comp[i]); apc->eth_stats.rx_cqes--; } if (rxq->xdp_flush) xdp_do_flush(); } static int mana_cq_handler(void *context, struct gdma_queue *gdma_queue) { struct mana_cq *cq = context; u8 arm_bit; int w; WARN_ON_ONCE(cq->gdma_cq != gdma_queue); if (cq->type == MANA_CQ_TYPE_RX) mana_poll_rx_cq(cq); else mana_poll_tx_cq(cq); w = cq->work_done; if (w < cq->budget && napi_complete_done(&cq->napi, w)) { arm_bit = SET_ARM_BIT; } else { arm_bit = 0; } mana_gd_ring_cq(gdma_queue, arm_bit); return w; } static int mana_poll(struct napi_struct *napi, int budget) { struct mana_cq *cq = container_of(napi, struct mana_cq, napi); int w; cq->work_done = 0; cq->budget = budget; w = mana_cq_handler(cq, cq->gdma_cq); return min(w, budget); } static void mana_schedule_napi(void *context, struct gdma_queue *gdma_queue) { struct mana_cq *cq = context; napi_schedule_irqoff(&cq->napi); } static void mana_deinit_cq(struct mana_port_context *apc, struct mana_cq *cq) { struct gdma_dev *gd = apc->ac->gdma_dev; if (!cq->gdma_cq) return; mana_gd_destroy_queue(gd->gdma_context, cq->gdma_cq); } static void mana_deinit_txq(struct mana_port_context *apc, struct mana_txq *txq) { struct gdma_dev *gd = apc->ac->gdma_dev; if (!txq->gdma_sq) return; mana_gd_destroy_queue(gd->gdma_context, txq->gdma_sq); } static void mana_destroy_txq(struct mana_port_context *apc) { struct napi_struct *napi; int i; if (!apc->tx_qp) return; for (i = 0; i < apc->num_queues; i++) { napi = &apc->tx_qp[i].tx_cq.napi; napi_synchronize(napi); napi_disable(napi); netif_napi_del(napi); mana_destroy_wq_obj(apc, GDMA_SQ, apc->tx_qp[i].tx_object); mana_deinit_cq(apc, &apc->tx_qp[i].tx_cq); mana_deinit_txq(apc, &apc->tx_qp[i].txq); } kfree(apc->tx_qp); apc->tx_qp = NULL; } static int mana_create_txq(struct mana_port_context *apc, struct net_device *net) { struct mana_context *ac = apc->ac; struct gdma_dev *gd = ac->gdma_dev; struct mana_obj_spec wq_spec; struct mana_obj_spec cq_spec; struct gdma_queue_spec spec; struct gdma_context *gc; struct mana_txq *txq; struct mana_cq *cq; u32 txq_size; u32 cq_size; int err; int i; apc->tx_qp = kcalloc(apc->num_queues, sizeof(struct mana_tx_qp), GFP_KERNEL); if (!apc->tx_qp) return -ENOMEM; /* The minimum size of the WQE is 32 bytes, hence * MAX_SEND_BUFFERS_PER_QUEUE represents the maximum number of WQEs * the SQ can store. This value is then used to size other queues * to prevent overflow. */ txq_size = MAX_SEND_BUFFERS_PER_QUEUE * 32; BUILD_BUG_ON(!PAGE_ALIGNED(txq_size)); cq_size = MAX_SEND_BUFFERS_PER_QUEUE * COMP_ENTRY_SIZE; cq_size = PAGE_ALIGN(cq_size); gc = gd->gdma_context; for (i = 0; i < apc->num_queues; i++) { apc->tx_qp[i].tx_object = INVALID_MANA_HANDLE; /* Create SQ */ txq = &apc->tx_qp[i].txq; u64_stats_init(&txq->stats.syncp); txq->ndev = net; txq->net_txq = netdev_get_tx_queue(net, i); txq->vp_offset = apc->tx_vp_offset; skb_queue_head_init(&txq->pending_skbs); memset(&spec, 0, sizeof(spec)); spec.type = GDMA_SQ; spec.monitor_avl_buf = true; spec.queue_size = txq_size; err = mana_gd_create_mana_wq_cq(gd, &spec, &txq->gdma_sq); if (err) goto out; /* Create SQ's CQ */ cq = &apc->tx_qp[i].tx_cq; cq->type = MANA_CQ_TYPE_TX; cq->txq = txq; memset(&spec, 0, sizeof(spec)); spec.type = GDMA_CQ; spec.monitor_avl_buf = false; spec.queue_size = cq_size; spec.cq.callback = mana_schedule_napi; spec.cq.parent_eq = ac->eqs[i].eq; spec.cq.context = cq; err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq); if (err) goto out; memset(&wq_spec, 0, sizeof(wq_spec)); memset(&cq_spec, 0, sizeof(cq_spec)); wq_spec.gdma_region = txq->gdma_sq->mem_info.dma_region_handle; wq_spec.queue_size = txq->gdma_sq->queue_size; cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle; cq_spec.queue_size = cq->gdma_cq->queue_size; cq_spec.modr_ctx_id = 0; cq_spec.attached_eq = cq->gdma_cq->cq.parent->id; err = mana_create_wq_obj(apc, apc->port_handle, GDMA_SQ, &wq_spec, &cq_spec, &apc->tx_qp[i].tx_object); if (err) goto out; txq->gdma_sq->id = wq_spec.queue_index; cq->gdma_cq->id = cq_spec.queue_index; txq->gdma_sq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; cq->gdma_cq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; txq->gdma_txq_id = txq->gdma_sq->id; cq->gdma_id = cq->gdma_cq->id; if (WARN_ON(cq->gdma_id >= gc->max_num_cqs)) { err = -EINVAL; goto out; } gc->cq_table[cq->gdma_id] = cq->gdma_cq; netif_napi_add_tx(net, &cq->napi, mana_poll); napi_enable(&cq->napi); mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT); } return 0; out: mana_destroy_txq(apc); return err; } static void mana_destroy_rxq(struct mana_port_context *apc, struct mana_rxq *rxq, bool validate_state) { struct gdma_context *gc = apc->ac->gdma_dev->gdma_context; struct mana_recv_buf_oob *rx_oob; struct device *dev = gc->dev; struct napi_struct *napi; int i; if (!rxq) return; napi = &rxq->rx_cq.napi; if (validate_state) napi_synchronize(napi); napi_disable(napi); xdp_rxq_info_unreg(&rxq->xdp_rxq); netif_napi_del(napi); mana_destroy_wq_obj(apc, GDMA_RQ, rxq->rxobj); mana_deinit_cq(apc, &rxq->rx_cq); if (rxq->xdp_save_va) put_page(virt_to_head_page(rxq->xdp_save_va)); for (i = 0; i < rxq->num_rx_buf; i++) { rx_oob = &rxq->rx_oobs[i]; if (!rx_oob->buf_va) continue; dma_unmap_single(dev, rx_oob->sgl[0].address, rx_oob->sgl[0].size, DMA_FROM_DEVICE); put_page(virt_to_head_page(rx_oob->buf_va)); rx_oob->buf_va = NULL; } if (rxq->gdma_rq) mana_gd_destroy_queue(gc, rxq->gdma_rq); kfree(rxq); } static int mana_fill_rx_oob(struct mana_recv_buf_oob *rx_oob, u32 mem_key, struct mana_rxq *rxq, struct device *dev) { struct mana_port_context *mpc = netdev_priv(rxq->ndev); dma_addr_t da; void *va; if (mpc->rxbufs_pre) va = mana_get_rxbuf_pre(rxq, &da); else va = mana_get_rxfrag(rxq, dev, &da, false); if (!va) return -ENOMEM; rx_oob->buf_va = va; rx_oob->sgl[0].address = da; rx_oob->sgl[0].size = rxq->datasize; rx_oob->sgl[0].mem_key = mem_key; return 0; } #define MANA_WQE_HEADER_SIZE 16 #define MANA_WQE_SGE_SIZE 16 static int mana_alloc_rx_wqe(struct mana_port_context *apc, struct mana_rxq *rxq, u32 *rxq_size, u32 *cq_size) { struct gdma_context *gc = apc->ac->gdma_dev->gdma_context; struct mana_recv_buf_oob *rx_oob; struct device *dev = gc->dev; u32 buf_idx; int ret; WARN_ON(rxq->datasize == 0); *rxq_size = 0; *cq_size = 0; for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) { rx_oob = &rxq->rx_oobs[buf_idx]; memset(rx_oob, 0, sizeof(*rx_oob)); rx_oob->num_sge = 1; ret = mana_fill_rx_oob(rx_oob, apc->ac->gdma_dev->gpa_mkey, rxq, dev); if (ret) return ret; rx_oob->wqe_req.sgl = rx_oob->sgl; rx_oob->wqe_req.num_sge = rx_oob->num_sge; rx_oob->wqe_req.inline_oob_size = 0; rx_oob->wqe_req.inline_oob_data = NULL; rx_oob->wqe_req.flags = 0; rx_oob->wqe_req.client_data_unit = 0; *rxq_size += ALIGN(MANA_WQE_HEADER_SIZE + MANA_WQE_SGE_SIZE * rx_oob->num_sge, 32); *cq_size += COMP_ENTRY_SIZE; } return 0; } static int mana_push_wqe(struct mana_rxq *rxq) { struct mana_recv_buf_oob *rx_oob; u32 buf_idx; int err; for (buf_idx = 0; buf_idx < rxq->num_rx_buf; buf_idx++) { rx_oob = &rxq->rx_oobs[buf_idx]; err = mana_gd_post_and_ring(rxq->gdma_rq, &rx_oob->wqe_req, &rx_oob->wqe_inf); if (err) return -ENOSPC; } return 0; } static struct mana_rxq *mana_create_rxq(struct mana_port_context *apc, u32 rxq_idx, struct mana_eq *eq, struct net_device *ndev) { struct gdma_dev *gd = apc->ac->gdma_dev; struct mana_obj_spec wq_spec; struct mana_obj_spec cq_spec; struct gdma_queue_spec spec; struct mana_cq *cq = NULL; struct gdma_context *gc; u32 cq_size, rq_size; struct mana_rxq *rxq; int err; gc = gd->gdma_context; rxq = kzalloc(struct_size(rxq, rx_oobs, RX_BUFFERS_PER_QUEUE), GFP_KERNEL); if (!rxq) return NULL; rxq->ndev = ndev; rxq->num_rx_buf = RX_BUFFERS_PER_QUEUE; rxq->rxq_idx = rxq_idx; rxq->rxobj = INVALID_MANA_HANDLE; mana_get_rxbuf_cfg(ndev->mtu, &rxq->datasize, &rxq->alloc_size, &rxq->headroom); err = mana_alloc_rx_wqe(apc, rxq, &rq_size, &cq_size); if (err) goto out; rq_size = PAGE_ALIGN(rq_size); cq_size = PAGE_ALIGN(cq_size); /* Create RQ */ memset(&spec, 0, sizeof(spec)); spec.type = GDMA_RQ; spec.monitor_avl_buf = true; spec.queue_size = rq_size; err = mana_gd_create_mana_wq_cq(gd, &spec, &rxq->gdma_rq); if (err) goto out; /* Create RQ's CQ */ cq = &rxq->rx_cq; cq->type = MANA_CQ_TYPE_RX; cq->rxq = rxq; memset(&spec, 0, sizeof(spec)); spec.type = GDMA_CQ; spec.monitor_avl_buf = false; spec.queue_size = cq_size; spec.cq.callback = mana_schedule_napi; spec.cq.parent_eq = eq->eq; spec.cq.context = cq; err = mana_gd_create_mana_wq_cq(gd, &spec, &cq->gdma_cq); if (err) goto out; memset(&wq_spec, 0, sizeof(wq_spec)); memset(&cq_spec, 0, sizeof(cq_spec)); wq_spec.gdma_region = rxq->gdma_rq->mem_info.dma_region_handle; wq_spec.queue_size = rxq->gdma_rq->queue_size; cq_spec.gdma_region = cq->gdma_cq->mem_info.dma_region_handle; cq_spec.queue_size = cq->gdma_cq->queue_size; cq_spec.modr_ctx_id = 0; cq_spec.attached_eq = cq->gdma_cq->cq.parent->id; err = mana_create_wq_obj(apc, apc->port_handle, GDMA_RQ, &wq_spec, &cq_spec, &rxq->rxobj); if (err) goto out; rxq->gdma_rq->id = wq_spec.queue_index; cq->gdma_cq->id = cq_spec.queue_index; rxq->gdma_rq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; cq->gdma_cq->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; rxq->gdma_id = rxq->gdma_rq->id; cq->gdma_id = cq->gdma_cq->id; err = mana_push_wqe(rxq); if (err) goto out; if (WARN_ON(cq->gdma_id >= gc->max_num_cqs)) { err = -EINVAL; goto out; } gc->cq_table[cq->gdma_id] = cq->gdma_cq; netif_napi_add_weight(ndev, &cq->napi, mana_poll, 1); WARN_ON(xdp_rxq_info_reg(&rxq->xdp_rxq, ndev, rxq_idx, cq->napi.napi_id)); WARN_ON(xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL)); napi_enable(&cq->napi); mana_gd_ring_cq(cq->gdma_cq, SET_ARM_BIT); out: if (!err) return rxq; netdev_err(ndev, "Failed to create RXQ: err = %d\n", err); mana_destroy_rxq(apc, rxq, false); if (cq) mana_deinit_cq(apc, cq); return NULL; } static int mana_add_rx_queues(struct mana_port_context *apc, struct net_device *ndev) { struct mana_context *ac = apc->ac; struct mana_rxq *rxq; int err = 0; int i; for (i = 0; i < apc->num_queues; i++) { rxq = mana_create_rxq(apc, i, &ac->eqs[i], ndev); if (!rxq) { err = -ENOMEM; goto out; } u64_stats_init(&rxq->stats.syncp); apc->rxqs[i] = rxq; } apc->default_rxobj = apc->rxqs[0]->rxobj; out: return err; } static void mana_destroy_vport(struct mana_port_context *apc) { struct gdma_dev *gd = apc->ac->gdma_dev; struct mana_rxq *rxq; u32 rxq_idx; for (rxq_idx = 0; rxq_idx < apc->num_queues; rxq_idx++) { rxq = apc->rxqs[rxq_idx]; if (!rxq) continue; mana_destroy_rxq(apc, rxq, true); apc->rxqs[rxq_idx] = NULL; } mana_destroy_txq(apc); mana_uncfg_vport(apc); if (gd->gdma_context->is_pf) mana_pf_deregister_hw_vport(apc); } static int mana_create_vport(struct mana_port_context *apc, struct net_device *net) { struct gdma_dev *gd = apc->ac->gdma_dev; int err; apc->default_rxobj = INVALID_MANA_HANDLE; if (gd->gdma_context->is_pf) { err = mana_pf_register_hw_vport(apc); if (err) return err; } err = mana_cfg_vport(apc, gd->pdid, gd->doorbell); if (err) return err; return mana_create_txq(apc, net); } static void mana_rss_table_init(struct mana_port_context *apc) { int i; for (i = 0; i < MANA_INDIRECT_TABLE_SIZE; i++) apc->indir_table[i] = ethtool_rxfh_indir_default(i, apc->num_queues); } int mana_config_rss(struct mana_port_context *apc, enum TRI_STATE rx, bool update_hash, bool update_tab) { u32 queue_idx; int err; int i; if (update_tab) { for (i = 0; i < MANA_INDIRECT_TABLE_SIZE; i++) { queue_idx = apc->indir_table[i]; apc->rxobj_table[i] = apc->rxqs[queue_idx]->rxobj; } } err = mana_cfg_vport_steering(apc, rx, true, update_hash, update_tab); if (err) return err; mana_fence_rqs(apc); return 0; } static int mana_init_port(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); u32 max_txq, max_rxq, max_queues; int port_idx = apc->port_idx; u32 num_indirect_entries; int err; err = mana_init_port_context(apc); if (err) return err; err = mana_query_vport_cfg(apc, port_idx, &max_txq, &max_rxq, &num_indirect_entries); if (err) { netdev_err(ndev, "Failed to query info for vPort %d\n", port_idx); goto reset_apc; } max_queues = min_t(u32, max_txq, max_rxq); if (apc->max_queues > max_queues) apc->max_queues = max_queues; if (apc->num_queues > apc->max_queues) apc->num_queues = apc->max_queues; eth_hw_addr_set(ndev, apc->mac_addr); return 0; reset_apc: kfree(apc->rxqs); apc->rxqs = NULL; return err; } int mana_alloc_queues(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); struct gdma_dev *gd = apc->ac->gdma_dev; int err; err = mana_create_vport(apc, ndev); if (err) return err; err = netif_set_real_num_tx_queues(ndev, apc->num_queues); if (err) goto destroy_vport; err = mana_add_rx_queues(apc, ndev); if (err) goto destroy_vport; apc->rss_state = apc->num_queues > 1 ? TRI_STATE_TRUE : TRI_STATE_FALSE; err = netif_set_real_num_rx_queues(ndev, apc->num_queues); if (err) goto destroy_vport; mana_rss_table_init(apc); err = mana_config_rss(apc, TRI_STATE_TRUE, true, true); if (err) goto destroy_vport; if (gd->gdma_context->is_pf) { err = mana_pf_register_filter(apc); if (err) goto destroy_vport; } mana_chn_setxdp(apc, mana_xdp_get(apc)); return 0; destroy_vport: mana_destroy_vport(apc); return err; } int mana_attach(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); int err; ASSERT_RTNL(); err = mana_init_port(ndev); if (err) return err; if (apc->port_st_save) { err = mana_alloc_queues(ndev); if (err) { mana_cleanup_port_context(apc); return err; } } apc->port_is_up = apc->port_st_save; /* Ensure port state updated before txq state */ smp_wmb(); if (apc->port_is_up) netif_carrier_on(ndev); netif_device_attach(ndev); return 0; } static int mana_dealloc_queues(struct net_device *ndev) { struct mana_port_context *apc = netdev_priv(ndev); struct gdma_dev *gd = apc->ac->gdma_dev; struct mana_txq *txq; int i, err; if (apc->port_is_up) return -EINVAL; mana_chn_setxdp(apc, NULL); if (gd->gdma_context->is_pf) mana_pf_deregister_filter(apc); /* No packet can be transmitted now since apc->port_is_up is false. * There is still a tiny chance that mana_poll_tx_cq() can re-enable * a txq because it may not timely see apc->port_is_up being cleared * to false, but it doesn't matter since mana_start_xmit() drops any * new packets due to apc->port_is_up being false. * * Drain all the in-flight TX packets */ for (i = 0; i < apc->num_queues; i++) { txq = &apc->tx_qp[i].txq; while (atomic_read(&txq->pending_sends) > 0) usleep_range(1000, 2000); } /* We're 100% sure the queues can no longer be woken up, because * we're sure now mana_poll_tx_cq() can't be running. */ apc->rss_state = TRI_STATE_FALSE; err = mana_config_rss(apc, TRI_STATE_FALSE, false, false); if (err) { netdev_err(ndev, "Failed to disable vPort: %d\n", err); return err; } mana_destroy_vport(apc); return 0; } int mana_detach(struct net_device *ndev, bool from_close) { struct mana_port_context *apc = netdev_priv(ndev); int err; ASSERT_RTNL(); apc->port_st_save = apc->port_is_up; apc->port_is_up = false; /* Ensure port state updated before txq state */ smp_wmb(); netif_tx_disable(ndev); netif_carrier_off(ndev); if (apc->port_st_save) { err = mana_dealloc_queues(ndev); if (err) return err; } if (!from_close) { netif_device_detach(ndev); mana_cleanup_port_context(apc); } return 0; } static int mana_probe_port(struct mana_context *ac, int port_idx, struct net_device **ndev_storage) { struct gdma_context *gc = ac->gdma_dev->gdma_context; struct mana_port_context *apc; struct net_device *ndev; int err; ndev = alloc_etherdev_mq(sizeof(struct mana_port_context), gc->max_num_queues); if (!ndev) return -ENOMEM; *ndev_storage = ndev; apc = netdev_priv(ndev); apc->ac = ac; apc->ndev = ndev; apc->max_queues = gc->max_num_queues; apc->num_queues = gc->max_num_queues; apc->port_handle = INVALID_MANA_HANDLE; apc->pf_filter_handle = INVALID_MANA_HANDLE; apc->port_idx = port_idx; mutex_init(&apc->vport_mutex); apc->vport_use_count = 0; ndev->netdev_ops = &mana_devops; ndev->ethtool_ops = &mana_ethtool_ops; ndev->mtu = ETH_DATA_LEN; ndev->max_mtu = gc->adapter_mtu - ETH_HLEN; ndev->min_mtu = ETH_MIN_MTU; ndev->needed_headroom = MANA_HEADROOM; ndev->dev_port = port_idx; SET_NETDEV_DEV(ndev, gc->dev); netif_carrier_off(ndev); netdev_rss_key_fill(apc->hashkey, MANA_HASH_KEY_SIZE); err = mana_init_port(ndev); if (err) goto free_net; netdev_lockdep_set_classes(ndev); ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; ndev->hw_features |= NETIF_F_RXCSUM; ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; ndev->hw_features |= NETIF_F_RXHASH; ndev->features = ndev->hw_features; ndev->vlan_features = 0; ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; err = register_netdev(ndev); if (err) { netdev_err(ndev, "Unable to register netdev.\n"); goto reset_apc; } return 0; reset_apc: kfree(apc->rxqs); apc->rxqs = NULL; free_net: *ndev_storage = NULL; netdev_err(ndev, "Failed to probe vPort %d: %d\n", port_idx, err); free_netdev(ndev); return err; } static void adev_release(struct device *dev) { struct mana_adev *madev = container_of(dev, struct mana_adev, adev.dev); kfree(madev); } static void remove_adev(struct gdma_dev *gd) { struct auxiliary_device *adev = gd->adev; int id = adev->id; auxiliary_device_delete(adev); auxiliary_device_uninit(adev); mana_adev_idx_free(id); gd->adev = NULL; } static int add_adev(struct gdma_dev *gd) { struct auxiliary_device *adev; struct mana_adev *madev; int ret; madev = kzalloc(sizeof(*madev), GFP_KERNEL); if (!madev) return -ENOMEM; adev = &madev->adev; ret = mana_adev_idx_alloc(); if (ret < 0) goto idx_fail; adev->id = ret; adev->name = "rdma"; adev->dev.parent = gd->gdma_context->dev; adev->dev.release = adev_release; madev->mdev = gd; ret = auxiliary_device_init(adev); if (ret) goto init_fail; ret = auxiliary_device_add(adev); if (ret) goto add_fail; gd->adev = adev; return 0; add_fail: auxiliary_device_uninit(adev); init_fail: mana_adev_idx_free(adev->id); idx_fail: kfree(madev); return ret; } int mana_probe(struct gdma_dev *gd, bool resuming) { struct gdma_context *gc = gd->gdma_context; struct mana_context *ac = gd->driver_data; struct device *dev = gc->dev; u16 num_ports = 0; int err; int i; dev_info(dev, "Microsoft Azure Network Adapter protocol version: %d.%d.%d\n", MANA_MAJOR_VERSION, MANA_MINOR_VERSION, MANA_MICRO_VERSION); err = mana_gd_register_device(gd); if (err) return err; if (!resuming) { ac = kzalloc(sizeof(*ac), GFP_KERNEL); if (!ac) return -ENOMEM; ac->gdma_dev = gd; gd->driver_data = ac; } err = mana_create_eq(ac); if (err) goto out; err = mana_query_device_cfg(ac, MANA_MAJOR_VERSION, MANA_MINOR_VERSION, MANA_MICRO_VERSION, &num_ports); if (err) goto out; if (!resuming) { ac->num_ports = num_ports; } else { if (ac->num_ports != num_ports) { dev_err(dev, "The number of vPorts changed: %d->%d\n", ac->num_ports, num_ports); err = -EPROTO; goto out; } } if (ac->num_ports == 0) dev_err(dev, "Failed to detect any vPort\n"); if (ac->num_ports > MAX_PORTS_IN_MANA_DEV) ac->num_ports = MAX_PORTS_IN_MANA_DEV; if (!resuming) { for (i = 0; i < ac->num_ports; i++) { err = mana_probe_port(ac, i, &ac->ports[i]); if (err) break; } } else { for (i = 0; i < ac->num_ports; i++) { rtnl_lock(); err = mana_attach(ac->ports[i]); rtnl_unlock(); if (err) break; } } err = add_adev(gd); out: if (err) mana_remove(gd, false); return err; } void mana_remove(struct gdma_dev *gd, bool suspending) { struct gdma_context *gc = gd->gdma_context; struct mana_context *ac = gd->driver_data; struct device *dev = gc->dev; struct net_device *ndev; int err; int i; /* adev currently doesn't support suspending, always remove it */ if (gd->adev) remove_adev(gd); for (i = 0; i < ac->num_ports; i++) { ndev = ac->ports[i]; if (!ndev) { if (i == 0) dev_err(dev, "No net device to remove\n"); goto out; } /* All cleanup actions should stay after rtnl_lock(), otherwise * other functions may access partially cleaned up data. */ rtnl_lock(); err = mana_detach(ndev, false); if (err) netdev_err(ndev, "Failed to detach vPort %d: %d\n", i, err); if (suspending) { /* No need to unregister the ndev. */ rtnl_unlock(); continue; } unregister_netdevice(ndev); rtnl_unlock(); free_netdev(ndev); } mana_destroy_eq(ac); out: mana_gd_deregister_device(gd); if (suspending) return; gd->driver_data = NULL; gd->gdma_context = NULL; kfree(ac); }