/** * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver * * Copyright (c) 2009-2010 Micrel, Inc. * Tristram Ha * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* DMA Registers */ #define KS_DMA_TX_CTRL 0x0000 #define DMA_TX_ENABLE 0x00000001 #define DMA_TX_CRC_ENABLE 0x00000002 #define DMA_TX_PAD_ENABLE 0x00000004 #define DMA_TX_LOOPBACK 0x00000100 #define DMA_TX_FLOW_ENABLE 0x00000200 #define DMA_TX_CSUM_IP 0x00010000 #define DMA_TX_CSUM_TCP 0x00020000 #define DMA_TX_CSUM_UDP 0x00040000 #define DMA_TX_BURST_SIZE 0x3F000000 #define KS_DMA_RX_CTRL 0x0004 #define DMA_RX_ENABLE 0x00000001 #define KS884X_DMA_RX_MULTICAST 0x00000002 #define DMA_RX_PROMISCUOUS 0x00000004 #define DMA_RX_ERROR 0x00000008 #define DMA_RX_UNICAST 0x00000010 #define DMA_RX_ALL_MULTICAST 0x00000020 #define DMA_RX_BROADCAST 0x00000040 #define DMA_RX_FLOW_ENABLE 0x00000200 #define DMA_RX_CSUM_IP 0x00010000 #define DMA_RX_CSUM_TCP 0x00020000 #define DMA_RX_CSUM_UDP 0x00040000 #define DMA_RX_BURST_SIZE 0x3F000000 #define DMA_BURST_SHIFT 24 #define DMA_BURST_DEFAULT 8 #define KS_DMA_TX_START 0x0008 #define KS_DMA_RX_START 0x000C #define DMA_START 0x00000001 #define KS_DMA_TX_ADDR 0x0010 #define KS_DMA_RX_ADDR 0x0014 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC #define DMA_ADDR_LIST_SHIFT 2 /* MTR0 */ #define KS884X_MULTICAST_0_OFFSET 0x0020 #define KS884X_MULTICAST_1_OFFSET 0x0021 #define KS884X_MULTICAST_2_OFFSET 0x0022 #define KS884x_MULTICAST_3_OFFSET 0x0023 /* MTR1 */ #define KS884X_MULTICAST_4_OFFSET 0x0024 #define KS884X_MULTICAST_5_OFFSET 0x0025 #define KS884X_MULTICAST_6_OFFSET 0x0026 #define KS884X_MULTICAST_7_OFFSET 0x0027 /* Interrupt Registers */ /* INTEN */ #define KS884X_INTERRUPTS_ENABLE 0x0028 /* INTST */ #define KS884X_INTERRUPTS_STATUS 0x002C #define KS884X_INT_RX_STOPPED 0x02000000 #define KS884X_INT_TX_STOPPED 0x04000000 #define KS884X_INT_RX_OVERRUN 0x08000000 #define KS884X_INT_TX_EMPTY 0x10000000 #define KS884X_INT_RX 0x20000000 #define KS884X_INT_TX 0x40000000 #define KS884X_INT_PHY 0x80000000 #define KS884X_INT_RX_MASK \ (KS884X_INT_RX | KS884X_INT_RX_OVERRUN) #define KS884X_INT_TX_MASK \ (KS884X_INT_TX | KS884X_INT_TX_EMPTY) #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY) /* MAC Additional Station Address */ /* MAAL0 */ #define KS_ADD_ADDR_0_LO 0x0080 /* MAAH0 */ #define KS_ADD_ADDR_0_HI 0x0084 /* MAAL1 */ #define KS_ADD_ADDR_1_LO 0x0088 /* MAAH1 */ #define KS_ADD_ADDR_1_HI 0x008C /* MAAL2 */ #define KS_ADD_ADDR_2_LO 0x0090 /* MAAH2 */ #define KS_ADD_ADDR_2_HI 0x0094 /* MAAL3 */ #define KS_ADD_ADDR_3_LO 0x0098 /* MAAH3 */ #define KS_ADD_ADDR_3_HI 0x009C /* MAAL4 */ #define KS_ADD_ADDR_4_LO 0x00A0 /* MAAH4 */ #define KS_ADD_ADDR_4_HI 0x00A4 /* MAAL5 */ #define KS_ADD_ADDR_5_LO 0x00A8 /* MAAH5 */ #define KS_ADD_ADDR_5_HI 0x00AC /* MAAL6 */ #define KS_ADD_ADDR_6_LO 0x00B0 /* MAAH6 */ #define KS_ADD_ADDR_6_HI 0x00B4 /* MAAL7 */ #define KS_ADD_ADDR_7_LO 0x00B8 /* MAAH7 */ #define KS_ADD_ADDR_7_HI 0x00BC /* MAAL8 */ #define KS_ADD_ADDR_8_LO 0x00C0 /* MAAH8 */ #define KS_ADD_ADDR_8_HI 0x00C4 /* MAAL9 */ #define KS_ADD_ADDR_9_LO 0x00C8 /* MAAH9 */ #define KS_ADD_ADDR_9_HI 0x00CC /* MAAL10 */ #define KS_ADD_ADDR_A_LO 0x00D0 /* MAAH10 */ #define KS_ADD_ADDR_A_HI 0x00D4 /* MAAL11 */ #define KS_ADD_ADDR_B_LO 0x00D8 /* MAAH11 */ #define KS_ADD_ADDR_B_HI 0x00DC /* MAAL12 */ #define KS_ADD_ADDR_C_LO 0x00E0 /* MAAH12 */ #define KS_ADD_ADDR_C_HI 0x00E4 /* MAAL13 */ #define KS_ADD_ADDR_D_LO 0x00E8 /* MAAH13 */ #define KS_ADD_ADDR_D_HI 0x00EC /* MAAL14 */ #define KS_ADD_ADDR_E_LO 0x00F0 /* MAAH14 */ #define KS_ADD_ADDR_E_HI 0x00F4 /* MAAL15 */ #define KS_ADD_ADDR_F_LO 0x00F8 /* MAAH15 */ #define KS_ADD_ADDR_F_HI 0x00FC #define ADD_ADDR_HI_MASK 0x0000FFFF #define ADD_ADDR_ENABLE 0x80000000 #define ADD_ADDR_INCR 8 /* Miscellaneous Registers */ /* MARL */ #define KS884X_ADDR_0_OFFSET 0x0200 #define KS884X_ADDR_1_OFFSET 0x0201 /* MARM */ #define KS884X_ADDR_2_OFFSET 0x0202 #define KS884X_ADDR_3_OFFSET 0x0203 /* MARH */ #define KS884X_ADDR_4_OFFSET 0x0204 #define KS884X_ADDR_5_OFFSET 0x0205 /* OBCR */ #define KS884X_BUS_CTRL_OFFSET 0x0210 #define BUS_SPEED_125_MHZ 0x0000 #define BUS_SPEED_62_5_MHZ 0x0001 #define BUS_SPEED_41_66_MHZ 0x0002 #define BUS_SPEED_25_MHZ 0x0003 /* EEPCR */ #define KS884X_EEPROM_CTRL_OFFSET 0x0212 #define EEPROM_CHIP_SELECT 0x0001 #define EEPROM_SERIAL_CLOCK 0x0002 #define EEPROM_DATA_OUT 0x0004 #define EEPROM_DATA_IN 0x0008 #define EEPROM_ACCESS_ENABLE 0x0010 /* MBIR */ #define KS884X_MEM_INFO_OFFSET 0x0214 #define RX_MEM_TEST_FAILED 0x0008 #define RX_MEM_TEST_FINISHED 0x0010 #define TX_MEM_TEST_FAILED 0x0800 #define TX_MEM_TEST_FINISHED 0x1000 /* GCR */ #define KS884X_GLOBAL_CTRL_OFFSET 0x0216 #define GLOBAL_SOFTWARE_RESET 0x0001 #define KS8841_POWER_MANAGE_OFFSET 0x0218 /* WFCR */ #define KS8841_WOL_CTRL_OFFSET 0x021A #define KS8841_WOL_MAGIC_ENABLE 0x0080 #define KS8841_WOL_FRAME3_ENABLE 0x0008 #define KS8841_WOL_FRAME2_ENABLE 0x0004 #define KS8841_WOL_FRAME1_ENABLE 0x0002 #define KS8841_WOL_FRAME0_ENABLE 0x0001 /* WF0 */ #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228 /* IACR */ #define KS884X_IACR_P 0x04A0 #define KS884X_IACR_OFFSET KS884X_IACR_P /* IADR1 */ #define KS884X_IADR1_P 0x04A2 #define KS884X_IADR2_P 0x04A4 #define KS884X_IADR3_P 0x04A6 #define KS884X_IADR4_P 0x04A8 #define KS884X_IADR5_P 0x04AA #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1) #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1) #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1) #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1) #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1) #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P /* P1MBCR */ #define KS884X_P1MBCR_P 0x04D0 #define KS884X_P1MBSR_P 0x04D2 #define KS884X_PHY1ILR_P 0x04D4 #define KS884X_PHY1IHR_P 0x04D6 #define KS884X_P1ANAR_P 0x04D8 #define KS884X_P1ANLPR_P 0x04DA /* P2MBCR */ #define KS884X_P2MBCR_P 0x04E0 #define KS884X_P2MBSR_P 0x04E2 #define KS884X_PHY2ILR_P 0x04E4 #define KS884X_PHY2IHR_P 0x04E6 #define KS884X_P2ANAR_P 0x04E8 #define KS884X_P2ANLPR_P 0x04EA #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P) #define KS884X_PHY_CTRL_OFFSET 0x00 /* Mode Control Register */ #define PHY_REG_CTRL 0 #define PHY_RESET 0x8000 #define PHY_LOOPBACK 0x4000 #define PHY_SPEED_100MBIT 0x2000 #define PHY_AUTO_NEG_ENABLE 0x1000 #define PHY_POWER_DOWN 0x0800 #define PHY_MII_DISABLE 0x0400 #define PHY_AUTO_NEG_RESTART 0x0200 #define PHY_FULL_DUPLEX 0x0100 #define PHY_COLLISION_TEST 0x0080 #define PHY_HP_MDIX 0x0020 #define PHY_FORCE_MDIX 0x0010 #define PHY_AUTO_MDIX_DISABLE 0x0008 #define PHY_REMOTE_FAULT_DISABLE 0x0004 #define PHY_TRANSMIT_DISABLE 0x0002 #define PHY_LED_DISABLE 0x0001 #define KS884X_PHY_STATUS_OFFSET 0x02 /* Mode Status Register */ #define PHY_REG_STATUS 1 #define PHY_100BT4_CAPABLE 0x8000 #define PHY_100BTX_FD_CAPABLE 0x4000 #define PHY_100BTX_CAPABLE 0x2000 #define PHY_10BT_FD_CAPABLE 0x1000 #define PHY_10BT_CAPABLE 0x0800 #define PHY_MII_SUPPRESS_CAPABLE 0x0040 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020 #define PHY_REMOTE_FAULT 0x0010 #define PHY_AUTO_NEG_CAPABLE 0x0008 #define PHY_LINK_STATUS 0x0004 #define PHY_JABBER_DETECT 0x0002 #define PHY_EXTENDED_CAPABILITY 0x0001 #define KS884X_PHY_ID_1_OFFSET 0x04 #define KS884X_PHY_ID_2_OFFSET 0x06 /* PHY Identifier Registers */ #define PHY_REG_ID_1 2 #define PHY_REG_ID_2 3 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08 /* Auto-Negotiation Advertisement Register */ #define PHY_REG_AUTO_NEGOTIATION 4 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000 /* Not supported. */ #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400 #define PHY_AUTO_NEG_100BT4 0x0200 #define PHY_AUTO_NEG_100BTX_FD 0x0100 #define PHY_AUTO_NEG_100BTX 0x0080 #define PHY_AUTO_NEG_10BT_FD 0x0040 #define PHY_AUTO_NEG_10BT 0x0020 #define PHY_AUTO_NEG_SELECTOR 0x001F #define PHY_AUTO_NEG_802_3 0x0001 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE) #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A /* Auto-Negotiation Link Partner Ability Register */ #define PHY_REG_REMOTE_CAPABILITY 5 #define PHY_REMOTE_NEXT_PAGE 0x8000 #define PHY_REMOTE_ACKNOWLEDGE 0x4000 #define PHY_REMOTE_REMOTE_FAULT 0x2000 #define PHY_REMOTE_SYM_PAUSE 0x0400 #define PHY_REMOTE_100BTX_FD 0x0100 #define PHY_REMOTE_100BTX 0x0080 #define PHY_REMOTE_10BT_FD 0x0040 #define PHY_REMOTE_10BT 0x0020 /* P1VCT */ #define KS884X_P1VCT_P 0x04F0 #define KS884X_P1PHYCTRL_P 0x04F2 /* P2VCT */ #define KS884X_P2VCT_P 0x04F4 #define KS884X_P2PHYCTRL_P 0x04F6 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P) #define KS884X_PHY_LINK_MD_OFFSET 0x00 #define PHY_START_CABLE_DIAG 0x8000 #define PHY_CABLE_DIAG_RESULT 0x6000 #define PHY_CABLE_STAT_NORMAL 0x0000 #define PHY_CABLE_STAT_OPEN 0x2000 #define PHY_CABLE_STAT_SHORT 0x4000 #define PHY_CABLE_STAT_FAILED 0x6000 #define PHY_CABLE_10M_SHORT 0x1000 #define PHY_CABLE_FAULT_COUNTER 0x01FF #define KS884X_PHY_PHY_CTRL_OFFSET 0x02 #define PHY_STAT_REVERSED_POLARITY 0x0020 #define PHY_STAT_MDIX 0x0010 #define PHY_FORCE_LINK 0x0008 #define PHY_POWER_SAVING_DISABLE 0x0004 #define PHY_REMOTE_LOOPBACK 0x0002 /* SIDER */ #define KS884X_SIDER_P 0x0400 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1) #define REG_FAMILY_ID 0x88 #define REG_CHIP_ID_41 0x8810 #define REG_CHIP_ID_42 0x8800 #define KS884X_CHIP_ID_MASK_41 0xFF10 #define KS884X_CHIP_ID_MASK 0xFFF0 #define KS884X_CHIP_ID_SHIFT 4 #define KS884X_REVISION_MASK 0x000E #define KS884X_REVISION_SHIFT 1 #define KS8842_START 0x0001 #define CHIP_IP_41_M 0x8810 #define CHIP_IP_42_M 0x8800 #define CHIP_IP_61_M 0x8890 #define CHIP_IP_62_M 0x8880 #define CHIP_IP_41_P 0x8850 #define CHIP_IP_42_P 0x8840 #define CHIP_IP_61_P 0x88D0 #define CHIP_IP_62_P 0x88C0 /* SGCR1 */ #define KS8842_SGCR1_P 0x0402 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P #define SWITCH_PASS_ALL 0x8000 #define SWITCH_TX_FLOW_CTRL 0x2000 #define SWITCH_RX_FLOW_CTRL 0x1000 #define SWITCH_CHECK_LENGTH 0x0800 #define SWITCH_AGING_ENABLE 0x0400 #define SWITCH_FAST_AGING 0x0200 #define SWITCH_AGGR_BACKOFF 0x0100 #define SWITCH_PASS_PAUSE 0x0008 #define SWITCH_LINK_AUTO_AGING 0x0001 /* SGCR2 */ #define KS8842_SGCR2_P 0x0404 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P #define SWITCH_VLAN_ENABLE 0x8000 #define SWITCH_IGMP_SNOOP 0x4000 #define IPV6_MLD_SNOOP_ENABLE 0x2000 #define IPV6_MLD_SNOOP_OPTION 0x1000 #define PRIORITY_SCHEME_SELECT 0x0800 #define SWITCH_MIRROR_RX_TX 0x0100 #define UNICAST_VLAN_BOUNDARY 0x0080 #define MULTICAST_STORM_DISABLE 0x0040 #define SWITCH_BACK_PRESSURE 0x0020 #define FAIR_FLOW_CTRL 0x0010 #define NO_EXC_COLLISION_DROP 0x0008 #define SWITCH_HUGE_PACKET 0x0004 #define SWITCH_LEGAL_PACKET 0x0002 #define SWITCH_BUF_RESERVE 0x0001 /* SGCR3 */ #define KS8842_SGCR3_P 0x0406 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P #define BROADCAST_STORM_RATE_LO 0xFF00 #define SWITCH_REPEATER 0x0080 #define SWITCH_HALF_DUPLEX 0x0040 #define SWITCH_FLOW_CTRL 0x0020 #define SWITCH_10_MBIT 0x0010 #define SWITCH_REPLACE_NULL_VID 0x0008 #define BROADCAST_STORM_RATE_HI 0x0007 #define BROADCAST_STORM_RATE 0x07FF /* SGCR4 */ #define KS8842_SGCR4_P 0x0408 /* SGCR5 */ #define KS8842_SGCR5_P 0x040A #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P #define LED_MODE 0x8200 #define LED_SPEED_DUPLEX_ACT 0x0000 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000 #define LED_DUPLEX_10_100 0x0200 /* SGCR6 */ #define KS8842_SGCR6_P 0x0410 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P #define KS8842_PRIORITY_MASK 3 #define KS8842_PRIORITY_SHIFT 2 /* SGCR7 */ #define KS8842_SGCR7_P 0x0412 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008 #define SWITCH_UNK_DEF_PORT_3 0x0004 #define SWITCH_UNK_DEF_PORT_2 0x0002 #define SWITCH_UNK_DEF_PORT_1 0x0001 /* MACAR1 */ #define KS8842_MACAR1_P 0x0470 #define KS8842_MACAR2_P 0x0472 #define KS8842_MACAR3_P 0x0474 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1) #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1) #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1) /* TOSR1 */ #define KS8842_TOSR1_P 0x0480 #define KS8842_TOSR2_P 0x0482 #define KS8842_TOSR3_P 0x0484 #define KS8842_TOSR4_P 0x0486 #define KS8842_TOSR5_P 0x0488 #define KS8842_TOSR6_P 0x048A #define KS8842_TOSR7_P 0x0490 #define KS8842_TOSR8_P 0x0492 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P /* P1CR1 */ #define KS8842_P1CR1_P 0x0500 #define KS8842_P1CR2_P 0x0502 #define KS8842_P1VIDR_P 0x0504 #define KS8842_P1CR3_P 0x0506 #define KS8842_P1IRCR_P 0x0508 #define KS8842_P1ERCR_P 0x050A #define KS884X_P1SCSLMD_P 0x0510 #define KS884X_P1CR4_P 0x0512 #define KS884X_P1SR_P 0x0514 /* P2CR1 */ #define KS8842_P2CR1_P 0x0520 #define KS8842_P2CR2_P 0x0522 #define KS8842_P2VIDR_P 0x0524 #define KS8842_P2CR3_P 0x0526 #define KS8842_P2IRCR_P 0x0528 #define KS8842_P2ERCR_P 0x052A #define KS884X_P2SCSLMD_P 0x0530 #define KS884X_P2CR4_P 0x0532 #define KS884X_P2SR_P 0x0534 /* P3CR1 */ #define KS8842_P3CR1_P 0x0540 #define KS8842_P3CR2_P 0x0542 #define KS8842_P3VIDR_P 0x0544 #define KS8842_P3CR3_P 0x0546 #define KS8842_P3IRCR_P 0x0548 #define KS8842_P3ERCR_P 0x054A #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P #define PORT_CTRL_ADDR(port, addr) \ (addr = KS8842_PORT_1_CTRL_1 + (port) * \ (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1)) #define KS8842_PORT_CTRL_1_OFFSET 0x00 #define PORT_BROADCAST_STORM 0x0080 #define PORT_DIFFSERV_ENABLE 0x0040 #define PORT_802_1P_ENABLE 0x0020 #define PORT_BASED_PRIORITY_MASK 0x0018 #define PORT_BASED_PRIORITY_BASE 0x0003 #define PORT_BASED_PRIORITY_SHIFT 3 #define PORT_BASED_PRIORITY_0 0x0000 #define PORT_BASED_PRIORITY_1 0x0008 #define PORT_BASED_PRIORITY_2 0x0010 #define PORT_BASED_PRIORITY_3 0x0018 #define PORT_INSERT_TAG 0x0004 #define PORT_REMOVE_TAG 0x0002 #define PORT_PRIO_QUEUE_ENABLE 0x0001 #define KS8842_PORT_CTRL_2_OFFSET 0x02 #define PORT_INGRESS_VLAN_FILTER 0x4000 #define PORT_DISCARD_NON_VID 0x2000 #define PORT_FORCE_FLOW_CTRL 0x1000 #define PORT_BACK_PRESSURE 0x0800 #define PORT_TX_ENABLE 0x0400 #define PORT_RX_ENABLE 0x0200 #define PORT_LEARN_DISABLE 0x0100 #define PORT_MIRROR_SNIFFER 0x0080 #define PORT_MIRROR_RX 0x0040 #define PORT_MIRROR_TX 0x0020 #define PORT_USER_PRIORITY_CEILING 0x0008 #define PORT_VLAN_MEMBERSHIP 0x0007 #define KS8842_PORT_CTRL_VID_OFFSET 0x04 #define PORT_DEFAULT_VID 0x0001 #define KS8842_PORT_CTRL_3_OFFSET 0x06 #define PORT_INGRESS_LIMIT_MODE 0x000C #define PORT_INGRESS_ALL 0x0000 #define PORT_INGRESS_UNICAST 0x0004 #define PORT_INGRESS_MULTICAST 0x0008 #define PORT_INGRESS_BROADCAST 0x000C #define PORT_COUNT_IFG 0x0002 #define PORT_COUNT_PREAMBLE 0x0001 #define KS8842_PORT_IN_RATE_OFFSET 0x08 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A #define PORT_PRIORITY_RATE 0x0F #define PORT_PRIORITY_RATE_SHIFT 4 #define KS884X_PORT_LINK_MD 0x10 #define PORT_CABLE_10M_SHORT 0x8000 #define PORT_CABLE_DIAG_RESULT 0x6000 #define PORT_CABLE_STAT_NORMAL 0x0000 #define PORT_CABLE_STAT_OPEN 0x2000 #define PORT_CABLE_STAT_SHORT 0x4000 #define PORT_CABLE_STAT_FAILED 0x6000 #define PORT_START_CABLE_DIAG 0x1000 #define PORT_FORCE_LINK 0x0800 #define PORT_POWER_SAVING_DISABLE 0x0400 #define PORT_PHY_REMOTE_LOOPBACK 0x0200 #define PORT_CABLE_FAULT_COUNTER 0x01FF #define KS884X_PORT_CTRL_4_OFFSET 0x12 #define PORT_LED_OFF 0x8000 #define PORT_TX_DISABLE 0x4000 #define PORT_AUTO_NEG_RESTART 0x2000 #define PORT_REMOTE_FAULT_DISABLE 0x1000 #define PORT_POWER_DOWN 0x0800 #define PORT_AUTO_MDIX_DISABLE 0x0400 #define PORT_FORCE_MDIX 0x0200 #define PORT_LOOPBACK 0x0100 #define PORT_AUTO_NEG_ENABLE 0x0080 #define PORT_FORCE_100_MBIT 0x0040 #define PORT_FORCE_FULL_DUPLEX 0x0020 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010 #define PORT_AUTO_NEG_100BTX_FD 0x0008 #define PORT_AUTO_NEG_100BTX 0x0004 #define PORT_AUTO_NEG_10BT_FD 0x0002 #define PORT_AUTO_NEG_10BT 0x0001 #define KS884X_PORT_STATUS_OFFSET 0x14 #define PORT_HP_MDIX 0x8000 #define PORT_REVERSED_POLARITY 0x2000 #define PORT_RX_FLOW_CTRL 0x0800 #define PORT_TX_FLOW_CTRL 0x1000 #define PORT_STATUS_SPEED_100MBIT 0x0400 #define PORT_STATUS_FULL_DUPLEX 0x0200 #define PORT_REMOTE_FAULT 0x0100 #define PORT_MDIX_STATUS 0x0080 #define PORT_AUTO_NEG_COMPLETE 0x0040 #define PORT_STATUS_LINK_GOOD 0x0020 #define PORT_REMOTE_SYM_PAUSE 0x0010 #define PORT_REMOTE_100BTX_FD 0x0008 #define PORT_REMOTE_100BTX 0x0004 #define PORT_REMOTE_10BT_FD 0x0002 #define PORT_REMOTE_10BT 0x0001 /* #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000 */ #define STATIC_MAC_TABLE_ADDR 0x0000FFFF #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000 #define STATIC_MAC_TABLE_VALID 0x00080000 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000 #define STATIC_MAC_TABLE_USE_FID 0x00200000 #define STATIC_MAC_TABLE_FID 0x03C00000 #define STATIC_MAC_FWD_PORTS_SHIFT 16 #define STATIC_MAC_FID_SHIFT 22 /* #define VLAN_TABLE_VID 00-00000000-00000FFF #define VLAN_TABLE_FID 00-00000000-0000F000 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000 #define VLAN_TABLE_VALID 00-00000000-00080000 */ #define VLAN_TABLE_VID 0x00000FFF #define VLAN_TABLE_FID 0x0000F000 #define VLAN_TABLE_MEMBERSHIP 0x00070000 #define VLAN_TABLE_VALID 0x00080000 #define VLAN_TABLE_FID_SHIFT 12 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16 /* #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000 */ #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF #define DYNAMIC_MAC_TABLE_FID 0x000F0000 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04 #define DYNAMIC_MAC_TABLE_RESERVED 0x78 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80 #define DYNAMIC_MAC_FID_SHIFT 16 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22 #define DYNAMIC_MAC_ENTRIES_SHIFT 24 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8 /* #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF #define MIB_COUNTER_VALID 00-00000000-40000000 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000 */ #define MIB_COUNTER_VALUE 0x3FFFFFFF #define MIB_COUNTER_VALID 0x40000000 #define MIB_COUNTER_OVERFLOW 0x80000000 #define MIB_PACKET_DROPPED 0x0000FFFF #define KS_MIB_PACKET_DROPPED_TX_0 0x100 #define KS_MIB_PACKET_DROPPED_TX_1 0x101 #define KS_MIB_PACKET_DROPPED_TX 0x102 #define KS_MIB_PACKET_DROPPED_RX_0 0x103 #define KS_MIB_PACKET_DROPPED_RX_1 0x104 #define KS_MIB_PACKET_DROPPED_RX 0x105 /* Change default LED mode. */ #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i)) #define MAX_ETHERNET_BODY_SIZE 1500 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN) #define MAX_ETHERNET_PACKET_SIZE \ (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE) #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4) #define MAX_RX_BUF_SIZE (1912 + 4) #define ADDITIONAL_ENTRIES 16 #define MAX_MULTICAST_LIST 32 #define HW_MULTICAST_SIZE 8 #define HW_TO_DEV_PORT(port) (port - 1) enum { media_connected, media_disconnected }; enum { OID_COUNTER_UNKOWN, OID_COUNTER_FIRST, /* total transmit errors */ OID_COUNTER_XMIT_ERROR, /* total receive errors */ OID_COUNTER_RCV_ERROR, OID_COUNTER_LAST }; /* * Hardware descriptor definitions */ #define DESC_ALIGNMENT 16 #define BUFFER_ALIGNMENT 8 #define NUM_OF_RX_DESC 64 #define NUM_OF_TX_DESC 64 #define KS_DESC_RX_FRAME_LEN 0x000007FF #define KS_DESC_RX_FRAME_TYPE 0x00008000 #define KS_DESC_RX_ERROR_CRC 0x00010000 #define KS_DESC_RX_ERROR_RUNT 0x00020000 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000 #define KS_DESC_RX_ERROR_PHY 0x00080000 #define KS884X_DESC_RX_PORT_MASK 0x00300000 #define KS_DESC_RX_MULTICAST 0x01000000 #define KS_DESC_RX_ERROR 0x02000000 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000 #define KS_DESC_RX_LAST 0x20000000 #define KS_DESC_RX_FIRST 0x40000000 #define KS_DESC_RX_ERROR_COND \ (KS_DESC_RX_ERROR_CRC | \ KS_DESC_RX_ERROR_RUNT | \ KS_DESC_RX_ERROR_PHY | \ KS_DESC_RX_ERROR_TOO_LONG) #define KS_DESC_HW_OWNED 0x80000000 #define KS_DESC_BUF_SIZE 0x000007FF #define KS884X_DESC_TX_PORT_MASK 0x00300000 #define KS_DESC_END_OF_RING 0x02000000 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000 #define KS_DESC_TX_LAST 0x20000000 #define KS_DESC_TX_FIRST 0x40000000 #define KS_DESC_TX_INTERRUPT 0x80000000 #define KS_DESC_PORT_SHIFT 20 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE) #define KS_DESC_TX_MASK \ (KS_DESC_TX_INTERRUPT | \ KS_DESC_TX_FIRST | \ KS_DESC_TX_LAST | \ KS_DESC_TX_CSUM_GEN_IP | \ KS_DESC_TX_CSUM_GEN_TCP | \ KS_DESC_TX_CSUM_GEN_UDP | \ KS_DESC_BUF_SIZE) struct ksz_desc_rx_stat { #ifdef __BIG_ENDIAN_BITFIELD u32 hw_owned:1; u32 first_desc:1; u32 last_desc:1; u32 csum_err_ip:1; u32 csum_err_tcp:1; u32 csum_err_udp:1; u32 error:1; u32 multicast:1; u32 src_port:4; u32 err_phy:1; u32 err_too_long:1; u32 err_runt:1; u32 err_crc:1; u32 frame_type:1; u32 reserved1:4; u32 frame_len:11; #else u32 frame_len:11; u32 reserved1:4; u32 frame_type:1; u32 err_crc:1; u32 err_runt:1; u32 err_too_long:1; u32 err_phy:1; u32 src_port:4; u32 multicast:1; u32 error:1; u32 csum_err_udp:1; u32 csum_err_tcp:1; u32 csum_err_ip:1; u32 last_desc:1; u32 first_desc:1; u32 hw_owned:1; #endif }; struct ksz_desc_tx_stat { #ifdef __BIG_ENDIAN_BITFIELD u32 hw_owned:1; u32 reserved1:31; #else u32 reserved1:31; u32 hw_owned:1; #endif }; struct ksz_desc_rx_buf { #ifdef __BIG_ENDIAN_BITFIELD u32 reserved4:6; u32 end_of_ring:1; u32 reserved3:14; u32 buf_size:11; #else u32 buf_size:11; u32 reserved3:14; u32 end_of_ring:1; u32 reserved4:6; #endif }; struct ksz_desc_tx_buf { #ifdef __BIG_ENDIAN_BITFIELD u32 intr:1; u32 first_seg:1; u32 last_seg:1; u32 csum_gen_ip:1; u32 csum_gen_tcp:1; u32 csum_gen_udp:1; u32 end_of_ring:1; u32 reserved4:1; u32 dest_port:4; u32 reserved3:9; u32 buf_size:11; #else u32 buf_size:11; u32 reserved3:9; u32 dest_port:4; u32 reserved4:1; u32 end_of_ring:1; u32 csum_gen_udp:1; u32 csum_gen_tcp:1; u32 csum_gen_ip:1; u32 last_seg:1; u32 first_seg:1; u32 intr:1; #endif }; union desc_stat { struct ksz_desc_rx_stat rx; struct ksz_desc_tx_stat tx; u32 data; }; union desc_buf { struct ksz_desc_rx_buf rx; struct ksz_desc_tx_buf tx; u32 data; }; /** * struct ksz_hw_desc - Hardware descriptor data structure * @ctrl: Descriptor control value. * @buf: Descriptor buffer value. * @addr: Physical address of memory buffer. * @next: Pointer to next hardware descriptor. */ struct ksz_hw_desc { union desc_stat ctrl; union desc_buf buf; u32 addr; u32 next; }; /** * struct ksz_sw_desc - Software descriptor data structure * @ctrl: Descriptor control value. * @buf: Descriptor buffer value. * @buf_size: Current buffers size value in hardware descriptor. */ struct ksz_sw_desc { union desc_stat ctrl; union desc_buf buf; u32 buf_size; }; /** * struct ksz_dma_buf - OS dependent DMA buffer data structure * @skb: Associated socket buffer. * @dma: Associated physical DMA address. * len: Actual len used. */ struct ksz_dma_buf { struct sk_buff *skb; dma_addr_t dma; int len; }; /** * struct ksz_desc - Descriptor structure * @phw: Hardware descriptor pointer to uncached physical memory. * @sw: Cached memory to hold hardware descriptor values for * manipulation. * @dma_buf: Operating system dependent data structure to hold physical * memory buffer allocation information. */ struct ksz_desc { struct ksz_hw_desc *phw; struct ksz_sw_desc sw; struct ksz_dma_buf dma_buf; }; #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf)) /** * struct ksz_desc_info - Descriptor information data structure * @ring: First descriptor in the ring. * @cur: Current descriptor being manipulated. * @ring_virt: First hardware descriptor in the ring. * @ring_phys: The physical address of the first descriptor of the ring. * @size: Size of hardware descriptor. * @alloc: Number of descriptors allocated. * @avail: Number of descriptors available for use. * @last: Index for last descriptor released to hardware. * @next: Index for next descriptor available for use. * @mask: Mask for index wrapping. */ struct ksz_desc_info { struct ksz_desc *ring; struct ksz_desc *cur; struct ksz_hw_desc *ring_virt; u32 ring_phys; int size; int alloc; int avail; int last; int next; int mask; }; /* * KSZ8842 switch definitions */ enum { TABLE_STATIC_MAC = 0, TABLE_VLAN, TABLE_DYNAMIC_MAC, TABLE_MIB }; #define LEARNED_MAC_TABLE_ENTRIES 1024 #define STATIC_MAC_TABLE_ENTRIES 8 /** * struct ksz_mac_table - Static MAC table data structure * @mac_addr: MAC address to filter. * @vid: VID value. * @fid: FID value. * @ports: Port membership. * @override: Override setting. * @use_fid: FID use setting. * @valid: Valid setting indicating the entry is being used. */ struct ksz_mac_table { u8 mac_addr[ETH_ALEN]; u16 vid; u8 fid; u8 ports; u8 override:1; u8 use_fid:1; u8 valid:1; }; #define VLAN_TABLE_ENTRIES 16 /** * struct ksz_vlan_table - VLAN table data structure * @vid: VID value. * @fid: FID value. * @member: Port membership. */ struct ksz_vlan_table { u16 vid; u8 fid; u8 member; }; #define DIFFSERV_ENTRIES 64 #define PRIO_802_1P_ENTRIES 8 #define PRIO_QUEUES 4 #define SWITCH_PORT_NUM 2 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1) #define HOST_MASK (1 << SWITCH_PORT_NUM) #define PORT_MASK 7 #define MAIN_PORT 0 #define OTHER_PORT 1 #define HOST_PORT SWITCH_PORT_NUM #define PORT_COUNTER_NUM 0x20 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2) #define MIB_COUNTER_RX_LO_PRIORITY 0x00 #define MIB_COUNTER_RX_HI_PRIORITY 0x01 #define MIB_COUNTER_RX_UNDERSIZE 0x02 #define MIB_COUNTER_RX_FRAGMENT 0x03 #define MIB_COUNTER_RX_OVERSIZE 0x04 #define MIB_COUNTER_RX_JABBER 0x05 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06 #define MIB_COUNTER_RX_CRC_ERR 0x07 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08 #define MIB_COUNTER_RX_CTRL_8808 0x09 #define MIB_COUNTER_RX_PAUSE 0x0A #define MIB_COUNTER_RX_BROADCAST 0x0B #define MIB_COUNTER_RX_MULTICAST 0x0C #define MIB_COUNTER_RX_UNICAST 0x0D #define MIB_COUNTER_RX_OCTET_64 0x0E #define MIB_COUNTER_RX_OCTET_65_127 0x0F #define MIB_COUNTER_RX_OCTET_128_255 0x10 #define MIB_COUNTER_RX_OCTET_256_511 0x11 #define MIB_COUNTER_RX_OCTET_512_1023 0x12 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13 #define MIB_COUNTER_TX_LO_PRIORITY 0x14 #define MIB_COUNTER_TX_HI_PRIORITY 0x15 #define MIB_COUNTER_TX_LATE_COLLISION 0x16 #define MIB_COUNTER_TX_PAUSE 0x17 #define MIB_COUNTER_TX_BROADCAST 0x18 #define MIB_COUNTER_TX_MULTICAST 0x19 #define MIB_COUNTER_TX_UNICAST 0x1A #define MIB_COUNTER_TX_DEFERRED 0x1B #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F #define MIB_COUNTER_RX_DROPPED_PACKET 0x20 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21 /** * struct ksz_port_mib - Port MIB data structure * @cnt_ptr: Current pointer to MIB counter index. * @link_down: Indication the link has just gone down. * @state: Connection status of the port. * @mib_start: The starting counter index. Some ports do not start at 0. * @counter: 64-bit MIB counter value. * @dropped: Temporary buffer to remember last read packet dropped values. * * MIB counters needs to be read periodically so that counters do not get * overflowed and give incorrect values. A right balance is needed to * satisfy this condition and not waste too much CPU time. * * It is pointless to read MIB counters when the port is disconnected. The * @state provides the connection status so that MIB counters are read only * when the port is connected. The @link_down indicates the port is just * disconnected so that all MIB counters are read one last time to update the * information. */ struct ksz_port_mib { u8 cnt_ptr; u8 link_down; u8 state; u8 mib_start; u64 counter[TOTAL_PORT_COUNTER_NUM]; u32 dropped[2]; }; /** * struct ksz_port_cfg - Port configuration data structure * @vid: VID value. * @member: Port membership. * @port_prio: Port priority. * @rx_rate: Receive priority rate. * @tx_rate: Transmit priority rate. * @stp_state: Current Spanning Tree Protocol state. */ struct ksz_port_cfg { u16 vid; u8 member; u8 port_prio; u32 rx_rate[PRIO_QUEUES]; u32 tx_rate[PRIO_QUEUES]; int stp_state; }; /** * struct ksz_switch - KSZ8842 switch data structure * @mac_table: MAC table entries information. * @vlan_table: VLAN table entries information. * @port_cfg: Port configuration information. * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS * (bit7 ~ bit2) field. * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p * Tag priority field. * @br_addr: Bridge address. Used for STP. * @other_addr: Other MAC address. Used for multiple network device mode. * @broad_per: Broadcast storm percentage. * @member: Current port membership. Used for STP. */ struct ksz_switch { struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES]; struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES]; struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM]; u8 diffserv[DIFFSERV_ENTRIES]; u8 p_802_1p[PRIO_802_1P_ENTRIES]; u8 br_addr[ETH_ALEN]; u8 other_addr[ETH_ALEN]; u8 broad_per; u8 member; }; #define TX_RATE_UNIT 10000 /** * struct ksz_port_info - Port information data structure * @state: Connection status of the port. * @tx_rate: Transmit rate divided by 10000 to get Mbit. * @duplex: Duplex mode. * @advertised: Advertised auto-negotiation setting. Used to determine link. * @partner: Auto-negotiation partner setting. Used to determine link. * @port_id: Port index to access actual hardware register. * @pdev: Pointer to OS dependent network device. */ struct ksz_port_info { uint state; uint tx_rate; u8 duplex; u8 advertised; u8 partner; u8 port_id; void *pdev; }; #define MAX_TX_HELD_SIZE 52000 /* Hardware features and bug fixes. */ #define LINK_INT_WORKING (1 << 0) #define SMALL_PACKET_TX_BUG (1 << 1) #define HALF_DUPLEX_SIGNAL_BUG (1 << 2) #define RX_HUGE_FRAME (1 << 4) #define STP_SUPPORT (1 << 8) /* Software overrides. */ #define PAUSE_FLOW_CTRL (1 << 0) #define FAST_AGING (1 << 1) /** * struct ksz_hw - KSZ884X hardware data structure * @io: Virtual address assigned. * @ksz_switch: Pointer to KSZ8842 switch. * @port_info: Port information. * @port_mib: Port MIB information. * @dev_count: Number of network devices this hardware supports. * @dst_ports: Destination ports in switch for transmission. * @id: Hardware ID. Used for display only. * @mib_cnt: Number of MIB counters this hardware has. * @mib_port_cnt: Number of ports with MIB counters. * @tx_cfg: Cached transmit control settings. * @rx_cfg: Cached receive control settings. * @intr_mask: Current interrupt mask. * @intr_set: Current interrup set. * @intr_blocked: Interrupt blocked. * @rx_desc_info: Receive descriptor information. * @tx_desc_info: Transmit descriptor information. * @tx_int_cnt: Transmit interrupt count. Used for TX optimization. * @tx_int_mask: Transmit interrupt mask. Used for TX optimization. * @tx_size: Transmit data size. Used for TX optimization. * The maximum is defined by MAX_TX_HELD_SIZE. * @perm_addr: Permanent MAC address. * @override_addr: Overrided MAC address. * @address: Additional MAC address entries. * @addr_list_size: Additional MAC address list size. * @mac_override: Indication of MAC address overrided. * @promiscuous: Counter to keep track of promiscuous mode set. * @all_multi: Counter to keep track of all multicast mode set. * @multi_list: Multicast address entries. * @multi_bits: Cached multicast hash table settings. * @multi_list_size: Multicast address list size. * @enabled: Indication of hardware enabled. * @rx_stop: Indication of receive process stop. * @features: Hardware features to enable. * @overrides: Hardware features to override. * @parent: Pointer to parent, network device private structure. */ struct ksz_hw { void __iomem *io; struct ksz_switch *ksz_switch; struct ksz_port_info port_info[SWITCH_PORT_NUM]; struct ksz_port_mib port_mib[TOTAL_PORT_NUM]; int dev_count; int dst_ports; int id; int mib_cnt; int mib_port_cnt; u32 tx_cfg; u32 rx_cfg; u32 intr_mask; u32 intr_set; uint intr_blocked; struct ksz_desc_info rx_desc_info; struct ksz_desc_info tx_desc_info; int tx_int_cnt; int tx_int_mask; int tx_size; u8 perm_addr[ETH_ALEN]; u8 override_addr[ETH_ALEN]; u8 address[ADDITIONAL_ENTRIES][ETH_ALEN]; u8 addr_list_size; u8 mac_override; u8 promiscuous; u8 all_multi; u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN]; u8 multi_bits[HW_MULTICAST_SIZE]; u8 multi_list_size; u8 enabled; u8 rx_stop; u8 reserved2[1]; uint features; uint overrides; void *parent; }; enum { PHY_NO_FLOW_CTRL, PHY_FLOW_CTRL, PHY_TX_ONLY, PHY_RX_ONLY }; /** * struct ksz_port - Virtual port data structure * @duplex: Duplex mode setting. 1 for half duplex, 2 for full * duplex, and 0 for auto, which normally results in full * duplex. * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and * 0 for auto, which normally results in 100 Mbit. * @force_link: Force link setting. 0 for auto-negotiation, and 1 for * force. * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow * control, and PHY_FLOW_CTRL for flow control. * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100 * Mbit PHY. * @first_port: Index of first port this port supports. * @mib_port_cnt: Number of ports with MIB counters. * @port_cnt: Number of ports this port supports. * @counter: Port statistics counter. * @hw: Pointer to hardware structure. * @linked: Pointer to port information linked to this port. */ struct ksz_port { u8 duplex; u8 speed; u8 force_link; u8 flow_ctrl; int first_port; int mib_port_cnt; int port_cnt; u64 counter[OID_COUNTER_LAST]; struct ksz_hw *hw; struct ksz_port_info *linked; }; /** * struct ksz_timer_info - Timer information data structure * @timer: Kernel timer. * @cnt: Running timer counter. * @max: Number of times to run timer; -1 for infinity. * @period: Timer period in jiffies. */ struct ksz_timer_info { struct timer_list timer; int cnt; int max; int period; }; /** * struct ksz_shared_mem - OS dependent shared memory data structure * @dma_addr: Physical DMA address allocated. * @alloc_size: Allocation size. * @phys: Actual physical address used. * @alloc_virt: Virtual address allocated. * @virt: Actual virtual address used. */ struct ksz_shared_mem { dma_addr_t dma_addr; uint alloc_size; uint phys; u8 *alloc_virt; u8 *virt; }; /** * struct ksz_counter_info - OS dependent counter information data structure * @counter: Wait queue to wakeup after counters are read. * @time: Next time in jiffies to read counter. * @read: Indication of counters read in full or not. */ struct ksz_counter_info { wait_queue_head_t counter; unsigned long time; int read; }; /** * struct dev_info - Network device information data structure * @dev: Pointer to network device. * @pdev: Pointer to PCI device. * @hw: Hardware structure. * @desc_pool: Physical memory used for descriptor pool. * @hwlock: Spinlock to prevent hardware from accessing. * @lock: Mutex lock to prevent device from accessing. * @dev_rcv: Receive process function used. * @last_skb: Socket buffer allocated for descriptor rx fragments. * @skb_index: Buffer index for receiving fragments. * @skb_len: Buffer length for receiving fragments. * @mib_read: Workqueue to read MIB counters. * @mib_timer_info: Timer to read MIB counters. * @counter: Used for MIB reading. * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE; * the maximum is MAX_RX_BUF_SIZE. * @opened: Counter to keep track of device open. * @rx_tasklet: Receive processing tasklet. * @tx_tasklet: Transmit processing tasklet. * @wol_enable: Wake-on-LAN enable set by ethtool. * @wol_support: Wake-on-LAN support used by ethtool. * @pme_wait: Used for KSZ8841 power management. */ struct dev_info { struct net_device *dev; struct pci_dev *pdev; struct ksz_hw hw; struct ksz_shared_mem desc_pool; spinlock_t hwlock; struct mutex lock; int (*dev_rcv)(struct dev_info *); struct sk_buff *last_skb; int skb_index; int skb_len; struct work_struct mib_read; struct ksz_timer_info mib_timer_info; struct ksz_counter_info counter[TOTAL_PORT_NUM]; int mtu; int opened; struct tasklet_struct rx_tasklet; struct tasklet_struct tx_tasklet; int wol_enable; int wol_support; unsigned long pme_wait; }; /** * struct dev_priv - Network device private data structure * @adapter: Adapter device information. * @port: Port information. * @monitor_time_info: Timer to monitor ports. * @proc_sem: Semaphore for proc accessing. * @id: Device ID. * @mii_if: MII interface information. * @advertising: Temporary variable to store advertised settings. * @msg_enable: The message flags controlling driver output. * @media_state: The connection status of the device. * @multicast: The all multicast state of the device. * @promiscuous: The promiscuous state of the device. */ struct dev_priv { struct dev_info *adapter; struct ksz_port port; struct ksz_timer_info monitor_timer_info; struct semaphore proc_sem; int id; struct mii_if_info mii_if; u32 advertising; u32 msg_enable; int media_state; int multicast; int promiscuous; }; #define DRV_NAME "KSZ884X PCI" #define DEVICE_NAME "KSZ884x PCI" #define DRV_VERSION "1.0.0" #define DRV_RELDATE "Feb 8, 2010" static char version[] = "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")"; static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 }; /* * Interrupt processing primary routines */ static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt) { writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS); } static inline void hw_dis_intr(struct ksz_hw *hw) { hw->intr_blocked = hw->intr_mask; writel(0, hw->io + KS884X_INTERRUPTS_ENABLE); hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE); } static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt) { hw->intr_set = interrupt; writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE); } static inline void hw_ena_intr(struct ksz_hw *hw) { hw->intr_blocked = 0; hw_set_intr(hw, hw->intr_mask); } static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit) { hw->intr_mask &= ~(bit); } static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt) { u32 read_intr; read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); hw->intr_set = read_intr & ~interrupt; writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); hw_dis_intr_bit(hw, interrupt); } /** * hw_turn_on_intr - turn on specified interrupts * @hw: The hardware instance. * @bit: The interrupt bits to be on. * * This routine turns on the specified interrupts in the interrupt mask so that * those interrupts will be enabled. */ static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit) { hw->intr_mask |= bit; if (!hw->intr_blocked) hw_set_intr(hw, hw->intr_mask); } static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt) { u32 read_intr; read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE); hw->intr_set = read_intr | interrupt; writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE); } static inline void hw_read_intr(struct ksz_hw *hw, uint *status) { *status = readl(hw->io + KS884X_INTERRUPTS_STATUS); *status = *status & hw->intr_set; } static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt) { if (interrupt) hw_ena_intr(hw); } /** * hw_block_intr - block hardware interrupts * * This function blocks all interrupts of the hardware and returns the current * interrupt enable mask so that interrupts can be restored later. * * Return the current interrupt enable mask. */ static uint hw_block_intr(struct ksz_hw *hw) { uint interrupt = 0; if (!hw->intr_blocked) { hw_dis_intr(hw); interrupt = hw->intr_blocked; } return interrupt; } /* * Hardware descriptor routines */ static inline void reset_desc(struct ksz_desc *desc, union desc_stat status) { status.rx.hw_owned = 0; desc->phw->ctrl.data = cpu_to_le32(status.data); } static inline void release_desc(struct ksz_desc *desc) { desc->sw.ctrl.tx.hw_owned = 1; if (desc->sw.buf_size != desc->sw.buf.data) { desc->sw.buf_size = desc->sw.buf.data; desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data); } desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data); } static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) { *desc = &info->ring[info->last]; info->last++; info->last &= info->mask; info->avail--; (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK; } static inline void set_rx_buf(struct ksz_desc *desc, u32 addr) { desc->phw->addr = cpu_to_le32(addr); } static inline void set_rx_len(struct ksz_desc *desc, u32 len) { desc->sw.buf.rx.buf_size = len; } static inline void get_tx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc) { *desc = &info->ring[info->next]; info->next++; info->next &= info->mask; info->avail--; (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK; } static inline void set_tx_buf(struct ksz_desc *desc, u32 addr) { desc->phw->addr = cpu_to_le32(addr); } static inline void set_tx_len(struct ksz_desc *desc, u32 len) { desc->sw.buf.tx.buf_size = len; } /* Switch functions */ #define TABLE_READ 0x10 #define TABLE_SEL_SHIFT 2 #define HW_DELAY(hw, reg) \ do { \ u16 dummy; \ dummy = readw(hw->io + reg); \ } while (0) /** * sw_r_table - read 4 bytes of data from switch table * @hw: The hardware instance. * @table: The table selector. * @addr: The address of the table entry. * @data: Buffer to store the read data. * * This routine reads 4 bytes of data from the table of the switch. * Hardware interrupts are disabled to minimize corruption of read data. */ static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data) { u16 ctrl_addr; uint interrupt; ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr; interrupt = hw_block_intr(hw); writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); HW_DELAY(hw, KS884X_IACR_OFFSET); *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); hw_restore_intr(hw, interrupt); } /** * sw_w_table_64 - write 8 bytes of data to the switch table * @hw: The hardware instance. * @table: The table selector. * @addr: The address of the table entry. * @data_hi: The high part of data to be written (bit63 ~ bit32). * @data_lo: The low part of data to be written (bit31 ~ bit0). * * This routine writes 8 bytes of data to the table of the switch. * Hardware interrupts are disabled to minimize corruption of written data. */ static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi, u32 data_lo) { u16 ctrl_addr; uint interrupt; ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr; interrupt = hw_block_intr(hw); writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET); writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET); writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); HW_DELAY(hw, KS884X_IACR_OFFSET); hw_restore_intr(hw, interrupt); } /** * sw_w_sta_mac_table - write to the static MAC table * @hw: The hardware instance. * @addr: The address of the table entry. * @mac_addr: The MAC address. * @ports: The port members. * @override: The flag to override the port receive/transmit settings. * @valid: The flag to indicate entry is valid. * @use_fid: The flag to indicate the FID is valid. * @fid: The FID value. * * This routine writes an entry of the static MAC table of the switch. It * calls sw_w_table_64() to write the data. */ static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr, u8 ports, int override, int valid, int use_fid, u8 fid) { u32 data_hi; u32 data_lo; data_lo = ((u32) mac_addr[2] << 24) | ((u32) mac_addr[3] << 16) | ((u32) mac_addr[4] << 8) | mac_addr[5]; data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1]; data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT; if (override) data_hi |= STATIC_MAC_TABLE_OVERRIDE; if (use_fid) { data_hi |= STATIC_MAC_TABLE_USE_FID; data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT; } if (valid) data_hi |= STATIC_MAC_TABLE_VALID; sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo); } /** * sw_r_vlan_table - read from the VLAN table * @hw: The hardware instance. * @addr: The address of the table entry. * @vid: Buffer to store the VID. * @fid: Buffer to store the VID. * @member: Buffer to store the port membership. * * This function reads an entry of the VLAN table of the switch. It calls * sw_r_table() to get the data. * * Return 0 if the entry is valid; otherwise -1. */ static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid, u8 *member) { u32 data; sw_r_table(hw, TABLE_VLAN, addr, &data); if (data & VLAN_TABLE_VALID) { *vid = (u16)(data & VLAN_TABLE_VID); *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT); *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >> VLAN_TABLE_MEMBERSHIP_SHIFT); return 0; } return -1; } /** * port_r_mib_cnt - read MIB counter * @hw: The hardware instance. * @port: The port index. * @addr: The address of the counter. * @cnt: Buffer to store the counter. * * This routine reads a MIB counter of the port. * Hardware interrupts are disabled to minimize corruption of read data. */ static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt) { u32 data; u16 ctrl_addr; uint interrupt; int timeout; ctrl_addr = addr + PORT_COUNTER_NUM * port; interrupt = hw_block_intr(hw); ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); HW_DELAY(hw, KS884X_IACR_OFFSET); for (timeout = 100; timeout > 0; timeout--) { data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); if (data & MIB_COUNTER_VALID) { if (data & MIB_COUNTER_OVERFLOW) *cnt += MIB_COUNTER_VALUE + 1; *cnt += data & MIB_COUNTER_VALUE; break; } } hw_restore_intr(hw, interrupt); } /** * port_r_mib_pkt - read dropped packet counts * @hw: The hardware instance. * @port: The port index. * @cnt: Buffer to store the receive and transmit dropped packet counts. * * This routine reads the dropped packet counts of the port. * Hardware interrupts are disabled to minimize corruption of read data. */ static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt) { u32 cur; u32 data; u16 ctrl_addr; uint interrupt; int index; index = KS_MIB_PACKET_DROPPED_RX_0 + port; do { interrupt = hw_block_intr(hw); ctrl_addr = (u16) index; ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8); writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET); HW_DELAY(hw, KS884X_IACR_OFFSET); data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET); hw_restore_intr(hw, interrupt); data &= MIB_PACKET_DROPPED; cur = *last; if (data != cur) { *last = data; if (data < cur) data += MIB_PACKET_DROPPED + 1; data -= cur; *cnt += data; } ++last; ++cnt; index -= KS_MIB_PACKET_DROPPED_TX - KS_MIB_PACKET_DROPPED_TX_0 + 1; } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port); } /** * port_r_cnt - read MIB counters periodically * @hw: The hardware instance. * @port: The port index. * * This routine is used to read the counters of the port periodically to avoid * counter overflow. The hardware should be acquired first before calling this * routine. * * Return non-zero when not all counters not read. */ static int port_r_cnt(struct ksz_hw *hw, int port) { struct ksz_port_mib *mib = &hw->port_mib[port]; if (mib->mib_start < PORT_COUNTER_NUM) while (mib->cnt_ptr < PORT_COUNTER_NUM) { port_r_mib_cnt(hw, port, mib->cnt_ptr, &mib->counter[mib->cnt_ptr]); ++mib->cnt_ptr; } if (hw->mib_cnt > PORT_COUNTER_NUM) port_r_mib_pkt(hw, port, mib->dropped, &mib->counter[PORT_COUNTER_NUM]); mib->cnt_ptr = 0; return 0; } /** * port_init_cnt - initialize MIB counter values * @hw: The hardware instance. * @port: The port index. * * This routine is used to initialize all counters to zero if the hardware * cannot do it after reset. */ static void port_init_cnt(struct ksz_hw *hw, int port) { struct ksz_port_mib *mib = &hw->port_mib[port]; mib->cnt_ptr = 0; if (mib->mib_start < PORT_COUNTER_NUM) do { port_r_mib_cnt(hw, port, mib->cnt_ptr, &mib->counter[mib->cnt_ptr]); ++mib->cnt_ptr; } while (mib->cnt_ptr < PORT_COUNTER_NUM); if (hw->mib_cnt > PORT_COUNTER_NUM) port_r_mib_pkt(hw, port, mib->dropped, &mib->counter[PORT_COUNTER_NUM]); memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); mib->cnt_ptr = 0; } /* * Port functions */ /** * port_chk - check port register bits * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the port register. * @bits: The data bits to check. * * This function checks whether the specified bits of the port register are set * or not. * * Return 0 if the bits are not set. */ static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits) { u32 addr; u16 data; PORT_CTRL_ADDR(port, addr); addr += offset; data = readw(hw->io + addr); return (data & bits) == bits; } /** * port_cfg - set port register bits * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the port register. * @bits: The data bits to set. * @set: The flag indicating whether the bits are to be set or not. * * This routine sets or resets the specified bits of the port register. */ static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits, int set) { u32 addr; u16 data; PORT_CTRL_ADDR(port, addr); addr += offset; data = readw(hw->io + addr); if (set) data |= bits; else data &= ~bits; writew(data, hw->io + addr); } /** * port_chk_shift - check port bit * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the register. * @shift: Number of bits to shift. * * This function checks whether the specified port is set in the register or * not. * * Return 0 if the port is not set. */ static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift) { u16 data; u16 bit = 1 << port; data = readw(hw->io + addr); data >>= shift; return (data & bit) == bit; } /** * port_cfg_shift - set port bit * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the register. * @shift: Number of bits to shift. * @set: The flag indicating whether the port is to be set or not. * * This routine sets or resets the specified port in the register. */ static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift, int set) { u16 data; u16 bits = 1 << port; data = readw(hw->io + addr); bits <<= shift; if (set) data |= bits; else data &= ~bits; writew(data, hw->io + addr); } /** * port_r8 - read byte from port register * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the port register. * @data: Buffer to store the data. * * This routine reads a byte from the port register. */ static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data) { u32 addr; PORT_CTRL_ADDR(port, addr); addr += offset; *data = readb(hw->io + addr); } /** * port_r16 - read word from port register. * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the port register. * @data: Buffer to store the data. * * This routine reads a word from the port register. */ static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data) { u32 addr; PORT_CTRL_ADDR(port, addr); addr += offset; *data = readw(hw->io + addr); } /** * port_w16 - write word to port register. * @hw: The hardware instance. * @port: The port index. * @offset: The offset of the port register. * @data: Data to write. * * This routine writes a word to the port register. */ static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data) { u32 addr; PORT_CTRL_ADDR(port, addr); addr += offset; writew(data, hw->io + addr); } /** * sw_chk - check switch register bits * @hw: The hardware instance. * @addr: The address of the switch register. * @bits: The data bits to check. * * This function checks whether the specified bits of the switch register are * set or not. * * Return 0 if the bits are not set. */ static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits) { u16 data; data = readw(hw->io + addr); return (data & bits) == bits; } /** * sw_cfg - set switch register bits * @hw: The hardware instance. * @addr: The address of the switch register. * @bits: The data bits to set. * @set: The flag indicating whether the bits are to be set or not. * * This function sets or resets the specified bits of the switch register. */ static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set) { u16 data; data = readw(hw->io + addr); if (set) data |= bits; else data &= ~bits; writew(data, hw->io + addr); } /* Bandwidth */ static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set); } static inline int port_chk_broad_storm(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM); } /* Driver set switch broadcast storm protection at 10% rate. */ #define BROADCAST_STORM_PROTECTION_RATE 10 /* 148,800 frames * 67 ms / 100 */ #define BROADCAST_STORM_VALUE 9969 /** * sw_cfg_broad_storm - configure broadcast storm threshold * @hw: The hardware instance. * @percent: Broadcast storm threshold in percent of transmit rate. * * This routine configures the broadcast storm threshold of the switch. */ static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) { u16 data; u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100); if (value > BROADCAST_STORM_RATE) value = BROADCAST_STORM_RATE; data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI); data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8); writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); } /** * sw_get_board_storm - get broadcast storm threshold * @hw: The hardware instance. * @percent: Buffer to store the broadcast storm threshold percentage. * * This routine retrieves the broadcast storm threshold of the switch. */ static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent) { int num; u16 data; data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); num = (data & BROADCAST_STORM_RATE_HI); num <<= 8; num |= (data & BROADCAST_STORM_RATE_LO) >> 8; num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE; *percent = (u8) num; } /** * sw_dis_broad_storm - disable broadstorm * @hw: The hardware instance. * @port: The port index. * * This routine disables the broadcast storm limit function of the switch. */ static void sw_dis_broad_storm(struct ksz_hw *hw, int port) { port_cfg_broad_storm(hw, port, 0); } /** * sw_ena_broad_storm - enable broadcast storm * @hw: The hardware instance. * @port: The port index. * * This routine enables the broadcast storm limit function of the switch. */ static void sw_ena_broad_storm(struct ksz_hw *hw, int port) { sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); port_cfg_broad_storm(hw, port, 1); } /** * sw_init_broad_storm - initialize broadcast storm * @hw: The hardware instance. * * This routine initializes the broadcast storm limit function of the switch. */ static void sw_init_broad_storm(struct ksz_hw *hw) { int port; hw->ksz_switch->broad_per = 1; sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per); for (port = 0; port < TOTAL_PORT_NUM; port++) sw_dis_broad_storm(hw, port); sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1); } /** * hw_cfg_broad_storm - configure broadcast storm * @hw: The hardware instance. * @percent: Broadcast storm threshold in percent of transmit rate. * * This routine configures the broadcast storm threshold of the switch. * It is called by user functions. The hardware should be acquired first. */ static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent) { if (percent > 100) percent = 100; sw_cfg_broad_storm(hw, percent); sw_get_broad_storm(hw, &percent); hw->ksz_switch->broad_per = percent; } /** * sw_dis_prio_rate - disable switch priority rate * @hw: The hardware instance. * @port: The port index. * * This routine disables the priority rate function of the switch. */ static void sw_dis_prio_rate(struct ksz_hw *hw, int port) { u32 addr; PORT_CTRL_ADDR(port, addr); addr += KS8842_PORT_IN_RATE_OFFSET; writel(0, hw->io + addr); } /** * sw_init_prio_rate - initialize switch prioirty rate * @hw: The hardware instance. * * This routine initializes the priority rate function of the switch. */ static void sw_init_prio_rate(struct ksz_hw *hw) { int port; int prio; struct ksz_switch *sw = hw->ksz_switch; for (port = 0; port < TOTAL_PORT_NUM; port++) { for (prio = 0; prio < PRIO_QUEUES; prio++) { sw->port_cfg[port].rx_rate[prio] = sw->port_cfg[port].tx_rate[prio] = 0; } sw_dis_prio_rate(hw, port); } } /* Communication */ static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set); } static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set); } static inline int port_chk_back_pressure(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE); } static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL); } /* Spanning Tree */ static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set); } static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set); } static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set); } static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set) { sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set); } static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw) { if (!(hw->overrides & FAST_AGING)) { sw_cfg_fast_aging(hw, 1); mdelay(1); sw_cfg_fast_aging(hw, 0); } } /* VLAN */ static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert); } static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove); } static inline int port_chk_ins_tag(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG); } static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG); } static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set); } static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set); } static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID); } static inline int port_chk_in_filter(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER); } /* Mirroring */ static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set); } static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set); } static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set); } static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set) { sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set); } static void sw_init_mirror(struct ksz_hw *hw) { int port; for (port = 0; port < TOTAL_PORT_NUM; port++) { port_cfg_mirror_sniffer(hw, port, 0); port_cfg_mirror_rx(hw, port, 0); port_cfg_mirror_tx(hw, port, 0); } sw_cfg_mirror_rx_tx(hw, 0); } static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set) { sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET, SWITCH_UNK_DEF_PORT_ENABLE, set); } static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw) { return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET, SWITCH_UNK_DEF_PORT_ENABLE); } static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set) { port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set); } static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port) { return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0); } /* Priority */ static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set); } static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set); } static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set); } static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set) { port_cfg(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set); } static inline int port_chk_diffserv(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE); } static inline int port_chk_802_1p(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE); } static inline int port_chk_replace_vid(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING); } static inline int port_chk_prio(struct ksz_hw *hw, int p) { return port_chk(hw, p, KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE); } /** * sw_dis_diffserv - disable switch DiffServ priority * @hw: The hardware instance. * @port: The port index. * * This routine disables the DiffServ priority function of the switch. */ static void sw_dis_diffserv(struct ksz_hw *hw, int port) { port_cfg_diffserv(hw, port, 0); } /** * sw_dis_802_1p - disable switch 802.1p priority * @hw: The hardware instance. * @port: The port index. * * This routine disables the 802.1p priority function of the switch. */ static void sw_dis_802_1p(struct ksz_hw *hw, int port) { port_cfg_802_1p(hw, port, 0); } /** * sw_cfg_replace_null_vid - * @hw: The hardware instance. * @set: The flag to disable or enable. * */ static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set) { sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set); } /** * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping * @hw: The hardware instance. * @port: The port index. * @set: The flag to disable or enable. * * This routine enables the 802.1p priority re-mapping function of the switch. * That allows 802.1p priority field to be replaced with the port's default * tag's priority value if the ingress packet's 802.1p priority has a higher * priority than port's default tag's priority. */ static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set) { port_cfg_replace_vid(hw, port, set); } /** * sw_cfg_port_based - configure switch port based priority * @hw: The hardware instance. * @port: The port index. * @prio: The priority to set. * * This routine configures the port based priority of the switch. */ static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio) { u16 data; if (prio > PORT_BASED_PRIORITY_BASE) prio = PORT_BASED_PRIORITY_BASE; hw->ksz_switch->port_cfg[port].port_prio = prio; port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data); data &= ~PORT_BASED_PRIORITY_MASK; data |= prio << PORT_BASED_PRIORITY_SHIFT; port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data); } /** * sw_dis_multi_queue - disable transmit multiple queues * @hw: The hardware instance. * @port: The port index. * * This routine disables the transmit multiple queues selection of the switch * port. Only single transmit queue on the port. */ static void sw_dis_multi_queue(struct ksz_hw *hw, int port) { port_cfg_prio(hw, port, 0); } /** * sw_init_prio - initialize switch priority * @hw: The hardware instance. * * This routine initializes the switch QoS priority functions. */ static void sw_init_prio(struct ksz_hw *hw) { int port; int tos; struct ksz_switch *sw = hw->ksz_switch; /* * Init all the 802.1p tag priority value to be assigned to different * priority queue. */ sw->p_802_1p[0] = 0; sw->p_802_1p[1] = 0; sw->p_802_1p[2] = 1; sw->p_802_1p[3] = 1; sw->p_802_1p[4] = 2; sw->p_802_1p[5] = 2; sw->p_802_1p[6] = 3; sw->p_802_1p[7] = 3; /* * Init all the DiffServ priority value to be assigned to priority * queue 0. */ for (tos = 0; tos < DIFFSERV_ENTRIES; tos++) sw->diffserv[tos] = 0; /* All QoS functions disabled. */ for (port = 0; port < TOTAL_PORT_NUM; port++) { sw_dis_multi_queue(hw, port); sw_dis_diffserv(hw, port); sw_dis_802_1p(hw, port); sw_cfg_replace_vid(hw, port, 0); sw->port_cfg[port].port_prio = 0; sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio); } sw_cfg_replace_null_vid(hw, 0); } /** * port_get_def_vid - get port default VID. * @hw: The hardware instance. * @port: The port index. * @vid: Buffer to store the VID. * * This routine retrieves the default VID of the port. */ static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid) { u32 addr; PORT_CTRL_ADDR(port, addr); addr += KS8842_PORT_CTRL_VID_OFFSET; *vid = readw(hw->io + addr); } /** * sw_init_vlan - initialize switch VLAN * @hw: The hardware instance. * * This routine initializes the VLAN function of the switch. */ static void sw_init_vlan(struct ksz_hw *hw) { int port; int entry; struct ksz_switch *sw = hw->ksz_switch; /* Read 16 VLAN entries from device's VLAN table. */ for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) { sw_r_vlan_table(hw, entry, &sw->vlan_table[entry].vid, &sw->vlan_table[entry].fid, &sw->vlan_table[entry].member); } for (port = 0; port < TOTAL_PORT_NUM; port++) { port_get_def_vid(hw, port, &sw->port_cfg[port].vid); sw->port_cfg[port].member = PORT_MASK; } } /** * sw_cfg_port_base_vlan - configure port-based VLAN membership * @hw: The hardware instance. * @port: The port index. * @member: The port-based VLAN membership. * * This routine configures the port-based VLAN membership of the port. */ static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member) { u32 addr; u8 data; PORT_CTRL_ADDR(port, addr); addr += KS8842_PORT_CTRL_2_OFFSET; data = readb(hw->io + addr); data &= ~PORT_VLAN_MEMBERSHIP; data |= (member & PORT_MASK); writeb(data, hw->io + addr); hw->ksz_switch->port_cfg[port].member = member; } /** * sw_get_addr - get the switch MAC address. * @hw: The hardware instance. * @mac_addr: Buffer to store the MAC address. * * This function retrieves the MAC address of the switch. */ static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr) { int i; for (i = 0; i < 6; i += 2) { mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i); mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i); } } /** * sw_set_addr - configure switch MAC address * @hw: The hardware instance. * @mac_addr: The MAC address. * * This function configures the MAC address of the switch. */ static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr) { int i; for (i = 0; i < 6; i += 2) { writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i); writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i); } } /** * sw_set_global_ctrl - set switch global control * @hw: The hardware instance. * * This routine sets the global control of the switch function. */ static void sw_set_global_ctrl(struct ksz_hw *hw) { u16 data; /* Enable switch MII flow control. */ data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET); data |= SWITCH_FLOW_CTRL; writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET); data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET); /* Enable aggressive back off algorithm in half duplex mode. */ data |= SWITCH_AGGR_BACKOFF; /* Enable automatic fast aging when link changed detected. */ data |= SWITCH_AGING_ENABLE; data |= SWITCH_LINK_AUTO_AGING; if (hw->overrides & FAST_AGING) data |= SWITCH_FAST_AGING; else data &= ~SWITCH_FAST_AGING; writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET); data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); /* Enable no excessive collision drop. */ data |= NO_EXC_COLLISION_DROP; writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); } enum { STP_STATE_DISABLED = 0, STP_STATE_LISTENING, STP_STATE_LEARNING, STP_STATE_FORWARDING, STP_STATE_BLOCKED, STP_STATE_SIMPLE }; /** * port_set_stp_state - configure port spanning tree state * @hw: The hardware instance. * @port: The port index. * @state: The spanning tree state. * * This routine configures the spanning tree state of the port. */ static void port_set_stp_state(struct ksz_hw *hw, int port, int state) { u16 data; port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data); switch (state) { case STP_STATE_DISABLED: data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); data |= PORT_LEARN_DISABLE; break; case STP_STATE_LISTENING: /* * No need to turn on transmit because of port direct mode. * Turning on receive is required if static MAC table is not setup. */ data &= ~PORT_TX_ENABLE; data |= PORT_RX_ENABLE; data |= PORT_LEARN_DISABLE; break; case STP_STATE_LEARNING: data &= ~PORT_TX_ENABLE; data |= PORT_RX_ENABLE; data &= ~PORT_LEARN_DISABLE; break; case STP_STATE_FORWARDING: data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); data &= ~PORT_LEARN_DISABLE; break; case STP_STATE_BLOCKED: /* * Need to setup static MAC table with override to keep receiving BPDU * messages. See sw_init_stp routine. */ data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE); data |= PORT_LEARN_DISABLE; break; case STP_STATE_SIMPLE: data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); data |= PORT_LEARN_DISABLE; break; } port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data); hw->ksz_switch->port_cfg[port].stp_state = state; } #define STP_ENTRY 0 #define BROADCAST_ENTRY 1 #define BRIDGE_ADDR_ENTRY 2 #define IPV6_ADDR_ENTRY 3 /** * sw_clr_sta_mac_table - clear static MAC table * @hw: The hardware instance. * * This routine clears the static MAC table. */ static void sw_clr_sta_mac_table(struct ksz_hw *hw) { struct ksz_mac_table *entry; int i; for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) { entry = &hw->ksz_switch->mac_table[i]; sw_w_sta_mac_table(hw, i, entry->mac_addr, entry->ports, entry->override, 0, entry->use_fid, entry->fid); } } /** * sw_init_stp - initialize switch spanning tree support * @hw: The hardware instance. * * This routine initializes the spanning tree support of the switch. */ static void sw_init_stp(struct ksz_hw *hw) { struct ksz_mac_table *entry; entry = &hw->ksz_switch->mac_table[STP_ENTRY]; entry->mac_addr[0] = 0x01; entry->mac_addr[1] = 0x80; entry->mac_addr[2] = 0xC2; entry->mac_addr[3] = 0x00; entry->mac_addr[4] = 0x00; entry->mac_addr[5] = 0x00; entry->ports = HOST_MASK; entry->override = 1; entry->valid = 1; sw_w_sta_mac_table(hw, STP_ENTRY, entry->mac_addr, entry->ports, entry->override, entry->valid, entry->use_fid, entry->fid); } /** * sw_block_addr - block certain packets from the host port * @hw: The hardware instance. * * This routine blocks certain packets from reaching to the host port. */ static void sw_block_addr(struct ksz_hw *hw) { struct ksz_mac_table *entry; int i; for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) { entry = &hw->ksz_switch->mac_table[i]; entry->valid = 0; sw_w_sta_mac_table(hw, i, entry->mac_addr, entry->ports, entry->override, entry->valid, entry->use_fid, entry->fid); } } #define PHY_LINK_SUPPORT \ (PHY_AUTO_NEG_ASYM_PAUSE | \ PHY_AUTO_NEG_SYM_PAUSE | \ PHY_AUTO_NEG_100BT4 | \ PHY_AUTO_NEG_100BTX_FD | \ PHY_AUTO_NEG_100BTX | \ PHY_AUTO_NEG_10BT_FD | \ PHY_AUTO_NEG_10BT) static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); } static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data) { writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); } static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET); } static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); } static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data) { writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET); } static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET); } static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET); } static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data) { writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET); } static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); } static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data) { writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET); } static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data) { *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); } static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data) { writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET); } /** * hw_r_phy - read data from PHY register * @hw: The hardware instance. * @port: Port to read. * @reg: PHY register to read. * @val: Buffer to store the read data. * * This routine reads data from the PHY register. */ static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val) { int phy; phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; *val = readw(hw->io + phy); } /** * port_w_phy - write data to PHY register * @hw: The hardware instance. * @port: Port to write. * @reg: PHY register to write. * @val: Word data to write. * * This routine writes data to the PHY register. */ static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val) { int phy; phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg; writew(val, hw->io + phy); } /* * EEPROM access functions */ #define AT93C_CODE 0 #define AT93C_WR_OFF 0x00 #define AT93C_WR_ALL 0x10 #define AT93C_ER_ALL 0x20 #define AT93C_WR_ON 0x30 #define AT93C_WRITE 1 #define AT93C_READ 2 #define AT93C_ERASE 3 #define EEPROM_DELAY 4 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio) { u16 data; data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); data &= ~gpio; writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); } static inline void raise_gpio(struct ksz_hw *hw, u8 gpio) { u16 data; data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); data |= gpio; writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET); } static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio) { u16 data; data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET); return (u8)(data & gpio); } static void eeprom_clk(struct ksz_hw *hw) { raise_gpio(hw, EEPROM_SERIAL_CLOCK); udelay(EEPROM_DELAY); drop_gpio(hw, EEPROM_SERIAL_CLOCK); udelay(EEPROM_DELAY); } static u16 spi_r(struct ksz_hw *hw) { int i; u16 temp = 0; for (i = 15; i >= 0; i--) { raise_gpio(hw, EEPROM_SERIAL_CLOCK); udelay(EEPROM_DELAY); temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0; drop_gpio(hw, EEPROM_SERIAL_CLOCK); udelay(EEPROM_DELAY); } return temp; } static void spi_w(struct ksz_hw *hw, u16 data) { int i; for (i = 15; i >= 0; i--) { (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : drop_gpio(hw, EEPROM_DATA_OUT); eeprom_clk(hw); } } static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg) { int i; /* Initial start bit */ raise_gpio(hw, EEPROM_DATA_OUT); eeprom_clk(hw); /* AT93C operation */ for (i = 1; i >= 0; i--) { (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : drop_gpio(hw, EEPROM_DATA_OUT); eeprom_clk(hw); } /* Address location */ for (i = 5; i >= 0; i--) { (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) : drop_gpio(hw, EEPROM_DATA_OUT); eeprom_clk(hw); } } #define EEPROM_DATA_RESERVED 0 #define EEPROM_DATA_MAC_ADDR_0 1 #define EEPROM_DATA_MAC_ADDR_1 2 #define EEPROM_DATA_MAC_ADDR_2 3 #define EEPROM_DATA_SUBSYS_ID 4 #define EEPROM_DATA_SUBSYS_VEN_ID 5 #define EEPROM_DATA_PM_CAP 6 /* User defined EEPROM data */ #define EEPROM_DATA_OTHER_MAC_ADDR 9 /** * eeprom_read - read from AT93C46 EEPROM * @hw: The hardware instance. * @reg: The register offset. * * This function reads a word from the AT93C46 EEPROM. * * Return the data value. */ static u16 eeprom_read(struct ksz_hw *hw, u8 reg) { u16 data; raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); spi_reg(hw, AT93C_READ, reg); data = spi_r(hw); drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); return data; } /** * eeprom_write - write to AT93C46 EEPROM * @hw: The hardware instance. * @reg: The register offset. * @data: The data value. * * This procedure writes a word to the AT93C46 EEPROM. */ static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data) { int timeout; raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); /* Enable write. */ spi_reg(hw, AT93C_CODE, AT93C_WR_ON); drop_gpio(hw, EEPROM_CHIP_SELECT); udelay(1); /* Erase the register. */ raise_gpio(hw, EEPROM_CHIP_SELECT); spi_reg(hw, AT93C_ERASE, reg); drop_gpio(hw, EEPROM_CHIP_SELECT); udelay(1); /* Check operation complete. */ raise_gpio(hw, EEPROM_CHIP_SELECT); timeout = 8; mdelay(2); do { mdelay(1); } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); drop_gpio(hw, EEPROM_CHIP_SELECT); udelay(1); /* Write the register. */ raise_gpio(hw, EEPROM_CHIP_SELECT); spi_reg(hw, AT93C_WRITE, reg); spi_w(hw, data); drop_gpio(hw, EEPROM_CHIP_SELECT); udelay(1); /* Check operation complete. */ raise_gpio(hw, EEPROM_CHIP_SELECT); timeout = 8; mdelay(2); do { mdelay(1); } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout); drop_gpio(hw, EEPROM_CHIP_SELECT); udelay(1); /* Disable write. */ raise_gpio(hw, EEPROM_CHIP_SELECT); spi_reg(hw, AT93C_CODE, AT93C_WR_OFF); drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT); } /* * Link detection routines */ static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl) { ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE; switch (port->flow_ctrl) { case PHY_FLOW_CTRL: ctrl |= PORT_AUTO_NEG_SYM_PAUSE; break; /* Not supported. */ case PHY_TX_ONLY: case PHY_RX_ONLY: default: break; } return ctrl; } static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx) { u32 rx_cfg; u32 tx_cfg; rx_cfg = hw->rx_cfg; tx_cfg = hw->tx_cfg; if (rx) hw->rx_cfg |= DMA_RX_FLOW_ENABLE; else hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE; if (tx) hw->tx_cfg |= DMA_TX_FLOW_ENABLE; else hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; if (hw->enabled) { if (rx_cfg != hw->rx_cfg) writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); if (tx_cfg != hw->tx_cfg) writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); } } static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port, u16 local, u16 remote) { int rx; int tx; if (hw->overrides & PAUSE_FLOW_CTRL) return; rx = tx = 0; if (port->force_link) rx = tx = 1; if (remote & PHY_AUTO_NEG_SYM_PAUSE) { if (local & PHY_AUTO_NEG_SYM_PAUSE) { rx = tx = 1; } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) && (local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_ASYM_PAUSE) { tx = 1; } } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) { if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE) rx = 1; } if (!hw->ksz_switch) set_flow_ctrl(hw, rx, tx); } static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port, struct ksz_port_info *info, u16 link_status) { if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) && !(hw->overrides & PAUSE_FLOW_CTRL)) { u32 cfg = hw->tx_cfg; /* Disable flow control in the half duplex mode. */ if (1 == info->duplex) hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE; if (hw->enabled && cfg != hw->tx_cfg) writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); } } /** * port_get_link_speed - get current link status * @port: The port instance. * * This routine reads PHY registers to determine the current link status of the * switch ports. */ static void port_get_link_speed(struct ksz_port *port) { uint interrupt; struct ksz_port_info *info; struct ksz_port_info *linked = NULL; struct ksz_hw *hw = port->hw; u16 data; u16 status; u8 local; u8 remote; int i; int p; int change = 0; interrupt = hw_block_intr(hw); for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { info = &hw->port_info[p]; port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status); /* * Link status is changing all the time even when there is no * cable connection! */ remote = status & (PORT_AUTO_NEG_COMPLETE | PORT_STATUS_LINK_GOOD); local = (u8) data; /* No change to status. */ if (local == info->advertised && remote == info->partner) continue; info->advertised = local; info->partner = remote; if (status & PORT_STATUS_LINK_GOOD) { /* Remember the first linked port. */ if (!linked) linked = info; info->tx_rate = 10 * TX_RATE_UNIT; if (status & PORT_STATUS_SPEED_100MBIT) info->tx_rate = 100 * TX_RATE_UNIT; info->duplex = 1; if (status & PORT_STATUS_FULL_DUPLEX) info->duplex = 2; if (media_connected != info->state) { hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET, &data); hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET, &status); determine_flow_ctrl(hw, port, data, status); if (hw->ksz_switch) { port_cfg_back_pressure(hw, p, (1 == info->duplex)); } change |= 1 << i; port_cfg_change(hw, port, info, status); } info->state = media_connected; } else { if (media_disconnected != info->state) { change |= 1 << i; /* Indicate the link just goes down. */ hw->port_mib[p].link_down = 1; } info->state = media_disconnected; } hw->port_mib[p].state = (u8) info->state; } if (linked && media_disconnected == port->linked->state) port->linked = linked; hw_restore_intr(hw, interrupt); } #define PHY_RESET_TIMEOUT 10 /** * port_set_link_speed - set port speed * @port: The port instance. * * This routine sets the link speed of the switch ports. */ static void port_set_link_speed(struct ksz_port *port) { struct ksz_port_info *info; struct ksz_hw *hw = port->hw; u16 data; u16 cfg; u8 status; int i; int p; for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { info = &hw->port_info[p]; port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data); port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status); cfg = 0; if (status & PORT_STATUS_LINK_GOOD) cfg = data; data |= PORT_AUTO_NEG_ENABLE; data = advertised_flow_ctrl(port, data); data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT; /* Check if manual configuration is specified by the user. */ if (port->speed || port->duplex) { if (10 == port->speed) data &= ~(PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX); else if (100 == port->speed) data &= ~(PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT); if (1 == port->duplex) data &= ~(PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_10BT_FD); else if (2 == port->duplex) data &= ~(PORT_AUTO_NEG_100BTX | PORT_AUTO_NEG_10BT); } if (data != cfg) { data |= PORT_AUTO_NEG_RESTART; port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data); } } } /** * port_force_link_speed - force port speed * @port: The port instance. * * This routine forces the link speed of the switch ports. */ static void port_force_link_speed(struct ksz_port *port) { struct ksz_hw *hw = port->hw; u16 data; int i; int phy; int p; for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL; hw_r_phy_ctrl(hw, phy, &data); data &= ~PHY_AUTO_NEG_ENABLE; if (10 == port->speed) data &= ~PHY_SPEED_100MBIT; else if (100 == port->speed) data |= PHY_SPEED_100MBIT; if (1 == port->duplex) data &= ~PHY_FULL_DUPLEX; else if (2 == port->duplex) data |= PHY_FULL_DUPLEX; hw_w_phy_ctrl(hw, phy, data); } } static void port_set_power_saving(struct ksz_port *port, int enable) { struct ksz_hw *hw = port->hw; int i; int p; for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) port_cfg(hw, p, KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable); } /* * KSZ8841 power management functions */ /** * hw_chk_wol_pme_status - check PMEN pin * @hw: The hardware instance. * * This function is used to check PMEN pin is asserted. * * Return 1 if PMEN pin is asserted; otherwise, 0. */ static int hw_chk_wol_pme_status(struct ksz_hw *hw) { struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); struct pci_dev *pdev = hw_priv->pdev; u16 data; if (!pdev->pm_cap) return 0; pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS; } /** * hw_clr_wol_pme_status - clear PMEN pin * @hw: The hardware instance. * * This routine is used to clear PME_Status to deassert PMEN pin. */ static void hw_clr_wol_pme_status(struct ksz_hw *hw) { struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); struct pci_dev *pdev = hw_priv->pdev; u16 data; if (!pdev->pm_cap) return; /* Clear PME_Status to deassert PMEN pin. */ pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); data |= PCI_PM_CTRL_PME_STATUS; pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); } /** * hw_cfg_wol_pme - enable or disable Wake-on-LAN * @hw: The hardware instance. * @set: The flag indicating whether to enable or disable. * * This routine is used to enable or disable Wake-on-LAN. */ static void hw_cfg_wol_pme(struct ksz_hw *hw, int set) { struct dev_info *hw_priv = container_of(hw, struct dev_info, hw); struct pci_dev *pdev = hw_priv->pdev; u16 data; if (!pdev->pm_cap) return; pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data); data &= ~PCI_PM_CTRL_STATE_MASK; if (set) data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot; else data &= ~PCI_PM_CTRL_PME_ENABLE; pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data); } /** * hw_cfg_wol - configure Wake-on-LAN features * @hw: The hardware instance. * @frame: The pattern frame bit. * @set: The flag indicating whether to enable or disable. * * This routine is used to enable or disable certain Wake-on-LAN features. */ static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set) { u16 data; data = readw(hw->io + KS8841_WOL_CTRL_OFFSET); if (set) data |= frame; else data &= ~frame; writew(data, hw->io + KS8841_WOL_CTRL_OFFSET); } /** * hw_set_wol_frame - program Wake-on-LAN pattern * @hw: The hardware instance. * @i: The frame index. * @mask_size: The size of the mask. * @mask: Mask to ignore certain bytes in the pattern. * @frame_size: The size of the frame. * @pattern: The frame data. * * This routine is used to program Wake-on-LAN pattern. */ static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size, const u8 *mask, uint frame_size, const u8 *pattern) { int bits; int from; int len; int to; u32 crc; u8 data[64]; u8 val = 0; if (frame_size > mask_size * 8) frame_size = mask_size * 8; if (frame_size > 64) frame_size = 64; i *= 0x10; writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i); writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i); bits = len = from = to = 0; do { if (bits) { if ((val & 1)) data[to++] = pattern[from]; val >>= 1; ++from; --bits; } else { val = mask[len]; writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len); ++len; if (val) bits = 8; else from += 8; } } while (from < (int) frame_size); if (val) { bits = mask[len - 1]; val <<= (from % 8); bits &= ~val; writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len - 1); } crc = ether_crc(to, data); writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i); } /** * hw_add_wol_arp - add ARP pattern * @hw: The hardware instance. * @ip_addr: The IPv4 address assigned to the device. * * This routine is used to add ARP pattern for waking up the host. */ static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr) { static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 }; u8 pattern[42] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x06, 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(&pattern[38], ip_addr, 4); hw_set_wol_frame(hw, 3, 6, mask, 42, pattern); } /** * hw_add_wol_bcast - add broadcast pattern * @hw: The hardware instance. * * This routine is used to add broadcast pattern for waking up the host. */ static void hw_add_wol_bcast(struct ksz_hw *hw) { static const u8 mask[] = { 0x3F }; static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern); } /** * hw_add_wol_mcast - add multicast pattern * @hw: The hardware instance. * * This routine is used to add multicast pattern for waking up the host. * * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used * by IPv6 ping command. Note that multicast packets are filtred through the * multicast hash table, so not all multicast packets can wake up the host. */ static void hw_add_wol_mcast(struct ksz_hw *hw) { static const u8 mask[] = { 0x3F }; u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 }; memcpy(&pattern[3], &hw->override_addr[3], 3); hw_set_wol_frame(hw, 1, 1, mask, 6, pattern); } /** * hw_add_wol_ucast - add unicast pattern * @hw: The hardware instance. * * This routine is used to add unicast pattern to wakeup the host. * * It is assumed the unicast packet is directed to the device, as the hardware * can only receive them in normal case. */ static void hw_add_wol_ucast(struct ksz_hw *hw) { static const u8 mask[] = { 0x3F }; hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr); } /** * hw_enable_wol - enable Wake-on-LAN * @hw: The hardware instance. * @wol_enable: The Wake-on-LAN settings. * @net_addr: The IPv4 address assigned to the device. * * This routine is used to enable Wake-on-LAN depending on driver settings. */ static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr) { hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC)); hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST)); hw_add_wol_ucast(hw); hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST)); hw_add_wol_mcast(hw); hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST)); hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP)); hw_add_wol_arp(hw, net_addr); } /** * hw_init - check driver is correct for the hardware * @hw: The hardware instance. * * This function checks the hardware is correct for this driver and sets the * hardware up for proper initialization. * * Return number of ports or 0 if not right. */ static int hw_init(struct ksz_hw *hw) { int rc = 0; u16 data; u16 revision; /* Set bus speed to 125MHz. */ writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET); /* Check KSZ884x chip ID. */ data = readw(hw->io + KS884X_CHIP_ID_OFFSET); revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT; data &= KS884X_CHIP_ID_MASK_41; if (REG_CHIP_ID_41 == data) rc = 1; else if (REG_CHIP_ID_42 == data) rc = 2; else return 0; /* Setup hardware features or bug workarounds. */ if (revision <= 1) { hw->features |= SMALL_PACKET_TX_BUG; if (1 == rc) hw->features |= HALF_DUPLEX_SIGNAL_BUG; } return rc; } /** * hw_reset - reset the hardware * @hw: The hardware instance. * * This routine resets the hardware. */ static void hw_reset(struct ksz_hw *hw) { writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET); /* Wait for device to reset. */ mdelay(10); /* Write 0 to clear device reset. */ writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET); } /** * hw_setup - setup the hardware * @hw: The hardware instance. * * This routine setup the hardware for proper operation. */ static void hw_setup(struct ksz_hw *hw) { #if SET_DEFAULT_LED u16 data; /* Change default LED mode. */ data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET); data &= ~LED_MODE; data |= SET_DEFAULT_LED; writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET); #endif /* Setup transmit control. */ hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE | (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE); /* Setup receive control. */ hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST | (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE); hw->rx_cfg |= KS884X_DMA_RX_MULTICAST; /* Hardware cannot handle UDP packet in IP fragments. */ hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); if (hw->all_multi) hw->rx_cfg |= DMA_RX_ALL_MULTICAST; if (hw->promiscuous) hw->rx_cfg |= DMA_RX_PROMISCUOUS; } /** * hw_setup_intr - setup interrupt mask * @hw: The hardware instance. * * This routine setup the interrupt mask for proper operation. */ static void hw_setup_intr(struct ksz_hw *hw) { hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN; } static void ksz_check_desc_num(struct ksz_desc_info *info) { #define MIN_DESC_SHIFT 2 int alloc = info->alloc; int shift; shift = 0; while (!(alloc & 1)) { shift++; alloc >>= 1; } if (alloc != 1 || shift < MIN_DESC_SHIFT) { pr_alert("Hardware descriptor numbers not right!\n"); while (alloc) { shift++; alloc >>= 1; } if (shift < MIN_DESC_SHIFT) shift = MIN_DESC_SHIFT; alloc = 1 << shift; info->alloc = alloc; } info->mask = info->alloc - 1; } static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit) { int i; u32 phys = desc_info->ring_phys; struct ksz_hw_desc *desc = desc_info->ring_virt; struct ksz_desc *cur = desc_info->ring; struct ksz_desc *previous = NULL; for (i = 0; i < desc_info->alloc; i++) { cur->phw = desc++; phys += desc_info->size; previous = cur++; previous->phw->next = cpu_to_le32(phys); } previous->phw->next = cpu_to_le32(desc_info->ring_phys); previous->sw.buf.rx.end_of_ring = 1; previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data); desc_info->avail = desc_info->alloc; desc_info->last = desc_info->next = 0; desc_info->cur = desc_info->ring; } /** * hw_set_desc_base - set descriptor base addresses * @hw: The hardware instance. * @tx_addr: The transmit descriptor base. * @rx_addr: The receive descriptor base. * * This routine programs the descriptor base addresses after reset. */ static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr) { /* Set base address of Tx/Rx descriptors. */ writel(tx_addr, hw->io + KS_DMA_TX_ADDR); writel(rx_addr, hw->io + KS_DMA_RX_ADDR); } static void hw_reset_pkts(struct ksz_desc_info *info) { info->cur = info->ring; info->avail = info->alloc; info->last = info->next = 0; } static inline void hw_resume_rx(struct ksz_hw *hw) { writel(DMA_START, hw->io + KS_DMA_RX_START); } /** * hw_start_rx - start receiving * @hw: The hardware instance. * * This routine starts the receive function of the hardware. */ static void hw_start_rx(struct ksz_hw *hw) { writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); /* Notify when the receive stops. */ hw->intr_mask |= KS884X_INT_RX_STOPPED; writel(DMA_START, hw->io + KS_DMA_RX_START); hw_ack_intr(hw, KS884X_INT_RX_STOPPED); hw->rx_stop++; /* Variable overflows. */ if (0 == hw->rx_stop) hw->rx_stop = 2; } /** * hw_stop_rx - stop receiving * @hw: The hardware instance. * * This routine stops the receive function of the hardware. */ static void hw_stop_rx(struct ksz_hw *hw) { hw->rx_stop = 0; hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED); writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL); } /** * hw_start_tx - start transmitting * @hw: The hardware instance. * * This routine starts the transmit function of the hardware. */ static void hw_start_tx(struct ksz_hw *hw) { writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL); } /** * hw_stop_tx - stop transmitting * @hw: The hardware instance. * * This routine stops the transmit function of the hardware. */ static void hw_stop_tx(struct ksz_hw *hw) { writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL); } /** * hw_disable - disable hardware * @hw: The hardware instance. * * This routine disables the hardware. */ static void hw_disable(struct ksz_hw *hw) { hw_stop_rx(hw); hw_stop_tx(hw); hw->enabled = 0; } /** * hw_enable - enable hardware * @hw: The hardware instance. * * This routine enables the hardware. */ static void hw_enable(struct ksz_hw *hw) { hw_start_tx(hw); hw_start_rx(hw); hw->enabled = 1; } /** * hw_alloc_pkt - allocate enough descriptors for transmission * @hw: The hardware instance. * @length: The length of the packet. * @physical: Number of descriptors required. * * This function allocates descriptors for transmission. * * Return 0 if not successful; 1 for buffer copy; or number of descriptors. */ static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical) { /* Always leave one descriptor free. */ if (hw->tx_desc_info.avail <= 1) return 0; /* Allocate a descriptor for transmission and mark it current. */ get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur); hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1; /* Keep track of number of transmit descriptors used so far. */ ++hw->tx_int_cnt; hw->tx_size += length; /* Cannot hold on too much data. */ if (hw->tx_size >= MAX_TX_HELD_SIZE) hw->tx_int_cnt = hw->tx_int_mask + 1; if (physical > hw->tx_desc_info.avail) return 1; return hw->tx_desc_info.avail; } /** * hw_send_pkt - mark packet for transmission * @hw: The hardware instance. * * This routine marks the packet for transmission in PCI version. */ static void hw_send_pkt(struct ksz_hw *hw) { struct ksz_desc *cur = hw->tx_desc_info.cur; cur->sw.buf.tx.last_seg = 1; /* Interrupt only after specified number of descriptors used. */ if (hw->tx_int_cnt > hw->tx_int_mask) { cur->sw.buf.tx.intr = 1; hw->tx_int_cnt = 0; hw->tx_size = 0; } /* KSZ8842 supports port directed transmission. */ cur->sw.buf.tx.dest_port = hw->dst_ports; release_desc(cur); writel(0, hw->io + KS_DMA_TX_START); } static int empty_addr(u8 *addr) { u32 *addr1 = (u32 *) addr; u16 *addr2 = (u16 *) &addr[4]; return 0 == *addr1 && 0 == *addr2; } /** * hw_set_addr - set MAC address * @hw: The hardware instance. * * This routine programs the MAC address of the hardware when the address is * overrided. */ static void hw_set_addr(struct ksz_hw *hw) { int i; for (i = 0; i < ETH_ALEN; i++) writeb(hw->override_addr[MAC_ADDR_ORDER(i)], hw->io + KS884X_ADDR_0_OFFSET + i); sw_set_addr(hw, hw->override_addr); } /** * hw_read_addr - read MAC address * @hw: The hardware instance. * * This routine retrieves the MAC address of the hardware. */ static void hw_read_addr(struct ksz_hw *hw) { int i; for (i = 0; i < ETH_ALEN; i++) hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io + KS884X_ADDR_0_OFFSET + i); if (!hw->mac_override) { memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN); if (empty_addr(hw->override_addr)) { memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN); hw->override_addr[5] += hw->id; hw_set_addr(hw); } } } static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr) { int i; u32 mac_addr_lo; u32 mac_addr_hi; mac_addr_hi = 0; for (i = 0; i < 2; i++) { mac_addr_hi <<= 8; mac_addr_hi |= mac_addr[i]; } mac_addr_hi |= ADD_ADDR_ENABLE; mac_addr_lo = 0; for (i = 2; i < 6; i++) { mac_addr_lo <<= 8; mac_addr_lo |= mac_addr[i]; } index *= ADD_ADDR_INCR; writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO); writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI); } static void hw_set_add_addr(struct ksz_hw *hw) { int i; for (i = 0; i < ADDITIONAL_ENTRIES; i++) { if (empty_addr(hw->address[i])) writel(0, hw->io + ADD_ADDR_INCR * i + KS_ADD_ADDR_0_HI); else hw_ena_add_addr(hw, i, hw->address[i]); } } static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr) { int i; int j = ADDITIONAL_ENTRIES; if (ether_addr_equal(hw->override_addr, mac_addr)) return 0; for (i = 0; i < hw->addr_list_size; i++) { if (ether_addr_equal(hw->address[i], mac_addr)) return 0; if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i])) j = i; } if (j < ADDITIONAL_ENTRIES) { memcpy(hw->address[j], mac_addr, ETH_ALEN); hw_ena_add_addr(hw, j, hw->address[j]); return 0; } return -1; } static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr) { int i; for (i = 0; i < hw->addr_list_size; i++) { if (ether_addr_equal(hw->address[i], mac_addr)) { memset(hw->address[i], 0, ETH_ALEN); writel(0, hw->io + ADD_ADDR_INCR * i + KS_ADD_ADDR_0_HI); return 0; } } return -1; } /** * hw_clr_multicast - clear multicast addresses * @hw: The hardware instance. * * This routine removes all multicast addresses set in the hardware. */ static void hw_clr_multicast(struct ksz_hw *hw) { int i; for (i = 0; i < HW_MULTICAST_SIZE; i++) { hw->multi_bits[i] = 0; writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i); } } /** * hw_set_grp_addr - set multicast addresses * @hw: The hardware instance. * * This routine programs multicast addresses for the hardware to accept those * addresses. */ static void hw_set_grp_addr(struct ksz_hw *hw) { int i; int index; int position; int value; memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE); for (i = 0; i < hw->multi_list_size; i++) { position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f; index = position >> 3; value = 1 << (position & 7); hw->multi_bits[index] |= (u8) value; } for (i = 0; i < HW_MULTICAST_SIZE; i++) writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET + i); } /** * hw_set_multicast - enable or disable all multicast receiving * @hw: The hardware instance. * @multicast: To turn on or off the all multicast feature. * * This routine enables/disables the hardware to accept all multicast packets. */ static void hw_set_multicast(struct ksz_hw *hw, u8 multicast) { /* Stop receiving for reconfiguration. */ hw_stop_rx(hw); if (multicast) hw->rx_cfg |= DMA_RX_ALL_MULTICAST; else hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST; if (hw->enabled) hw_start_rx(hw); } /** * hw_set_promiscuous - enable or disable promiscuous receiving * @hw: The hardware instance. * @prom: To turn on or off the promiscuous feature. * * This routine enables/disables the hardware to accept all packets. */ static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom) { /* Stop receiving for reconfiguration. */ hw_stop_rx(hw); if (prom) hw->rx_cfg |= DMA_RX_PROMISCUOUS; else hw->rx_cfg &= ~DMA_RX_PROMISCUOUS; if (hw->enabled) hw_start_rx(hw); } /** * sw_enable - enable the switch * @hw: The hardware instance. * @enable: The flag to enable or disable the switch * * This routine is used to enable/disable the switch in KSZ8842. */ static void sw_enable(struct ksz_hw *hw, int enable) { int port; for (port = 0; port < SWITCH_PORT_NUM; port++) { if (hw->dev_count > 1) { /* Set port-base vlan membership with host port. */ sw_cfg_port_base_vlan(hw, port, HOST_MASK | (1 << port)); port_set_stp_state(hw, port, STP_STATE_DISABLED); } else { sw_cfg_port_base_vlan(hw, port, PORT_MASK); port_set_stp_state(hw, port, STP_STATE_FORWARDING); } } if (hw->dev_count > 1) port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); else port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING); if (enable) enable = KS8842_START; writew(enable, hw->io + KS884X_CHIP_ID_OFFSET); } /** * sw_setup - setup the switch * @hw: The hardware instance. * * This routine setup the hardware switch engine for default operation. */ static void sw_setup(struct ksz_hw *hw) { int port; sw_set_global_ctrl(hw); /* Enable switch broadcast storm protection at 10% percent rate. */ sw_init_broad_storm(hw); hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE); for (port = 0; port < SWITCH_PORT_NUM; port++) sw_ena_broad_storm(hw, port); sw_init_prio(hw); sw_init_mirror(hw); sw_init_prio_rate(hw); sw_init_vlan(hw); if (hw->features & STP_SUPPORT) sw_init_stp(hw); if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL)) hw->overrides |= PAUSE_FLOW_CTRL; sw_enable(hw, 1); } /** * ksz_start_timer - start kernel timer * @info: Kernel timer information. * @time: The time tick. * * This routine starts the kernel timer after the specified time tick. */ static void ksz_start_timer(struct ksz_timer_info *info, int time) { info->cnt = 0; info->timer.expires = jiffies + time; add_timer(&info->timer); /* infinity */ info->max = -1; } /** * ksz_stop_timer - stop kernel timer * @info: Kernel timer information. * * This routine stops the kernel timer. */ static void ksz_stop_timer(struct ksz_timer_info *info) { if (info->max) { info->max = 0; del_timer_sync(&info->timer); } } static void ksz_init_timer(struct ksz_timer_info *info, int period, void (*function)(unsigned long), void *data) { info->max = 0; info->period = period; init_timer(&info->timer); info->timer.function = function; info->timer.data = (unsigned long) data; } static void ksz_update_timer(struct ksz_timer_info *info) { ++info->cnt; if (info->max > 0) { if (info->cnt < info->max) { info->timer.expires = jiffies + info->period; add_timer(&info->timer); } else info->max = 0; } else if (info->max < 0) { info->timer.expires = jiffies + info->period; add_timer(&info->timer); } } /** * ksz_alloc_soft_desc - allocate software descriptors * @desc_info: Descriptor information structure. * @transmit: Indication that descriptors are for transmit. * * This local function allocates software descriptors for manipulation in * memory. * * Return 0 if successful. */ static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit) { desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc, GFP_KERNEL); if (!desc_info->ring) return 1; hw_init_desc(desc_info, transmit); return 0; } /** * ksz_alloc_desc - allocate hardware descriptors * @adapter: Adapter information structure. * * This local function allocates hardware descriptors for receiving and * transmitting. * * Return 0 if successful. */ static int ksz_alloc_desc(struct dev_info *adapter) { struct ksz_hw *hw = &adapter->hw; int offset; /* Allocate memory for RX & TX descriptors. */ adapter->desc_pool.alloc_size = hw->rx_desc_info.size * hw->rx_desc_info.alloc + hw->tx_desc_info.size * hw->tx_desc_info.alloc + DESC_ALIGNMENT; adapter->desc_pool.alloc_virt = pci_alloc_consistent( adapter->pdev, adapter->desc_pool.alloc_size, &adapter->desc_pool.dma_addr); if (adapter->desc_pool.alloc_virt == NULL) { adapter->desc_pool.alloc_size = 0; return 1; } memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size); /* Align to the next cache line boundary. */ offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ? (DESC_ALIGNMENT - ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0); adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset; adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset; /* Allocate receive/transmit descriptors. */ hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *) adapter->desc_pool.virt; hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *) (adapter->desc_pool.virt + offset); hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset; if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0)) return 1; if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1)) return 1; return 0; } /** * free_dma_buf - release DMA buffer resources * @adapter: Adapter information structure. * * This routine is just a helper function to release the DMA buffer resources. */ static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf, int direction) { pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction); dev_kfree_skb(dma_buf->skb); dma_buf->skb = NULL; dma_buf->dma = 0; } /** * ksz_init_rx_buffers - initialize receive descriptors * @adapter: Adapter information structure. * * This routine initializes DMA buffers for receiving. */ static void ksz_init_rx_buffers(struct dev_info *adapter) { int i; struct ksz_desc *desc; struct ksz_dma_buf *dma_buf; struct ksz_hw *hw = &adapter->hw; struct ksz_desc_info *info = &hw->rx_desc_info; for (i = 0; i < hw->rx_desc_info.alloc; i++) { get_rx_pkt(info, &desc); dma_buf = DMA_BUFFER(desc); if (dma_buf->skb && dma_buf->len != adapter->mtu) free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE); dma_buf->len = adapter->mtu; if (!dma_buf->skb) dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC); if (dma_buf->skb && !dma_buf->dma) dma_buf->dma = pci_map_single( adapter->pdev, skb_tail_pointer(dma_buf->skb), dma_buf->len, PCI_DMA_FROMDEVICE); /* Set descriptor. */ set_rx_buf(desc, dma_buf->dma); set_rx_len(desc, dma_buf->len); release_desc(desc); } } /** * ksz_alloc_mem - allocate memory for hardware descriptors * @adapter: Adapter information structure. * * This function allocates memory for use by hardware descriptors for receiving * and transmitting. * * Return 0 if successful. */ static int ksz_alloc_mem(struct dev_info *adapter) { struct ksz_hw *hw = &adapter->hw; /* Determine the number of receive and transmit descriptors. */ hw->rx_desc_info.alloc = NUM_OF_RX_DESC; hw->tx_desc_info.alloc = NUM_OF_TX_DESC; /* Determine how many descriptors to skip transmit interrupt. */ hw->tx_int_cnt = 0; hw->tx_int_mask = NUM_OF_TX_DESC / 4; if (hw->tx_int_mask > 8) hw->tx_int_mask = 8; while (hw->tx_int_mask) { hw->tx_int_cnt++; hw->tx_int_mask >>= 1; } if (hw->tx_int_cnt) { hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1; hw->tx_int_cnt = 0; } /* Determine the descriptor size. */ hw->rx_desc_info.size = (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / DESC_ALIGNMENT) * DESC_ALIGNMENT); hw->tx_desc_info.size = (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) / DESC_ALIGNMENT) * DESC_ALIGNMENT); if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc)) pr_alert("Hardware descriptor size not right!\n"); ksz_check_desc_num(&hw->rx_desc_info); ksz_check_desc_num(&hw->tx_desc_info); /* Allocate descriptors. */ if (ksz_alloc_desc(adapter)) return 1; return 0; } /** * ksz_free_desc - free software and hardware descriptors * @adapter: Adapter information structure. * * This local routine frees the software and hardware descriptors allocated by * ksz_alloc_desc(). */ static void ksz_free_desc(struct dev_info *adapter) { struct ksz_hw *hw = &adapter->hw; /* Reset descriptor. */ hw->rx_desc_info.ring_virt = NULL; hw->tx_desc_info.ring_virt = NULL; hw->rx_desc_info.ring_phys = 0; hw->tx_desc_info.ring_phys = 0; /* Free memory. */ if (adapter->desc_pool.alloc_virt) pci_free_consistent( adapter->pdev, adapter->desc_pool.alloc_size, adapter->desc_pool.alloc_virt, adapter->desc_pool.dma_addr); /* Reset resource pool. */ adapter->desc_pool.alloc_size = 0; adapter->desc_pool.alloc_virt = NULL; kfree(hw->rx_desc_info.ring); hw->rx_desc_info.ring = NULL; kfree(hw->tx_desc_info.ring); hw->tx_desc_info.ring = NULL; } /** * ksz_free_buffers - free buffers used in the descriptors * @adapter: Adapter information structure. * @desc_info: Descriptor information structure. * * This local routine frees buffers used in the DMA buffers. */ static void ksz_free_buffers(struct dev_info *adapter, struct ksz_desc_info *desc_info, int direction) { int i; struct ksz_dma_buf *dma_buf; struct ksz_desc *desc = desc_info->ring; for (i = 0; i < desc_info->alloc; i++) { dma_buf = DMA_BUFFER(desc); if (dma_buf->skb) free_dma_buf(adapter, dma_buf, direction); desc++; } } /** * ksz_free_mem - free all resources used by descriptors * @adapter: Adapter information structure. * * This local routine frees all the resources allocated by ksz_alloc_mem(). */ static void ksz_free_mem(struct dev_info *adapter) { /* Free transmit buffers. */ ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, PCI_DMA_TODEVICE); /* Free receive buffers. */ ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, PCI_DMA_FROMDEVICE); /* Free descriptors. */ ksz_free_desc(adapter); } static void get_mib_counters(struct ksz_hw *hw, int first, int cnt, u64 *counter) { int i; int mib; int port; struct ksz_port_mib *port_mib; memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM); for (i = 0, port = first; i < cnt; i++, port++) { port_mib = &hw->port_mib[port]; for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++) counter[mib] += port_mib->counter[mib]; } } /** * send_packet - send packet * @skb: Socket buffer. * @dev: Network device. * * This routine is used to send a packet out to the network. */ static void send_packet(struct sk_buff *skb, struct net_device *dev) { struct ksz_desc *desc; struct ksz_desc *first; struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_desc_info *info = &hw->tx_desc_info; struct ksz_dma_buf *dma_buf; int len; int last_frag = skb_shinfo(skb)->nr_frags; /* * KSZ8842 with multiple device interfaces needs to be told which port * to send. */ if (hw->dev_count > 1) hw->dst_ports = 1 << priv->port.first_port; /* Hardware will pad the length to 60. */ len = skb->len; /* Remember the very first descriptor. */ first = info->cur; desc = first; dma_buf = DMA_BUFFER(desc); if (last_frag) { int frag; skb_frag_t *this_frag; dma_buf->len = skb_headlen(skb); dma_buf->dma = pci_map_single( hw_priv->pdev, skb->data, dma_buf->len, PCI_DMA_TODEVICE); set_tx_buf(desc, dma_buf->dma); set_tx_len(desc, dma_buf->len); frag = 0; do { this_frag = &skb_shinfo(skb)->frags[frag]; /* Get a new descriptor. */ get_tx_pkt(info, &desc); /* Keep track of descriptors used so far. */ ++hw->tx_int_cnt; dma_buf = DMA_BUFFER(desc); dma_buf->len = skb_frag_size(this_frag); dma_buf->dma = pci_map_single( hw_priv->pdev, skb_frag_address(this_frag), dma_buf->len, PCI_DMA_TODEVICE); set_tx_buf(desc, dma_buf->dma); set_tx_len(desc, dma_buf->len); frag++; if (frag == last_frag) break; /* Do not release the last descriptor here. */ release_desc(desc); } while (1); /* current points to the last descriptor. */ info->cur = desc; /* Release the first descriptor. */ release_desc(first); } else { dma_buf->len = len; dma_buf->dma = pci_map_single( hw_priv->pdev, skb->data, dma_buf->len, PCI_DMA_TODEVICE); set_tx_buf(desc, dma_buf->dma); set_tx_len(desc, dma_buf->len); } if (skb->ip_summed == CHECKSUM_PARTIAL) { (desc)->sw.buf.tx.csum_gen_tcp = 1; (desc)->sw.buf.tx.csum_gen_udp = 1; } /* * The last descriptor holds the packet so that it can be returned to * network subsystem after all descriptors are transmitted. */ dma_buf->skb = skb; hw_send_pkt(hw); /* Update transmit statistics. */ dev->stats.tx_packets++; dev->stats.tx_bytes += len; } /** * transmit_cleanup - clean up transmit descriptors * @dev: Network device. * * This routine is called to clean up the transmitted buffers. */ static void transmit_cleanup(struct dev_info *hw_priv, int normal) { int last; union desc_stat status; struct ksz_hw *hw = &hw_priv->hw; struct ksz_desc_info *info = &hw->tx_desc_info; struct ksz_desc *desc; struct ksz_dma_buf *dma_buf; struct net_device *dev = NULL; spin_lock_irq(&hw_priv->hwlock); last = info->last; while (info->avail < info->alloc) { /* Get next descriptor which is not hardware owned. */ desc = &info->ring[last]; status.data = le32_to_cpu(desc->phw->ctrl.data); if (status.tx.hw_owned) { if (normal) break; else reset_desc(desc, status); } dma_buf = DMA_BUFFER(desc); pci_unmap_single( hw_priv->pdev, dma_buf->dma, dma_buf->len, PCI_DMA_TODEVICE); /* This descriptor contains the last buffer in the packet. */ if (dma_buf->skb) { dev = dma_buf->skb->dev; /* Release the packet back to network subsystem. */ dev_kfree_skb_irq(dma_buf->skb); dma_buf->skb = NULL; } /* Free the transmitted descriptor. */ last++; last &= info->mask; info->avail++; } info->last = last; spin_unlock_irq(&hw_priv->hwlock); /* Notify the network subsystem that the packet has been sent. */ if (dev) dev->trans_start = jiffies; } /** * transmit_done - transmit done processing * @dev: Network device. * * This routine is called when the transmit interrupt is triggered, indicating * either a packet is sent successfully or there are transmit errors. */ static void tx_done(struct dev_info *hw_priv) { struct ksz_hw *hw = &hw_priv->hw; int port; transmit_cleanup(hw_priv, 1); for (port = 0; port < hw->dev_count; port++) { struct net_device *dev = hw->port_info[port].pdev; if (netif_running(dev) && netif_queue_stopped(dev)) netif_wake_queue(dev); } } static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb) { skb->dev = old->dev; skb->protocol = old->protocol; skb->ip_summed = old->ip_summed; skb->csum = old->csum; skb_set_network_header(skb, ETH_HLEN); dev_consume_skb_any(old); } /** * netdev_tx - send out packet * @skb: Socket buffer. * @dev: Network device. * * This function is used by the upper network layer to send out a packet. * * Return 0 if successful; otherwise an error code indicating failure. */ static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; int left; int num = 1; int rc = 0; if (hw->features & SMALL_PACKET_TX_BUG) { struct sk_buff *org_skb = skb; if (skb->len <= 48) { if (skb_end_pointer(skb) - skb->data >= 50) { memset(&skb->data[skb->len], 0, 50 - skb->len); skb->len = 50; } else { skb = netdev_alloc_skb(dev, 50); if (!skb) return NETDEV_TX_BUSY; memcpy(skb->data, org_skb->data, org_skb->len); memset(&skb->data[org_skb->len], 0, 50 - org_skb->len); skb->len = 50; copy_old_skb(org_skb, skb); } } } spin_lock_irq(&hw_priv->hwlock); num = skb_shinfo(skb)->nr_frags + 1; left = hw_alloc_pkt(hw, skb->len, num); if (left) { if (left < num || (CHECKSUM_PARTIAL == skb->ip_summed && skb->protocol == htons(ETH_P_IPV6))) { struct sk_buff *org_skb = skb; skb = netdev_alloc_skb(dev, org_skb->len); if (!skb) { rc = NETDEV_TX_BUSY; goto unlock; } skb_copy_and_csum_dev(org_skb, skb->data); org_skb->ip_summed = CHECKSUM_NONE; skb->len = org_skb->len; copy_old_skb(org_skb, skb); } send_packet(skb, dev); if (left <= num) netif_stop_queue(dev); } else { /* Stop the transmit queue until packet is allocated. */ netif_stop_queue(dev); rc = NETDEV_TX_BUSY; } unlock: spin_unlock_irq(&hw_priv->hwlock); return rc; } /** * netdev_tx_timeout - transmit timeout processing * @dev: Network device. * * This routine is called when the transmit timer expires. That indicates the * hardware is not running correctly because transmit interrupts are not * triggered to free up resources so that the transmit routine can continue * sending out packets. The hardware is reset to correct the problem. */ static void netdev_tx_timeout(struct net_device *dev) { static unsigned long last_reset; struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; int port; if (hw->dev_count > 1) { /* * Only reset the hardware if time between calls is long * enough. */ if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo)) hw_priv = NULL; } last_reset = jiffies; if (hw_priv) { hw_dis_intr(hw); hw_disable(hw); transmit_cleanup(hw_priv, 0); hw_reset_pkts(&hw->rx_desc_info); hw_reset_pkts(&hw->tx_desc_info); ksz_init_rx_buffers(hw_priv); hw_reset(hw); hw_set_desc_base(hw, hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); hw_set_addr(hw); if (hw->all_multi) hw_set_multicast(hw, hw->all_multi); else if (hw->multi_list_size) hw_set_grp_addr(hw); if (hw->dev_count > 1) { hw_set_add_addr(hw); for (port = 0; port < SWITCH_PORT_NUM; port++) { struct net_device *port_dev; port_set_stp_state(hw, port, STP_STATE_DISABLED); port_dev = hw->port_info[port].pdev; if (netif_running(port_dev)) port_set_stp_state(hw, port, STP_STATE_SIMPLE); } } hw_enable(hw); hw_ena_intr(hw); } dev->trans_start = jiffies; netif_wake_queue(dev); } static inline void csum_verified(struct sk_buff *skb) { unsigned short protocol; struct iphdr *iph; protocol = skb->protocol; skb_reset_network_header(skb); iph = (struct iphdr *) skb_network_header(skb); if (protocol == htons(ETH_P_8021Q)) { protocol = iph->tot_len; skb_set_network_header(skb, VLAN_HLEN); iph = (struct iphdr *) skb_network_header(skb); } if (protocol == htons(ETH_P_IP)) { if (iph->protocol == IPPROTO_TCP) skb->ip_summed = CHECKSUM_UNNECESSARY; } } static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw, struct ksz_desc *desc, union desc_stat status) { int packet_len; struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_dma_buf *dma_buf; struct sk_buff *skb; int rx_status; /* Received length includes 4-byte CRC. */ packet_len = status.rx.frame_len - 4; dma_buf = DMA_BUFFER(desc); pci_dma_sync_single_for_cpu( hw_priv->pdev, dma_buf->dma, packet_len + 4, PCI_DMA_FROMDEVICE); do { /* skb->data != skb->head */ skb = netdev_alloc_skb(dev, packet_len + 2); if (!skb) { dev->stats.rx_dropped++; return -ENOMEM; } /* * Align socket buffer in 4-byte boundary for better * performance. */ skb_reserve(skb, 2); memcpy(skb_put(skb, packet_len), dma_buf->skb->data, packet_len); } while (0); skb->protocol = eth_type_trans(skb, dev); if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP)) csum_verified(skb); /* Update receive statistics. */ dev->stats.rx_packets++; dev->stats.rx_bytes += packet_len; /* Notify upper layer for received packet. */ rx_status = netif_rx(skb); return 0; } static int dev_rcv_packets(struct dev_info *hw_priv) { int next; union desc_stat status; struct ksz_hw *hw = &hw_priv->hw; struct net_device *dev = hw->port_info[0].pdev; struct ksz_desc_info *info = &hw->rx_desc_info; int left = info->alloc; struct ksz_desc *desc; int received = 0; next = info->next; while (left--) { /* Get next descriptor which is not hardware owned. */ desc = &info->ring[next]; status.data = le32_to_cpu(desc->phw->ctrl.data); if (status.rx.hw_owned) break; /* Status valid only when last descriptor bit is set. */ if (status.rx.last_desc && status.rx.first_desc) { if (rx_proc(dev, hw, desc, status)) goto release_packet; received++; } release_packet: release_desc(desc); next++; next &= info->mask; } info->next = next; return received; } static int port_rcv_packets(struct dev_info *hw_priv) { int next; union desc_stat status; struct ksz_hw *hw = &hw_priv->hw; struct net_device *dev = hw->port_info[0].pdev; struct ksz_desc_info *info = &hw->rx_desc_info; int left = info->alloc; struct ksz_desc *desc; int received = 0; next = info->next; while (left--) { /* Get next descriptor which is not hardware owned. */ desc = &info->ring[next]; status.data = le32_to_cpu(desc->phw->ctrl.data); if (status.rx.hw_owned) break; if (hw->dev_count > 1) { /* Get received port number. */ int p = HW_TO_DEV_PORT(status.rx.src_port); dev = hw->port_info[p].pdev; if (!netif_running(dev)) goto release_packet; } /* Status valid only when last descriptor bit is set. */ if (status.rx.last_desc && status.rx.first_desc) { if (rx_proc(dev, hw, desc, status)) goto release_packet; received++; } release_packet: release_desc(desc); next++; next &= info->mask; } info->next = next; return received; } static int dev_rcv_special(struct dev_info *hw_priv) { int next; union desc_stat status; struct ksz_hw *hw = &hw_priv->hw; struct net_device *dev = hw->port_info[0].pdev; struct ksz_desc_info *info = &hw->rx_desc_info; int left = info->alloc; struct ksz_desc *desc; int received = 0; next = info->next; while (left--) { /* Get next descriptor which is not hardware owned. */ desc = &info->ring[next]; status.data = le32_to_cpu(desc->phw->ctrl.data); if (status.rx.hw_owned) break; if (hw->dev_count > 1) { /* Get received port number. */ int p = HW_TO_DEV_PORT(status.rx.src_port); dev = hw->port_info[p].pdev; if (!netif_running(dev)) goto release_packet; } /* Status valid only when last descriptor bit is set. */ if (status.rx.last_desc && status.rx.first_desc) { /* * Receive without error. With receive errors * disabled, packets with receive errors will be * dropped, so no need to check the error bit. */ if (!status.rx.error || (status.data & KS_DESC_RX_ERROR_COND) == KS_DESC_RX_ERROR_TOO_LONG) { if (rx_proc(dev, hw, desc, status)) goto release_packet; received++; } else { struct dev_priv *priv = netdev_priv(dev); /* Update receive error statistics. */ priv->port.counter[OID_COUNTER_RCV_ERROR]++; } } release_packet: release_desc(desc); next++; next &= info->mask; } info->next = next; return received; } static void rx_proc_task(unsigned long data) { struct dev_info *hw_priv = (struct dev_info *) data; struct ksz_hw *hw = &hw_priv->hw; if (!hw->enabled) return; if (unlikely(!hw_priv->dev_rcv(hw_priv))) { /* In case receive process is suspended because of overrun. */ hw_resume_rx(hw); /* tasklets are interruptible. */ spin_lock_irq(&hw_priv->hwlock); hw_turn_on_intr(hw, KS884X_INT_RX_MASK); spin_unlock_irq(&hw_priv->hwlock); } else { hw_ack_intr(hw, KS884X_INT_RX); tasklet_schedule(&hw_priv->rx_tasklet); } } static void tx_proc_task(unsigned long data) { struct dev_info *hw_priv = (struct dev_info *) data; struct ksz_hw *hw = &hw_priv->hw; hw_ack_intr(hw, KS884X_INT_TX_MASK); tx_done(hw_priv); /* tasklets are interruptible. */ spin_lock_irq(&hw_priv->hwlock); hw_turn_on_intr(hw, KS884X_INT_TX); spin_unlock_irq(&hw_priv->hwlock); } static inline void handle_rx_stop(struct ksz_hw *hw) { /* Receive just has been stopped. */ if (0 == hw->rx_stop) hw->intr_mask &= ~KS884X_INT_RX_STOPPED; else if (hw->rx_stop > 1) { if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) { hw_start_rx(hw); } else { hw->intr_mask &= ~KS884X_INT_RX_STOPPED; hw->rx_stop = 0; } } else /* Receive just has been started. */ hw->rx_stop++; } /** * netdev_intr - interrupt handling * @irq: Interrupt number. * @dev_id: Network device. * * This function is called by upper network layer to signal interrupt. * * Return IRQ_HANDLED if interrupt is handled. */ static irqreturn_t netdev_intr(int irq, void *dev_id) { uint int_enable = 0; struct net_device *dev = (struct net_device *) dev_id; struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; spin_lock(&hw_priv->hwlock); hw_read_intr(hw, &int_enable); /* Not our interrupt! */ if (!int_enable) { spin_unlock(&hw_priv->hwlock); return IRQ_NONE; } do { hw_ack_intr(hw, int_enable); int_enable &= hw->intr_mask; if (unlikely(int_enable & KS884X_INT_TX_MASK)) { hw_dis_intr_bit(hw, KS884X_INT_TX_MASK); tasklet_schedule(&hw_priv->tx_tasklet); } if (likely(int_enable & KS884X_INT_RX)) { hw_dis_intr_bit(hw, KS884X_INT_RX); tasklet_schedule(&hw_priv->rx_tasklet); } if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) { dev->stats.rx_fifo_errors++; hw_resume_rx(hw); } if (unlikely(int_enable & KS884X_INT_PHY)) { struct ksz_port *port = &priv->port; hw->features |= LINK_INT_WORKING; port_get_link_speed(port); } if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) { handle_rx_stop(hw); break; } if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) { u32 data; hw->intr_mask &= ~KS884X_INT_TX_STOPPED; pr_info("Tx stopped\n"); data = readl(hw->io + KS_DMA_TX_CTRL); if (!(data & DMA_TX_ENABLE)) pr_info("Tx disabled\n"); break; } } while (0); hw_ena_intr(hw); spin_unlock(&hw_priv->hwlock); return IRQ_HANDLED; } /* * Linux network device functions */ static unsigned long next_jiffies; #ifdef CONFIG_NET_POLL_CONTROLLER static void netdev_netpoll(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; hw_dis_intr(&hw_priv->hw); netdev_intr(dev->irq, dev); } #endif static void bridge_change(struct ksz_hw *hw) { int port; u8 member; struct ksz_switch *sw = hw->ksz_switch; /* No ports in forwarding state. */ if (!sw->member) { port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE); sw_block_addr(hw); } for (port = 0; port < SWITCH_PORT_NUM; port++) { if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state) member = HOST_MASK | sw->member; else member = HOST_MASK | (1 << port); if (member != sw->port_cfg[port].member) sw_cfg_port_base_vlan(hw, port, member); } } /** * netdev_close - close network device * @dev: Network device. * * This function process the close operation of network device. This is caused * by the user command "ifconfig ethX down." * * Return 0 if successful; otherwise an error code indicating failure. */ static int netdev_close(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_port *port = &priv->port; struct ksz_hw *hw = &hw_priv->hw; int pi; netif_stop_queue(dev); ksz_stop_timer(&priv->monitor_timer_info); /* Need to shut the port manually in multiple device interfaces mode. */ if (hw->dev_count > 1) { port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED); /* Port is closed. Need to change bridge setting. */ if (hw->features & STP_SUPPORT) { pi = 1 << port->first_port; if (hw->ksz_switch->member & pi) { hw->ksz_switch->member &= ~pi; bridge_change(hw); } } } if (port->first_port > 0) hw_del_addr(hw, dev->dev_addr); if (!hw_priv->wol_enable) port_set_power_saving(port, true); if (priv->multicast) --hw->all_multi; if (priv->promiscuous) --hw->promiscuous; hw_priv->opened--; if (!(hw_priv->opened)) { ksz_stop_timer(&hw_priv->mib_timer_info); flush_work(&hw_priv->mib_read); hw_dis_intr(hw); hw_disable(hw); hw_clr_multicast(hw); /* Delay for receive task to stop scheduling itself. */ msleep(2000 / HZ); tasklet_kill(&hw_priv->rx_tasklet); tasklet_kill(&hw_priv->tx_tasklet); free_irq(dev->irq, hw_priv->dev); transmit_cleanup(hw_priv, 0); hw_reset_pkts(&hw->rx_desc_info); hw_reset_pkts(&hw->tx_desc_info); /* Clean out static MAC table when the switch is shutdown. */ if (hw->features & STP_SUPPORT) sw_clr_sta_mac_table(hw); } return 0; } static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw) { if (hw->ksz_switch) { u32 data; data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET); if (hw->features & RX_HUGE_FRAME) data |= SWITCH_HUGE_PACKET; else data &= ~SWITCH_HUGE_PACKET; writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET); } if (hw->features & RX_HUGE_FRAME) { hw->rx_cfg |= DMA_RX_ERROR; hw_priv->dev_rcv = dev_rcv_special; } else { hw->rx_cfg &= ~DMA_RX_ERROR; if (hw->dev_count > 1) hw_priv->dev_rcv = port_rcv_packets; else hw_priv->dev_rcv = dev_rcv_packets; } } static int prepare_hardware(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; int rc = 0; /* Remember the network device that requests interrupts. */ hw_priv->dev = dev; rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev); if (rc) return rc; tasklet_init(&hw_priv->rx_tasklet, rx_proc_task, (unsigned long) hw_priv); tasklet_init(&hw_priv->tx_tasklet, tx_proc_task, (unsigned long) hw_priv); hw->promiscuous = 0; hw->all_multi = 0; hw->multi_list_size = 0; hw_reset(hw); hw_set_desc_base(hw, hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); hw_set_addr(hw); hw_cfg_huge_frame(hw_priv, hw); ksz_init_rx_buffers(hw_priv); return 0; } static void set_media_state(struct net_device *dev, int media_state) { struct dev_priv *priv = netdev_priv(dev); if (media_state == priv->media_state) netif_carrier_on(dev); else netif_carrier_off(dev); netif_info(priv, link, dev, "link %s\n", media_state == priv->media_state ? "on" : "off"); } /** * netdev_open - open network device * @dev: Network device. * * This function process the open operation of network device. This is caused * by the user command "ifconfig ethX up." * * Return 0 if successful; otherwise an error code indicating failure. */ static int netdev_open(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_port *port = &priv->port; int i; int p; int rc = 0; priv->multicast = 0; priv->promiscuous = 0; /* Reset device statistics. */ memset(&dev->stats, 0, sizeof(struct net_device_stats)); memset((void *) port->counter, 0, (sizeof(u64) * OID_COUNTER_LAST)); if (!(hw_priv->opened)) { rc = prepare_hardware(dev); if (rc) return rc; for (i = 0; i < hw->mib_port_cnt; i++) { if (next_jiffies < jiffies) next_jiffies = jiffies + HZ * 2; else next_jiffies += HZ * 1; hw_priv->counter[i].time = next_jiffies; hw->port_mib[i].state = media_disconnected; port_init_cnt(hw, i); } if (hw->ksz_switch) hw->port_mib[HOST_PORT].state = media_connected; else { hw_add_wol_bcast(hw); hw_cfg_wol_pme(hw, 0); hw_clr_wol_pme_status(&hw_priv->hw); } } port_set_power_saving(port, false); for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) { /* * Initialize to invalid value so that link detection * is done. */ hw->port_info[p].partner = 0xFF; hw->port_info[p].state = media_disconnected; } /* Need to open the port in multiple device interfaces mode. */ if (hw->dev_count > 1) { port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE); if (port->first_port > 0) hw_add_addr(hw, dev->dev_addr); } port_get_link_speed(port); if (port->force_link) port_force_link_speed(port); else port_set_link_speed(port); if (!(hw_priv->opened)) { hw_setup_intr(hw); hw_enable(hw); hw_ena_intr(hw); if (hw->mib_port_cnt) ksz_start_timer(&hw_priv->mib_timer_info, hw_priv->mib_timer_info.period); } hw_priv->opened++; ksz_start_timer(&priv->monitor_timer_info, priv->monitor_timer_info.period); priv->media_state = port->linked->state; set_media_state(dev, media_connected); netif_start_queue(dev); return 0; } /* RX errors = rx_errors */ /* RX dropped = rx_dropped */ /* RX overruns = rx_fifo_errors */ /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */ /* TX errors = tx_errors */ /* TX dropped = tx_dropped */ /* TX overruns = tx_fifo_errors */ /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */ /* collisions = collisions */ /** * netdev_query_statistics - query network device statistics * @dev: Network device. * * This function returns the statistics of the network device. The device * needs not be opened. * * Return network device statistics. */ static struct net_device_stats *netdev_query_statistics(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct ksz_port *port = &priv->port; struct ksz_hw *hw = &priv->adapter->hw; struct ksz_port_mib *mib; int i; int p; dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR]; dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR]; /* Reset to zero to add count later. */ dev->stats.multicast = 0; dev->stats.collisions = 0; dev->stats.rx_length_errors = 0; dev->stats.rx_crc_errors = 0; dev->stats.rx_frame_errors = 0; dev->stats.tx_window_errors = 0; for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { mib = &hw->port_mib[p]; dev->stats.multicast += (unsigned long) mib->counter[MIB_COUNTER_RX_MULTICAST]; dev->stats.collisions += (unsigned long) mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION]; dev->stats.rx_length_errors += (unsigned long)( mib->counter[MIB_COUNTER_RX_UNDERSIZE] + mib->counter[MIB_COUNTER_RX_FRAGMENT] + mib->counter[MIB_COUNTER_RX_OVERSIZE] + mib->counter[MIB_COUNTER_RX_JABBER]); dev->stats.rx_crc_errors += (unsigned long) mib->counter[MIB_COUNTER_RX_CRC_ERR]; dev->stats.rx_frame_errors += (unsigned long)( mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] + mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]); dev->stats.tx_window_errors += (unsigned long) mib->counter[MIB_COUNTER_TX_LATE_COLLISION]; } return &dev->stats; } /** * netdev_set_mac_address - set network device MAC address * @dev: Network device. * @addr: Buffer of MAC address. * * This function is used to set the MAC address of the network device. * * Return 0 to indicate success. */ static int netdev_set_mac_address(struct net_device *dev, void *addr) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct sockaddr *mac = addr; uint interrupt; if (priv->port.first_port > 0) hw_del_addr(hw, dev->dev_addr); else { hw->mac_override = 1; memcpy(hw->override_addr, mac->sa_data, ETH_ALEN); } memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN); interrupt = hw_block_intr(hw); if (priv->port.first_port > 0) hw_add_addr(hw, dev->dev_addr); else hw_set_addr(hw); hw_restore_intr(hw, interrupt); return 0; } static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv, struct ksz_hw *hw, int promiscuous) { if (promiscuous != priv->promiscuous) { u8 prev_state = hw->promiscuous; if (promiscuous) ++hw->promiscuous; else --hw->promiscuous; priv->promiscuous = promiscuous; /* Turn on/off promiscuous mode. */ if (hw->promiscuous <= 1 && prev_state <= 1) hw_set_promiscuous(hw, hw->promiscuous); /* * Port is not in promiscuous mode, meaning it is released * from the bridge. */ if ((hw->features & STP_SUPPORT) && !promiscuous && (dev->priv_flags & IFF_BRIDGE_PORT)) { struct ksz_switch *sw = hw->ksz_switch; int port = priv->port.first_port; port_set_stp_state(hw, port, STP_STATE_DISABLED); port = 1 << port; if (sw->member & port) { sw->member &= ~port; bridge_change(hw); } } } } static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw, int multicast) { if (multicast != priv->multicast) { u8 all_multi = hw->all_multi; if (multicast) ++hw->all_multi; else --hw->all_multi; priv->multicast = multicast; /* Turn on/off all multicast mode. */ if (hw->all_multi <= 1 && all_multi <= 1) hw_set_multicast(hw, hw->all_multi); } } /** * netdev_set_rx_mode * @dev: Network device. * * This routine is used to set multicast addresses or put the network device * into promiscuous mode. */ static void netdev_set_rx_mode(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct netdev_hw_addr *ha; int multicast = (dev->flags & IFF_ALLMULTI); dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC)); if (hw_priv->hw.dev_count > 1) multicast |= (dev->flags & IFF_MULTICAST); dev_set_multicast(priv, hw, multicast); /* Cannot use different hashes in multiple device interfaces mode. */ if (hw_priv->hw.dev_count > 1) return; if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) { int i = 0; /* List too big to support so turn on all multicast mode. */ if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) { if (MAX_MULTICAST_LIST != hw->multi_list_size) { hw->multi_list_size = MAX_MULTICAST_LIST; ++hw->all_multi; hw_set_multicast(hw, hw->all_multi); } return; } netdev_for_each_mc_addr(ha, dev) { if (i >= MAX_MULTICAST_LIST) break; memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN); } hw->multi_list_size = (u8) i; hw_set_grp_addr(hw); } else { if (MAX_MULTICAST_LIST == hw->multi_list_size) { --hw->all_multi; hw_set_multicast(hw, hw->all_multi); } hw->multi_list_size = 0; hw_clr_multicast(hw); } } static int netdev_change_mtu(struct net_device *dev, int new_mtu) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; int hw_mtu; if (netif_running(dev)) return -EBUSY; /* Cannot use different MTU in multiple device interfaces mode. */ if (hw->dev_count > 1) if (dev != hw_priv->dev) return 0; if (new_mtu < 60) return -EINVAL; if (dev->mtu != new_mtu) { hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4; if (hw_mtu > MAX_RX_BUF_SIZE) return -EINVAL; if (hw_mtu > REGULAR_RX_BUF_SIZE) { hw->features |= RX_HUGE_FRAME; hw_mtu = MAX_RX_BUF_SIZE; } else { hw->features &= ~RX_HUGE_FRAME; hw_mtu = REGULAR_RX_BUF_SIZE; } hw_mtu = (hw_mtu + 3) & ~3; hw_priv->mtu = hw_mtu; dev->mtu = new_mtu; } return 0; } /** * netdev_ioctl - I/O control processing * @dev: Network device. * @ifr: Interface request structure. * @cmd: I/O control code. * * This function is used to process I/O control calls. * * Return 0 to indicate success. */ static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_port *port = &priv->port; int result = 0; struct mii_ioctl_data *data = if_mii(ifr); if (down_interruptible(&priv->proc_sem)) return -ERESTARTSYS; switch (cmd) { /* Get address of MII PHY in use. */ case SIOCGMIIPHY: data->phy_id = priv->id; /* Fallthrough... */ /* Read MII PHY register. */ case SIOCGMIIREG: if (data->phy_id != priv->id || data->reg_num >= 6) result = -EIO; else hw_r_phy(hw, port->linked->port_id, data->reg_num, &data->val_out); break; /* Write MII PHY register. */ case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) result = -EPERM; else if (data->phy_id != priv->id || data->reg_num >= 6) result = -EIO; else hw_w_phy(hw, port->linked->port_id, data->reg_num, data->val_in); break; default: result = -EOPNOTSUPP; } up(&priv->proc_sem); return result; } /* * MII support */ /** * mdio_read - read PHY register * @dev: Network device. * @phy_id: The PHY id. * @reg_num: The register number. * * This function returns the PHY register value. * * Return the register value. */ static int mdio_read(struct net_device *dev, int phy_id, int reg_num) { struct dev_priv *priv = netdev_priv(dev); struct ksz_port *port = &priv->port; struct ksz_hw *hw = port->hw; u16 val_out; hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out); return val_out; } /** * mdio_write - set PHY register * @dev: Network device. * @phy_id: The PHY id. * @reg_num: The register number. * @val: The register value. * * This procedure sets the PHY register value. */ static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) { struct dev_priv *priv = netdev_priv(dev); struct ksz_port *port = &priv->port; struct ksz_hw *hw = port->hw; int i; int pi; for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++) hw_w_phy(hw, pi, reg_num << 1, val); } /* * ethtool support */ #define EEPROM_SIZE 0x40 static u16 eeprom_data[EEPROM_SIZE] = { 0 }; #define ADVERTISED_ALL \ (ADVERTISED_10baseT_Half | \ ADVERTISED_10baseT_Full | \ ADVERTISED_100baseT_Half | \ ADVERTISED_100baseT_Full) /* These functions use the MII functions in mii.c. */ /** * netdev_get_settings - get network device settings * @dev: Network device. * @cmd: Ethtool command. * * This function queries the PHY and returns its state in the ethtool command. * * Return 0 if successful; otherwise an error code. */ static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; mutex_lock(&hw_priv->lock); mii_ethtool_gset(&priv->mii_if, cmd); cmd->advertising |= SUPPORTED_TP; mutex_unlock(&hw_priv->lock); /* Save advertised settings for workaround in next function. */ priv->advertising = cmd->advertising; return 0; } /** * netdev_set_settings - set network device settings * @dev: Network device. * @cmd: Ethtool command. * * This function sets the PHY according to the ethtool command. * * Return 0 if successful; otherwise an error code. */ static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_port *port = &priv->port; u32 speed = ethtool_cmd_speed(cmd); int rc; /* * ethtool utility does not change advertised setting if auto * negotiation is not specified explicitly. */ if (cmd->autoneg && priv->advertising == cmd->advertising) { cmd->advertising |= ADVERTISED_ALL; if (10 == speed) cmd->advertising &= ~(ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half); else if (100 == speed) cmd->advertising &= ~(ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half); if (0 == cmd->duplex) cmd->advertising &= ~(ADVERTISED_100baseT_Full | ADVERTISED_10baseT_Full); else if (1 == cmd->duplex) cmd->advertising &= ~(ADVERTISED_100baseT_Half | ADVERTISED_10baseT_Half); } mutex_lock(&hw_priv->lock); if (cmd->autoneg && (cmd->advertising & ADVERTISED_ALL) == ADVERTISED_ALL) { port->duplex = 0; port->speed = 0; port->force_link = 0; } else { port->duplex = cmd->duplex + 1; if (1000 != speed) port->speed = speed; if (cmd->autoneg) port->force_link = 0; else port->force_link = 1; } rc = mii_ethtool_sset(&priv->mii_if, cmd); mutex_unlock(&hw_priv->lock); return rc; } /** * netdev_nway_reset - restart auto-negotiation * @dev: Network device. * * This function restarts the PHY for auto-negotiation. * * Return 0 if successful; otherwise an error code. */ static int netdev_nway_reset(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; int rc; mutex_lock(&hw_priv->lock); rc = mii_nway_restart(&priv->mii_if); mutex_unlock(&hw_priv->lock); return rc; } /** * netdev_get_link - get network device link status * @dev: Network device. * * This function gets the link status from the PHY. * * Return true if PHY is linked and false otherwise. */ static u32 netdev_get_link(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); int rc; rc = mii_link_ok(&priv->mii_if); return rc; } /** * netdev_get_drvinfo - get network driver information * @dev: Network device. * @info: Ethtool driver info data structure. * * This procedure returns the driver information. */ static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(hw_priv->pdev), sizeof(info->bus_info)); } /** * netdev_get_regs_len - get length of register dump * @dev: Network device. * * This function returns the length of the register dump. * * Return length of the register dump. */ static struct hw_regs { int start; int end; } hw_regs_range[] = { { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS }, { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI }, { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET }, { KS884X_SIDER_P, KS8842_SGCR7_P }, { KS8842_MACAR1_P, KS8842_TOSR8_P }, { KS884X_P1MBCR_P, KS8842_P3ERCR_P }, { 0, 0 } }; static int netdev_get_regs_len(struct net_device *dev) { struct hw_regs *range = hw_regs_range; int regs_len = 0x10 * sizeof(u32); while (range->end > range->start) { regs_len += (range->end - range->start + 3) / 4 * 4; range++; } return regs_len; } /** * netdev_get_regs - get register dump * @dev: Network device. * @regs: Ethtool registers data structure. * @ptr: Buffer to store the register values. * * This procedure dumps the register values in the provided buffer. */ static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *ptr) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; int *buf = (int *) ptr; struct hw_regs *range = hw_regs_range; int len; mutex_lock(&hw_priv->lock); regs->version = 0; for (len = 0; len < 0x40; len += 4) { pci_read_config_dword(hw_priv->pdev, len, buf); buf++; } while (range->end > range->start) { for (len = range->start; len < range->end; len += 4) { *buf = readl(hw->io + len); buf++; } range++; } mutex_unlock(&hw_priv->lock); } #define WOL_SUPPORT \ (WAKE_PHY | WAKE_MAGIC | \ WAKE_UCAST | WAKE_MCAST | \ WAKE_BCAST | WAKE_ARP) /** * netdev_get_wol - get Wake-on-LAN support * @dev: Network device. * @wol: Ethtool Wake-on-LAN data structure. * * This procedure returns Wake-on-LAN support. */ static void netdev_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; wol->supported = hw_priv->wol_support; wol->wolopts = hw_priv->wol_enable; memset(&wol->sopass, 0, sizeof(wol->sopass)); } /** * netdev_set_wol - set Wake-on-LAN support * @dev: Network device. * @wol: Ethtool Wake-on-LAN data structure. * * This function sets Wake-on-LAN support. * * Return 0 if successful; otherwise an error code. */ static int netdev_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; /* Need to find a way to retrieve the device IP address. */ static const u8 net_addr[] = { 192, 168, 1, 1 }; if (wol->wolopts & ~hw_priv->wol_support) return -EINVAL; hw_priv->wol_enable = wol->wolopts; /* Link wakeup cannot really be disabled. */ if (wol->wolopts) hw_priv->wol_enable |= WAKE_PHY; hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr); return 0; } /** * netdev_get_msglevel - get debug message level * @dev: Network device. * * This function returns current debug message level. * * Return current debug message flags. */ static u32 netdev_get_msglevel(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); return priv->msg_enable; } /** * netdev_set_msglevel - set debug message level * @dev: Network device. * @value: Debug message flags. * * This procedure sets debug message level. */ static void netdev_set_msglevel(struct net_device *dev, u32 value) { struct dev_priv *priv = netdev_priv(dev); priv->msg_enable = value; } /** * netdev_get_eeprom_len - get EEPROM length * @dev: Network device. * * This function returns the length of the EEPROM. * * Return length of the EEPROM. */ static int netdev_get_eeprom_len(struct net_device *dev) { return EEPROM_SIZE * 2; } /** * netdev_get_eeprom - get EEPROM data * @dev: Network device. * @eeprom: Ethtool EEPROM data structure. * @data: Buffer to store the EEPROM data. * * This function dumps the EEPROM data in the provided buffer. * * Return 0 if successful; otherwise an error code. */ #define EEPROM_MAGIC 0x10A18842 static int netdev_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; u8 *eeprom_byte = (u8 *) eeprom_data; int i; int len; len = (eeprom->offset + eeprom->len + 1) / 2; for (i = eeprom->offset / 2; i < len; i++) eeprom_data[i] = eeprom_read(&hw_priv->hw, i); eeprom->magic = EEPROM_MAGIC; memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len); return 0; } /** * netdev_set_eeprom - write EEPROM data * @dev: Network device. * @eeprom: Ethtool EEPROM data structure. * @data: Data buffer. * * This function modifies the EEPROM data one byte at a time. * * Return 0 if successful; otherwise an error code. */ static int netdev_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; u16 eeprom_word[EEPROM_SIZE]; u8 *eeprom_byte = (u8 *) eeprom_word; int i; int len; if (eeprom->magic != EEPROM_MAGIC) return -EINVAL; len = (eeprom->offset + eeprom->len + 1) / 2; for (i = eeprom->offset / 2; i < len; i++) eeprom_data[i] = eeprom_read(&hw_priv->hw, i); memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2); memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len); for (i = 0; i < EEPROM_SIZE; i++) if (eeprom_word[i] != eeprom_data[i]) { eeprom_data[i] = eeprom_word[i]; eeprom_write(&hw_priv->hw, i, eeprom_data[i]); } return 0; } /** * netdev_get_pauseparam - get flow control parameters * @dev: Network device. * @pause: Ethtool PAUSE settings data structure. * * This procedure returns the PAUSE control flow settings. */ static void netdev_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1; if (!hw->ksz_switch) { pause->rx_pause = (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0; pause->tx_pause = (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0; } else { pause->rx_pause = (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_RX_FLOW_CTRL)) ? 1 : 0; pause->tx_pause = (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_TX_FLOW_CTRL)) ? 1 : 0; } } /** * netdev_set_pauseparam - set flow control parameters * @dev: Network device. * @pause: Ethtool PAUSE settings data structure. * * This function sets the PAUSE control flow settings. * Not implemented yet. * * Return 0 if successful; otherwise an error code. */ static int netdev_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_port *port = &priv->port; mutex_lock(&hw_priv->lock); if (pause->autoneg) { if (!pause->rx_pause && !pause->tx_pause) port->flow_ctrl = PHY_NO_FLOW_CTRL; else port->flow_ctrl = PHY_FLOW_CTRL; hw->overrides &= ~PAUSE_FLOW_CTRL; port->force_link = 0; if (hw->ksz_switch) { sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_RX_FLOW_CTRL, 1); sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_TX_FLOW_CTRL, 1); } port_set_link_speed(port); } else { hw->overrides |= PAUSE_FLOW_CTRL; if (hw->ksz_switch) { sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_RX_FLOW_CTRL, pause->rx_pause); sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_TX_FLOW_CTRL, pause->tx_pause); } else set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause); } mutex_unlock(&hw_priv->lock); return 0; } /** * netdev_get_ringparam - get tx/rx ring parameters * @dev: Network device. * @pause: Ethtool RING settings data structure. * * This procedure returns the TX/RX ring settings. */ static void netdev_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; ring->tx_max_pending = (1 << 9); ring->tx_pending = hw->tx_desc_info.alloc; ring->rx_max_pending = (1 << 9); ring->rx_pending = hw->rx_desc_info.alloc; } #define STATS_LEN (TOTAL_PORT_COUNTER_NUM) static struct { char string[ETH_GSTRING_LEN]; } ethtool_stats_keys[STATS_LEN] = { { "rx_lo_priority_octets" }, { "rx_hi_priority_octets" }, { "rx_undersize_packets" }, { "rx_fragments" }, { "rx_oversize_packets" }, { "rx_jabbers" }, { "rx_symbol_errors" }, { "rx_crc_errors" }, { "rx_align_errors" }, { "rx_mac_ctrl_packets" }, { "rx_pause_packets" }, { "rx_bcast_packets" }, { "rx_mcast_packets" }, { "rx_ucast_packets" }, { "rx_64_or_less_octet_packets" }, { "rx_65_to_127_octet_packets" }, { "rx_128_to_255_octet_packets" }, { "rx_256_to_511_octet_packets" }, { "rx_512_to_1023_octet_packets" }, { "rx_1024_to_1522_octet_packets" }, { "tx_lo_priority_octets" }, { "tx_hi_priority_octets" }, { "tx_late_collisions" }, { "tx_pause_packets" }, { "tx_bcast_packets" }, { "tx_mcast_packets" }, { "tx_ucast_packets" }, { "tx_deferred" }, { "tx_total_collisions" }, { "tx_excessive_collisions" }, { "tx_single_collisions" }, { "tx_mult_collisions" }, { "rx_discards" }, { "tx_discards" }, }; /** * netdev_get_strings - get statistics identity strings * @dev: Network device. * @stringset: String set identifier. * @buf: Buffer to store the strings. * * This procedure returns the strings used to identify the statistics. */ static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; if (ETH_SS_STATS == stringset) memcpy(buf, ðtool_stats_keys, ETH_GSTRING_LEN * hw->mib_cnt); } /** * netdev_get_sset_count - get statistics size * @dev: Network device. * @sset: The statistics set number. * * This function returns the size of the statistics to be reported. * * Return size of the statistics to be reported. */ static int netdev_get_sset_count(struct net_device *dev, int sset) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; switch (sset) { case ETH_SS_STATS: return hw->mib_cnt; default: return -EOPNOTSUPP; } } /** * netdev_get_ethtool_stats - get network device statistics * @dev: Network device. * @stats: Ethtool statistics data structure. * @data: Buffer to store the statistics. * * This procedure returns the statistics. */ static void netdev_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_port *port = &priv->port; int n_stats = stats->n_stats; int i; int n; int p; int rc; u64 counter[TOTAL_PORT_COUNTER_NUM]; mutex_lock(&hw_priv->lock); n = SWITCH_PORT_NUM; for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) { if (media_connected == hw->port_mib[p].state) { hw_priv->counter[p].read = 1; /* Remember first port that requests read. */ if (n == SWITCH_PORT_NUM) n = p; } } mutex_unlock(&hw_priv->lock); if (n < SWITCH_PORT_NUM) schedule_work(&hw_priv->mib_read); if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) { p = n; rc = wait_event_interruptible_timeout( hw_priv->counter[p].counter, 2 == hw_priv->counter[p].read, HZ * 1); } else for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) { if (0 == i) { rc = wait_event_interruptible_timeout( hw_priv->counter[p].counter, 2 == hw_priv->counter[p].read, HZ * 2); } else if (hw->port_mib[p].cnt_ptr) { rc = wait_event_interruptible_timeout( hw_priv->counter[p].counter, 2 == hw_priv->counter[p].read, HZ * 1); } } get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter); n = hw->mib_cnt; if (n > n_stats) n = n_stats; n_stats -= n; for (i = 0; i < n; i++) *data++ = counter[i]; } /** * netdev_set_features - set receive checksum support * @dev: Network device. * @features: New device features (offloads). * * This function sets receive checksum support setting. * * Return 0 if successful; otherwise an error code. */ static int netdev_set_features(struct net_device *dev, netdev_features_t features) { struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; mutex_lock(&hw_priv->lock); /* see note in hw_setup() */ if (features & NETIF_F_RXCSUM) hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP; else hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP); if (hw->enabled) writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL); mutex_unlock(&hw_priv->lock); return 0; } static const struct ethtool_ops netdev_ethtool_ops = { .get_settings = netdev_get_settings, .set_settings = netdev_set_settings, .nway_reset = netdev_nway_reset, .get_link = netdev_get_link, .get_drvinfo = netdev_get_drvinfo, .get_regs_len = netdev_get_regs_len, .get_regs = netdev_get_regs, .get_wol = netdev_get_wol, .set_wol = netdev_set_wol, .get_msglevel = netdev_get_msglevel, .set_msglevel = netdev_set_msglevel, .get_eeprom_len = netdev_get_eeprom_len, .get_eeprom = netdev_get_eeprom, .set_eeprom = netdev_set_eeprom, .get_pauseparam = netdev_get_pauseparam, .set_pauseparam = netdev_set_pauseparam, .get_ringparam = netdev_get_ringparam, .get_strings = netdev_get_strings, .get_sset_count = netdev_get_sset_count, .get_ethtool_stats = netdev_get_ethtool_stats, }; /* * Hardware monitoring */ static void update_link(struct net_device *dev, struct dev_priv *priv, struct ksz_port *port) { if (priv->media_state != port->linked->state) { priv->media_state = port->linked->state; if (netif_running(dev)) set_media_state(dev, media_connected); } } static void mib_read_work(struct work_struct *work) { struct dev_info *hw_priv = container_of(work, struct dev_info, mib_read); struct ksz_hw *hw = &hw_priv->hw; struct ksz_port_mib *mib; int i; next_jiffies = jiffies; for (i = 0; i < hw->mib_port_cnt; i++) { mib = &hw->port_mib[i]; /* Reading MIB counters or requested to read. */ if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) { /* Need to process receive interrupt. */ if (port_r_cnt(hw, i)) break; hw_priv->counter[i].read = 0; /* Finish reading counters. */ if (0 == mib->cnt_ptr) { hw_priv->counter[i].read = 2; wake_up_interruptible( &hw_priv->counter[i].counter); } } else if (jiffies >= hw_priv->counter[i].time) { /* Only read MIB counters when the port is connected. */ if (media_connected == mib->state) hw_priv->counter[i].read = 1; next_jiffies += HZ * 1 * hw->mib_port_cnt; hw_priv->counter[i].time = next_jiffies; /* Port is just disconnected. */ } else if (mib->link_down) { mib->link_down = 0; /* Read counters one last time after link is lost. */ hw_priv->counter[i].read = 1; } } } static void mib_monitor(unsigned long ptr) { struct dev_info *hw_priv = (struct dev_info *) ptr; mib_read_work(&hw_priv->mib_read); /* This is used to verify Wake-on-LAN is working. */ if (hw_priv->pme_wait) { if (hw_priv->pme_wait <= jiffies) { hw_clr_wol_pme_status(&hw_priv->hw); hw_priv->pme_wait = 0; } } else if (hw_chk_wol_pme_status(&hw_priv->hw)) { /* PME is asserted. Wait 2 seconds to clear it. */ hw_priv->pme_wait = jiffies + HZ * 2; } ksz_update_timer(&hw_priv->mib_timer_info); } /** * dev_monitor - periodic monitoring * @ptr: Network device pointer. * * This routine is run in a kernel timer to monitor the network device. */ static void dev_monitor(unsigned long ptr) { struct net_device *dev = (struct net_device *) ptr; struct dev_priv *priv = netdev_priv(dev); struct dev_info *hw_priv = priv->adapter; struct ksz_hw *hw = &hw_priv->hw; struct ksz_port *port = &priv->port; if (!(hw->features & LINK_INT_WORKING)) port_get_link_speed(port); update_link(dev, priv, port); ksz_update_timer(&priv->monitor_timer_info); } /* * Linux network device interface functions */ /* Driver exported variables */ static int msg_enable; static char *macaddr = ":"; static char *mac1addr = ":"; /* * This enables multiple network device mode for KSZ8842, which contains a * switch with two physical ports. Some users like to take control of the * ports for running Spanning Tree Protocol. The driver will create an * additional eth? device for the other port. * * Some limitations are the network devices cannot have different MTU and * multicast hash tables. */ static int multi_dev; /* * As most users select multiple network device mode to use Spanning Tree * Protocol, this enables a feature in which most unicast and multicast packets * are forwarded inside the switch and not passed to the host. Only packets * that need the host's attention are passed to it. This prevents the host * wasting CPU time to examine each and every incoming packets and do the * forwarding itself. * * As the hack requires the private bridge header, the driver cannot compile * with just the kernel headers. * * Enabling STP support also turns on multiple network device mode. */ static int stp; /* * This enables fast aging in the KSZ8842 switch. Not sure what situation * needs that. However, fast aging is used to flush the dynamic MAC table when * STP support is enabled. */ static int fast_aging; /** * netdev_init - initialize network device. * @dev: Network device. * * This function initializes the network device. * * Return 0 if successful; otherwise an error code indicating failure. */ static int __init netdev_init(struct net_device *dev) { struct dev_priv *priv = netdev_priv(dev); /* 500 ms timeout */ ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000, dev_monitor, dev); /* 500 ms timeout */ dev->watchdog_timeo = HZ / 2; dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM; /* * Hardware does not really support IPv6 checksum generation, but * driver actually runs faster with this on. */ dev->hw_features |= NETIF_F_IPV6_CSUM; dev->features |= dev->hw_features; sema_init(&priv->proc_sem, 1); priv->mii_if.phy_id_mask = 0x1; priv->mii_if.reg_num_mask = 0x7; priv->mii_if.dev = dev; priv->mii_if.mdio_read = mdio_read; priv->mii_if.mdio_write = mdio_write; priv->mii_if.phy_id = priv->port.first_port + 1; priv->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); return 0; } static const struct net_device_ops netdev_ops = { .ndo_init = netdev_init, .ndo_open = netdev_open, .ndo_stop = netdev_close, .ndo_get_stats = netdev_query_statistics, .ndo_start_xmit = netdev_tx, .ndo_tx_timeout = netdev_tx_timeout, .ndo_change_mtu = netdev_change_mtu, .ndo_set_features = netdev_set_features, .ndo_set_mac_address = netdev_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = netdev_ioctl, .ndo_set_rx_mode = netdev_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = netdev_netpoll, #endif }; static void netdev_free(struct net_device *dev) { if (dev->watchdog_timeo) unregister_netdev(dev); free_netdev(dev); } struct platform_info { struct dev_info dev_info; struct net_device *netdev[SWITCH_PORT_NUM]; }; static int net_device_present; static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port) { int i; int j; int got_num; int num; i = j = num = got_num = 0; while (j < ETH_ALEN) { if (macaddr[i]) { int digit; got_num = 1; digit = hex_to_bin(macaddr[i]); if (digit >= 0) num = num * 16 + digit; else if (':' == macaddr[i]) got_num = 2; else break; } else if (got_num) got_num = 2; else break; if (2 == got_num) { if (MAIN_PORT == port) { hw_priv->hw.override_addr[j++] = (u8) num; hw_priv->hw.override_addr[5] += hw_priv->hw.id; } else { hw_priv->hw.ksz_switch->other_addr[j++] = (u8) num; hw_priv->hw.ksz_switch->other_addr[5] += hw_priv->hw.id; } num = got_num = 0; } i++; } if (ETH_ALEN == j) { if (MAIN_PORT == port) hw_priv->hw.mac_override = 1; } } #define KS884X_DMA_MASK (~0x0UL) static void read_other_addr(struct ksz_hw *hw) { int i; u16 data[3]; struct ksz_switch *sw = hw->ksz_switch; for (i = 0; i < 3; i++) data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR); if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) { sw->other_addr[5] = (u8) data[0]; sw->other_addr[4] = (u8)(data[0] >> 8); sw->other_addr[3] = (u8) data[1]; sw->other_addr[2] = (u8)(data[1] >> 8); sw->other_addr[1] = (u8) data[2]; sw->other_addr[0] = (u8)(data[2] >> 8); } } #ifndef PCI_VENDOR_ID_MICREL_KS #define PCI_VENDOR_ID_MICREL_KS 0x16c6 #endif static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id) { struct net_device *dev; struct dev_priv *priv; struct dev_info *hw_priv; struct ksz_hw *hw; struct platform_info *info; struct ksz_port *port; unsigned long reg_base; unsigned long reg_len; int cnt; int i; int mib_port_count; int pi; int port_count; int result; char banner[sizeof(version)]; struct ksz_switch *sw = NULL; result = pci_enable_device(pdev); if (result) return result; result = -ENODEV; if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) || pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) return result; reg_base = pci_resource_start(pdev, 0); reg_len = pci_resource_len(pdev, 0); if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) return result; if (!request_mem_region(reg_base, reg_len, DRV_NAME)) return result; pci_set_master(pdev); result = -ENOMEM; info = kzalloc(sizeof(struct platform_info), GFP_KERNEL); if (!info) goto pcidev_init_dev_err; hw_priv = &info->dev_info; hw_priv->pdev = pdev; hw = &hw_priv->hw; hw->io = ioremap(reg_base, reg_len); if (!hw->io) goto pcidev_init_io_err; cnt = hw_init(hw); if (!cnt) { if (msg_enable & NETIF_MSG_PROBE) pr_alert("chip not detected\n"); result = -ENODEV; goto pcidev_init_alloc_err; } snprintf(banner, sizeof(banner), "%s", version); banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */ dev_info(&hw_priv->pdev->dev, "%s\n", banner); dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); /* Assume device is KSZ8841. */ hw->dev_count = 1; port_count = 1; mib_port_count = 1; hw->addr_list_size = 0; hw->mib_cnt = PORT_COUNTER_NUM; hw->mib_port_cnt = 1; /* KSZ8842 has a switch with multiple ports. */ if (2 == cnt) { if (fast_aging) hw->overrides |= FAST_AGING; hw->mib_cnt = TOTAL_PORT_COUNTER_NUM; /* Multiple network device interfaces are required. */ if (multi_dev) { hw->dev_count = SWITCH_PORT_NUM; hw->addr_list_size = SWITCH_PORT_NUM - 1; } /* Single network device has multiple ports. */ if (1 == hw->dev_count) { port_count = SWITCH_PORT_NUM; mib_port_count = SWITCH_PORT_NUM; } hw->mib_port_cnt = TOTAL_PORT_NUM; hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL); if (!hw->ksz_switch) goto pcidev_init_alloc_err; sw = hw->ksz_switch; } for (i = 0; i < hw->mib_port_cnt; i++) hw->port_mib[i].mib_start = 0; hw->parent = hw_priv; /* Default MTU is 1500. */ hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3; if (ksz_alloc_mem(hw_priv)) goto pcidev_init_mem_err; hw_priv->hw.id = net_device_present; spin_lock_init(&hw_priv->hwlock); mutex_init(&hw_priv->lock); for (i = 0; i < TOTAL_PORT_NUM; i++) init_waitqueue_head(&hw_priv->counter[i].counter); if (macaddr[0] != ':') get_mac_addr(hw_priv, macaddr, MAIN_PORT); /* Read MAC address and initialize override address if not overrided. */ hw_read_addr(hw); /* Multiple device interfaces mode requires a second MAC address. */ if (hw->dev_count > 1) { memcpy(sw->other_addr, hw->override_addr, ETH_ALEN); read_other_addr(hw); if (mac1addr[0] != ':') get_mac_addr(hw_priv, mac1addr, OTHER_PORT); } hw_setup(hw); if (hw->ksz_switch) sw_setup(hw); else { hw_priv->wol_support = WOL_SUPPORT; hw_priv->wol_enable = 0; } INIT_WORK(&hw_priv->mib_read, mib_read_work); /* 500 ms timeout */ ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000, mib_monitor, hw_priv); for (i = 0; i < hw->dev_count; i++) { dev = alloc_etherdev(sizeof(struct dev_priv)); if (!dev) goto pcidev_init_reg_err; SET_NETDEV_DEV(dev, &pdev->dev); info->netdev[i] = dev; priv = netdev_priv(dev); priv->adapter = hw_priv; priv->id = net_device_present++; port = &priv->port; port->port_cnt = port_count; port->mib_port_cnt = mib_port_count; port->first_port = i; port->flow_ctrl = PHY_FLOW_CTRL; port->hw = hw; port->linked = &hw->port_info[port->first_port]; for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) { hw->port_info[pi].port_id = pi; hw->port_info[pi].pdev = dev; hw->port_info[pi].state = media_disconnected; } dev->mem_start = (unsigned long) hw->io; dev->mem_end = dev->mem_start + reg_len - 1; dev->irq = pdev->irq; if (MAIN_PORT == i) memcpy(dev->dev_addr, hw_priv->hw.override_addr, ETH_ALEN); else { memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN); if (ether_addr_equal(sw->other_addr, hw->override_addr)) dev->dev_addr[5] += port->first_port; } dev->netdev_ops = &netdev_ops; dev->ethtool_ops = &netdev_ethtool_ops; if (register_netdev(dev)) goto pcidev_init_reg_err; port_set_power_saving(port, true); } pci_dev_get(hw_priv->pdev); pci_set_drvdata(pdev, info); return 0; pcidev_init_reg_err: for (i = 0; i < hw->dev_count; i++) { if (info->netdev[i]) { netdev_free(info->netdev[i]); info->netdev[i] = NULL; } } pcidev_init_mem_err: ksz_free_mem(hw_priv); kfree(hw->ksz_switch); pcidev_init_alloc_err: iounmap(hw->io); pcidev_init_io_err: kfree(info); pcidev_init_dev_err: release_mem_region(reg_base, reg_len); return result; } static void pcidev_exit(struct pci_dev *pdev) { int i; struct platform_info *info = pci_get_drvdata(pdev); struct dev_info *hw_priv = &info->dev_info; release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); for (i = 0; i < hw_priv->hw.dev_count; i++) { if (info->netdev[i]) netdev_free(info->netdev[i]); } if (hw_priv->hw.io) iounmap(hw_priv->hw.io); ksz_free_mem(hw_priv); kfree(hw_priv->hw.ksz_switch); pci_dev_put(hw_priv->pdev); kfree(info); } #ifdef CONFIG_PM static int pcidev_resume(struct pci_dev *pdev) { int i; struct platform_info *info = pci_get_drvdata(pdev); struct dev_info *hw_priv = &info->dev_info; struct ksz_hw *hw = &hw_priv->hw; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_enable_wake(pdev, PCI_D0, 0); if (hw_priv->wol_enable) hw_cfg_wol_pme(hw, 0); for (i = 0; i < hw->dev_count; i++) { if (info->netdev[i]) { struct net_device *dev = info->netdev[i]; if (netif_running(dev)) { netdev_open(dev); netif_device_attach(dev); } } } return 0; } static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state) { int i; struct platform_info *info = pci_get_drvdata(pdev); struct dev_info *hw_priv = &info->dev_info; struct ksz_hw *hw = &hw_priv->hw; /* Need to find a way to retrieve the device IP address. */ static const u8 net_addr[] = { 192, 168, 1, 1 }; for (i = 0; i < hw->dev_count; i++) { if (info->netdev[i]) { struct net_device *dev = info->netdev[i]; if (netif_running(dev)) { netif_device_detach(dev); netdev_close(dev); } } } if (hw_priv->wol_enable) { hw_enable_wol(hw, hw_priv->wol_enable, net_addr); hw_cfg_wol_pme(hw, 1); } pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } #endif static char pcidev_name[] = "ksz884xp"; static DEFINE_PCI_DEVICE_TABLE(pcidev_table) = { { PCI_VENDOR_ID_MICREL_KS, 0x8841, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_MICREL_KS, 0x8842, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { 0 } }; MODULE_DEVICE_TABLE(pci, pcidev_table); static struct pci_driver pci_device_driver = { #ifdef CONFIG_PM .suspend = pcidev_suspend, .resume = pcidev_resume, #endif .name = pcidev_name, .id_table = pcidev_table, .probe = pcidev_init, .remove = pcidev_exit }; module_pci_driver(pci_device_driver); MODULE_DESCRIPTION("KSZ8841/2 PCI network driver"); MODULE_AUTHOR("Tristram Ha "); MODULE_LICENSE("GPL"); module_param_named(message, msg_enable, int, 0); MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); module_param(macaddr, charp, 0); module_param(mac1addr, charp, 0); module_param(fast_aging, int, 0); module_param(multi_dev, int, 0); module_param(stp, int, 0); MODULE_PARM_DESC(macaddr, "MAC address"); MODULE_PARM_DESC(mac1addr, "Second MAC address"); MODULE_PARM_DESC(fast_aging, "Fast aging"); MODULE_PARM_DESC(multi_dev, "Multiple device interfaces"); MODULE_PARM_DESC(stp, "STP support");