/* SPDX-License-Identifier: GPL-2.0 */ /* Marvell RVU Ethernet driver * * Copyright (C) 2020 Marvell. * */ #ifndef OTX2_COMMON_H #define OTX2_COMMON_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "otx2_reg.h" #include "otx2_txrx.h" #include "otx2_devlink.h" #include #include "qos.h" /* IPv4 flag more fragment bit */ #define IPV4_FLAG_MORE 0x20 /* PCI device IDs */ #define PCI_DEVID_OCTEONTX2_RVU_PF 0xA063 #define PCI_DEVID_OCTEONTX2_RVU_VF 0xA064 #define PCI_DEVID_OCTEONTX2_RVU_AFVF 0xA0F8 #define PCI_SUBSYS_DEVID_96XX_RVU_PFVF 0xB200 #define PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF 0xBD00 /* PCI BAR nos */ #define PCI_CFG_REG_BAR_NUM 2 #define PCI_MBOX_BAR_NUM 4 #define NAME_SIZE 32 #ifdef CONFIG_DCB /* Max priority supported for PFC */ #define NIX_PF_PFC_PRIO_MAX 8 #endif enum arua_mapped_qtypes { AURA_NIX_RQ, AURA_NIX_SQ, }; /* NIX LF interrupts range*/ #define NIX_LF_QINT_VEC_START 0x00 #define NIX_LF_CINT_VEC_START 0x40 #define NIX_LF_GINT_VEC 0x80 #define NIX_LF_ERR_VEC 0x81 #define NIX_LF_POISON_VEC 0x82 /* Send skid of 2000 packets required for CQ size of 4K CQEs. */ #define SEND_CQ_SKID 2000 #define OTX2_GET_RX_STATS(reg) \ otx2_read64(pfvf, NIX_LF_RX_STATX(reg)) #define OTX2_GET_TX_STATS(reg) \ otx2_read64(pfvf, NIX_LF_TX_STATX(reg)) struct otx2_lmt_info { u64 lmt_addr; u16 lmt_id; }; /* RSS configuration */ struct otx2_rss_ctx { u8 ind_tbl[MAX_RSS_INDIR_TBL_SIZE]; }; struct otx2_rss_info { u8 enable; u32 flowkey_cfg; u16 rss_size; #define RSS_HASH_KEY_SIZE 44 /* 352 bit key */ u8 key[RSS_HASH_KEY_SIZE]; struct otx2_rss_ctx *rss_ctx[MAX_RSS_GROUPS]; }; /* NIX (or NPC) RX errors */ enum otx2_errlvl { NPC_ERRLVL_RE, NPC_ERRLVL_LID_LA, NPC_ERRLVL_LID_LB, NPC_ERRLVL_LID_LC, NPC_ERRLVL_LID_LD, NPC_ERRLVL_LID_LE, NPC_ERRLVL_LID_LF, NPC_ERRLVL_LID_LG, NPC_ERRLVL_LID_LH, NPC_ERRLVL_NIX = 0x0F, }; enum otx2_errcodes_re { /* NPC_ERRLVL_RE errcodes */ ERRCODE_FCS = 0x7, ERRCODE_FCS_RCV = 0x8, ERRCODE_UNDERSIZE = 0x10, ERRCODE_OVERSIZE = 0x11, ERRCODE_OL2_LEN_MISMATCH = 0x12, /* NPC_ERRLVL_NIX errcodes */ ERRCODE_OL3_LEN = 0x10, ERRCODE_OL4_LEN = 0x11, ERRCODE_OL4_CSUM = 0x12, ERRCODE_IL3_LEN = 0x20, ERRCODE_IL4_LEN = 0x21, ERRCODE_IL4_CSUM = 0x22, }; /* NIX TX stats */ enum nix_stat_lf_tx { TX_UCAST = 0x0, TX_BCAST = 0x1, TX_MCAST = 0x2, TX_DROP = 0x3, TX_OCTS = 0x4, TX_STATS_ENUM_LAST, }; /* NIX RX stats */ enum nix_stat_lf_rx { RX_OCTS = 0x0, RX_UCAST = 0x1, RX_BCAST = 0x2, RX_MCAST = 0x3, RX_DROP = 0x4, RX_DROP_OCTS = 0x5, RX_FCS = 0x6, RX_ERR = 0x7, RX_DRP_BCAST = 0x8, RX_DRP_MCAST = 0x9, RX_DRP_L3BCAST = 0xa, RX_DRP_L3MCAST = 0xb, RX_STATS_ENUM_LAST, }; struct otx2_dev_stats { u64 rx_bytes; u64 rx_frames; u64 rx_ucast_frames; u64 rx_bcast_frames; u64 rx_mcast_frames; u64 rx_drops; u64 tx_bytes; u64 tx_frames; u64 tx_ucast_frames; u64 tx_bcast_frames; u64 tx_mcast_frames; u64 tx_drops; }; /* Driver counted stats */ struct otx2_drv_stats { atomic_t rx_fcs_errs; atomic_t rx_oversize_errs; atomic_t rx_undersize_errs; atomic_t rx_csum_errs; atomic_t rx_len_errs; atomic_t rx_other_errs; }; struct mbox { struct otx2_mbox mbox; struct work_struct mbox_wrk; struct otx2_mbox mbox_up; struct work_struct mbox_up_wrk; struct otx2_nic *pfvf; void *bbuf_base; /* Bounce buffer for mbox memory */ struct mutex lock; /* serialize mailbox access */ int num_msgs; /* mbox number of messages */ int up_num_msgs; /* mbox_up number of messages */ }; /* Egress rate limiting definitions */ #define MAX_BURST_EXPONENT 0x0FULL #define MAX_BURST_MANTISSA 0xFFULL #define MAX_BURST_SIZE 130816ULL #define MAX_RATE_DIVIDER_EXPONENT 12ULL #define MAX_RATE_EXPONENT 0x0FULL #define MAX_RATE_MANTISSA 0xFFULL /* Bitfields in NIX_TLX_PIR register */ #define TLX_RATE_MANTISSA GENMASK_ULL(8, 1) #define TLX_RATE_EXPONENT GENMASK_ULL(12, 9) #define TLX_RATE_DIVIDER_EXPONENT GENMASK_ULL(16, 13) #define TLX_BURST_MANTISSA GENMASK_ULL(36, 29) #define TLX_BURST_EXPONENT GENMASK_ULL(40, 37) struct otx2_hw { struct pci_dev *pdev; struct otx2_rss_info rss_info; u16 rx_queues; u16 tx_queues; u16 xdp_queues; u16 tc_tx_queues; u16 non_qos_queues; /* tx queues plus xdp queues */ u16 max_queues; u16 pool_cnt; u16 rqpool_cnt; u16 sqpool_cnt; #define OTX2_DEFAULT_RBUF_LEN 2048 u16 rbuf_len; u32 xqe_size; /* NPA */ u32 stack_pg_ptrs; /* No of ptrs per stack page */ u32 stack_pg_bytes; /* Size of stack page */ u16 sqb_size; /* NIX */ u8 txschq_link_cfg_lvl; u16 txschq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC]; u16 matchall_ipolicer; u32 dwrr_mtu; /* HW settings, coalescing etc */ u16 rx_chan_base; u16 tx_chan_base; u16 cq_qcount_wait; u16 cq_ecount_wait; u16 rq_skid; u8 cq_time_wait; /* Segmentation */ u8 lso_tsov4_idx; u8 lso_tsov6_idx; u8 lso_udpv4_idx; u8 lso_udpv6_idx; /* RSS */ u8 flowkey_alg_idx; /* MSI-X */ u8 cint_cnt; /* CQ interrupt count */ u16 npa_msixoff; /* Offset of NPA vectors */ u16 nix_msixoff; /* Offset of NIX vectors */ char *irq_name; cpumask_var_t *affinity_mask; /* Stats */ struct otx2_dev_stats dev_stats; struct otx2_drv_stats drv_stats; u64 cgx_rx_stats[CGX_RX_STATS_COUNT]; u64 cgx_tx_stats[CGX_TX_STATS_COUNT]; u64 cgx_fec_corr_blks; u64 cgx_fec_uncorr_blks; u8 cgx_links; /* No. of CGX links present in HW */ u8 lbk_links; /* No. of LBK links present in HW */ u8 tx_link; /* Transmit channel link number */ #define HW_TSO 0 #define CN10K_MBOX 1 #define CN10K_LMTST 2 #define CN10K_RPM 3 #define CN10K_PTP_ONESTEP 4 #define CN10K_HW_MACSEC 5 #define QOS_CIR_PIR_SUPPORT 6 unsigned long cap_flag; #define LMT_LINE_SIZE 128 #define LMT_BURST_SIZE 32 /* 32 LMTST lines for burst SQE flush */ u64 *lmt_base; struct otx2_lmt_info __percpu *lmt_info; }; enum vfperm { OTX2_RESET_VF_PERM, OTX2_TRUSTED_VF, }; struct otx2_vf_config { struct otx2_nic *pf; struct delayed_work link_event_work; bool intf_down; /* interface was either configured or not */ u8 mac[ETH_ALEN]; u16 vlan; int tx_vtag_idx; bool trusted; }; struct flr_work { struct work_struct work; struct otx2_nic *pf; }; struct refill_work { struct delayed_work pool_refill_work; struct otx2_nic *pf; }; /* PTPv2 originTimestamp structure */ struct ptpv2_tstamp { __be16 seconds_msb; /* 16 bits + */ __be32 seconds_lsb; /* 32 bits = 48 bits*/ __be32 nanoseconds; } __packed; struct otx2_ptp { struct ptp_clock_info ptp_info; struct ptp_clock *ptp_clock; struct otx2_nic *nic; struct cyclecounter cycle_counter; struct timecounter time_counter; struct delayed_work extts_work; u64 last_extts; u64 thresh; struct ptp_pin_desc extts_config; u64 (*convert_rx_ptp_tstmp)(u64 timestamp); u64 (*convert_tx_ptp_tstmp)(u64 timestamp); struct delayed_work synctstamp_work; u64 tstamp; u32 base_ns; }; #define OTX2_HW_TIMESTAMP_LEN 8 struct otx2_mac_table { u8 addr[ETH_ALEN]; u16 mcam_entry; bool inuse; }; struct otx2_flow_config { u16 *flow_ent; u16 *def_ent; u16 nr_flows; #define OTX2_DEFAULT_FLOWCOUNT 16 #define OTX2_MAX_UNICAST_FLOWS 8 #define OTX2_MAX_VLAN_FLOWS 1 #define OTX2_MAX_TC_FLOWS OTX2_DEFAULT_FLOWCOUNT #define OTX2_MCAM_COUNT (OTX2_DEFAULT_FLOWCOUNT + \ OTX2_MAX_UNICAST_FLOWS + \ OTX2_MAX_VLAN_FLOWS) u16 unicast_offset; u16 rx_vlan_offset; u16 vf_vlan_offset; #define OTX2_PER_VF_VLAN_FLOWS 2 /* Rx + Tx per VF */ #define OTX2_VF_VLAN_RX_INDEX 0 #define OTX2_VF_VLAN_TX_INDEX 1 u32 *bmap_to_dmacindex; unsigned long *dmacflt_bmap; struct list_head flow_list; u32 dmacflt_max_flows; u16 max_flows; }; struct otx2_tc_info { /* hash table to store TC offloaded flows */ struct rhashtable flow_table; struct rhashtable_params flow_ht_params; unsigned long *tc_entries_bitmap; }; struct dev_hw_ops { int (*sq_aq_init)(void *dev, u16 qidx, u16 sqb_aura); void (*sqe_flush)(void *dev, struct otx2_snd_queue *sq, int size, int qidx); void (*refill_pool_ptrs)(void *dev, struct otx2_cq_queue *cq); void (*aura_freeptr)(void *dev, int aura, u64 buf); }; #define CN10K_MCS_SA_PER_SC 4 /* Stats which need to be accumulated in software because * of shared counters in hardware. */ struct cn10k_txsc_stats { u64 InPktsUntagged; u64 InPktsNoTag; u64 InPktsBadTag; u64 InPktsUnknownSCI; u64 InPktsNoSCI; u64 InPktsOverrun; }; struct cn10k_rxsc_stats { u64 InOctetsValidated; u64 InOctetsDecrypted; u64 InPktsUnchecked; u64 InPktsDelayed; u64 InPktsOK; u64 InPktsInvalid; u64 InPktsLate; u64 InPktsNotValid; u64 InPktsNotUsingSA; u64 InPktsUnusedSA; }; struct cn10k_mcs_txsc { struct macsec_secy *sw_secy; struct cn10k_txsc_stats stats; struct list_head entry; enum macsec_validation_type last_validate_frames; bool last_replay_protect; u16 hw_secy_id_tx; u16 hw_secy_id_rx; u16 hw_flow_id; u16 hw_sc_id; u16 hw_sa_id[CN10K_MCS_SA_PER_SC]; u8 sa_bmap; u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN]; u8 encoding_sa; u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN]; ssci_t ssci[CN10K_MCS_SA_PER_SC]; bool vlan_dev; /* macsec running on VLAN ? */ }; struct cn10k_mcs_rxsc { struct macsec_secy *sw_secy; struct macsec_rx_sc *sw_rxsc; struct cn10k_rxsc_stats stats; struct list_head entry; u16 hw_flow_id; u16 hw_sc_id; u16 hw_sa_id[CN10K_MCS_SA_PER_SC]; u8 sa_bmap; u8 sa_key[CN10K_MCS_SA_PER_SC][MACSEC_MAX_KEY_LEN]; u8 salt[CN10K_MCS_SA_PER_SC][MACSEC_SALT_LEN]; ssci_t ssci[CN10K_MCS_SA_PER_SC]; }; struct cn10k_mcs_cfg { struct list_head txsc_list; struct list_head rxsc_list; }; struct otx2_nic { void __iomem *reg_base; struct net_device *netdev; struct dev_hw_ops *hw_ops; void *iommu_domain; u16 tx_max_pktlen; u16 rbsize; /* Receive buffer size */ #define OTX2_FLAG_RX_TSTAMP_ENABLED BIT_ULL(0) #define OTX2_FLAG_TX_TSTAMP_ENABLED BIT_ULL(1) #define OTX2_FLAG_INTF_DOWN BIT_ULL(2) #define OTX2_FLAG_MCAM_ENTRIES_ALLOC BIT_ULL(3) #define OTX2_FLAG_NTUPLE_SUPPORT BIT_ULL(4) #define OTX2_FLAG_UCAST_FLTR_SUPPORT BIT_ULL(5) #define OTX2_FLAG_RX_VLAN_SUPPORT BIT_ULL(6) #define OTX2_FLAG_VF_VLAN_SUPPORT BIT_ULL(7) #define OTX2_FLAG_PF_SHUTDOWN BIT_ULL(8) #define OTX2_FLAG_RX_PAUSE_ENABLED BIT_ULL(9) #define OTX2_FLAG_TX_PAUSE_ENABLED BIT_ULL(10) #define OTX2_FLAG_TC_FLOWER_SUPPORT BIT_ULL(11) #define OTX2_FLAG_TC_MATCHALL_EGRESS_ENABLED BIT_ULL(12) #define OTX2_FLAG_TC_MATCHALL_INGRESS_ENABLED BIT_ULL(13) #define OTX2_FLAG_DMACFLTR_SUPPORT BIT_ULL(14) #define OTX2_FLAG_PTP_ONESTEP_SYNC BIT_ULL(15) #define OTX2_FLAG_ADPTV_INT_COAL_ENABLED BIT_ULL(16) u64 flags; u64 *cq_op_addr; struct bpf_prog *xdp_prog; struct otx2_qset qset; struct otx2_hw hw; struct pci_dev *pdev; struct device *dev; /* Mbox */ struct mbox mbox; struct mbox *mbox_pfvf; struct workqueue_struct *mbox_wq; struct workqueue_struct *mbox_pfvf_wq; u8 total_vfs; u16 pcifunc; /* RVU PF_FUNC */ u16 bpid[NIX_MAX_BPID_CHAN]; struct otx2_vf_config *vf_configs; struct cgx_link_user_info linfo; /* NPC MCAM */ struct otx2_flow_config *flow_cfg; struct otx2_mac_table *mac_table; struct otx2_tc_info tc_info; u64 reset_count; struct work_struct reset_task; struct workqueue_struct *flr_wq; struct flr_work *flr_wrk; struct refill_work *refill_wrk; struct workqueue_struct *otx2_wq; struct work_struct rx_mode_work; /* Ethtool stuff */ u32 msg_enable; /* Block address of NIX either BLKADDR_NIX0 or BLKADDR_NIX1 */ int nix_blkaddr; /* LMTST Lines info */ struct qmem *dync_lmt; u16 tot_lmt_lines; u16 npa_lmt_lines; u32 nix_lmt_size; struct otx2_ptp *ptp; struct hwtstamp_config tstamp; unsigned long rq_bmap; /* Devlink */ struct otx2_devlink *dl; #ifdef CONFIG_DCB /* PFC */ u8 pfc_en; u8 *queue_to_pfc_map; u16 pfc_schq_list[NIX_TXSCH_LVL_CNT][MAX_TXSCHQ_PER_FUNC]; bool pfc_alloc_status[NIX_PF_PFC_PRIO_MAX]; #endif /* qos */ struct otx2_qos qos; /* napi event count. It is needed for adaptive irq coalescing. */ u32 napi_events; #if IS_ENABLED(CONFIG_MACSEC) struct cn10k_mcs_cfg *macsec_cfg; #endif }; static inline bool is_otx2_lbkvf(struct pci_dev *pdev) { return pdev->device == PCI_DEVID_OCTEONTX2_RVU_AFVF; } static inline bool is_96xx_A0(struct pci_dev *pdev) { return (pdev->revision == 0x00) && (pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF); } static inline bool is_96xx_B0(struct pci_dev *pdev) { return (pdev->revision == 0x01) && (pdev->subsystem_device == PCI_SUBSYS_DEVID_96XX_RVU_PFVF); } /* REVID for PCIe devices. * Bits 0..1: minor pass, bit 3..2: major pass * bits 7..4: midr id */ #define PCI_REVISION_ID_96XX 0x00 #define PCI_REVISION_ID_95XX 0x10 #define PCI_REVISION_ID_95XXN 0x20 #define PCI_REVISION_ID_98XX 0x30 #define PCI_REVISION_ID_95XXMM 0x40 #define PCI_REVISION_ID_95XXO 0xE0 static inline bool is_dev_otx2(struct pci_dev *pdev) { u8 midr = pdev->revision & 0xF0; return (midr == PCI_REVISION_ID_96XX || midr == PCI_REVISION_ID_95XX || midr == PCI_REVISION_ID_95XXN || midr == PCI_REVISION_ID_98XX || midr == PCI_REVISION_ID_95XXMM || midr == PCI_REVISION_ID_95XXO); } static inline bool is_dev_cn10kb(struct pci_dev *pdev) { return pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_B_RVU_PFVF; } static inline void otx2_setup_dev_hw_settings(struct otx2_nic *pfvf) { struct otx2_hw *hw = &pfvf->hw; pfvf->hw.cq_time_wait = CQ_TIMER_THRESH_DEFAULT; pfvf->hw.cq_ecount_wait = CQ_CQE_THRESH_DEFAULT; pfvf->hw.cq_qcount_wait = CQ_QCOUNT_DEFAULT; __set_bit(HW_TSO, &hw->cap_flag); if (is_96xx_A0(pfvf->pdev)) { __clear_bit(HW_TSO, &hw->cap_flag); /* Time based irq coalescing is not supported */ pfvf->hw.cq_qcount_wait = 0x0; /* Due to HW issue previous silicons required minimum * 600 unused CQE to avoid CQ overflow. */ pfvf->hw.rq_skid = 600; pfvf->qset.rqe_cnt = Q_COUNT(Q_SIZE_1K); } if (is_96xx_B0(pfvf->pdev)) __clear_bit(HW_TSO, &hw->cap_flag); if (!is_dev_otx2(pfvf->pdev)) { __set_bit(CN10K_MBOX, &hw->cap_flag); __set_bit(CN10K_LMTST, &hw->cap_flag); __set_bit(CN10K_RPM, &hw->cap_flag); __set_bit(CN10K_PTP_ONESTEP, &hw->cap_flag); __set_bit(QOS_CIR_PIR_SUPPORT, &hw->cap_flag); } if (is_dev_cn10kb(pfvf->pdev)) __set_bit(CN10K_HW_MACSEC, &hw->cap_flag); } /* Register read/write APIs */ static inline void __iomem *otx2_get_regaddr(struct otx2_nic *nic, u64 offset) { u64 blkaddr; switch ((offset >> RVU_FUNC_BLKADDR_SHIFT) & RVU_FUNC_BLKADDR_MASK) { case BLKTYPE_NIX: blkaddr = nic->nix_blkaddr; break; case BLKTYPE_NPA: blkaddr = BLKADDR_NPA; break; default: blkaddr = BLKADDR_RVUM; break; } offset &= ~(RVU_FUNC_BLKADDR_MASK << RVU_FUNC_BLKADDR_SHIFT); offset |= (blkaddr << RVU_FUNC_BLKADDR_SHIFT); return nic->reg_base + offset; } static inline void otx2_write64(struct otx2_nic *nic, u64 offset, u64 val) { void __iomem *addr = otx2_get_regaddr(nic, offset); writeq(val, addr); } static inline u64 otx2_read64(struct otx2_nic *nic, u64 offset) { void __iomem *addr = otx2_get_regaddr(nic, offset); return readq(addr); } /* Mbox bounce buffer APIs */ static inline int otx2_mbox_bbuf_init(struct mbox *mbox, struct pci_dev *pdev) { struct otx2_mbox *otx2_mbox; struct otx2_mbox_dev *mdev; mbox->bbuf_base = devm_kmalloc(&pdev->dev, MBOX_SIZE, GFP_KERNEL); if (!mbox->bbuf_base) return -ENOMEM; /* Overwrite mbox mbase to point to bounce buffer, so that PF/VF * prepare all mbox messages in bounce buffer instead of directly * in hw mbox memory. */ otx2_mbox = &mbox->mbox; mdev = &otx2_mbox->dev[0]; mdev->mbase = mbox->bbuf_base; otx2_mbox = &mbox->mbox_up; mdev = &otx2_mbox->dev[0]; mdev->mbase = mbox->bbuf_base; return 0; } static inline void otx2_sync_mbox_bbuf(struct otx2_mbox *mbox, int devid) { u16 msgs_offset = ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN); void *hw_mbase = mbox->hwbase + (devid * MBOX_SIZE); struct otx2_mbox_dev *mdev = &mbox->dev[devid]; struct mbox_hdr *hdr; u64 msg_size; if (mdev->mbase == hw_mbase) return; hdr = hw_mbase + mbox->rx_start; msg_size = hdr->msg_size; if (msg_size > mbox->rx_size - msgs_offset) msg_size = mbox->rx_size - msgs_offset; /* Copy mbox messages from mbox memory to bounce buffer */ memcpy(mdev->mbase + mbox->rx_start, hw_mbase + mbox->rx_start, msg_size + msgs_offset); } /* With the absence of API for 128-bit IO memory access for arm64, * implement required operations at place. */ #if defined(CONFIG_ARM64) static inline void otx2_write128(u64 lo, u64 hi, void __iomem *addr) { __asm__ volatile("stp %x[x0], %x[x1], [%x[p1],#0]!" ::[x0]"r"(lo), [x1]"r"(hi), [p1]"r"(addr)); } static inline u64 otx2_atomic64_add(u64 incr, u64 *ptr) { u64 result; __asm__ volatile(".cpu generic+lse\n" "ldadd %x[i], %x[r], [%[b]]" : [r]"=r"(result), "+m"(*ptr) : [i]"r"(incr), [b]"r"(ptr) : "memory"); return result; } #else #define otx2_write128(lo, hi, addr) writeq((hi) | (lo), addr) #define otx2_atomic64_add(incr, ptr) ({ *ptr += incr; }) #endif static inline void __cn10k_aura_freeptr(struct otx2_nic *pfvf, u64 aura, u64 *ptrs, u64 num_ptrs) { struct otx2_lmt_info *lmt_info; u64 size = 0, count_eot = 0; u64 tar_addr, val = 0; lmt_info = per_cpu_ptr(pfvf->hw.lmt_info, smp_processor_id()); tar_addr = (__force u64)otx2_get_regaddr(pfvf, NPA_LF_AURA_BATCH_FREE0); /* LMTID is same as AURA Id */ val = (lmt_info->lmt_id & 0x7FF) | BIT_ULL(63); /* Set if [127:64] of last 128bit word has a valid pointer */ count_eot = (num_ptrs % 2) ? 0ULL : 1ULL; /* Set AURA ID to free pointer */ ptrs[0] = (count_eot << 32) | (aura & 0xFFFFF); /* Target address for LMTST flush tells HW how many 128bit * words are valid from NPA_LF_AURA_BATCH_FREE0. * * tar_addr[6:4] is LMTST size-1 in units of 128b. */ if (num_ptrs > 2) { size = (sizeof(u64) * num_ptrs) / 16; if (!count_eot) size++; tar_addr |= ((size - 1) & 0x7) << 4; } dma_wmb(); memcpy((u64 *)lmt_info->lmt_addr, ptrs, sizeof(u64) * num_ptrs); /* Perform LMTST flush */ cn10k_lmt_flush(val, tar_addr); } static inline void cn10k_aura_freeptr(void *dev, int aura, u64 buf) { struct otx2_nic *pfvf = dev; u64 ptrs[2]; ptrs[1] = buf; get_cpu(); /* Free only one buffer at time during init and teardown */ __cn10k_aura_freeptr(pfvf, aura, ptrs, 2); put_cpu(); } /* Alloc pointer from pool/aura */ static inline u64 otx2_aura_allocptr(struct otx2_nic *pfvf, int aura) { u64 *ptr = (__force u64 *)otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_ALLOCX(0)); u64 incr = (u64)aura | BIT_ULL(63); return otx2_atomic64_add(incr, ptr); } /* Free pointer to a pool/aura */ static inline void otx2_aura_freeptr(void *dev, int aura, u64 buf) { struct otx2_nic *pfvf = dev; void __iomem *addr = otx2_get_regaddr(pfvf, NPA_LF_AURA_OP_FREE0); otx2_write128(buf, (u64)aura | BIT_ULL(63), addr); } static inline int otx2_get_pool_idx(struct otx2_nic *pfvf, int type, int idx) { if (type == AURA_NIX_SQ) return pfvf->hw.rqpool_cnt + idx; /* AURA_NIX_RQ */ return idx; } /* Mbox APIs */ static inline int otx2_sync_mbox_msg(struct mbox *mbox) { int err; if (!otx2_mbox_nonempty(&mbox->mbox, 0)) return 0; otx2_mbox_msg_send(&mbox->mbox, 0); err = otx2_mbox_wait_for_rsp(&mbox->mbox, 0); if (err) return err; return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0); } static inline int otx2_sync_mbox_up_msg(struct mbox *mbox, int devid) { int err; if (!otx2_mbox_nonempty(&mbox->mbox_up, devid)) return 0; otx2_mbox_msg_send(&mbox->mbox_up, devid); err = otx2_mbox_wait_for_rsp(&mbox->mbox_up, devid); if (err) return err; return otx2_mbox_check_rsp_msgs(&mbox->mbox_up, devid); } /* Use this API to send mbox msgs in atomic context * where sleeping is not allowed */ static inline int otx2_sync_mbox_msg_busy_poll(struct mbox *mbox) { int err; if (!otx2_mbox_nonempty(&mbox->mbox, 0)) return 0; otx2_mbox_msg_send(&mbox->mbox, 0); err = otx2_mbox_busy_poll_for_rsp(&mbox->mbox, 0); if (err) return err; return otx2_mbox_check_rsp_msgs(&mbox->mbox, 0); } #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ static struct _req_type __maybe_unused \ *otx2_mbox_alloc_msg_ ## _fn_name(struct mbox *mbox) \ { \ struct _req_type *req; \ \ req = (struct _req_type *)otx2_mbox_alloc_msg_rsp( \ &mbox->mbox, 0, sizeof(struct _req_type), \ sizeof(struct _rsp_type)); \ if (!req) \ return NULL; \ req->hdr.sig = OTX2_MBOX_REQ_SIG; \ req->hdr.id = _id; \ trace_otx2_msg_alloc(mbox->mbox.pdev, _id, sizeof(*req)); \ return req; \ } MBOX_MESSAGES #undef M #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ int \ otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \ struct _req_type *req, \ struct _rsp_type *rsp); \ MBOX_UP_CGX_MESSAGES MBOX_UP_MCS_MESSAGES #undef M /* Time to wait before watchdog kicks off */ #define OTX2_TX_TIMEOUT (100 * HZ) #define RVU_PFVF_PF_SHIFT 10 #define RVU_PFVF_PF_MASK 0x3F #define RVU_PFVF_FUNC_SHIFT 0 #define RVU_PFVF_FUNC_MASK 0x3FF static inline bool is_otx2_vf(u16 pcifunc) { return !!(pcifunc & RVU_PFVF_FUNC_MASK); } static inline int rvu_get_pf(u16 pcifunc) { return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK; } static inline dma_addr_t otx2_dma_map_page(struct otx2_nic *pfvf, struct page *page, size_t offset, size_t size, enum dma_data_direction dir) { dma_addr_t iova; iova = dma_map_page_attrs(pfvf->dev, page, offset, size, dir, DMA_ATTR_SKIP_CPU_SYNC); if (unlikely(dma_mapping_error(pfvf->dev, iova))) return (dma_addr_t)NULL; return iova; } static inline void otx2_dma_unmap_page(struct otx2_nic *pfvf, dma_addr_t addr, size_t size, enum dma_data_direction dir) { dma_unmap_page_attrs(pfvf->dev, addr, size, dir, DMA_ATTR_SKIP_CPU_SYNC); } static inline u16 otx2_get_smq_idx(struct otx2_nic *pfvf, u16 qidx) { u16 smq; #ifdef CONFIG_DCB if (qidx < NIX_PF_PFC_PRIO_MAX && pfvf->pfc_alloc_status[qidx]) return pfvf->pfc_schq_list[NIX_TXSCH_LVL_SMQ][qidx]; #endif /* check if qidx falls under QOS queues */ if (qidx >= pfvf->hw.non_qos_queues) smq = pfvf->qos.qid_to_sqmap[qidx - pfvf->hw.non_qos_queues]; else smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0]; return smq; } static inline u16 otx2_get_total_tx_queues(struct otx2_nic *pfvf) { return pfvf->hw.non_qos_queues + pfvf->hw.tc_tx_queues; } static inline u64 otx2_convert_rate(u64 rate) { u64 converted_rate; /* Convert bytes per second to Mbps */ converted_rate = rate * 8; converted_rate = max_t(u64, converted_rate / 1000000, 1); return converted_rate; } /* MSI-X APIs */ void otx2_free_cints(struct otx2_nic *pfvf, int n); void otx2_set_cints_affinity(struct otx2_nic *pfvf); int otx2_set_mac_address(struct net_device *netdev, void *p); int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu); void otx2_tx_timeout(struct net_device *netdev, unsigned int txq); void otx2_get_mac_from_af(struct net_device *netdev); void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx); int otx2_config_pause_frm(struct otx2_nic *pfvf); void otx2_setup_segmentation(struct otx2_nic *pfvf); /* RVU block related APIs */ int otx2_attach_npa_nix(struct otx2_nic *pfvf); int otx2_detach_resources(struct mbox *mbox); int otx2_config_npa(struct otx2_nic *pfvf); int otx2_sq_aura_pool_init(struct otx2_nic *pfvf); int otx2_rq_aura_pool_init(struct otx2_nic *pfvf); void otx2_aura_pool_free(struct otx2_nic *pfvf); void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type); void otx2_sq_free_sqbs(struct otx2_nic *pfvf); int otx2_config_nix(struct otx2_nic *pfvf); int otx2_config_nix_queues(struct otx2_nic *pfvf); int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool pfc_en); int otx2_txsch_alloc(struct otx2_nic *pfvf); void otx2_txschq_stop(struct otx2_nic *pfvf); void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq); void otx2_sqb_flush(struct otx2_nic *pfvf); int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, dma_addr_t *dma); int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable); void otx2_ctx_disable(struct mbox *mbox, int type, bool npa); int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable); void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx); void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq); int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura); int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura); int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura); int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, dma_addr_t *dma); int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id, int stack_pages, int numptrs, int buf_size, int type); int otx2_aura_init(struct otx2_nic *pfvf, int aura_id, int pool_id, int numptrs); /* RSS configuration APIs*/ int otx2_rss_init(struct otx2_nic *pfvf); int otx2_set_flowkey_cfg(struct otx2_nic *pfvf); void otx2_set_rss_key(struct otx2_nic *pfvf); int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id); /* Mbox handlers */ void mbox_handler_msix_offset(struct otx2_nic *pfvf, struct msix_offset_rsp *rsp); void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf, struct npa_lf_alloc_rsp *rsp); void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf, struct nix_lf_alloc_rsp *rsp); void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf, struct nix_txsch_alloc_rsp *rsp); void mbox_handler_cgx_stats(struct otx2_nic *pfvf, struct cgx_stats_rsp *rsp); void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf, struct cgx_fec_stats_rsp *rsp); void otx2_set_fec_stats_count(struct otx2_nic *pfvf); void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf, struct nix_bp_cfg_rsp *rsp); /* Device stats APIs */ void otx2_get_dev_stats(struct otx2_nic *pfvf); void otx2_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats); void otx2_update_lmac_stats(struct otx2_nic *pfvf); void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf); int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx); int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx); void otx2_set_ethtool_ops(struct net_device *netdev); void otx2vf_set_ethtool_ops(struct net_device *netdev); int otx2_open(struct net_device *netdev); int otx2_stop(struct net_device *netdev); int otx2_set_real_num_queues(struct net_device *netdev, int tx_queues, int rx_queues); int otx2_ioctl(struct net_device *netdev, struct ifreq *req, int cmd); int otx2_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr); /* MCAM filter related APIs */ int otx2_mcam_flow_init(struct otx2_nic *pf); int otx2vf_mcam_flow_init(struct otx2_nic *pfvf); int otx2_alloc_mcam_entries(struct otx2_nic *pfvf, u16 count); void otx2_mcam_flow_del(struct otx2_nic *pf); int otx2_destroy_ntuple_flows(struct otx2_nic *pf); int otx2_destroy_mcam_flows(struct otx2_nic *pfvf); int otx2_get_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc, u32 location); int otx2_get_all_flows(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc, u32 *rule_locs); int otx2_add_flow(struct otx2_nic *pfvf, struct ethtool_rxnfc *nfc); int otx2_remove_flow(struct otx2_nic *pfvf, u32 location); int otx2_get_maxflows(struct otx2_flow_config *flow_cfg); void otx2_rss_ctx_flow_del(struct otx2_nic *pfvf, int ctx_id); int otx2_del_macfilter(struct net_device *netdev, const u8 *mac); int otx2_add_macfilter(struct net_device *netdev, const u8 *mac); int otx2_enable_rxvlan(struct otx2_nic *pf, bool enable); int otx2_install_rxvlan_offload_flow(struct otx2_nic *pfvf); bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx); u16 otx2_get_max_mtu(struct otx2_nic *pfvf); int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features); int otx2_smq_flush(struct otx2_nic *pfvf, int smq); void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool, u64 iova, int size); /* tc support */ int otx2_init_tc(struct otx2_nic *nic); void otx2_shutdown_tc(struct otx2_nic *nic); int otx2_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data); int otx2_tc_alloc_ent_bitmap(struct otx2_nic *nic); /* CGX/RPM DMAC filters support */ int otx2_dmacflt_get_max_cnt(struct otx2_nic *pf); int otx2_dmacflt_add(struct otx2_nic *pf, const u8 *mac, u32 bit_pos); int otx2_dmacflt_remove(struct otx2_nic *pf, const u8 *mac, u32 bit_pos); int otx2_dmacflt_update(struct otx2_nic *pf, u8 *mac, u32 bit_pos); void otx2_dmacflt_reinstall_flows(struct otx2_nic *pf); void otx2_dmacflt_update_pfmac_flow(struct otx2_nic *pfvf); #ifdef CONFIG_DCB /* DCB support*/ void otx2_update_bpid_in_rqctx(struct otx2_nic *pfvf, int vlan_prio, int qidx, bool pfc_enable); int otx2_config_priority_flow_ctrl(struct otx2_nic *pfvf); int otx2_dcbnl_set_ops(struct net_device *dev); /* PFC support */ int otx2_pfc_txschq_config(struct otx2_nic *pfvf); int otx2_pfc_txschq_alloc(struct otx2_nic *pfvf); int otx2_pfc_txschq_update(struct otx2_nic *pfvf); int otx2_pfc_txschq_stop(struct otx2_nic *pfvf); #endif #if IS_ENABLED(CONFIG_MACSEC) /* MACSEC offload support */ int cn10k_mcs_init(struct otx2_nic *pfvf); void cn10k_mcs_free(struct otx2_nic *pfvf); void cn10k_handle_mcs_event(struct otx2_nic *pfvf, struct mcs_intr_info *event); #else static inline int cn10k_mcs_init(struct otx2_nic *pfvf) { return 0; } static inline void cn10k_mcs_free(struct otx2_nic *pfvf) {} static inline void cn10k_handle_mcs_event(struct otx2_nic *pfvf, struct mcs_intr_info *event) {} #endif /* CONFIG_MACSEC */ /* qos support */ static inline void otx2_qos_init(struct otx2_nic *pfvf, int qos_txqs) { struct otx2_hw *hw = &pfvf->hw; hw->tc_tx_queues = qos_txqs; INIT_LIST_HEAD(&pfvf->qos.qos_tree); mutex_init(&pfvf->qos.qos_lock); } static inline void otx2_shutdown_qos(struct otx2_nic *pfvf) { mutex_destroy(&pfvf->qos.qos_lock); } u16 otx2_select_queue(struct net_device *netdev, struct sk_buff *skb, struct net_device *sb_dev); int otx2_get_txq_by_classid(struct otx2_nic *pfvf, u16 classid); void otx2_qos_config_txschq(struct otx2_nic *pfvf); void otx2_clean_qos_queues(struct otx2_nic *pfvf); #endif /* OTX2_COMMON_H */