// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Admin Function driver * * Copyright (C) 2018 Marvell. * */ #include #include #include "rvu_struct.h" #include "rvu_reg.h" #include "rvu.h" #include "npc.h" #include "cgx.h" #include "lmac_common.h" static void nix_free_tx_vtag_entries(struct rvu *rvu, u16 pcifunc); static int rvu_nix_get_bpid(struct rvu *rvu, struct nix_bp_cfg_req *req, int type, int chan_id); static int nix_update_mce_rule(struct rvu *rvu, u16 pcifunc, int type, bool add); static int nix_setup_ipolicers(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr); static void nix_ipolicer_freemem(struct rvu *rvu, struct nix_hw *nix_hw); static int nix_verify_bandprof(struct nix_cn10k_aq_enq_req *req, struct nix_hw *nix_hw, u16 pcifunc); static int nix_free_all_bandprof(struct rvu *rvu, u16 pcifunc); static void nix_clear_ratelimit_aggr(struct rvu *rvu, struct nix_hw *nix_hw, u32 leaf_prof); static const char *nix_get_ctx_name(int ctype); enum mc_tbl_sz { MC_TBL_SZ_256, MC_TBL_SZ_512, MC_TBL_SZ_1K, MC_TBL_SZ_2K, MC_TBL_SZ_4K, MC_TBL_SZ_8K, MC_TBL_SZ_16K, MC_TBL_SZ_32K, MC_TBL_SZ_64K, }; enum mc_buf_cnt { MC_BUF_CNT_8, MC_BUF_CNT_16, MC_BUF_CNT_32, MC_BUF_CNT_64, MC_BUF_CNT_128, MC_BUF_CNT_256, MC_BUF_CNT_512, MC_BUF_CNT_1024, MC_BUF_CNT_2048, }; enum nix_makr_fmt_indexes { NIX_MARK_CFG_IP_DSCP_RED, NIX_MARK_CFG_IP_DSCP_YELLOW, NIX_MARK_CFG_IP_DSCP_YELLOW_RED, NIX_MARK_CFG_IP_ECN_RED, NIX_MARK_CFG_IP_ECN_YELLOW, NIX_MARK_CFG_IP_ECN_YELLOW_RED, NIX_MARK_CFG_VLAN_DEI_RED, NIX_MARK_CFG_VLAN_DEI_YELLOW, NIX_MARK_CFG_VLAN_DEI_YELLOW_RED, NIX_MARK_CFG_MAX, }; /* For now considering MC resources needed for broadcast * pkt replication only. i.e 256 HWVFs + 12 PFs. */ #define MC_TBL_SIZE MC_TBL_SZ_512 #define MC_BUF_CNT MC_BUF_CNT_128 struct mce { struct hlist_node node; u16 pcifunc; }; int rvu_get_next_nix_blkaddr(struct rvu *rvu, int blkaddr) { int i = 0; /*If blkaddr is 0, return the first nix block address*/ if (blkaddr == 0) return rvu->nix_blkaddr[blkaddr]; while (i + 1 < MAX_NIX_BLKS) { if (rvu->nix_blkaddr[i] == blkaddr) return rvu->nix_blkaddr[i + 1]; i++; } return 0; } bool is_nixlf_attached(struct rvu *rvu, u16 pcifunc) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); int blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return false; return true; } int rvu_get_nixlf_count(struct rvu *rvu) { int blkaddr = 0, max = 0; struct rvu_block *block; blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); while (blkaddr) { block = &rvu->hw->block[blkaddr]; max += block->lf.max; blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); } return max; } int nix_get_nixlf(struct rvu *rvu, u16 pcifunc, int *nixlf, int *nix_blkaddr) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); struct rvu_hwinfo *hw = rvu->hw; int blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; *nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); if (*nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; if (nix_blkaddr) *nix_blkaddr = blkaddr; return 0; } int nix_get_struct_ptrs(struct rvu *rvu, u16 pcifunc, struct nix_hw **nix_hw, int *blkaddr) { struct rvu_pfvf *pfvf; pfvf = rvu_get_pfvf(rvu, pcifunc); *blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || *blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; *nix_hw = get_nix_hw(rvu->hw, *blkaddr); if (!*nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; return 0; } static void nix_mce_list_init(struct nix_mce_list *list, int max) { INIT_HLIST_HEAD(&list->head); list->count = 0; list->max = max; } static u16 nix_alloc_mce_list(struct nix_mcast *mcast, int count) { int idx; if (!mcast) return 0; idx = mcast->next_free_mce; mcast->next_free_mce += count; return idx; } struct nix_hw *get_nix_hw(struct rvu_hwinfo *hw, int blkaddr) { int nix_blkaddr = 0, i = 0; struct rvu *rvu = hw->rvu; nix_blkaddr = rvu_get_next_nix_blkaddr(rvu, nix_blkaddr); while (nix_blkaddr) { if (blkaddr == nix_blkaddr && hw->nix) return &hw->nix[i]; nix_blkaddr = rvu_get_next_nix_blkaddr(rvu, nix_blkaddr); i++; } return NULL; } u32 convert_dwrr_mtu_to_bytes(u8 dwrr_mtu) { dwrr_mtu &= 0x1FULL; /* MTU used for DWRR calculation is in power of 2 up until 64K bytes. * Value of 4 is reserved for MTU value of 9728 bytes. * Value of 5 is reserved for MTU value of 10240 bytes. */ switch (dwrr_mtu) { case 4: return 9728; case 5: return 10240; default: return BIT_ULL(dwrr_mtu); } return 0; } u32 convert_bytes_to_dwrr_mtu(u32 bytes) { /* MTU used for DWRR calculation is in power of 2 up until 64K bytes. * Value of 4 is reserved for MTU value of 9728 bytes. * Value of 5 is reserved for MTU value of 10240 bytes. */ if (bytes > BIT_ULL(16)) return 0; switch (bytes) { case 9728: return 4; case 10240: return 5; default: return ilog2(bytes); } return 0; } static void nix_rx_sync(struct rvu *rvu, int blkaddr) { int err; /* Sync all in flight RX packets to LLC/DRAM */ rvu_write64(rvu, blkaddr, NIX_AF_RX_SW_SYNC, BIT_ULL(0)); err = rvu_poll_reg(rvu, blkaddr, NIX_AF_RX_SW_SYNC, BIT_ULL(0), true); if (err) dev_err(rvu->dev, "SYNC1: NIX RX software sync failed\n"); /* SW_SYNC ensures all existing transactions are finished and pkts * are written to LLC/DRAM, queues should be teared down after * successful SW_SYNC. Due to a HW errata, in some rare scenarios * an existing transaction might end after SW_SYNC operation. To * ensure operation is fully done, do the SW_SYNC twice. */ rvu_write64(rvu, blkaddr, NIX_AF_RX_SW_SYNC, BIT_ULL(0)); err = rvu_poll_reg(rvu, blkaddr, NIX_AF_RX_SW_SYNC, BIT_ULL(0), true); if (err) dev_err(rvu->dev, "SYNC2: NIX RX software sync failed\n"); } static bool is_valid_txschq(struct rvu *rvu, int blkaddr, int lvl, u16 pcifunc, u16 schq) { struct rvu_hwinfo *hw = rvu->hw; struct nix_txsch *txsch; struct nix_hw *nix_hw; u16 map_func; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return false; txsch = &nix_hw->txsch[lvl]; /* Check out of bounds */ if (schq >= txsch->schq.max) return false; mutex_lock(&rvu->rsrc_lock); map_func = TXSCH_MAP_FUNC(txsch->pfvf_map[schq]); mutex_unlock(&rvu->rsrc_lock); /* TLs aggegating traffic are shared across PF and VFs */ if (lvl >= hw->cap.nix_tx_aggr_lvl) { if (rvu_get_pf(map_func) != rvu_get_pf(pcifunc)) return false; else return true; } if (map_func != pcifunc) return false; return true; } static int nix_interface_init(struct rvu *rvu, u16 pcifunc, int type, int nixlf, struct nix_lf_alloc_rsp *rsp, bool loop) { struct rvu_pfvf *parent_pf, *pfvf = rvu_get_pfvf(rvu, pcifunc); u16 req_chan_base, req_chan_end, req_chan_cnt; struct rvu_hwinfo *hw = rvu->hw; struct sdp_node_info *sdp_info; int pkind, pf, vf, lbkid, vfid; struct mac_ops *mac_ops; u8 cgx_id, lmac_id; bool from_vf; int err; pf = rvu_get_pf(pcifunc); if (!is_pf_cgxmapped(rvu, pf) && type != NIX_INTF_TYPE_LBK && type != NIX_INTF_TYPE_SDP) return 0; switch (type) { case NIX_INTF_TYPE_CGX: pfvf->cgx_lmac = rvu->pf2cgxlmac_map[pf]; rvu_get_cgx_lmac_id(pfvf->cgx_lmac, &cgx_id, &lmac_id); pkind = rvu_npc_get_pkind(rvu, pf); if (pkind < 0) { dev_err(rvu->dev, "PF_Func 0x%x: Invalid pkind\n", pcifunc); return -EINVAL; } pfvf->rx_chan_base = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0); pfvf->tx_chan_base = pfvf->rx_chan_base; pfvf->rx_chan_cnt = 1; pfvf->tx_chan_cnt = 1; rsp->tx_link = cgx_id * hw->lmac_per_cgx + lmac_id; cgx_set_pkind(rvu_cgx_pdata(cgx_id, rvu), lmac_id, pkind); rvu_npc_set_pkind(rvu, pkind, pfvf); mac_ops = get_mac_ops(rvu_cgx_pdata(cgx_id, rvu)); /* By default we enable pause frames */ if ((pcifunc & RVU_PFVF_FUNC_MASK) == 0) mac_ops->mac_enadis_pause_frm(rvu_cgx_pdata(cgx_id, rvu), lmac_id, true, true); break; case NIX_INTF_TYPE_LBK: vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1; /* If NIX1 block is present on the silicon then NIXes are * assigned alternatively for lbk interfaces. NIX0 should * send packets on lbk link 1 channels and NIX1 should send * on lbk link 0 channels for the communication between * NIX0 and NIX1. */ lbkid = 0; if (rvu->hw->lbk_links > 1) lbkid = vf & 0x1 ? 0 : 1; /* By default NIX0 is configured to send packet on lbk link 1 * (which corresponds to LBK1), same packet will receive on * NIX1 over lbk link 0. If NIX1 sends packet on lbk link 0 * (which corresponds to LBK2) packet will receive on NIX0 lbk * link 1. * But if lbk links for NIX0 and NIX1 are negated, i.e NIX0 * transmits and receives on lbk link 0, whick corresponds * to LBK1 block, back to back connectivity between NIX and * LBK can be achieved (which is similar to 96xx) * * RX TX * NIX0 lbk link 1 (LBK2) 1 (LBK1) * NIX0 lbk link 0 (LBK0) 0 (LBK0) * NIX1 lbk link 0 (LBK1) 0 (LBK2) * NIX1 lbk link 1 (LBK3) 1 (LBK3) */ if (loop) lbkid = !lbkid; /* Note that AF's VFs work in pairs and talk over consecutive * loopback channels.Therefore if odd number of AF VFs are * enabled then the last VF remains with no pair. */ pfvf->rx_chan_base = rvu_nix_chan_lbk(rvu, lbkid, vf); pfvf->tx_chan_base = vf & 0x1 ? rvu_nix_chan_lbk(rvu, lbkid, vf - 1) : rvu_nix_chan_lbk(rvu, lbkid, vf + 1); pfvf->rx_chan_cnt = 1; pfvf->tx_chan_cnt = 1; rsp->tx_link = hw->cgx_links + lbkid; pfvf->lbkid = lbkid; rvu_npc_set_pkind(rvu, NPC_RX_LBK_PKIND, pfvf); rvu_npc_install_promisc_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base, pfvf->rx_chan_cnt); break; case NIX_INTF_TYPE_SDP: from_vf = !!(pcifunc & RVU_PFVF_FUNC_MASK); parent_pf = &rvu->pf[rvu_get_pf(pcifunc)]; sdp_info = parent_pf->sdp_info; if (!sdp_info) { dev_err(rvu->dev, "Invalid sdp_info pointer\n"); return -EINVAL; } if (from_vf) { req_chan_base = rvu_nix_chan_sdp(rvu, 0) + sdp_info->pf_srn + sdp_info->num_pf_rings; vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1; for (vfid = 0; vfid < vf; vfid++) req_chan_base += sdp_info->vf_rings[vfid]; req_chan_cnt = sdp_info->vf_rings[vf]; req_chan_end = req_chan_base + req_chan_cnt - 1; if (req_chan_base < rvu_nix_chan_sdp(rvu, 0) || req_chan_end > rvu_nix_chan_sdp(rvu, 255)) { dev_err(rvu->dev, "PF_Func 0x%x: Invalid channel base and count\n", pcifunc); return -EINVAL; } } else { req_chan_base = rvu_nix_chan_sdp(rvu, 0) + sdp_info->pf_srn; req_chan_cnt = sdp_info->num_pf_rings; } pfvf->rx_chan_base = req_chan_base; pfvf->rx_chan_cnt = req_chan_cnt; pfvf->tx_chan_base = pfvf->rx_chan_base; pfvf->tx_chan_cnt = pfvf->rx_chan_cnt; rsp->tx_link = hw->cgx_links + hw->lbk_links; rvu_npc_install_promisc_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base, pfvf->rx_chan_cnt); break; } /* Add a UCAST forwarding rule in MCAM with this NIXLF attached * RVU PF/VF's MAC address. */ rvu_npc_install_ucast_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base, pfvf->mac_addr); /* Add this PF_FUNC to bcast pkt replication list */ err = nix_update_mce_rule(rvu, pcifunc, NIXLF_BCAST_ENTRY, true); if (err) { dev_err(rvu->dev, "Bcast list, failed to enable PF_FUNC 0x%x\n", pcifunc); return err; } /* Install MCAM rule matching Ethernet broadcast mac address */ rvu_npc_install_bcast_match_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base); pfvf->maxlen = NIC_HW_MIN_FRS; pfvf->minlen = NIC_HW_MIN_FRS; return 0; } static void nix_interface_deinit(struct rvu *rvu, u16 pcifunc, u8 nixlf) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); int err; pfvf->maxlen = 0; pfvf->minlen = 0; /* Remove this PF_FUNC from bcast pkt replication list */ err = nix_update_mce_rule(rvu, pcifunc, NIXLF_BCAST_ENTRY, false); if (err) { dev_err(rvu->dev, "Bcast list, failed to disable PF_FUNC 0x%x\n", pcifunc); } /* Free and disable any MCAM entries used by this NIX LF */ rvu_npc_disable_mcam_entries(rvu, pcifunc, nixlf); /* Disable DMAC filters used */ rvu_cgx_disable_dmac_entries(rvu, pcifunc); } int rvu_mbox_handler_nix_bp_disable(struct rvu *rvu, struct nix_bp_cfg_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int blkaddr, pf, type; u16 chan_base, chan; u64 cfg; pf = rvu_get_pf(pcifunc); type = is_afvf(pcifunc) ? NIX_INTF_TYPE_LBK : NIX_INTF_TYPE_CGX; if (!is_pf_cgxmapped(rvu, pf) && type != NIX_INTF_TYPE_LBK) return 0; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); chan_base = pfvf->rx_chan_base + req->chan_base; for (chan = chan_base; chan < (chan_base + req->chan_cnt); chan++) { cfg = rvu_read64(rvu, blkaddr, NIX_AF_RX_CHANX_CFG(chan)); rvu_write64(rvu, blkaddr, NIX_AF_RX_CHANX_CFG(chan), cfg & ~BIT_ULL(16)); } return 0; } static int rvu_nix_get_bpid(struct rvu *rvu, struct nix_bp_cfg_req *req, int type, int chan_id) { int bpid, blkaddr, lmac_chan_cnt, sdp_chan_cnt; u16 cgx_bpid_cnt, lbk_bpid_cnt, sdp_bpid_cnt; struct rvu_hwinfo *hw = rvu->hw; struct rvu_pfvf *pfvf; u8 cgx_id, lmac_id; u64 cfg; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, req->hdr.pcifunc); cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST); lmac_chan_cnt = cfg & 0xFF; cgx_bpid_cnt = hw->cgx_links * lmac_chan_cnt; lbk_bpid_cnt = hw->lbk_links * ((cfg >> 16) & 0xFF); cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST1); sdp_chan_cnt = cfg & 0xFFF; sdp_bpid_cnt = hw->sdp_links * sdp_chan_cnt; pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); /* Backpressure IDs range division * CGX channles are mapped to (0 - 191) BPIDs * LBK channles are mapped to (192 - 255) BPIDs * SDP channles are mapped to (256 - 511) BPIDs * * Lmac channles and bpids mapped as follows * cgx(0)_lmac(0)_chan(0 - 15) = bpid(0 - 15) * cgx(0)_lmac(1)_chan(0 - 15) = bpid(16 - 31) .... * cgx(1)_lmac(0)_chan(0 - 15) = bpid(64 - 79) .... */ switch (type) { case NIX_INTF_TYPE_CGX: if ((req->chan_base + req->chan_cnt) > 15) return -EINVAL; rvu_get_cgx_lmac_id(pfvf->cgx_lmac, &cgx_id, &lmac_id); /* Assign bpid based on cgx, lmac and chan id */ bpid = (cgx_id * hw->lmac_per_cgx * lmac_chan_cnt) + (lmac_id * lmac_chan_cnt) + req->chan_base; if (req->bpid_per_chan) bpid += chan_id; if (bpid > cgx_bpid_cnt) return -EINVAL; break; case NIX_INTF_TYPE_LBK: if ((req->chan_base + req->chan_cnt) > 63) return -EINVAL; bpid = cgx_bpid_cnt + req->chan_base; if (req->bpid_per_chan) bpid += chan_id; if (bpid > (cgx_bpid_cnt + lbk_bpid_cnt)) return -EINVAL; break; case NIX_INTF_TYPE_SDP: if ((req->chan_base + req->chan_cnt) > 255) return -EINVAL; bpid = sdp_bpid_cnt + req->chan_base; if (req->bpid_per_chan) bpid += chan_id; if (bpid > (cgx_bpid_cnt + lbk_bpid_cnt + sdp_bpid_cnt)) return -EINVAL; break; default: return -EINVAL; } return bpid; } int rvu_mbox_handler_nix_bp_enable(struct rvu *rvu, struct nix_bp_cfg_req *req, struct nix_bp_cfg_rsp *rsp) { int blkaddr, pf, type, chan_id = 0; u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; u16 chan_base, chan; s16 bpid, bpid_base; u64 cfg; pf = rvu_get_pf(pcifunc); type = is_afvf(pcifunc) ? NIX_INTF_TYPE_LBK : NIX_INTF_TYPE_CGX; if (is_sdp_pfvf(pcifunc)) type = NIX_INTF_TYPE_SDP; /* Enable backpressure only for CGX mapped PFs and LBK/SDP interface */ if (!is_pf_cgxmapped(rvu, pf) && type != NIX_INTF_TYPE_LBK && type != NIX_INTF_TYPE_SDP) return 0; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); bpid_base = rvu_nix_get_bpid(rvu, req, type, chan_id); chan_base = pfvf->rx_chan_base + req->chan_base; bpid = bpid_base; for (chan = chan_base; chan < (chan_base + req->chan_cnt); chan++) { if (bpid < 0) { dev_warn(rvu->dev, "Fail to enable backpressure\n"); return -EINVAL; } cfg = rvu_read64(rvu, blkaddr, NIX_AF_RX_CHANX_CFG(chan)); cfg &= ~GENMASK_ULL(8, 0); rvu_write64(rvu, blkaddr, NIX_AF_RX_CHANX_CFG(chan), cfg | (bpid & GENMASK_ULL(8, 0)) | BIT_ULL(16)); chan_id++; bpid = rvu_nix_get_bpid(rvu, req, type, chan_id); } for (chan = 0; chan < req->chan_cnt; chan++) { /* Map channel and bpid assign to it */ rsp->chan_bpid[chan] = ((req->chan_base + chan) & 0x7F) << 10 | (bpid_base & 0x3FF); if (req->bpid_per_chan) bpid_base++; } rsp->chan_cnt = req->chan_cnt; return 0; } static void nix_setup_lso_tso_l3(struct rvu *rvu, int blkaddr, u64 format, bool v4, u64 *fidx) { struct nix_lso_format field = {0}; /* IP's Length field */ field.layer = NIX_TXLAYER_OL3; /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */ field.offset = v4 ? 2 : 4; field.sizem1 = 1; /* i.e 2 bytes */ field.alg = NIX_LSOALG_ADD_PAYLEN; rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(format, (*fidx)++), *(u64 *)&field); /* No ID field in IPv6 header */ if (!v4) return; /* IP's ID field */ field.layer = NIX_TXLAYER_OL3; field.offset = 4; field.sizem1 = 1; /* i.e 2 bytes */ field.alg = NIX_LSOALG_ADD_SEGNUM; rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(format, (*fidx)++), *(u64 *)&field); } static void nix_setup_lso_tso_l4(struct rvu *rvu, int blkaddr, u64 format, u64 *fidx) { struct nix_lso_format field = {0}; /* TCP's sequence number field */ field.layer = NIX_TXLAYER_OL4; field.offset = 4; field.sizem1 = 3; /* i.e 4 bytes */ field.alg = NIX_LSOALG_ADD_OFFSET; rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(format, (*fidx)++), *(u64 *)&field); /* TCP's flags field */ field.layer = NIX_TXLAYER_OL4; field.offset = 12; field.sizem1 = 1; /* 2 bytes */ field.alg = NIX_LSOALG_TCP_FLAGS; rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(format, (*fidx)++), *(u64 *)&field); } static void nix_setup_lso(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr) { u64 cfg, idx, fidx = 0; /* Get max HW supported format indices */ cfg = (rvu_read64(rvu, blkaddr, NIX_AF_CONST1) >> 48) & 0xFF; nix_hw->lso.total = cfg; /* Enable LSO */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_LSO_CFG); /* For TSO, set first and middle segment flags to * mask out PSH, RST & FIN flags in TCP packet */ cfg &= ~((0xFFFFULL << 32) | (0xFFFFULL << 16)); cfg |= (0xFFF2ULL << 32) | (0xFFF2ULL << 16); rvu_write64(rvu, blkaddr, NIX_AF_LSO_CFG, cfg | BIT_ULL(63)); /* Setup default static LSO formats * * Configure format fields for TCPv4 segmentation offload */ idx = NIX_LSO_FORMAT_IDX_TSOV4; nix_setup_lso_tso_l3(rvu, blkaddr, idx, true, &fidx); nix_setup_lso_tso_l4(rvu, blkaddr, idx, &fidx); /* Set rest of the fields to NOP */ for (; fidx < 8; fidx++) { rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(idx, fidx), 0x0ULL); } nix_hw->lso.in_use++; /* Configure format fields for TCPv6 segmentation offload */ idx = NIX_LSO_FORMAT_IDX_TSOV6; fidx = 0; nix_setup_lso_tso_l3(rvu, blkaddr, idx, false, &fidx); nix_setup_lso_tso_l4(rvu, blkaddr, idx, &fidx); /* Set rest of the fields to NOP */ for (; fidx < 8; fidx++) { rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(idx, fidx), 0x0ULL); } nix_hw->lso.in_use++; } static void nix_ctx_free(struct rvu *rvu, struct rvu_pfvf *pfvf) { kfree(pfvf->rq_bmap); kfree(pfvf->sq_bmap); kfree(pfvf->cq_bmap); if (pfvf->rq_ctx) qmem_free(rvu->dev, pfvf->rq_ctx); if (pfvf->sq_ctx) qmem_free(rvu->dev, pfvf->sq_ctx); if (pfvf->cq_ctx) qmem_free(rvu->dev, pfvf->cq_ctx); if (pfvf->rss_ctx) qmem_free(rvu->dev, pfvf->rss_ctx); if (pfvf->nix_qints_ctx) qmem_free(rvu->dev, pfvf->nix_qints_ctx); if (pfvf->cq_ints_ctx) qmem_free(rvu->dev, pfvf->cq_ints_ctx); pfvf->rq_bmap = NULL; pfvf->cq_bmap = NULL; pfvf->sq_bmap = NULL; pfvf->rq_ctx = NULL; pfvf->sq_ctx = NULL; pfvf->cq_ctx = NULL; pfvf->rss_ctx = NULL; pfvf->nix_qints_ctx = NULL; pfvf->cq_ints_ctx = NULL; } static int nixlf_rss_ctx_init(struct rvu *rvu, int blkaddr, struct rvu_pfvf *pfvf, int nixlf, int rss_sz, int rss_grps, int hwctx_size, u64 way_mask, bool tag_lsb_as_adder) { int err, grp, num_indices; u64 val; /* RSS is not requested for this NIXLF */ if (!rss_sz) return 0; num_indices = rss_sz * rss_grps; /* Alloc NIX RSS HW context memory and config the base */ err = qmem_alloc(rvu->dev, &pfvf->rss_ctx, num_indices, hwctx_size); if (err) return err; rvu_write64(rvu, blkaddr, NIX_AF_LFX_RSS_BASE(nixlf), (u64)pfvf->rss_ctx->iova); /* Config full RSS table size, enable RSS and caching */ val = BIT_ULL(36) | BIT_ULL(4) | way_mask << 20 | ilog2(num_indices / MAX_RSS_INDIR_TBL_SIZE); if (tag_lsb_as_adder) val |= BIT_ULL(5); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RSS_CFG(nixlf), val); /* Config RSS group offset and sizes */ for (grp = 0; grp < rss_grps; grp++) rvu_write64(rvu, blkaddr, NIX_AF_LFX_RSS_GRPX(nixlf, grp), ((ilog2(rss_sz) - 1) << 16) | (rss_sz * grp)); return 0; } static int nix_aq_enqueue_wait(struct rvu *rvu, struct rvu_block *block, struct nix_aq_inst_s *inst) { struct admin_queue *aq = block->aq; struct nix_aq_res_s *result; int timeout = 1000; u64 reg, head; result = (struct nix_aq_res_s *)aq->res->base; /* Get current head pointer where to append this instruction */ reg = rvu_read64(rvu, block->addr, NIX_AF_AQ_STATUS); head = (reg >> 4) & AQ_PTR_MASK; memcpy((void *)(aq->inst->base + (head * aq->inst->entry_sz)), (void *)inst, aq->inst->entry_sz); memset(result, 0, sizeof(*result)); /* sync into memory */ wmb(); /* Ring the doorbell and wait for result */ rvu_write64(rvu, block->addr, NIX_AF_AQ_DOOR, 1); while (result->compcode == NIX_AQ_COMP_NOTDONE) { cpu_relax(); udelay(1); timeout--; if (!timeout) return -EBUSY; } if (result->compcode != NIX_AQ_COMP_GOOD) /* TODO: Replace this with some error code */ return -EBUSY; return 0; } static int rvu_nix_blk_aq_enq_inst(struct rvu *rvu, struct nix_hw *nix_hw, struct nix_aq_enq_req *req, struct nix_aq_enq_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; int nixlf, blkaddr, rc = 0; struct nix_aq_inst_s inst; struct rvu_block *block; struct admin_queue *aq; struct rvu_pfvf *pfvf; void *ctx, *mask; bool ena; u64 cfg; blkaddr = nix_hw->blkaddr; block = &hw->block[blkaddr]; aq = block->aq; if (!aq) { dev_warn(rvu->dev, "%s: NIX AQ not initialized\n", __func__); return NIX_AF_ERR_AQ_ENQUEUE; } pfvf = rvu_get_pfvf(rvu, pcifunc); nixlf = rvu_get_lf(rvu, block, pcifunc, 0); /* Skip NIXLF check for broadcast MCE entry and bandwidth profile * operations done by AF itself. */ if (!((!rsp && req->ctype == NIX_AQ_CTYPE_MCE) || (req->ctype == NIX_AQ_CTYPE_BANDPROF && !pcifunc))) { if (!pfvf->nixlf || nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; } switch (req->ctype) { case NIX_AQ_CTYPE_RQ: /* Check if index exceeds max no of queues */ if (!pfvf->rq_ctx || req->qidx >= pfvf->rq_ctx->qsize) rc = NIX_AF_ERR_AQ_ENQUEUE; break; case NIX_AQ_CTYPE_SQ: if (!pfvf->sq_ctx || req->qidx >= pfvf->sq_ctx->qsize) rc = NIX_AF_ERR_AQ_ENQUEUE; break; case NIX_AQ_CTYPE_CQ: if (!pfvf->cq_ctx || req->qidx >= pfvf->cq_ctx->qsize) rc = NIX_AF_ERR_AQ_ENQUEUE; break; case NIX_AQ_CTYPE_RSS: /* Check if RSS is enabled and qidx is within range */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_LFX_RSS_CFG(nixlf)); if (!(cfg & BIT_ULL(4)) || !pfvf->rss_ctx || (req->qidx >= (256UL << (cfg & 0xF)))) rc = NIX_AF_ERR_AQ_ENQUEUE; break; case NIX_AQ_CTYPE_MCE: cfg = rvu_read64(rvu, blkaddr, NIX_AF_RX_MCAST_CFG); /* Check if index exceeds MCE list length */ if (!nix_hw->mcast.mce_ctx || (req->qidx >= (256UL << (cfg & 0xF)))) rc = NIX_AF_ERR_AQ_ENQUEUE; /* Adding multicast lists for requests from PF/VFs is not * yet supported, so ignore this. */ if (rsp) rc = NIX_AF_ERR_AQ_ENQUEUE; break; case NIX_AQ_CTYPE_BANDPROF: if (nix_verify_bandprof((struct nix_cn10k_aq_enq_req *)req, nix_hw, pcifunc)) rc = NIX_AF_ERR_INVALID_BANDPROF; break; default: rc = NIX_AF_ERR_AQ_ENQUEUE; } if (rc) return rc; /* Check if SQ pointed SMQ belongs to this PF/VF or not */ if (req->ctype == NIX_AQ_CTYPE_SQ && ((req->op == NIX_AQ_INSTOP_INIT && req->sq.ena) || (req->op == NIX_AQ_INSTOP_WRITE && req->sq_mask.ena && req->sq_mask.smq && req->sq.ena))) { if (!is_valid_txschq(rvu, blkaddr, NIX_TXSCH_LVL_SMQ, pcifunc, req->sq.smq)) return NIX_AF_ERR_AQ_ENQUEUE; } memset(&inst, 0, sizeof(struct nix_aq_inst_s)); inst.lf = nixlf; inst.cindex = req->qidx; inst.ctype = req->ctype; inst.op = req->op; /* Currently we are not supporting enqueuing multiple instructions, * so always choose first entry in result memory. */ inst.res_addr = (u64)aq->res->iova; /* Hardware uses same aq->res->base for updating result of * previous instruction hence wait here till it is done. */ spin_lock(&aq->lock); /* Clean result + context memory */ memset(aq->res->base, 0, aq->res->entry_sz); /* Context needs to be written at RES_ADDR + 128 */ ctx = aq->res->base + 128; /* Mask needs to be written at RES_ADDR + 256 */ mask = aq->res->base + 256; switch (req->op) { case NIX_AQ_INSTOP_WRITE: if (req->ctype == NIX_AQ_CTYPE_RQ) memcpy(mask, &req->rq_mask, sizeof(struct nix_rq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_SQ) memcpy(mask, &req->sq_mask, sizeof(struct nix_sq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_CQ) memcpy(mask, &req->cq_mask, sizeof(struct nix_cq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_RSS) memcpy(mask, &req->rss_mask, sizeof(struct nix_rsse_s)); else if (req->ctype == NIX_AQ_CTYPE_MCE) memcpy(mask, &req->mce_mask, sizeof(struct nix_rx_mce_s)); else if (req->ctype == NIX_AQ_CTYPE_BANDPROF) memcpy(mask, &req->prof_mask, sizeof(struct nix_bandprof_s)); fallthrough; case NIX_AQ_INSTOP_INIT: if (req->ctype == NIX_AQ_CTYPE_RQ) memcpy(ctx, &req->rq, sizeof(struct nix_rq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_SQ) memcpy(ctx, &req->sq, sizeof(struct nix_sq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_CQ) memcpy(ctx, &req->cq, sizeof(struct nix_cq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_RSS) memcpy(ctx, &req->rss, sizeof(struct nix_rsse_s)); else if (req->ctype == NIX_AQ_CTYPE_MCE) memcpy(ctx, &req->mce, sizeof(struct nix_rx_mce_s)); else if (req->ctype == NIX_AQ_CTYPE_BANDPROF) memcpy(ctx, &req->prof, sizeof(struct nix_bandprof_s)); break; case NIX_AQ_INSTOP_NOP: case NIX_AQ_INSTOP_READ: case NIX_AQ_INSTOP_LOCK: case NIX_AQ_INSTOP_UNLOCK: break; default: rc = NIX_AF_ERR_AQ_ENQUEUE; spin_unlock(&aq->lock); return rc; } /* Submit the instruction to AQ */ rc = nix_aq_enqueue_wait(rvu, block, &inst); if (rc) { spin_unlock(&aq->lock); return rc; } /* Set RQ/SQ/CQ bitmap if respective queue hw context is enabled */ if (req->op == NIX_AQ_INSTOP_INIT) { if (req->ctype == NIX_AQ_CTYPE_RQ && req->rq.ena) __set_bit(req->qidx, pfvf->rq_bmap); if (req->ctype == NIX_AQ_CTYPE_SQ && req->sq.ena) __set_bit(req->qidx, pfvf->sq_bmap); if (req->ctype == NIX_AQ_CTYPE_CQ && req->cq.ena) __set_bit(req->qidx, pfvf->cq_bmap); } if (req->op == NIX_AQ_INSTOP_WRITE) { if (req->ctype == NIX_AQ_CTYPE_RQ) { ena = (req->rq.ena & req->rq_mask.ena) | (test_bit(req->qidx, pfvf->rq_bmap) & ~req->rq_mask.ena); if (ena) __set_bit(req->qidx, pfvf->rq_bmap); else __clear_bit(req->qidx, pfvf->rq_bmap); } if (req->ctype == NIX_AQ_CTYPE_SQ) { ena = (req->rq.ena & req->sq_mask.ena) | (test_bit(req->qidx, pfvf->sq_bmap) & ~req->sq_mask.ena); if (ena) __set_bit(req->qidx, pfvf->sq_bmap); else __clear_bit(req->qidx, pfvf->sq_bmap); } if (req->ctype == NIX_AQ_CTYPE_CQ) { ena = (req->rq.ena & req->cq_mask.ena) | (test_bit(req->qidx, pfvf->cq_bmap) & ~req->cq_mask.ena); if (ena) __set_bit(req->qidx, pfvf->cq_bmap); else __clear_bit(req->qidx, pfvf->cq_bmap); } } if (rsp) { /* Copy read context into mailbox */ if (req->op == NIX_AQ_INSTOP_READ) { if (req->ctype == NIX_AQ_CTYPE_RQ) memcpy(&rsp->rq, ctx, sizeof(struct nix_rq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_SQ) memcpy(&rsp->sq, ctx, sizeof(struct nix_sq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_CQ) memcpy(&rsp->cq, ctx, sizeof(struct nix_cq_ctx_s)); else if (req->ctype == NIX_AQ_CTYPE_RSS) memcpy(&rsp->rss, ctx, sizeof(struct nix_rsse_s)); else if (req->ctype == NIX_AQ_CTYPE_MCE) memcpy(&rsp->mce, ctx, sizeof(struct nix_rx_mce_s)); else if (req->ctype == NIX_AQ_CTYPE_BANDPROF) memcpy(&rsp->prof, ctx, sizeof(struct nix_bandprof_s)); } } spin_unlock(&aq->lock); return 0; } static int rvu_nix_verify_aq_ctx(struct rvu *rvu, struct nix_hw *nix_hw, struct nix_aq_enq_req *req, u8 ctype) { struct nix_cn10k_aq_enq_req aq_req; struct nix_cn10k_aq_enq_rsp aq_rsp; int rc, word; if (req->ctype != NIX_AQ_CTYPE_CQ) return 0; rc = nix_aq_context_read(rvu, nix_hw, &aq_req, &aq_rsp, req->hdr.pcifunc, ctype, req->qidx); if (rc) { dev_err(rvu->dev, "%s: Failed to fetch %s%d context of PFFUNC 0x%x\n", __func__, nix_get_ctx_name(ctype), req->qidx, req->hdr.pcifunc); return rc; } /* Make copy of original context & mask which are required * for resubmission */ memcpy(&aq_req.cq_mask, &req->cq_mask, sizeof(struct nix_cq_ctx_s)); memcpy(&aq_req.cq, &req->cq, sizeof(struct nix_cq_ctx_s)); /* exclude fields which HW can update */ aq_req.cq_mask.cq_err = 0; aq_req.cq_mask.wrptr = 0; aq_req.cq_mask.tail = 0; aq_req.cq_mask.head = 0; aq_req.cq_mask.avg_level = 0; aq_req.cq_mask.update_time = 0; aq_req.cq_mask.substream = 0; /* Context mask (cq_mask) holds mask value of fields which * are changed in AQ WRITE operation. * for example cq.drop = 0xa; * cq_mask.drop = 0xff; * Below logic performs '&' between cq and cq_mask so that non * updated fields are masked out for request and response * comparison */ for (word = 0; word < sizeof(struct nix_cq_ctx_s) / sizeof(u64); word++) { *(u64 *)((u8 *)&aq_rsp.cq + word * 8) &= (*(u64 *)((u8 *)&aq_req.cq_mask + word * 8)); *(u64 *)((u8 *)&aq_req.cq + word * 8) &= (*(u64 *)((u8 *)&aq_req.cq_mask + word * 8)); } if (memcmp(&aq_req.cq, &aq_rsp.cq, sizeof(struct nix_cq_ctx_s))) return NIX_AF_ERR_AQ_CTX_RETRY_WRITE; return 0; } static int rvu_nix_aq_enq_inst(struct rvu *rvu, struct nix_aq_enq_req *req, struct nix_aq_enq_rsp *rsp) { struct nix_hw *nix_hw; int err, retries = 5; int blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, req->hdr.pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; retry: err = rvu_nix_blk_aq_enq_inst(rvu, nix_hw, req, rsp); /* HW errata 'AQ Modification to CQ could be discarded on heavy traffic' * As a work around perfrom CQ context read after each AQ write. If AQ * read shows AQ write is not updated perform AQ write again. */ if (!err && req->op == NIX_AQ_INSTOP_WRITE) { err = rvu_nix_verify_aq_ctx(rvu, nix_hw, req, NIX_AQ_CTYPE_CQ); if (err == NIX_AF_ERR_AQ_CTX_RETRY_WRITE) { if (retries--) goto retry; else return NIX_AF_ERR_CQ_CTX_WRITE_ERR; } } return err; } static const char *nix_get_ctx_name(int ctype) { switch (ctype) { case NIX_AQ_CTYPE_CQ: return "CQ"; case NIX_AQ_CTYPE_SQ: return "SQ"; case NIX_AQ_CTYPE_RQ: return "RQ"; case NIX_AQ_CTYPE_RSS: return "RSS"; } return ""; } static int nix_lf_hwctx_disable(struct rvu *rvu, struct hwctx_disable_req *req) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); struct nix_aq_enq_req aq_req; unsigned long *bmap; int qidx, q_cnt = 0; int err = 0, rc; if (!pfvf->cq_ctx || !pfvf->sq_ctx || !pfvf->rq_ctx) return NIX_AF_ERR_AQ_ENQUEUE; memset(&aq_req, 0, sizeof(struct nix_aq_enq_req)); aq_req.hdr.pcifunc = req->hdr.pcifunc; if (req->ctype == NIX_AQ_CTYPE_CQ) { aq_req.cq.ena = 0; aq_req.cq_mask.ena = 1; aq_req.cq.bp_ena = 0; aq_req.cq_mask.bp_ena = 1; q_cnt = pfvf->cq_ctx->qsize; bmap = pfvf->cq_bmap; } if (req->ctype == NIX_AQ_CTYPE_SQ) { aq_req.sq.ena = 0; aq_req.sq_mask.ena = 1; q_cnt = pfvf->sq_ctx->qsize; bmap = pfvf->sq_bmap; } if (req->ctype == NIX_AQ_CTYPE_RQ) { aq_req.rq.ena = 0; aq_req.rq_mask.ena = 1; q_cnt = pfvf->rq_ctx->qsize; bmap = pfvf->rq_bmap; } aq_req.ctype = req->ctype; aq_req.op = NIX_AQ_INSTOP_WRITE; for (qidx = 0; qidx < q_cnt; qidx++) { if (!test_bit(qidx, bmap)) continue; aq_req.qidx = qidx; rc = rvu_nix_aq_enq_inst(rvu, &aq_req, NULL); if (rc) { err = rc; dev_err(rvu->dev, "Failed to disable %s:%d context\n", nix_get_ctx_name(req->ctype), qidx); } } return err; } #ifdef CONFIG_NDC_DIS_DYNAMIC_CACHING static int nix_lf_hwctx_lockdown(struct rvu *rvu, struct nix_aq_enq_req *req) { struct nix_aq_enq_req lock_ctx_req; int err; if (req->op != NIX_AQ_INSTOP_INIT) return 0; if (req->ctype == NIX_AQ_CTYPE_MCE || req->ctype == NIX_AQ_CTYPE_DYNO) return 0; memset(&lock_ctx_req, 0, sizeof(struct nix_aq_enq_req)); lock_ctx_req.hdr.pcifunc = req->hdr.pcifunc; lock_ctx_req.ctype = req->ctype; lock_ctx_req.op = NIX_AQ_INSTOP_LOCK; lock_ctx_req.qidx = req->qidx; err = rvu_nix_aq_enq_inst(rvu, &lock_ctx_req, NULL); if (err) dev_err(rvu->dev, "PFUNC 0x%x: Failed to lock NIX %s:%d context\n", req->hdr.pcifunc, nix_get_ctx_name(req->ctype), req->qidx); return err; } int rvu_mbox_handler_nix_aq_enq(struct rvu *rvu, struct nix_aq_enq_req *req, struct nix_aq_enq_rsp *rsp) { int err; err = rvu_nix_aq_enq_inst(rvu, req, rsp); if (!err) err = nix_lf_hwctx_lockdown(rvu, req); return err; } #else int rvu_mbox_handler_nix_aq_enq(struct rvu *rvu, struct nix_aq_enq_req *req, struct nix_aq_enq_rsp *rsp) { return rvu_nix_aq_enq_inst(rvu, req, rsp); } #endif /* CN10K mbox handler */ int rvu_mbox_handler_nix_cn10k_aq_enq(struct rvu *rvu, struct nix_cn10k_aq_enq_req *req, struct nix_cn10k_aq_enq_rsp *rsp) { return rvu_nix_aq_enq_inst(rvu, (struct nix_aq_enq_req *)req, (struct nix_aq_enq_rsp *)rsp); } int rvu_mbox_handler_nix_hwctx_disable(struct rvu *rvu, struct hwctx_disable_req *req, struct msg_rsp *rsp) { return nix_lf_hwctx_disable(rvu, req); } int rvu_mbox_handler_nix_lf_alloc(struct rvu *rvu, struct nix_lf_alloc_req *req, struct nix_lf_alloc_rsp *rsp) { int nixlf, qints, hwctx_size, intf, err, rc = 0; struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; struct rvu_pfvf *pfvf; u64 cfg, ctx_cfg; int blkaddr; if (!req->rq_cnt || !req->sq_cnt || !req->cq_cnt) return NIX_AF_ERR_PARAM; if (req->way_mask) req->way_mask &= 0xFFFF; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; block = &hw->block[blkaddr]; nixlf = rvu_get_lf(rvu, block, pcifunc, 0); if (nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; /* Check if requested 'NIXLF <=> NPALF' mapping is valid */ if (req->npa_func) { /* If default, use 'this' NIXLF's PFFUNC */ if (req->npa_func == RVU_DEFAULT_PF_FUNC) req->npa_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->npa_func, BLKTYPE_NPA)) return NIX_AF_INVAL_NPA_PF_FUNC; } /* Check if requested 'NIXLF <=> SSOLF' mapping is valid */ if (req->sso_func) { /* If default, use 'this' NIXLF's PFFUNC */ if (req->sso_func == RVU_DEFAULT_PF_FUNC) req->sso_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->sso_func, BLKTYPE_SSO)) return NIX_AF_INVAL_SSO_PF_FUNC; } /* If RSS is being enabled, check if requested config is valid. * RSS table size should be power of two, otherwise * RSS_GRP::OFFSET + adder might go beyond that group or * won't be able to use entire table. */ if (req->rss_sz && (req->rss_sz > MAX_RSS_INDIR_TBL_SIZE || !is_power_of_2(req->rss_sz))) return NIX_AF_ERR_RSS_SIZE_INVALID; if (req->rss_sz && (!req->rss_grps || req->rss_grps > MAX_RSS_GROUPS)) return NIX_AF_ERR_RSS_GRPS_INVALID; /* Reset this NIX LF */ err = rvu_lf_reset(rvu, block, nixlf); if (err) { dev_err(rvu->dev, "Failed to reset NIX%d LF%d\n", block->addr - BLKADDR_NIX0, nixlf); return NIX_AF_ERR_LF_RESET; } ctx_cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST3); /* Alloc NIX RQ HW context memory and config the base */ hwctx_size = 1UL << ((ctx_cfg >> 4) & 0xF); err = qmem_alloc(rvu->dev, &pfvf->rq_ctx, req->rq_cnt, hwctx_size); if (err) goto free_mem; pfvf->rq_bmap = kcalloc(req->rq_cnt, sizeof(long), GFP_KERNEL); if (!pfvf->rq_bmap) goto free_mem; rvu_write64(rvu, blkaddr, NIX_AF_LFX_RQS_BASE(nixlf), (u64)pfvf->rq_ctx->iova); /* Set caching and queue count in HW */ cfg = BIT_ULL(36) | (req->rq_cnt - 1) | req->way_mask << 20; rvu_write64(rvu, blkaddr, NIX_AF_LFX_RQS_CFG(nixlf), cfg); /* Alloc NIX SQ HW context memory and config the base */ hwctx_size = 1UL << (ctx_cfg & 0xF); err = qmem_alloc(rvu->dev, &pfvf->sq_ctx, req->sq_cnt, hwctx_size); if (err) goto free_mem; pfvf->sq_bmap = kcalloc(req->sq_cnt, sizeof(long), GFP_KERNEL); if (!pfvf->sq_bmap) goto free_mem; rvu_write64(rvu, blkaddr, NIX_AF_LFX_SQS_BASE(nixlf), (u64)pfvf->sq_ctx->iova); cfg = BIT_ULL(36) | (req->sq_cnt - 1) | req->way_mask << 20; rvu_write64(rvu, blkaddr, NIX_AF_LFX_SQS_CFG(nixlf), cfg); /* Alloc NIX CQ HW context memory and config the base */ hwctx_size = 1UL << ((ctx_cfg >> 8) & 0xF); err = qmem_alloc(rvu->dev, &pfvf->cq_ctx, req->cq_cnt, hwctx_size); if (err) goto free_mem; pfvf->cq_bmap = kcalloc(req->cq_cnt, sizeof(long), GFP_KERNEL); if (!pfvf->cq_bmap) goto free_mem; rvu_write64(rvu, blkaddr, NIX_AF_LFX_CQS_BASE(nixlf), (u64)pfvf->cq_ctx->iova); cfg = BIT_ULL(36) | (req->cq_cnt - 1) | req->way_mask << 20; rvu_write64(rvu, blkaddr, NIX_AF_LFX_CQS_CFG(nixlf), cfg); /* Initialize receive side scaling (RSS) */ hwctx_size = 1UL << ((ctx_cfg >> 12) & 0xF); err = nixlf_rss_ctx_init(rvu, blkaddr, pfvf, nixlf, req->rss_sz, req->rss_grps, hwctx_size, req->way_mask, !!(req->flags & NIX_LF_RSS_TAG_LSB_AS_ADDER)); if (err) goto free_mem; /* Alloc memory for CQINT's HW contexts */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2); qints = (cfg >> 24) & 0xFFF; hwctx_size = 1UL << ((ctx_cfg >> 24) & 0xF); err = qmem_alloc(rvu->dev, &pfvf->cq_ints_ctx, qints, hwctx_size); if (err) goto free_mem; rvu_write64(rvu, blkaddr, NIX_AF_LFX_CINTS_BASE(nixlf), (u64)pfvf->cq_ints_ctx->iova); rvu_write64(rvu, blkaddr, NIX_AF_LFX_CINTS_CFG(nixlf), BIT_ULL(36) | req->way_mask << 20); /* Alloc memory for QINT's HW contexts */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2); qints = (cfg >> 12) & 0xFFF; hwctx_size = 1UL << ((ctx_cfg >> 20) & 0xF); err = qmem_alloc(rvu->dev, &pfvf->nix_qints_ctx, qints, hwctx_size); if (err) goto free_mem; rvu_write64(rvu, blkaddr, NIX_AF_LFX_QINTS_BASE(nixlf), (u64)pfvf->nix_qints_ctx->iova); rvu_write64(rvu, blkaddr, NIX_AF_LFX_QINTS_CFG(nixlf), BIT_ULL(36) | req->way_mask << 20); /* Setup VLANX TPID's. * Use VLAN1 for 802.1Q * and VLAN0 for 802.1AD. */ cfg = (0x8100ULL << 16) | 0x88A8ULL; rvu_write64(rvu, blkaddr, NIX_AF_LFX_TX_CFG(nixlf), cfg); /* Enable LMTST for this NIX LF */ rvu_write64(rvu, blkaddr, NIX_AF_LFX_TX_CFG2(nixlf), BIT_ULL(0)); /* Set CQE/WQE size, NPA_PF_FUNC for SQBs and also SSO_PF_FUNC */ if (req->npa_func) cfg = req->npa_func; if (req->sso_func) cfg |= (u64)req->sso_func << 16; cfg |= (u64)req->xqe_sz << 33; rvu_write64(rvu, blkaddr, NIX_AF_LFX_CFG(nixlf), cfg); /* Config Rx pkt length, csum checks and apad enable / disable */ rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_CFG(nixlf), req->rx_cfg); /* Configure pkind for TX parse config */ cfg = NPC_TX_DEF_PKIND; rvu_write64(rvu, blkaddr, NIX_AF_LFX_TX_PARSE_CFG(nixlf), cfg); intf = is_afvf(pcifunc) ? NIX_INTF_TYPE_LBK : NIX_INTF_TYPE_CGX; if (is_sdp_pfvf(pcifunc)) intf = NIX_INTF_TYPE_SDP; err = nix_interface_init(rvu, pcifunc, intf, nixlf, rsp, !!(req->flags & NIX_LF_LBK_BLK_SEL)); if (err) goto free_mem; /* Disable NPC entries as NIXLF's contexts are not initialized yet */ rvu_npc_disable_default_entries(rvu, pcifunc, nixlf); /* Configure RX VTAG Type 7 (strip) for vf vlan */ rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_VTAG_TYPEX(nixlf, NIX_AF_LFX_RX_VTAG_TYPE7), VTAGSIZE_T4 | VTAG_STRIP); goto exit; free_mem: nix_ctx_free(rvu, pfvf); rc = -ENOMEM; exit: /* Set macaddr of this PF/VF */ ether_addr_copy(rsp->mac_addr, pfvf->mac_addr); /* set SQB size info */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_SQ_CONST); rsp->sqb_size = (cfg >> 34) & 0xFFFF; rsp->rx_chan_base = pfvf->rx_chan_base; rsp->tx_chan_base = pfvf->tx_chan_base; rsp->rx_chan_cnt = pfvf->rx_chan_cnt; rsp->tx_chan_cnt = pfvf->tx_chan_cnt; rsp->lso_tsov4_idx = NIX_LSO_FORMAT_IDX_TSOV4; rsp->lso_tsov6_idx = NIX_LSO_FORMAT_IDX_TSOV6; /* Get HW supported stat count */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST1); rsp->lf_rx_stats = ((cfg >> 32) & 0xFF); rsp->lf_tx_stats = ((cfg >> 24) & 0xFF); /* Get count of CQ IRQs and error IRQs supported per LF */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2); rsp->qints = ((cfg >> 12) & 0xFFF); rsp->cints = ((cfg >> 24) & 0xFFF); rsp->cgx_links = hw->cgx_links; rsp->lbk_links = hw->lbk_links; rsp->sdp_links = hw->sdp_links; return rc; } int rvu_mbox_handler_nix_lf_free(struct rvu *rvu, struct nix_lf_free_req *req, struct msg_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int blkaddr, nixlf, err; struct rvu_pfvf *pfvf; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; block = &hw->block[blkaddr]; nixlf = rvu_get_lf(rvu, block, pcifunc, 0); if (nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; if (req->flags & NIX_LF_DISABLE_FLOWS) rvu_npc_disable_mcam_entries(rvu, pcifunc, nixlf); else rvu_npc_free_mcam_entries(rvu, pcifunc, nixlf); /* Free any tx vtag def entries used by this NIX LF */ if (!(req->flags & NIX_LF_DONT_FREE_TX_VTAG)) nix_free_tx_vtag_entries(rvu, pcifunc); nix_interface_deinit(rvu, pcifunc, nixlf); /* Reset this NIX LF */ err = rvu_lf_reset(rvu, block, nixlf); if (err) { dev_err(rvu->dev, "Failed to reset NIX%d LF%d\n", block->addr - BLKADDR_NIX0, nixlf); return NIX_AF_ERR_LF_RESET; } nix_ctx_free(rvu, pfvf); return 0; } int rvu_mbox_handler_nix_mark_format_cfg(struct rvu *rvu, struct nix_mark_format_cfg *req, struct nix_mark_format_cfg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct nix_hw *nix_hw; struct rvu_pfvf *pfvf; int blkaddr, rc; u32 cfg; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; cfg = (((u32)req->offset & 0x7) << 16) | (((u32)req->y_mask & 0xF) << 12) | (((u32)req->y_val & 0xF) << 8) | (((u32)req->r_mask & 0xF) << 4) | ((u32)req->r_val & 0xF); rc = rvu_nix_reserve_mark_format(rvu, nix_hw, blkaddr, cfg); if (rc < 0) { dev_err(rvu->dev, "No mark_format_ctl for (pf:%d, vf:%d)", rvu_get_pf(pcifunc), pcifunc & RVU_PFVF_FUNC_MASK); return NIX_AF_ERR_MARK_CFG_FAIL; } rsp->mark_format_idx = rc; return 0; } /* Handle shaper update specially for few revisions */ static bool handle_txschq_shaper_update(struct rvu *rvu, int blkaddr, int nixlf, int lvl, u64 reg, u64 regval) { u64 regbase, oldval, sw_xoff = 0; u64 dbgval, md_debug0 = 0; unsigned long poll_tmo; bool rate_reg = 0; u32 schq; regbase = reg & 0xFFFF; schq = TXSCHQ_IDX(reg, TXSCHQ_IDX_SHIFT); /* Check for rate register */ switch (lvl) { case NIX_TXSCH_LVL_TL1: md_debug0 = NIX_AF_TL1X_MD_DEBUG0(schq); sw_xoff = NIX_AF_TL1X_SW_XOFF(schq); rate_reg = !!(regbase == NIX_AF_TL1X_CIR(0)); break; case NIX_TXSCH_LVL_TL2: md_debug0 = NIX_AF_TL2X_MD_DEBUG0(schq); sw_xoff = NIX_AF_TL2X_SW_XOFF(schq); rate_reg = (regbase == NIX_AF_TL2X_CIR(0) || regbase == NIX_AF_TL2X_PIR(0)); break; case NIX_TXSCH_LVL_TL3: md_debug0 = NIX_AF_TL3X_MD_DEBUG0(schq); sw_xoff = NIX_AF_TL3X_SW_XOFF(schq); rate_reg = (regbase == NIX_AF_TL3X_CIR(0) || regbase == NIX_AF_TL3X_PIR(0)); break; case NIX_TXSCH_LVL_TL4: md_debug0 = NIX_AF_TL4X_MD_DEBUG0(schq); sw_xoff = NIX_AF_TL4X_SW_XOFF(schq); rate_reg = (regbase == NIX_AF_TL4X_CIR(0) || regbase == NIX_AF_TL4X_PIR(0)); break; case NIX_TXSCH_LVL_MDQ: sw_xoff = NIX_AF_MDQX_SW_XOFF(schq); rate_reg = (regbase == NIX_AF_MDQX_CIR(0) || regbase == NIX_AF_MDQX_PIR(0)); break; } if (!rate_reg) return false; /* Nothing special to do when state is not toggled */ oldval = rvu_read64(rvu, blkaddr, reg); if ((oldval & 0x1) == (regval & 0x1)) { rvu_write64(rvu, blkaddr, reg, regval); return true; } /* PIR/CIR disable */ if (!(regval & 0x1)) { rvu_write64(rvu, blkaddr, sw_xoff, 1); rvu_write64(rvu, blkaddr, reg, 0); udelay(4); rvu_write64(rvu, blkaddr, sw_xoff, 0); return true; } /* PIR/CIR enable */ rvu_write64(rvu, blkaddr, sw_xoff, 1); if (md_debug0) { poll_tmo = jiffies + usecs_to_jiffies(10000); /* Wait until VLD(bit32) == 1 or C_CON(bit48) == 0 */ do { if (time_after(jiffies, poll_tmo)) { dev_err(rvu->dev, "NIXLF%d: TLX%u(lvl %u) CIR/PIR enable failed\n", nixlf, schq, lvl); goto exit; } usleep_range(1, 5); dbgval = rvu_read64(rvu, blkaddr, md_debug0); } while (!(dbgval & BIT_ULL(32)) && (dbgval & BIT_ULL(48))); } rvu_write64(rvu, blkaddr, reg, regval); exit: rvu_write64(rvu, blkaddr, sw_xoff, 0); return true; } /* Disable shaping of pkts by a scheduler queue * at a given scheduler level. */ static void nix_reset_tx_shaping(struct rvu *rvu, int blkaddr, int nixlf, int lvl, int schq) { struct rvu_hwinfo *hw = rvu->hw; u64 cir_reg = 0, pir_reg = 0; u64 cfg; switch (lvl) { case NIX_TXSCH_LVL_TL1: cir_reg = NIX_AF_TL1X_CIR(schq); pir_reg = 0; /* PIR not available at TL1 */ break; case NIX_TXSCH_LVL_TL2: cir_reg = NIX_AF_TL2X_CIR(schq); pir_reg = NIX_AF_TL2X_PIR(schq); break; case NIX_TXSCH_LVL_TL3: cir_reg = NIX_AF_TL3X_CIR(schq); pir_reg = NIX_AF_TL3X_PIR(schq); break; case NIX_TXSCH_LVL_TL4: cir_reg = NIX_AF_TL4X_CIR(schq); pir_reg = NIX_AF_TL4X_PIR(schq); break; case NIX_TXSCH_LVL_MDQ: cir_reg = NIX_AF_MDQX_CIR(schq); pir_reg = NIX_AF_MDQX_PIR(schq); break; } /* Shaper state toggle needs wait/poll */ if (hw->cap.nix_shaper_toggle_wait) { if (cir_reg) handle_txschq_shaper_update(rvu, blkaddr, nixlf, lvl, cir_reg, 0); if (pir_reg) handle_txschq_shaper_update(rvu, blkaddr, nixlf, lvl, pir_reg, 0); return; } if (!cir_reg) return; cfg = rvu_read64(rvu, blkaddr, cir_reg); rvu_write64(rvu, blkaddr, cir_reg, cfg & ~BIT_ULL(0)); if (!pir_reg) return; cfg = rvu_read64(rvu, blkaddr, pir_reg); rvu_write64(rvu, blkaddr, pir_reg, cfg & ~BIT_ULL(0)); } static void nix_reset_tx_linkcfg(struct rvu *rvu, int blkaddr, int lvl, int schq) { struct rvu_hwinfo *hw = rvu->hw; int link_level; int link; if (lvl >= hw->cap.nix_tx_aggr_lvl) return; /* Reset TL4's SDP link config */ if (lvl == NIX_TXSCH_LVL_TL4) rvu_write64(rvu, blkaddr, NIX_AF_TL4X_SDP_LINK_CFG(schq), 0x00); link_level = rvu_read64(rvu, blkaddr, NIX_AF_PSE_CHANNEL_LEVEL) & 0x01 ? NIX_TXSCH_LVL_TL3 : NIX_TXSCH_LVL_TL2; if (lvl != link_level) return; /* Reset TL2's CGX or LBK link config */ for (link = 0; link < (hw->cgx_links + hw->lbk_links); link++) rvu_write64(rvu, blkaddr, NIX_AF_TL3_TL2X_LINKX_CFG(schq, link), 0x00); } static void nix_clear_tx_xoff(struct rvu *rvu, int blkaddr, int lvl, int schq) { struct rvu_hwinfo *hw = rvu->hw; u64 reg; /* Skip this if shaping is not supported */ if (!hw->cap.nix_shaping) return; /* Clear level specific SW_XOFF */ switch (lvl) { case NIX_TXSCH_LVL_TL1: reg = NIX_AF_TL1X_SW_XOFF(schq); break; case NIX_TXSCH_LVL_TL2: reg = NIX_AF_TL2X_SW_XOFF(schq); break; case NIX_TXSCH_LVL_TL3: reg = NIX_AF_TL3X_SW_XOFF(schq); break; case NIX_TXSCH_LVL_TL4: reg = NIX_AF_TL4X_SW_XOFF(schq); break; case NIX_TXSCH_LVL_MDQ: reg = NIX_AF_MDQX_SW_XOFF(schq); break; default: return; } rvu_write64(rvu, blkaddr, reg, 0x0); } static int nix_get_tx_link(struct rvu *rvu, u16 pcifunc) { struct rvu_hwinfo *hw = rvu->hw; int pf = rvu_get_pf(pcifunc); u8 cgx_id = 0, lmac_id = 0; if (is_afvf(pcifunc)) {/* LBK links */ return hw->cgx_links; } else if (is_pf_cgxmapped(rvu, pf)) { rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); return (cgx_id * hw->lmac_per_cgx) + lmac_id; } /* SDP link */ return hw->cgx_links + hw->lbk_links; } static void nix_get_txschq_range(struct rvu *rvu, u16 pcifunc, int link, int *start, int *end) { struct rvu_hwinfo *hw = rvu->hw; int pf = rvu_get_pf(pcifunc); if (is_afvf(pcifunc)) { /* LBK links */ *start = hw->cap.nix_txsch_per_cgx_lmac * link; *end = *start + hw->cap.nix_txsch_per_lbk_lmac; } else if (is_pf_cgxmapped(rvu, pf)) { /* CGX links */ *start = hw->cap.nix_txsch_per_cgx_lmac * link; *end = *start + hw->cap.nix_txsch_per_cgx_lmac; } else { /* SDP link */ *start = (hw->cap.nix_txsch_per_cgx_lmac * hw->cgx_links) + (hw->cap.nix_txsch_per_lbk_lmac * hw->lbk_links); *end = *start + hw->cap.nix_txsch_per_sdp_lmac; } } static int nix_check_txschq_alloc_req(struct rvu *rvu, int lvl, u16 pcifunc, struct nix_hw *nix_hw, struct nix_txsch_alloc_req *req) { struct rvu_hwinfo *hw = rvu->hw; int schq, req_schq, free_cnt; struct nix_txsch *txsch; int link, start, end; txsch = &nix_hw->txsch[lvl]; req_schq = req->schq_contig[lvl] + req->schq[lvl]; if (!req_schq) return 0; link = nix_get_tx_link(rvu, pcifunc); /* For traffic aggregating scheduler level, one queue is enough */ if (lvl >= hw->cap.nix_tx_aggr_lvl) { if (req_schq != 1) return NIX_AF_ERR_TLX_ALLOC_FAIL; return 0; } /* Get free SCHQ count and check if request can be accomodated */ if (hw->cap.nix_fixed_txschq_mapping) { nix_get_txschq_range(rvu, pcifunc, link, &start, &end); schq = start + (pcifunc & RVU_PFVF_FUNC_MASK); if (end <= txsch->schq.max && schq < end && !test_bit(schq, txsch->schq.bmap)) free_cnt = 1; else free_cnt = 0; } else { free_cnt = rvu_rsrc_free_count(&txsch->schq); } if (free_cnt < req_schq || req_schq > MAX_TXSCHQ_PER_FUNC) return NIX_AF_ERR_TLX_ALLOC_FAIL; /* If contiguous queues are needed, check for availability */ if (!hw->cap.nix_fixed_txschq_mapping && req->schq_contig[lvl] && !rvu_rsrc_check_contig(&txsch->schq, req->schq_contig[lvl])) return NIX_AF_ERR_TLX_ALLOC_FAIL; return 0; } static void nix_txsch_alloc(struct rvu *rvu, struct nix_txsch *txsch, struct nix_txsch_alloc_rsp *rsp, int lvl, int start, int end) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = rsp->hdr.pcifunc; int idx, schq; /* For traffic aggregating levels, queue alloc is based * on transmit link to which PF_FUNC is mapped to. */ if (lvl >= hw->cap.nix_tx_aggr_lvl) { /* A single TL queue is allocated */ if (rsp->schq_contig[lvl]) { rsp->schq_contig[lvl] = 1; rsp->schq_contig_list[lvl][0] = start; } /* Both contig and non-contig reqs doesn't make sense here */ if (rsp->schq_contig[lvl]) rsp->schq[lvl] = 0; if (rsp->schq[lvl]) { rsp->schq[lvl] = 1; rsp->schq_list[lvl][0] = start; } return; } /* Adjust the queue request count if HW supports * only one queue per level configuration. */ if (hw->cap.nix_fixed_txschq_mapping) { idx = pcifunc & RVU_PFVF_FUNC_MASK; schq = start + idx; if (idx >= (end - start) || test_bit(schq, txsch->schq.bmap)) { rsp->schq_contig[lvl] = 0; rsp->schq[lvl] = 0; return; } if (rsp->schq_contig[lvl]) { rsp->schq_contig[lvl] = 1; set_bit(schq, txsch->schq.bmap); rsp->schq_contig_list[lvl][0] = schq; rsp->schq[lvl] = 0; } else if (rsp->schq[lvl]) { rsp->schq[lvl] = 1; set_bit(schq, txsch->schq.bmap); rsp->schq_list[lvl][0] = schq; } return; } /* Allocate contiguous queue indices requesty first */ if (rsp->schq_contig[lvl]) { schq = bitmap_find_next_zero_area(txsch->schq.bmap, txsch->schq.max, start, rsp->schq_contig[lvl], 0); if (schq >= end) rsp->schq_contig[lvl] = 0; for (idx = 0; idx < rsp->schq_contig[lvl]; idx++) { set_bit(schq, txsch->schq.bmap); rsp->schq_contig_list[lvl][idx] = schq; schq++; } } /* Allocate non-contiguous queue indices */ if (rsp->schq[lvl]) { idx = 0; for (schq = start; schq < end; schq++) { if (!test_bit(schq, txsch->schq.bmap)) { set_bit(schq, txsch->schq.bmap); rsp->schq_list[lvl][idx++] = schq; } if (idx == rsp->schq[lvl]) break; } /* Update how many were allocated */ rsp->schq[lvl] = idx; } } int rvu_mbox_handler_nix_txsch_alloc(struct rvu *rvu, struct nix_txsch_alloc_req *req, struct nix_txsch_alloc_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; int link, blkaddr, rc = 0; int lvl, idx, start, end; struct nix_txsch *txsch; struct nix_hw *nix_hw; u32 *pfvf_map; int nixlf; u16 schq; rc = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (rc) return rc; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; mutex_lock(&rvu->rsrc_lock); /* Check if request is valid as per HW capabilities * and can be accomodated. */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { rc = nix_check_txschq_alloc_req(rvu, lvl, pcifunc, nix_hw, req); if (rc) goto err; } /* Allocate requested Tx scheduler queues */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { txsch = &nix_hw->txsch[lvl]; pfvf_map = txsch->pfvf_map; if (!req->schq[lvl] && !req->schq_contig[lvl]) continue; rsp->schq[lvl] = req->schq[lvl]; rsp->schq_contig[lvl] = req->schq_contig[lvl]; link = nix_get_tx_link(rvu, pcifunc); if (lvl >= hw->cap.nix_tx_aggr_lvl) { start = link; end = link; } else if (hw->cap.nix_fixed_txschq_mapping) { nix_get_txschq_range(rvu, pcifunc, link, &start, &end); } else { start = 0; end = txsch->schq.max; } nix_txsch_alloc(rvu, txsch, rsp, lvl, start, end); /* Reset queue config */ for (idx = 0; idx < req->schq_contig[lvl]; idx++) { schq = rsp->schq_contig_list[lvl][idx]; if (!(TXSCH_MAP_FLAGS(pfvf_map[schq]) & NIX_TXSCHQ_CFG_DONE)) pfvf_map[schq] = TXSCH_MAP(pcifunc, 0); nix_reset_tx_linkcfg(rvu, blkaddr, lvl, schq); nix_reset_tx_shaping(rvu, blkaddr, nixlf, lvl, schq); } for (idx = 0; idx < req->schq[lvl]; idx++) { schq = rsp->schq_list[lvl][idx]; if (!(TXSCH_MAP_FLAGS(pfvf_map[schq]) & NIX_TXSCHQ_CFG_DONE)) pfvf_map[schq] = TXSCH_MAP(pcifunc, 0); nix_reset_tx_linkcfg(rvu, blkaddr, lvl, schq); nix_reset_tx_shaping(rvu, blkaddr, nixlf, lvl, schq); } } rsp->aggr_level = hw->cap.nix_tx_aggr_lvl; rsp->aggr_lvl_rr_prio = TXSCH_TL1_DFLT_RR_PRIO; rsp->link_cfg_lvl = rvu_read64(rvu, blkaddr, NIX_AF_PSE_CHANNEL_LEVEL) & 0x01 ? NIX_TXSCH_LVL_TL3 : NIX_TXSCH_LVL_TL2; goto exit; err: rc = NIX_AF_ERR_TLX_ALLOC_FAIL; exit: mutex_unlock(&rvu->rsrc_lock); return rc; } static int nix_smq_flush(struct rvu *rvu, int blkaddr, int smq, u16 pcifunc, int nixlf) { int pf = rvu_get_pf(pcifunc); u8 cgx_id = 0, lmac_id = 0; int err, restore_tx_en = 0; u64 cfg; /* enable cgx tx if disabled */ if (is_pf_cgxmapped(rvu, pf)) { rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); restore_tx_en = !rvu_cgx_config_tx(rvu_cgx_pdata(cgx_id, rvu), lmac_id, true); } cfg = rvu_read64(rvu, blkaddr, NIX_AF_SMQX_CFG(smq)); /* Do SMQ flush and set enqueue xoff */ cfg |= BIT_ULL(50) | BIT_ULL(49); rvu_write64(rvu, blkaddr, NIX_AF_SMQX_CFG(smq), cfg); /* Disable backpressure from physical link, * otherwise SMQ flush may stall. */ rvu_cgx_enadis_rx_bp(rvu, pf, false); /* Wait for flush to complete */ err = rvu_poll_reg(rvu, blkaddr, NIX_AF_SMQX_CFG(smq), BIT_ULL(49), true); if (err) dev_err(rvu->dev, "NIXLF%d: SMQ%d flush failed\n", nixlf, smq); rvu_cgx_enadis_rx_bp(rvu, pf, true); /* restore cgx tx state */ if (restore_tx_en) rvu_cgx_config_tx(rvu_cgx_pdata(cgx_id, rvu), lmac_id, false); return err; } static int nix_txschq_free(struct rvu *rvu, u16 pcifunc) { int blkaddr, nixlf, lvl, schq, err; struct rvu_hwinfo *hw = rvu->hw; struct nix_txsch *txsch; struct nix_hw *nix_hw; u16 map_func; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); if (nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; /* Disable TL2/3 queue links and all XOFF's before SMQ flush*/ mutex_lock(&rvu->rsrc_lock); for (lvl = NIX_TXSCH_LVL_MDQ; lvl < NIX_TXSCH_LVL_CNT; lvl++) { txsch = &nix_hw->txsch[lvl]; if (lvl >= hw->cap.nix_tx_aggr_lvl) continue; for (schq = 0; schq < txsch->schq.max; schq++) { if (TXSCH_MAP_FUNC(txsch->pfvf_map[schq]) != pcifunc) continue; nix_reset_tx_linkcfg(rvu, blkaddr, lvl, schq); nix_clear_tx_xoff(rvu, blkaddr, lvl, schq); } } nix_clear_tx_xoff(rvu, blkaddr, NIX_TXSCH_LVL_TL1, nix_get_tx_link(rvu, pcifunc)); /* On PF cleanup, clear cfg done flag as * PF would have changed default config. */ if (!(pcifunc & RVU_PFVF_FUNC_MASK)) { txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL1]; schq = nix_get_tx_link(rvu, pcifunc); /* Do not clear pcifunc in txsch->pfvf_map[schq] because * VF might be using this TL1 queue */ map_func = TXSCH_MAP_FUNC(txsch->pfvf_map[schq]); txsch->pfvf_map[schq] = TXSCH_SET_FLAG(map_func, 0x0); } /* Flush SMQs */ txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; for (schq = 0; schq < txsch->schq.max; schq++) { if (TXSCH_MAP_FUNC(txsch->pfvf_map[schq]) != pcifunc) continue; nix_smq_flush(rvu, blkaddr, schq, pcifunc, nixlf); } /* Now free scheduler queues to free pool */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { /* TLs above aggregation level are shared across all PF * and it's VFs, hence skip freeing them. */ if (lvl >= hw->cap.nix_tx_aggr_lvl) continue; txsch = &nix_hw->txsch[lvl]; for (schq = 0; schq < txsch->schq.max; schq++) { if (TXSCH_MAP_FUNC(txsch->pfvf_map[schq]) != pcifunc) continue; rvu_free_rsrc(&txsch->schq, schq); txsch->pfvf_map[schq] = TXSCH_MAP(0, NIX_TXSCHQ_FREE); } } mutex_unlock(&rvu->rsrc_lock); /* Sync cached info for this LF in NDC-TX to LLC/DRAM */ rvu_write64(rvu, blkaddr, NIX_AF_NDC_TX_SYNC, BIT_ULL(12) | nixlf); err = rvu_poll_reg(rvu, blkaddr, NIX_AF_NDC_TX_SYNC, BIT_ULL(12), true); if (err) dev_err(rvu->dev, "NDC-TX sync failed for NIXLF %d\n", nixlf); return 0; } static int nix_txschq_free_one(struct rvu *rvu, struct nix_txsch_free_req *req) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; int lvl, schq, nixlf, blkaddr; struct nix_txsch *txsch; struct nix_hw *nix_hw; u32 *pfvf_map; int rc; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); if (nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; lvl = req->schq_lvl; schq = req->schq; txsch = &nix_hw->txsch[lvl]; if (lvl >= hw->cap.nix_tx_aggr_lvl || schq >= txsch->schq.max) return 0; pfvf_map = txsch->pfvf_map; mutex_lock(&rvu->rsrc_lock); if (TXSCH_MAP_FUNC(pfvf_map[schq]) != pcifunc) { rc = NIX_AF_ERR_TLX_INVALID; goto err; } /* Clear SW_XOFF of this resource only. * For SMQ level, all path XOFF's * need to be made clear by user */ nix_clear_tx_xoff(rvu, blkaddr, lvl, schq); /* Flush if it is a SMQ. Onus of disabling * TL2/3 queue links before SMQ flush is on user */ if (lvl == NIX_TXSCH_LVL_SMQ && nix_smq_flush(rvu, blkaddr, schq, pcifunc, nixlf)) { rc = NIX_AF_SMQ_FLUSH_FAILED; goto err; } /* Free the resource */ rvu_free_rsrc(&txsch->schq, schq); txsch->pfvf_map[schq] = TXSCH_MAP(0, NIX_TXSCHQ_FREE); mutex_unlock(&rvu->rsrc_lock); return 0; err: mutex_unlock(&rvu->rsrc_lock); return rc; } int rvu_mbox_handler_nix_txsch_free(struct rvu *rvu, struct nix_txsch_free_req *req, struct msg_rsp *rsp) { if (req->flags & TXSCHQ_FREE_ALL) return nix_txschq_free(rvu, req->hdr.pcifunc); else return nix_txschq_free_one(rvu, req); } static bool is_txschq_hierarchy_valid(struct rvu *rvu, u16 pcifunc, int blkaddr, int lvl, u64 reg, u64 regval) { u64 regbase = reg & 0xFFFF; u16 schq, parent; if (!rvu_check_valid_reg(TXSCHQ_HWREGMAP, lvl, reg)) return false; schq = TXSCHQ_IDX(reg, TXSCHQ_IDX_SHIFT); /* Check if this schq belongs to this PF/VF or not */ if (!is_valid_txschq(rvu, blkaddr, lvl, pcifunc, schq)) return false; parent = (regval >> 16) & 0x1FF; /* Validate MDQ's TL4 parent */ if (regbase == NIX_AF_MDQX_PARENT(0) && !is_valid_txschq(rvu, blkaddr, NIX_TXSCH_LVL_TL4, pcifunc, parent)) return false; /* Validate TL4's TL3 parent */ if (regbase == NIX_AF_TL4X_PARENT(0) && !is_valid_txschq(rvu, blkaddr, NIX_TXSCH_LVL_TL3, pcifunc, parent)) return false; /* Validate TL3's TL2 parent */ if (regbase == NIX_AF_TL3X_PARENT(0) && !is_valid_txschq(rvu, blkaddr, NIX_TXSCH_LVL_TL2, pcifunc, parent)) return false; /* Validate TL2's TL1 parent */ if (regbase == NIX_AF_TL2X_PARENT(0) && !is_valid_txschq(rvu, blkaddr, NIX_TXSCH_LVL_TL1, pcifunc, parent)) return false; return true; } static bool is_txschq_shaping_valid(struct rvu_hwinfo *hw, int lvl, u64 reg) { u64 regbase; if (hw->cap.nix_shaping) return true; /* If shaping and coloring is not supported, then * *_CIR and *_PIR registers should not be configured. */ regbase = reg & 0xFFFF; switch (lvl) { case NIX_TXSCH_LVL_TL1: if (regbase == NIX_AF_TL1X_CIR(0)) return false; break; case NIX_TXSCH_LVL_TL2: if (regbase == NIX_AF_TL2X_CIR(0) || regbase == NIX_AF_TL2X_PIR(0)) return false; break; case NIX_TXSCH_LVL_TL3: if (regbase == NIX_AF_TL3X_CIR(0) || regbase == NIX_AF_TL3X_PIR(0)) return false; break; case NIX_TXSCH_LVL_TL4: if (regbase == NIX_AF_TL4X_CIR(0) || regbase == NIX_AF_TL4X_PIR(0)) return false; break; case NIX_TXSCH_LVL_MDQ: if (regbase == NIX_AF_MDQX_CIR(0) || regbase == NIX_AF_MDQX_PIR(0)) return false; break; } return true; } static void nix_tl1_default_cfg(struct rvu *rvu, struct nix_hw *nix_hw, u16 pcifunc, int blkaddr) { u32 *pfvf_map; int schq; schq = nix_get_tx_link(rvu, pcifunc); pfvf_map = nix_hw->txsch[NIX_TXSCH_LVL_TL1].pfvf_map; /* Skip if PF has already done the config */ if (TXSCH_MAP_FLAGS(pfvf_map[schq]) & NIX_TXSCHQ_CFG_DONE) return; rvu_write64(rvu, blkaddr, NIX_AF_TL1X_TOPOLOGY(schq), (TXSCH_TL1_DFLT_RR_PRIO << 1)); /* On OcteonTx2 the config was in bytes and newer silcons * it's changed to weight. */ if (!rvu->hw->cap.nix_common_dwrr_mtu) rvu_write64(rvu, blkaddr, NIX_AF_TL1X_SCHEDULE(schq), TXSCH_TL1_DFLT_RR_QTM); else rvu_write64(rvu, blkaddr, NIX_AF_TL1X_SCHEDULE(schq), CN10K_MAX_DWRR_WEIGHT); rvu_write64(rvu, blkaddr, NIX_AF_TL1X_CIR(schq), 0x00); pfvf_map[schq] = TXSCH_SET_FLAG(pfvf_map[schq], NIX_TXSCHQ_CFG_DONE); } /* Register offset - [15:0] * Scheduler Queue number - [25:16] */ #define NIX_TX_SCHQ_MASK GENMASK_ULL(25, 0) static int nix_txschq_cfg_read(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr, struct nix_txschq_config *req, struct nix_txschq_config *rsp) { u16 pcifunc = req->hdr.pcifunc; int idx, schq; u64 reg; for (idx = 0; idx < req->num_regs; idx++) { reg = req->reg[idx]; reg &= NIX_TX_SCHQ_MASK; schq = TXSCHQ_IDX(reg, TXSCHQ_IDX_SHIFT); if (!rvu_check_valid_reg(TXSCHQ_HWREGMAP, req->lvl, reg) || !is_valid_txschq(rvu, blkaddr, req->lvl, pcifunc, schq)) return NIX_AF_INVAL_TXSCHQ_CFG; rsp->regval[idx] = rvu_read64(rvu, blkaddr, reg); } rsp->lvl = req->lvl; rsp->num_regs = req->num_regs; return 0; } static void rvu_nix_tx_tl2_cfg(struct rvu *rvu, int blkaddr, u16 pcifunc, struct nix_txsch *txsch) { struct rvu_hwinfo *hw = rvu->hw; int lbk_link_start, lbk_links; u8 pf = rvu_get_pf(pcifunc); int schq; if (!is_pf_cgxmapped(rvu, pf)) return; lbk_link_start = hw->cgx_links; for (schq = 0; schq < txsch->schq.max; schq++) { if (TXSCH_MAP_FUNC(txsch->pfvf_map[schq]) != pcifunc) continue; /* Enable all LBK links with channel 63 by default so that * packets can be sent to LBK with a NPC TX MCAM rule */ lbk_links = hw->lbk_links; while (lbk_links--) rvu_write64(rvu, blkaddr, NIX_AF_TL3_TL2X_LINKX_CFG(schq, lbk_link_start + lbk_links), BIT_ULL(12) | RVU_SWITCH_LBK_CHAN); } } int rvu_mbox_handler_nix_txschq_cfg(struct rvu *rvu, struct nix_txschq_config *req, struct nix_txschq_config *rsp) { u64 reg, val, regval, schq_regbase, val_mask; struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; struct nix_txsch *txsch; struct nix_hw *nix_hw; int blkaddr, idx, err; int nixlf, schq; u32 *pfvf_map; if (req->lvl >= NIX_TXSCH_LVL_CNT || req->num_regs > MAX_REGS_PER_MBOX_MSG) return NIX_AF_INVAL_TXSCHQ_CFG; err = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (err) return err; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; if (req->read) return nix_txschq_cfg_read(rvu, nix_hw, blkaddr, req, rsp); txsch = &nix_hw->txsch[req->lvl]; pfvf_map = txsch->pfvf_map; if (req->lvl >= hw->cap.nix_tx_aggr_lvl && pcifunc & RVU_PFVF_FUNC_MASK) { mutex_lock(&rvu->rsrc_lock); if (req->lvl == NIX_TXSCH_LVL_TL1) nix_tl1_default_cfg(rvu, nix_hw, pcifunc, blkaddr); mutex_unlock(&rvu->rsrc_lock); return 0; } for (idx = 0; idx < req->num_regs; idx++) { reg = req->reg[idx]; reg &= NIX_TX_SCHQ_MASK; regval = req->regval[idx]; schq_regbase = reg & 0xFFFF; val_mask = req->regval_mask[idx]; if (!is_txschq_hierarchy_valid(rvu, pcifunc, blkaddr, txsch->lvl, reg, regval)) return NIX_AF_INVAL_TXSCHQ_CFG; /* Check if shaping and coloring is supported */ if (!is_txschq_shaping_valid(hw, req->lvl, reg)) continue; val = rvu_read64(rvu, blkaddr, reg); regval = (val & val_mask) | (regval & ~val_mask); /* Handle shaping state toggle specially */ if (hw->cap.nix_shaper_toggle_wait && handle_txschq_shaper_update(rvu, blkaddr, nixlf, req->lvl, reg, regval)) continue; /* Replace PF/VF visible NIXLF slot with HW NIXLF id */ if (schq_regbase == NIX_AF_SMQX_CFG(0)) { nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); regval &= ~(0x7FULL << 24); regval |= ((u64)nixlf << 24); } /* Clear 'BP_ENA' config, if it's not allowed */ if (!hw->cap.nix_tx_link_bp) { if (schq_regbase == NIX_AF_TL4X_SDP_LINK_CFG(0) || (schq_regbase & 0xFF00) == NIX_AF_TL3_TL2X_LINKX_CFG(0, 0)) regval &= ~BIT_ULL(13); } /* Mark config as done for TL1 by PF */ if (schq_regbase >= NIX_AF_TL1X_SCHEDULE(0) && schq_regbase <= NIX_AF_TL1X_GREEN_BYTES(0)) { schq = TXSCHQ_IDX(reg, TXSCHQ_IDX_SHIFT); mutex_lock(&rvu->rsrc_lock); pfvf_map[schq] = TXSCH_SET_FLAG(pfvf_map[schq], NIX_TXSCHQ_CFG_DONE); mutex_unlock(&rvu->rsrc_lock); } /* SMQ flush is special hence split register writes such * that flush first and write rest of the bits later. */ if (schq_regbase == NIX_AF_SMQX_CFG(0) && (regval & BIT_ULL(49))) { schq = TXSCHQ_IDX(reg, TXSCHQ_IDX_SHIFT); nix_smq_flush(rvu, blkaddr, schq, pcifunc, nixlf); regval &= ~BIT_ULL(49); } rvu_write64(rvu, blkaddr, reg, regval); } rvu_nix_tx_tl2_cfg(rvu, blkaddr, pcifunc, &nix_hw->txsch[NIX_TXSCH_LVL_TL2]); return 0; } static int nix_rx_vtag_cfg(struct rvu *rvu, int nixlf, int blkaddr, struct nix_vtag_config *req) { u64 regval = req->vtag_size; if (req->rx.vtag_type > NIX_AF_LFX_RX_VTAG_TYPE7 || req->vtag_size > VTAGSIZE_T8) return -EINVAL; /* RX VTAG Type 7 reserved for vf vlan */ if (req->rx.vtag_type == NIX_AF_LFX_RX_VTAG_TYPE7) return NIX_AF_ERR_RX_VTAG_INUSE; if (req->rx.capture_vtag) regval |= BIT_ULL(5); if (req->rx.strip_vtag) regval |= BIT_ULL(4); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_VTAG_TYPEX(nixlf, req->rx.vtag_type), regval); return 0; } static int nix_tx_vtag_free(struct rvu *rvu, int blkaddr, u16 pcifunc, int index) { struct nix_hw *nix_hw = get_nix_hw(rvu->hw, blkaddr); struct nix_txvlan *vlan; if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; vlan = &nix_hw->txvlan; if (vlan->entry2pfvf_map[index] != pcifunc) return NIX_AF_ERR_PARAM; rvu_write64(rvu, blkaddr, NIX_AF_TX_VTAG_DEFX_DATA(index), 0x0ull); rvu_write64(rvu, blkaddr, NIX_AF_TX_VTAG_DEFX_CTL(index), 0x0ull); vlan->entry2pfvf_map[index] = 0; rvu_free_rsrc(&vlan->rsrc, index); return 0; } static void nix_free_tx_vtag_entries(struct rvu *rvu, u16 pcifunc) { struct nix_txvlan *vlan; struct nix_hw *nix_hw; int index, blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return; vlan = &nix_hw->txvlan; mutex_lock(&vlan->rsrc_lock); /* Scan all the entries and free the ones mapped to 'pcifunc' */ for (index = 0; index < vlan->rsrc.max; index++) { if (vlan->entry2pfvf_map[index] == pcifunc) nix_tx_vtag_free(rvu, blkaddr, pcifunc, index); } mutex_unlock(&vlan->rsrc_lock); } static int nix_tx_vtag_alloc(struct rvu *rvu, int blkaddr, u64 vtag, u8 size) { struct nix_hw *nix_hw = get_nix_hw(rvu->hw, blkaddr); struct nix_txvlan *vlan; u64 regval; int index; if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; vlan = &nix_hw->txvlan; mutex_lock(&vlan->rsrc_lock); index = rvu_alloc_rsrc(&vlan->rsrc); if (index < 0) { mutex_unlock(&vlan->rsrc_lock); return index; } mutex_unlock(&vlan->rsrc_lock); regval = size ? vtag : vtag << 32; rvu_write64(rvu, blkaddr, NIX_AF_TX_VTAG_DEFX_DATA(index), regval); rvu_write64(rvu, blkaddr, NIX_AF_TX_VTAG_DEFX_CTL(index), size); return index; } static int nix_tx_vtag_decfg(struct rvu *rvu, int blkaddr, struct nix_vtag_config *req) { struct nix_hw *nix_hw = get_nix_hw(rvu->hw, blkaddr); u16 pcifunc = req->hdr.pcifunc; int idx0 = req->tx.vtag0_idx; int idx1 = req->tx.vtag1_idx; struct nix_txvlan *vlan; int err = 0; if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; vlan = &nix_hw->txvlan; if (req->tx.free_vtag0 && req->tx.free_vtag1) if (vlan->entry2pfvf_map[idx0] != pcifunc || vlan->entry2pfvf_map[idx1] != pcifunc) return NIX_AF_ERR_PARAM; mutex_lock(&vlan->rsrc_lock); if (req->tx.free_vtag0) { err = nix_tx_vtag_free(rvu, blkaddr, pcifunc, idx0); if (err) goto exit; } if (req->tx.free_vtag1) err = nix_tx_vtag_free(rvu, blkaddr, pcifunc, idx1); exit: mutex_unlock(&vlan->rsrc_lock); return err; } static int nix_tx_vtag_cfg(struct rvu *rvu, int blkaddr, struct nix_vtag_config *req, struct nix_vtag_config_rsp *rsp) { struct nix_hw *nix_hw = get_nix_hw(rvu->hw, blkaddr); struct nix_txvlan *vlan; u16 pcifunc = req->hdr.pcifunc; if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; vlan = &nix_hw->txvlan; if (req->tx.cfg_vtag0) { rsp->vtag0_idx = nix_tx_vtag_alloc(rvu, blkaddr, req->tx.vtag0, req->vtag_size); if (rsp->vtag0_idx < 0) return NIX_AF_ERR_TX_VTAG_NOSPC; vlan->entry2pfvf_map[rsp->vtag0_idx] = pcifunc; } if (req->tx.cfg_vtag1) { rsp->vtag1_idx = nix_tx_vtag_alloc(rvu, blkaddr, req->tx.vtag1, req->vtag_size); if (rsp->vtag1_idx < 0) goto err_free; vlan->entry2pfvf_map[rsp->vtag1_idx] = pcifunc; } return 0; err_free: if (req->tx.cfg_vtag0) nix_tx_vtag_free(rvu, blkaddr, pcifunc, rsp->vtag0_idx); return NIX_AF_ERR_TX_VTAG_NOSPC; } int rvu_mbox_handler_nix_vtag_cfg(struct rvu *rvu, struct nix_vtag_config *req, struct nix_vtag_config_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; int blkaddr, nixlf, err; err = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (err) return err; if (req->cfg_type) { /* rx vtag configuration */ err = nix_rx_vtag_cfg(rvu, nixlf, blkaddr, req); if (err) return NIX_AF_ERR_PARAM; } else { /* tx vtag configuration */ if ((req->tx.cfg_vtag0 || req->tx.cfg_vtag1) && (req->tx.free_vtag0 || req->tx.free_vtag1)) return NIX_AF_ERR_PARAM; if (req->tx.cfg_vtag0 || req->tx.cfg_vtag1) return nix_tx_vtag_cfg(rvu, blkaddr, req, rsp); if (req->tx.free_vtag0 || req->tx.free_vtag1) return nix_tx_vtag_decfg(rvu, blkaddr, req); } return 0; } static int nix_blk_setup_mce(struct rvu *rvu, struct nix_hw *nix_hw, int mce, u8 op, u16 pcifunc, int next, bool eol) { struct nix_aq_enq_req aq_req; int err; aq_req.hdr.pcifunc = 0; aq_req.ctype = NIX_AQ_CTYPE_MCE; aq_req.op = op; aq_req.qidx = mce; /* Use RSS with RSS index 0 */ aq_req.mce.op = 1; aq_req.mce.index = 0; aq_req.mce.eol = eol; aq_req.mce.pf_func = pcifunc; aq_req.mce.next = next; /* All fields valid */ *(u64 *)(&aq_req.mce_mask) = ~0ULL; err = rvu_nix_blk_aq_enq_inst(rvu, nix_hw, &aq_req, NULL); if (err) { dev_err(rvu->dev, "Failed to setup Bcast MCE for PF%d:VF%d\n", rvu_get_pf(pcifunc), pcifunc & RVU_PFVF_FUNC_MASK); return err; } return 0; } static int nix_update_mce_list_entry(struct nix_mce_list *mce_list, u16 pcifunc, bool add) { struct mce *mce, *tail = NULL; bool delete = false; /* Scan through the current list */ hlist_for_each_entry(mce, &mce_list->head, node) { /* If already exists, then delete */ if (mce->pcifunc == pcifunc && !add) { delete = true; break; } else if (mce->pcifunc == pcifunc && add) { /* entry already exists */ return 0; } tail = mce; } if (delete) { hlist_del(&mce->node); kfree(mce); mce_list->count--; return 0; } if (!add) return 0; /* Add a new one to the list, at the tail */ mce = kzalloc(sizeof(*mce), GFP_KERNEL); if (!mce) return -ENOMEM; mce->pcifunc = pcifunc; if (!tail) hlist_add_head(&mce->node, &mce_list->head); else hlist_add_behind(&mce->node, &tail->node); mce_list->count++; return 0; } int nix_update_mce_list(struct rvu *rvu, u16 pcifunc, struct nix_mce_list *mce_list, int mce_idx, int mcam_index, bool add) { int err = 0, idx, next_idx, last_idx, blkaddr, npc_blkaddr; struct npc_mcam *mcam = &rvu->hw->mcam; struct nix_mcast *mcast; struct nix_hw *nix_hw; struct mce *mce; if (!mce_list) return -EINVAL; /* Get this PF/VF func's MCE index */ idx = mce_idx + (pcifunc & RVU_PFVF_FUNC_MASK); if (idx > (mce_idx + mce_list->max)) { dev_err(rvu->dev, "%s: Idx %d > max MCE idx %d, for PF%d bcast list\n", __func__, idx, mce_list->max, pcifunc >> RVU_PFVF_PF_SHIFT); return -EINVAL; } err = nix_get_struct_ptrs(rvu, pcifunc, &nix_hw, &blkaddr); if (err) return err; mcast = &nix_hw->mcast; mutex_lock(&mcast->mce_lock); err = nix_update_mce_list_entry(mce_list, pcifunc, add); if (err) goto end; /* Disable MCAM entry in NPC */ if (!mce_list->count) { npc_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); npc_enable_mcam_entry(rvu, mcam, npc_blkaddr, mcam_index, false); goto end; } /* Dump the updated list to HW */ idx = mce_idx; last_idx = idx + mce_list->count - 1; hlist_for_each_entry(mce, &mce_list->head, node) { if (idx > last_idx) break; next_idx = idx + 1; /* EOL should be set in last MCE */ err = nix_blk_setup_mce(rvu, nix_hw, idx, NIX_AQ_INSTOP_WRITE, mce->pcifunc, next_idx, (next_idx > last_idx) ? true : false); if (err) goto end; idx++; } end: mutex_unlock(&mcast->mce_lock); return err; } void nix_get_mce_list(struct rvu *rvu, u16 pcifunc, int type, struct nix_mce_list **mce_list, int *mce_idx) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_pfvf *pfvf; if (!hw->cap.nix_rx_multicast || !is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc & ~RVU_PFVF_FUNC_MASK))) { *mce_list = NULL; *mce_idx = 0; return; } /* Get this PF/VF func's MCE index */ pfvf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK); if (type == NIXLF_BCAST_ENTRY) { *mce_list = &pfvf->bcast_mce_list; *mce_idx = pfvf->bcast_mce_idx; } else if (type == NIXLF_ALLMULTI_ENTRY) { *mce_list = &pfvf->mcast_mce_list; *mce_idx = pfvf->mcast_mce_idx; } else if (type == NIXLF_PROMISC_ENTRY) { *mce_list = &pfvf->promisc_mce_list; *mce_idx = pfvf->promisc_mce_idx; } else { *mce_list = NULL; *mce_idx = 0; } } static int nix_update_mce_rule(struct rvu *rvu, u16 pcifunc, int type, bool add) { int err = 0, nixlf, blkaddr, mcam_index, mce_idx; struct npc_mcam *mcam = &rvu->hw->mcam; struct rvu_hwinfo *hw = rvu->hw; struct nix_mce_list *mce_list; int pf; /* skip multicast pkt replication for AF's VFs & SDP links */ if (is_afvf(pcifunc) || is_sdp_pfvf(pcifunc)) return 0; if (!hw->cap.nix_rx_multicast) return 0; pf = rvu_get_pf(pcifunc); if (!is_pf_cgxmapped(rvu, pf)) return 0; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return -EINVAL; nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); if (nixlf < 0) return -EINVAL; nix_get_mce_list(rvu, pcifunc, type, &mce_list, &mce_idx); mcam_index = npc_get_nixlf_mcam_index(mcam, pcifunc & ~RVU_PFVF_FUNC_MASK, nixlf, type); err = nix_update_mce_list(rvu, pcifunc, mce_list, mce_idx, mcam_index, add); return err; } static int nix_setup_mce_tables(struct rvu *rvu, struct nix_hw *nix_hw) { struct nix_mcast *mcast = &nix_hw->mcast; int err, pf, numvfs, idx; struct rvu_pfvf *pfvf; u16 pcifunc; u64 cfg; /* Skip PF0 (i.e AF) */ for (pf = 1; pf < (rvu->cgx_mapped_pfs + 1); pf++) { cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); /* If PF is not enabled, nothing to do */ if (!((cfg >> 20) & 0x01)) continue; /* Get numVFs attached to this PF */ numvfs = (cfg >> 12) & 0xFF; pfvf = &rvu->pf[pf]; /* This NIX0/1 block mapped to PF ? */ if (pfvf->nix_blkaddr != nix_hw->blkaddr) continue; /* save start idx of broadcast mce list */ pfvf->bcast_mce_idx = nix_alloc_mce_list(mcast, numvfs + 1); nix_mce_list_init(&pfvf->bcast_mce_list, numvfs + 1); /* save start idx of multicast mce list */ pfvf->mcast_mce_idx = nix_alloc_mce_list(mcast, numvfs + 1); nix_mce_list_init(&pfvf->mcast_mce_list, numvfs + 1); /* save the start idx of promisc mce list */ pfvf->promisc_mce_idx = nix_alloc_mce_list(mcast, numvfs + 1); nix_mce_list_init(&pfvf->promisc_mce_list, numvfs + 1); for (idx = 0; idx < (numvfs + 1); idx++) { /* idx-0 is for PF, followed by VFs */ pcifunc = (pf << RVU_PFVF_PF_SHIFT); pcifunc |= idx; /* Add dummy entries now, so that we don't have to check * for whether AQ_OP should be INIT/WRITE later on. * Will be updated when a NIXLF is attached/detached to * these PF/VFs. */ err = nix_blk_setup_mce(rvu, nix_hw, pfvf->bcast_mce_idx + idx, NIX_AQ_INSTOP_INIT, pcifunc, 0, true); if (err) return err; /* add dummy entries to multicast mce list */ err = nix_blk_setup_mce(rvu, nix_hw, pfvf->mcast_mce_idx + idx, NIX_AQ_INSTOP_INIT, pcifunc, 0, true); if (err) return err; /* add dummy entries to promisc mce list */ err = nix_blk_setup_mce(rvu, nix_hw, pfvf->promisc_mce_idx + idx, NIX_AQ_INSTOP_INIT, pcifunc, 0, true); if (err) return err; } } return 0; } static int nix_setup_mcast(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr) { struct nix_mcast *mcast = &nix_hw->mcast; struct rvu_hwinfo *hw = rvu->hw; int err, size; size = (rvu_read64(rvu, blkaddr, NIX_AF_CONST3) >> 16) & 0x0F; size = (1ULL << size); /* Alloc memory for multicast/mirror replication entries */ err = qmem_alloc(rvu->dev, &mcast->mce_ctx, (256UL << MC_TBL_SIZE), size); if (err) return -ENOMEM; rvu_write64(rvu, blkaddr, NIX_AF_RX_MCAST_BASE, (u64)mcast->mce_ctx->iova); /* Set max list length equal to max no of VFs per PF + PF itself */ rvu_write64(rvu, blkaddr, NIX_AF_RX_MCAST_CFG, BIT_ULL(36) | (hw->max_vfs_per_pf << 4) | MC_TBL_SIZE); /* Alloc memory for multicast replication buffers */ size = rvu_read64(rvu, blkaddr, NIX_AF_MC_MIRROR_CONST) & 0xFFFF; err = qmem_alloc(rvu->dev, &mcast->mcast_buf, (8UL << MC_BUF_CNT), size); if (err) return -ENOMEM; rvu_write64(rvu, blkaddr, NIX_AF_RX_MCAST_BUF_BASE, (u64)mcast->mcast_buf->iova); /* Alloc pkind for NIX internal RX multicast/mirror replay */ mcast->replay_pkind = rvu_alloc_rsrc(&hw->pkind.rsrc); rvu_write64(rvu, blkaddr, NIX_AF_RX_MCAST_BUF_CFG, BIT_ULL(63) | (mcast->replay_pkind << 24) | BIT_ULL(20) | MC_BUF_CNT); mutex_init(&mcast->mce_lock); return nix_setup_mce_tables(rvu, nix_hw); } static int nix_setup_txvlan(struct rvu *rvu, struct nix_hw *nix_hw) { struct nix_txvlan *vlan = &nix_hw->txvlan; int err; /* Allocate resource bimap for tx vtag def registers*/ vlan->rsrc.max = NIX_TX_VTAG_DEF_MAX; err = rvu_alloc_bitmap(&vlan->rsrc); if (err) return -ENOMEM; /* Alloc memory for saving entry to RVU PFFUNC allocation mapping */ vlan->entry2pfvf_map = devm_kcalloc(rvu->dev, vlan->rsrc.max, sizeof(u16), GFP_KERNEL); if (!vlan->entry2pfvf_map) goto free_mem; mutex_init(&vlan->rsrc_lock); return 0; free_mem: kfree(vlan->rsrc.bmap); return -ENOMEM; } static int nix_setup_txschq(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr) { struct nix_txsch *txsch; int err, lvl, schq; u64 cfg, reg; /* Get scheduler queue count of each type and alloc * bitmap for each for alloc/free/attach operations. */ for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { txsch = &nix_hw->txsch[lvl]; txsch->lvl = lvl; switch (lvl) { case NIX_TXSCH_LVL_SMQ: reg = NIX_AF_MDQ_CONST; break; case NIX_TXSCH_LVL_TL4: reg = NIX_AF_TL4_CONST; break; case NIX_TXSCH_LVL_TL3: reg = NIX_AF_TL3_CONST; break; case NIX_TXSCH_LVL_TL2: reg = NIX_AF_TL2_CONST; break; case NIX_TXSCH_LVL_TL1: reg = NIX_AF_TL1_CONST; break; } cfg = rvu_read64(rvu, blkaddr, reg); txsch->schq.max = cfg & 0xFFFF; err = rvu_alloc_bitmap(&txsch->schq); if (err) return err; /* Allocate memory for scheduler queues to * PF/VF pcifunc mapping info. */ txsch->pfvf_map = devm_kcalloc(rvu->dev, txsch->schq.max, sizeof(u32), GFP_KERNEL); if (!txsch->pfvf_map) return -ENOMEM; for (schq = 0; schq < txsch->schq.max; schq++) txsch->pfvf_map[schq] = TXSCH_MAP(0, NIX_TXSCHQ_FREE); } /* Setup a default value of 8192 as DWRR MTU */ if (rvu->hw->cap.nix_common_dwrr_mtu) { rvu_write64(rvu, blkaddr, NIX_AF_DWRR_RPM_MTU, convert_bytes_to_dwrr_mtu(8192)); rvu_write64(rvu, blkaddr, NIX_AF_DWRR_SDP_MTU, convert_bytes_to_dwrr_mtu(8192)); } return 0; } int rvu_nix_reserve_mark_format(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr, u32 cfg) { int fmt_idx; for (fmt_idx = 0; fmt_idx < nix_hw->mark_format.in_use; fmt_idx++) { if (nix_hw->mark_format.cfg[fmt_idx] == cfg) return fmt_idx; } if (fmt_idx >= nix_hw->mark_format.total) return -ERANGE; rvu_write64(rvu, blkaddr, NIX_AF_MARK_FORMATX_CTL(fmt_idx), cfg); nix_hw->mark_format.cfg[fmt_idx] = cfg; nix_hw->mark_format.in_use++; return fmt_idx; } static int nix_af_mark_format_setup(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr) { u64 cfgs[] = { [NIX_MARK_CFG_IP_DSCP_RED] = 0x10003, [NIX_MARK_CFG_IP_DSCP_YELLOW] = 0x11200, [NIX_MARK_CFG_IP_DSCP_YELLOW_RED] = 0x11203, [NIX_MARK_CFG_IP_ECN_RED] = 0x6000c, [NIX_MARK_CFG_IP_ECN_YELLOW] = 0x60c00, [NIX_MARK_CFG_IP_ECN_YELLOW_RED] = 0x60c0c, [NIX_MARK_CFG_VLAN_DEI_RED] = 0x30008, [NIX_MARK_CFG_VLAN_DEI_YELLOW] = 0x30800, [NIX_MARK_CFG_VLAN_DEI_YELLOW_RED] = 0x30808, }; int i, rc; u64 total; total = (rvu_read64(rvu, blkaddr, NIX_AF_PSE_CONST) & 0xFF00) >> 8; nix_hw->mark_format.total = (u8)total; nix_hw->mark_format.cfg = devm_kcalloc(rvu->dev, total, sizeof(u32), GFP_KERNEL); if (!nix_hw->mark_format.cfg) return -ENOMEM; for (i = 0; i < NIX_MARK_CFG_MAX; i++) { rc = rvu_nix_reserve_mark_format(rvu, nix_hw, blkaddr, cfgs[i]); if (rc < 0) dev_err(rvu->dev, "Err %d in setup mark format %d\n", i, rc); } return 0; } static void rvu_get_lbk_link_max_frs(struct rvu *rvu, u16 *max_mtu) { /* CN10K supports LBK FIFO size 72 KB */ if (rvu->hw->lbk_bufsize == 0x12000) *max_mtu = CN10K_LBK_LINK_MAX_FRS; else *max_mtu = NIC_HW_MAX_FRS; } static void rvu_get_lmac_link_max_frs(struct rvu *rvu, u16 *max_mtu) { /* RPM supports FIFO len 128 KB */ if (rvu_cgx_get_fifolen(rvu) == 0x20000) *max_mtu = CN10K_LMAC_LINK_MAX_FRS; else *max_mtu = NIC_HW_MAX_FRS; } int rvu_mbox_handler_nix_get_hw_info(struct rvu *rvu, struct msg_req *req, struct nix_hw_info *rsp) { u16 pcifunc = req->hdr.pcifunc; u64 dwrr_mtu; int blkaddr; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; if (is_afvf(pcifunc)) rvu_get_lbk_link_max_frs(rvu, &rsp->max_mtu); else rvu_get_lmac_link_max_frs(rvu, &rsp->max_mtu); rsp->min_mtu = NIC_HW_MIN_FRS; if (!rvu->hw->cap.nix_common_dwrr_mtu) { /* Return '1' on OTx2 */ rsp->rpm_dwrr_mtu = 1; rsp->sdp_dwrr_mtu = 1; return 0; } dwrr_mtu = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_DWRR_RPM_MTU); rsp->rpm_dwrr_mtu = convert_dwrr_mtu_to_bytes(dwrr_mtu); dwrr_mtu = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_DWRR_SDP_MTU); rsp->sdp_dwrr_mtu = convert_dwrr_mtu_to_bytes(dwrr_mtu); return 0; } int rvu_mbox_handler_nix_stats_rst(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; int i, nixlf, blkaddr, err; u64 stats; err = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (err) return err; /* Get stats count supported by HW */ stats = rvu_read64(rvu, blkaddr, NIX_AF_CONST1); /* Reset tx stats */ for (i = 0; i < ((stats >> 24) & 0xFF); i++) rvu_write64(rvu, blkaddr, NIX_AF_LFX_TX_STATX(nixlf, i), 0); /* Reset rx stats */ for (i = 0; i < ((stats >> 32) & 0xFF); i++) rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_STATX(nixlf, i), 0); return 0; } /* Returns the ALG index to be set into NPC_RX_ACTION */ static int get_flowkey_alg_idx(struct nix_hw *nix_hw, u32 flow_cfg) { int i; /* Scan over exiting algo entries to find a match */ for (i = 0; i < nix_hw->flowkey.in_use; i++) if (nix_hw->flowkey.flowkey[i] == flow_cfg) return i; return -ERANGE; } static int set_flowkey_fields(struct nix_rx_flowkey_alg *alg, u32 flow_cfg) { int idx, nr_field, key_off, field_marker, keyoff_marker; int max_key_off, max_bit_pos, group_member; struct nix_rx_flowkey_alg *field; struct nix_rx_flowkey_alg tmp; u32 key_type, valid_key; int l4_key_offset = 0; if (!alg) return -EINVAL; #define FIELDS_PER_ALG 5 #define MAX_KEY_OFF 40 /* Clear all fields */ memset(alg, 0, sizeof(uint64_t) * FIELDS_PER_ALG); /* Each of the 32 possible flow key algorithm definitions should * fall into above incremental config (except ALG0). Otherwise a * single NPC MCAM entry is not sufficient for supporting RSS. * * If a different definition or combination needed then NPC MCAM * has to be programmed to filter such pkts and it's action should * point to this definition to calculate flowtag or hash. * * The `for loop` goes over _all_ protocol field and the following * variables depicts the state machine forward progress logic. * * keyoff_marker - Enabled when hash byte length needs to be accounted * in field->key_offset update. * field_marker - Enabled when a new field needs to be selected. * group_member - Enabled when protocol is part of a group. */ keyoff_marker = 0; max_key_off = 0; group_member = 0; nr_field = 0; key_off = 0; field_marker = 1; field = &tmp; max_bit_pos = fls(flow_cfg); for (idx = 0; idx < max_bit_pos && nr_field < FIELDS_PER_ALG && key_off < MAX_KEY_OFF; idx++) { key_type = BIT(idx); valid_key = flow_cfg & key_type; /* Found a field marker, reset the field values */ if (field_marker) memset(&tmp, 0, sizeof(tmp)); field_marker = true; keyoff_marker = true; switch (key_type) { case NIX_FLOW_KEY_TYPE_PORT: field->sel_chan = true; /* This should be set to 1, when SEL_CHAN is set */ field->bytesm1 = 1; break; case NIX_FLOW_KEY_TYPE_IPV4_PROTO: field->lid = NPC_LID_LC; field->hdr_offset = 9; /* offset */ field->bytesm1 = 0; /* 1 byte */ field->ltype_match = NPC_LT_LC_IP; field->ltype_mask = 0xF; break; case NIX_FLOW_KEY_TYPE_IPV4: case NIX_FLOW_KEY_TYPE_INNR_IPV4: field->lid = NPC_LID_LC; field->ltype_match = NPC_LT_LC_IP; if (key_type == NIX_FLOW_KEY_TYPE_INNR_IPV4) { field->lid = NPC_LID_LG; field->ltype_match = NPC_LT_LG_TU_IP; } field->hdr_offset = 12; /* SIP offset */ field->bytesm1 = 7; /* SIP + DIP, 8 bytes */ field->ltype_mask = 0xF; /* Match only IPv4 */ keyoff_marker = false; break; case NIX_FLOW_KEY_TYPE_IPV6: case NIX_FLOW_KEY_TYPE_INNR_IPV6: field->lid = NPC_LID_LC; field->ltype_match = NPC_LT_LC_IP6; if (key_type == NIX_FLOW_KEY_TYPE_INNR_IPV6) { field->lid = NPC_LID_LG; field->ltype_match = NPC_LT_LG_TU_IP6; } field->hdr_offset = 8; /* SIP offset */ field->bytesm1 = 31; /* SIP + DIP, 32 bytes */ field->ltype_mask = 0xF; /* Match only IPv6 */ break; case NIX_FLOW_KEY_TYPE_TCP: case NIX_FLOW_KEY_TYPE_UDP: case NIX_FLOW_KEY_TYPE_SCTP: case NIX_FLOW_KEY_TYPE_INNR_TCP: case NIX_FLOW_KEY_TYPE_INNR_UDP: case NIX_FLOW_KEY_TYPE_INNR_SCTP: field->lid = NPC_LID_LD; if (key_type == NIX_FLOW_KEY_TYPE_INNR_TCP || key_type == NIX_FLOW_KEY_TYPE_INNR_UDP || key_type == NIX_FLOW_KEY_TYPE_INNR_SCTP) field->lid = NPC_LID_LH; field->bytesm1 = 3; /* Sport + Dport, 4 bytes */ /* Enum values for NPC_LID_LD and NPC_LID_LG are same, * so no need to change the ltype_match, just change * the lid for inner protocols */ BUILD_BUG_ON((int)NPC_LT_LD_TCP != (int)NPC_LT_LH_TU_TCP); BUILD_BUG_ON((int)NPC_LT_LD_UDP != (int)NPC_LT_LH_TU_UDP); BUILD_BUG_ON((int)NPC_LT_LD_SCTP != (int)NPC_LT_LH_TU_SCTP); if ((key_type == NIX_FLOW_KEY_TYPE_TCP || key_type == NIX_FLOW_KEY_TYPE_INNR_TCP) && valid_key) { field->ltype_match |= NPC_LT_LD_TCP; group_member = true; } else if ((key_type == NIX_FLOW_KEY_TYPE_UDP || key_type == NIX_FLOW_KEY_TYPE_INNR_UDP) && valid_key) { field->ltype_match |= NPC_LT_LD_UDP; group_member = true; } else if ((key_type == NIX_FLOW_KEY_TYPE_SCTP || key_type == NIX_FLOW_KEY_TYPE_INNR_SCTP) && valid_key) { field->ltype_match |= NPC_LT_LD_SCTP; group_member = true; } field->ltype_mask = ~field->ltype_match; if (key_type == NIX_FLOW_KEY_TYPE_SCTP || key_type == NIX_FLOW_KEY_TYPE_INNR_SCTP) { /* Handle the case where any of the group item * is enabled in the group but not the final one */ if (group_member) { valid_key = true; group_member = false; } } else { field_marker = false; keyoff_marker = false; } /* TCP/UDP/SCTP and ESP/AH falls at same offset so * remember the TCP key offset of 40 byte hash key. */ if (key_type == NIX_FLOW_KEY_TYPE_TCP) l4_key_offset = key_off; break; case NIX_FLOW_KEY_TYPE_NVGRE: field->lid = NPC_LID_LD; field->hdr_offset = 4; /* VSID offset */ field->bytesm1 = 2; field->ltype_match = NPC_LT_LD_NVGRE; field->ltype_mask = 0xF; break; case NIX_FLOW_KEY_TYPE_VXLAN: case NIX_FLOW_KEY_TYPE_GENEVE: field->lid = NPC_LID_LE; field->bytesm1 = 2; field->hdr_offset = 4; field->ltype_mask = 0xF; field_marker = false; keyoff_marker = false; if (key_type == NIX_FLOW_KEY_TYPE_VXLAN && valid_key) { field->ltype_match |= NPC_LT_LE_VXLAN; group_member = true; } if (key_type == NIX_FLOW_KEY_TYPE_GENEVE && valid_key) { field->ltype_match |= NPC_LT_LE_GENEVE; group_member = true; } if (key_type == NIX_FLOW_KEY_TYPE_GENEVE) { if (group_member) { field->ltype_mask = ~field->ltype_match; field_marker = true; keyoff_marker = true; valid_key = true; group_member = false; } } break; case NIX_FLOW_KEY_TYPE_ETH_DMAC: case NIX_FLOW_KEY_TYPE_INNR_ETH_DMAC: field->lid = NPC_LID_LA; field->ltype_match = NPC_LT_LA_ETHER; if (key_type == NIX_FLOW_KEY_TYPE_INNR_ETH_DMAC) { field->lid = NPC_LID_LF; field->ltype_match = NPC_LT_LF_TU_ETHER; } field->hdr_offset = 0; field->bytesm1 = 5; /* DMAC 6 Byte */ field->ltype_mask = 0xF; break; case NIX_FLOW_KEY_TYPE_IPV6_EXT: field->lid = NPC_LID_LC; field->hdr_offset = 40; /* IPV6 hdr */ field->bytesm1 = 0; /* 1 Byte ext hdr*/ field->ltype_match = NPC_LT_LC_IP6_EXT; field->ltype_mask = 0xF; break; case NIX_FLOW_KEY_TYPE_GTPU: field->lid = NPC_LID_LE; field->hdr_offset = 4; field->bytesm1 = 3; /* 4 bytes TID*/ field->ltype_match = NPC_LT_LE_GTPU; field->ltype_mask = 0xF; break; case NIX_FLOW_KEY_TYPE_VLAN: field->lid = NPC_LID_LB; field->hdr_offset = 2; /* Skip TPID (2-bytes) */ field->bytesm1 = 1; /* 2 Bytes (Actually 12 bits) */ field->ltype_match = NPC_LT_LB_CTAG; field->ltype_mask = 0xF; field->fn_mask = 1; /* Mask out the first nibble */ break; case NIX_FLOW_KEY_TYPE_AH: case NIX_FLOW_KEY_TYPE_ESP: field->hdr_offset = 0; field->bytesm1 = 7; /* SPI + sequence number */ field->ltype_mask = 0xF; field->lid = NPC_LID_LE; field->ltype_match = NPC_LT_LE_ESP; if (key_type == NIX_FLOW_KEY_TYPE_AH) { field->lid = NPC_LID_LD; field->ltype_match = NPC_LT_LD_AH; field->hdr_offset = 4; keyoff_marker = false; } break; } field->ena = 1; /* Found a valid flow key type */ if (valid_key) { /* Use the key offset of TCP/UDP/SCTP fields * for ESP/AH fields. */ if (key_type == NIX_FLOW_KEY_TYPE_ESP || key_type == NIX_FLOW_KEY_TYPE_AH) key_off = l4_key_offset; field->key_offset = key_off; memcpy(&alg[nr_field], field, sizeof(*field)); max_key_off = max(max_key_off, field->bytesm1 + 1); /* Found a field marker, get the next field */ if (field_marker) nr_field++; } /* Found a keyoff marker, update the new key_off */ if (keyoff_marker) { key_off += max_key_off; max_key_off = 0; } } /* Processed all the flow key types */ if (idx == max_bit_pos && key_off <= MAX_KEY_OFF) return 0; else return NIX_AF_ERR_RSS_NOSPC_FIELD; } static int reserve_flowkey_alg_idx(struct rvu *rvu, int blkaddr, u32 flow_cfg) { u64 field[FIELDS_PER_ALG]; struct nix_hw *hw; int fid, rc; hw = get_nix_hw(rvu->hw, blkaddr); if (!hw) return NIX_AF_ERR_INVALID_NIXBLK; /* No room to add new flow hash algoritham */ if (hw->flowkey.in_use >= NIX_FLOW_KEY_ALG_MAX) return NIX_AF_ERR_RSS_NOSPC_ALGO; /* Generate algo fields for the given flow_cfg */ rc = set_flowkey_fields((struct nix_rx_flowkey_alg *)field, flow_cfg); if (rc) return rc; /* Update ALGX_FIELDX register with generated fields */ for (fid = 0; fid < FIELDS_PER_ALG; fid++) rvu_write64(rvu, blkaddr, NIX_AF_RX_FLOW_KEY_ALGX_FIELDX(hw->flowkey.in_use, fid), field[fid]); /* Store the flow_cfg for futher lookup */ rc = hw->flowkey.in_use; hw->flowkey.flowkey[rc] = flow_cfg; hw->flowkey.in_use++; return rc; } int rvu_mbox_handler_nix_rss_flowkey_cfg(struct rvu *rvu, struct nix_rss_flowkey_cfg *req, struct nix_rss_flowkey_cfg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; int alg_idx, nixlf, blkaddr; struct nix_hw *nix_hw; int err; err = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (err) return err; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; alg_idx = get_flowkey_alg_idx(nix_hw, req->flowkey_cfg); /* Failed to get algo index from the exiting list, reserve new */ if (alg_idx < 0) { alg_idx = reserve_flowkey_alg_idx(rvu, blkaddr, req->flowkey_cfg); if (alg_idx < 0) return alg_idx; } rsp->alg_idx = alg_idx; rvu_npc_update_flowkey_alg_idx(rvu, pcifunc, nixlf, req->group, alg_idx, req->mcam_index); return 0; } static int nix_rx_flowkey_alg_cfg(struct rvu *rvu, int blkaddr) { u32 flowkey_cfg, minkey_cfg; int alg, fid, rc; /* Disable all flow key algx fieldx */ for (alg = 0; alg < NIX_FLOW_KEY_ALG_MAX; alg++) { for (fid = 0; fid < FIELDS_PER_ALG; fid++) rvu_write64(rvu, blkaddr, NIX_AF_RX_FLOW_KEY_ALGX_FIELDX(alg, fid), 0); } /* IPv4/IPv6 SIP/DIPs */ flowkey_cfg = NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* TCPv4/v6 4-tuple, SIP, DIP, Sport, Dport */ minkey_cfg = flowkey_cfg; flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_TCP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* UDPv4/v6 4-tuple, SIP, DIP, Sport, Dport */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_UDP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* SCTPv4/v6 4-tuple, SIP, DIP, Sport, Dport */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_SCTP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* TCP/UDP v4/v6 4-tuple, rest IP pkts 2-tuple */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* TCP/SCTP v4/v6 4-tuple, rest IP pkts 2-tuple */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_SCTP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* UDP/SCTP v4/v6 4-tuple, rest IP pkts 2-tuple */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_UDP | NIX_FLOW_KEY_TYPE_SCTP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; /* TCP/UDP/SCTP v4/v6 4-tuple, rest IP pkts 2-tuple */ flowkey_cfg = minkey_cfg | NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP | NIX_FLOW_KEY_TYPE_SCTP; rc = reserve_flowkey_alg_idx(rvu, blkaddr, flowkey_cfg); if (rc < 0) return rc; return 0; } int rvu_mbox_handler_nix_set_mac_addr(struct rvu *rvu, struct nix_set_mac_addr *req, struct msg_rsp *rsp) { bool from_vf = req->hdr.pcifunc & RVU_PFVF_FUNC_MASK; u16 pcifunc = req->hdr.pcifunc; int blkaddr, nixlf, err; struct rvu_pfvf *pfvf; err = nix_get_nixlf(rvu, pcifunc, &nixlf, &blkaddr); if (err) return err; pfvf = rvu_get_pfvf(rvu, pcifunc); /* untrusted VF can't overwrite admin(PF) changes */ if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) && (from_vf && test_bit(PF_SET_VF_MAC, &pfvf->flags))) { dev_warn(rvu->dev, "MAC address set by admin(PF) cannot be overwritten by untrusted VF"); return -EPERM; } ether_addr_copy(pfvf->mac_addr, req->mac_addr); rvu_npc_install_ucast_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base, req->mac_addr); if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) && from_vf) ether_addr_copy(pfvf->default_mac, req->mac_addr); rvu_switch_update_rules(rvu, pcifunc); return 0; } int rvu_mbox_handler_nix_get_mac_addr(struct rvu *rvu, struct msg_req *req, struct nix_get_mac_addr_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; if (!is_nixlf_attached(rvu, pcifunc)) return NIX_AF_ERR_AF_LF_INVALID; pfvf = rvu_get_pfvf(rvu, pcifunc); ether_addr_copy(rsp->mac_addr, pfvf->mac_addr); return 0; } int rvu_mbox_handler_nix_set_rx_mode(struct rvu *rvu, struct nix_rx_mode *req, struct msg_rsp *rsp) { bool allmulti, promisc, nix_rx_multicast; u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int nixlf, err; pfvf = rvu_get_pfvf(rvu, pcifunc); promisc = req->mode & NIX_RX_MODE_PROMISC ? true : false; allmulti = req->mode & NIX_RX_MODE_ALLMULTI ? true : false; pfvf->use_mce_list = req->mode & NIX_RX_MODE_USE_MCE ? true : false; nix_rx_multicast = rvu->hw->cap.nix_rx_multicast & pfvf->use_mce_list; if (is_vf(pcifunc) && !nix_rx_multicast && (promisc || allmulti)) { dev_warn_ratelimited(rvu->dev, "VF promisc/multicast not supported\n"); return 0; } /* untrusted VF can't configure promisc/allmulti */ if (is_vf(pcifunc) && !test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) && (promisc || allmulti)) return 0; err = nix_get_nixlf(rvu, pcifunc, &nixlf, NULL); if (err) return err; if (nix_rx_multicast) { /* add/del this PF_FUNC to/from mcast pkt replication list */ err = nix_update_mce_rule(rvu, pcifunc, NIXLF_ALLMULTI_ENTRY, allmulti); if (err) { dev_err(rvu->dev, "Failed to update pcifunc 0x%x to multicast list\n", pcifunc); return err; } /* add/del this PF_FUNC to/from promisc pkt replication list */ err = nix_update_mce_rule(rvu, pcifunc, NIXLF_PROMISC_ENTRY, promisc); if (err) { dev_err(rvu->dev, "Failed to update pcifunc 0x%x to promisc list\n", pcifunc); return err; } } /* install/uninstall allmulti entry */ if (allmulti) { rvu_npc_install_allmulti_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base); } else { if (!nix_rx_multicast) rvu_npc_enable_allmulti_entry(rvu, pcifunc, nixlf, false); } /* install/uninstall promisc entry */ if (promisc) { rvu_npc_install_promisc_entry(rvu, pcifunc, nixlf, pfvf->rx_chan_base, pfvf->rx_chan_cnt); } else { if (!nix_rx_multicast) rvu_npc_enable_promisc_entry(rvu, pcifunc, nixlf, false); } return 0; } static void nix_find_link_frs(struct rvu *rvu, struct nix_frs_cfg *req, u16 pcifunc) { int pf = rvu_get_pf(pcifunc); struct rvu_pfvf *pfvf; int maxlen, minlen; int numvfs, hwvf; int vf; /* Update with requester's min/max lengths */ pfvf = rvu_get_pfvf(rvu, pcifunc); pfvf->maxlen = req->maxlen; if (req->update_minlen) pfvf->minlen = req->minlen; maxlen = req->maxlen; minlen = req->update_minlen ? req->minlen : 0; /* Get this PF's numVFs and starting hwvf */ rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf); /* For each VF, compare requested max/minlen */ for (vf = 0; vf < numvfs; vf++) { pfvf = &rvu->hwvf[hwvf + vf]; if (pfvf->maxlen > maxlen) maxlen = pfvf->maxlen; if (req->update_minlen && pfvf->minlen && pfvf->minlen < minlen) minlen = pfvf->minlen; } /* Compare requested max/minlen with PF's max/minlen */ pfvf = &rvu->pf[pf]; if (pfvf->maxlen > maxlen) maxlen = pfvf->maxlen; if (req->update_minlen && pfvf->minlen && pfvf->minlen < minlen) minlen = pfvf->minlen; /* Update the request with max/min PF's and it's VF's max/min */ req->maxlen = maxlen; if (req->update_minlen) req->minlen = minlen; } static int nix_config_link_credits(struct rvu *rvu, int blkaddr, int link, u16 pcifunc, u64 tx_credits) { struct rvu_hwinfo *hw = rvu->hw; int pf = rvu_get_pf(pcifunc); u8 cgx_id = 0, lmac_id = 0; unsigned long poll_tmo; bool restore_tx_en = 0; struct nix_hw *nix_hw; u64 cfg, sw_xoff = 0; u32 schq = 0; u32 credits; int rc; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; if (tx_credits == nix_hw->tx_credits[link]) return 0; /* Enable cgx tx if disabled for credits to be back */ if (is_pf_cgxmapped(rvu, pf)) { rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); restore_tx_en = !rvu_cgx_config_tx(rvu_cgx_pdata(cgx_id, rvu), lmac_id, true); } mutex_lock(&rvu->rsrc_lock); /* Disable new traffic to link */ if (hw->cap.nix_shaping) { schq = nix_get_tx_link(rvu, pcifunc); sw_xoff = rvu_read64(rvu, blkaddr, NIX_AF_TL1X_SW_XOFF(schq)); rvu_write64(rvu, blkaddr, NIX_AF_TL1X_SW_XOFF(schq), BIT_ULL(0)); } rc = NIX_AF_ERR_LINK_CREDITS; poll_tmo = jiffies + usecs_to_jiffies(200000); /* Wait for credits to return */ do { if (time_after(jiffies, poll_tmo)) goto exit; usleep_range(100, 200); cfg = rvu_read64(rvu, blkaddr, NIX_AF_TX_LINKX_NORM_CREDIT(link)); credits = (cfg >> 12) & 0xFFFFFULL; } while (credits != nix_hw->tx_credits[link]); cfg &= ~(0xFFFFFULL << 12); cfg |= (tx_credits << 12); rvu_write64(rvu, blkaddr, NIX_AF_TX_LINKX_NORM_CREDIT(link), cfg); rc = 0; nix_hw->tx_credits[link] = tx_credits; exit: /* Enable traffic back */ if (hw->cap.nix_shaping && !sw_xoff) rvu_write64(rvu, blkaddr, NIX_AF_TL1X_SW_XOFF(schq), 0); /* Restore state of cgx tx */ if (restore_tx_en) rvu_cgx_config_tx(rvu_cgx_pdata(cgx_id, rvu), lmac_id, false); mutex_unlock(&rvu->rsrc_lock); return rc; } int rvu_mbox_handler_nix_set_hw_frs(struct rvu *rvu, struct nix_frs_cfg *req, struct msg_rsp *rsp) { struct rvu_hwinfo *hw = rvu->hw; u16 pcifunc = req->hdr.pcifunc; int pf = rvu_get_pf(pcifunc); int blkaddr, schq, link = -1; struct nix_txsch *txsch; u64 cfg, lmac_fifo_len; struct nix_hw *nix_hw; struct rvu_pfvf *pfvf; u8 cgx = 0, lmac = 0; u16 max_mtu; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; if (is_afvf(pcifunc)) rvu_get_lbk_link_max_frs(rvu, &max_mtu); else rvu_get_lmac_link_max_frs(rvu, &max_mtu); if (!req->sdp_link && req->maxlen > max_mtu) return NIX_AF_ERR_FRS_INVALID; if (req->update_minlen && req->minlen < NIC_HW_MIN_FRS) return NIX_AF_ERR_FRS_INVALID; /* Check if requester wants to update SMQ's */ if (!req->update_smq) goto rx_frscfg; /* Update min/maxlen in each of the SMQ attached to this PF/VF */ txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; mutex_lock(&rvu->rsrc_lock); for (schq = 0; schq < txsch->schq.max; schq++) { if (TXSCH_MAP_FUNC(txsch->pfvf_map[schq]) != pcifunc) continue; cfg = rvu_read64(rvu, blkaddr, NIX_AF_SMQX_CFG(schq)); cfg = (cfg & ~(0xFFFFULL << 8)) | ((u64)req->maxlen << 8); if (req->update_minlen) cfg = (cfg & ~0x7FULL) | ((u64)req->minlen & 0x7F); rvu_write64(rvu, blkaddr, NIX_AF_SMQX_CFG(schq), cfg); } mutex_unlock(&rvu->rsrc_lock); rx_frscfg: /* Check if config is for SDP link */ if (req->sdp_link) { if (!hw->sdp_links) return NIX_AF_ERR_RX_LINK_INVALID; link = hw->cgx_links + hw->lbk_links; goto linkcfg; } /* Check if the request is from CGX mapped RVU PF */ if (is_pf_cgxmapped(rvu, pf)) { /* Get CGX and LMAC to which this PF is mapped and find link */ rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx, &lmac); link = (cgx * hw->lmac_per_cgx) + lmac; } else if (pf == 0) { /* For VFs of PF0 ingress is LBK port, so config LBK link */ pfvf = rvu_get_pfvf(rvu, pcifunc); link = hw->cgx_links + pfvf->lbkid; } if (link < 0) return NIX_AF_ERR_RX_LINK_INVALID; nix_find_link_frs(rvu, req, pcifunc); linkcfg: cfg = rvu_read64(rvu, blkaddr, NIX_AF_RX_LINKX_CFG(link)); cfg = (cfg & ~(0xFFFFULL << 16)) | ((u64)req->maxlen << 16); if (req->update_minlen) cfg = (cfg & ~0xFFFFULL) | req->minlen; rvu_write64(rvu, blkaddr, NIX_AF_RX_LINKX_CFG(link), cfg); if (req->sdp_link || pf == 0) return 0; /* Update transmit credits for CGX links */ lmac_fifo_len = rvu_cgx_get_fifolen(rvu) / cgx_get_lmac_cnt(rvu_cgx_pdata(cgx, rvu)); return nix_config_link_credits(rvu, blkaddr, link, pcifunc, (lmac_fifo_len - req->maxlen) / 16); } int rvu_mbox_handler_nix_set_rx_cfg(struct rvu *rvu, struct nix_rx_cfg *req, struct msg_rsp *rsp) { int nixlf, blkaddr, err; u64 cfg; err = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, &blkaddr); if (err) return err; cfg = rvu_read64(rvu, blkaddr, NIX_AF_LFX_RX_CFG(nixlf)); /* Set the interface configuration */ if (req->len_verify & BIT(0)) cfg |= BIT_ULL(41); else cfg &= ~BIT_ULL(41); if (req->len_verify & BIT(1)) cfg |= BIT_ULL(40); else cfg &= ~BIT_ULL(40); if (req->csum_verify & BIT(0)) cfg |= BIT_ULL(37); else cfg &= ~BIT_ULL(37); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_CFG(nixlf), cfg); return 0; } static u64 rvu_get_lbk_link_credits(struct rvu *rvu, u16 lbk_max_frs) { /* CN10k supports 72KB FIFO size and max packet size of 64k */ if (rvu->hw->lbk_bufsize == 0x12000) return (rvu->hw->lbk_bufsize - lbk_max_frs) / 16; return 1600; /* 16 * max LBK datarate = 16 * 100Gbps */ } static void nix_link_config(struct rvu *rvu, int blkaddr, struct nix_hw *nix_hw) { struct rvu_hwinfo *hw = rvu->hw; int cgx, lmac_cnt, slink, link; u16 lbk_max_frs, lmac_max_frs; u64 tx_credits, cfg; rvu_get_lbk_link_max_frs(rvu, &lbk_max_frs); rvu_get_lmac_link_max_frs(rvu, &lmac_max_frs); /* Set default min/max packet lengths allowed on NIX Rx links. * * With HW reset minlen value of 60byte, HW will treat ARP pkts * as undersize and report them to SW as error pkts, hence * setting it to 40 bytes. */ for (link = 0; link < hw->cgx_links; link++) { rvu_write64(rvu, blkaddr, NIX_AF_RX_LINKX_CFG(link), ((u64)lmac_max_frs << 16) | NIC_HW_MIN_FRS); } for (link = hw->cgx_links; link < hw->lbk_links; link++) { rvu_write64(rvu, blkaddr, NIX_AF_RX_LINKX_CFG(link), ((u64)lbk_max_frs << 16) | NIC_HW_MIN_FRS); } if (hw->sdp_links) { link = hw->cgx_links + hw->lbk_links; rvu_write64(rvu, blkaddr, NIX_AF_RX_LINKX_CFG(link), SDP_HW_MAX_FRS << 16 | NIC_HW_MIN_FRS); } /* Set credits for Tx links assuming max packet length allowed. * This will be reconfigured based on MTU set for PF/VF. */ for (cgx = 0; cgx < hw->cgx; cgx++) { lmac_cnt = cgx_get_lmac_cnt(rvu_cgx_pdata(cgx, rvu)); /* Skip when cgx is not available or lmac cnt is zero */ if (lmac_cnt <= 0) continue; tx_credits = ((rvu_cgx_get_fifolen(rvu) / lmac_cnt) - lmac_max_frs) / 16; /* Enable credits and set credit pkt count to max allowed */ cfg = (tx_credits << 12) | (0x1FF << 2) | BIT_ULL(1); slink = cgx * hw->lmac_per_cgx; for (link = slink; link < (slink + lmac_cnt); link++) { nix_hw->tx_credits[link] = tx_credits; rvu_write64(rvu, blkaddr, NIX_AF_TX_LINKX_NORM_CREDIT(link), cfg); } } /* Set Tx credits for LBK link */ slink = hw->cgx_links; for (link = slink; link < (slink + hw->lbk_links); link++) { tx_credits = rvu_get_lbk_link_credits(rvu, lbk_max_frs); nix_hw->tx_credits[link] = tx_credits; /* Enable credits and set credit pkt count to max allowed */ tx_credits = (tx_credits << 12) | (0x1FF << 2) | BIT_ULL(1); rvu_write64(rvu, blkaddr, NIX_AF_TX_LINKX_NORM_CREDIT(link), tx_credits); } } static int nix_calibrate_x2p(struct rvu *rvu, int blkaddr) { int idx, err; u64 status; /* Start X2P bus calibration */ rvu_write64(rvu, blkaddr, NIX_AF_CFG, rvu_read64(rvu, blkaddr, NIX_AF_CFG) | BIT_ULL(9)); /* Wait for calibration to complete */ err = rvu_poll_reg(rvu, blkaddr, NIX_AF_STATUS, BIT_ULL(10), false); if (err) { dev_err(rvu->dev, "NIX X2P bus calibration failed\n"); return err; } status = rvu_read64(rvu, blkaddr, NIX_AF_STATUS); /* Check if CGX devices are ready */ for (idx = 0; idx < rvu->cgx_cnt_max; idx++) { /* Skip when cgx port is not available */ if (!rvu_cgx_pdata(idx, rvu) || (status & (BIT_ULL(16 + idx)))) continue; dev_err(rvu->dev, "CGX%d didn't respond to NIX X2P calibration\n", idx); err = -EBUSY; } /* Check if LBK is ready */ if (!(status & BIT_ULL(19))) { dev_err(rvu->dev, "LBK didn't respond to NIX X2P calibration\n"); err = -EBUSY; } /* Clear 'calibrate_x2p' bit */ rvu_write64(rvu, blkaddr, NIX_AF_CFG, rvu_read64(rvu, blkaddr, NIX_AF_CFG) & ~BIT_ULL(9)); if (err || (status & 0x3FFULL)) dev_err(rvu->dev, "NIX X2P calibration failed, status 0x%llx\n", status); if (err) return err; return 0; } static int nix_aq_init(struct rvu *rvu, struct rvu_block *block) { u64 cfg; int err; /* Set admin queue endianness */ cfg = rvu_read64(rvu, block->addr, NIX_AF_CFG); #ifdef __BIG_ENDIAN cfg |= BIT_ULL(8); rvu_write64(rvu, block->addr, NIX_AF_CFG, cfg); #else cfg &= ~BIT_ULL(8); rvu_write64(rvu, block->addr, NIX_AF_CFG, cfg); #endif /* Do not bypass NDC cache */ cfg = rvu_read64(rvu, block->addr, NIX_AF_NDC_CFG); cfg &= ~0x3FFEULL; #ifdef CONFIG_NDC_DIS_DYNAMIC_CACHING /* Disable caching of SQB aka SQEs */ cfg |= 0x04ULL; #endif rvu_write64(rvu, block->addr, NIX_AF_NDC_CFG, cfg); /* Result structure can be followed by RQ/SQ/CQ context at * RES + 128bytes and a write mask at RES + 256 bytes, depending on * operation type. Alloc sufficient result memory for all operations. */ err = rvu_aq_alloc(rvu, &block->aq, Q_COUNT(AQ_SIZE), sizeof(struct nix_aq_inst_s), ALIGN(sizeof(struct nix_aq_res_s), 128) + 256); if (err) return err; rvu_write64(rvu, block->addr, NIX_AF_AQ_CFG, AQ_SIZE); rvu_write64(rvu, block->addr, NIX_AF_AQ_BASE, (u64)block->aq->inst->iova); return 0; } static void rvu_nix_setup_capabilities(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; u64 hw_const; hw_const = rvu_read64(rvu, blkaddr, NIX_AF_CONST1); /* On OcteonTx2 DWRR quantum is directly configured into each of * the transmit scheduler queues. And PF/VF drivers were free to * config any value upto 2^24. * On CN10K, HW is modified, the quantum configuration at scheduler * queues is in terms of weight. And SW needs to setup a base DWRR MTU * at NIX_AF_DWRR_RPM_MTU / NIX_AF_DWRR_SDP_MTU. HW will do * 'DWRR MTU * weight' to get the quantum. * * Check if HW uses a common MTU for all DWRR quantum configs. * On OcteonTx2 this register field is '0'. */ if (((hw_const >> 56) & 0x10) == 0x10) hw->cap.nix_common_dwrr_mtu = true; } static int rvu_nix_block_init(struct rvu *rvu, struct nix_hw *nix_hw) { const struct npc_lt_def_cfg *ltdefs; struct rvu_hwinfo *hw = rvu->hw; int blkaddr = nix_hw->blkaddr; struct rvu_block *block; int err; u64 cfg; block = &hw->block[blkaddr]; if (is_rvu_96xx_B0(rvu)) { /* As per a HW errata in 96xx A0/B0 silicon, NIX may corrupt * internal state when conditional clocks are turned off. * Hence enable them. */ rvu_write64(rvu, blkaddr, NIX_AF_CFG, rvu_read64(rvu, blkaddr, NIX_AF_CFG) | 0x40ULL); /* Set chan/link to backpressure TL3 instead of TL2 */ rvu_write64(rvu, blkaddr, NIX_AF_PSE_CHANNEL_LEVEL, 0x01); /* Disable SQ manager's sticky mode operation (set TM6 = 0) * This sticky mode is known to cause SQ stalls when multiple * SQs are mapped to same SMQ and transmitting pkts at a time. */ cfg = rvu_read64(rvu, blkaddr, NIX_AF_SQM_DBG_CTL_STATUS); cfg &= ~BIT_ULL(15); rvu_write64(rvu, blkaddr, NIX_AF_SQM_DBG_CTL_STATUS, cfg); } ltdefs = rvu->kpu.lt_def; /* Calibrate X2P bus to check if CGX/LBK links are fine */ err = nix_calibrate_x2p(rvu, blkaddr); if (err) return err; /* Setup capabilities of the NIX block */ rvu_nix_setup_capabilities(rvu, blkaddr); /* Initialize admin queue */ err = nix_aq_init(rvu, block); if (err) return err; /* Restore CINT timer delay to HW reset values */ rvu_write64(rvu, blkaddr, NIX_AF_CINT_DELAY, 0x0ULL); /* For better performance use NDC TX instead of NDC RX for SQ's SQEs" */ rvu_write64(rvu, blkaddr, NIX_AF_SEB_CFG, 0x1ULL); if (is_block_implemented(hw, blkaddr)) { err = nix_setup_txschq(rvu, nix_hw, blkaddr); if (err) return err; err = nix_setup_ipolicers(rvu, nix_hw, blkaddr); if (err) return err; err = nix_af_mark_format_setup(rvu, nix_hw, blkaddr); if (err) return err; err = nix_setup_mcast(rvu, nix_hw, blkaddr); if (err) return err; err = nix_setup_txvlan(rvu, nix_hw); if (err) return err; /* Configure segmentation offload formats */ nix_setup_lso(rvu, nix_hw, blkaddr); /* Config Outer/Inner L2, IP, TCP, UDP and SCTP NPC layer info. * This helps HW protocol checker to identify headers * and validate length and checksums. */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OL2, (ltdefs->rx_ol2.lid << 8) | (ltdefs->rx_ol2.ltype_match << 4) | ltdefs->rx_ol2.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OIP4, (ltdefs->rx_oip4.lid << 8) | (ltdefs->rx_oip4.ltype_match << 4) | ltdefs->rx_oip4.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_IIP4, (ltdefs->rx_iip4.lid << 8) | (ltdefs->rx_iip4.ltype_match << 4) | ltdefs->rx_iip4.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OIP6, (ltdefs->rx_oip6.lid << 8) | (ltdefs->rx_oip6.ltype_match << 4) | ltdefs->rx_oip6.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_IIP6, (ltdefs->rx_iip6.lid << 8) | (ltdefs->rx_iip6.ltype_match << 4) | ltdefs->rx_iip6.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OTCP, (ltdefs->rx_otcp.lid << 8) | (ltdefs->rx_otcp.ltype_match << 4) | ltdefs->rx_otcp.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_ITCP, (ltdefs->rx_itcp.lid << 8) | (ltdefs->rx_itcp.ltype_match << 4) | ltdefs->rx_itcp.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OUDP, (ltdefs->rx_oudp.lid << 8) | (ltdefs->rx_oudp.ltype_match << 4) | ltdefs->rx_oudp.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_IUDP, (ltdefs->rx_iudp.lid << 8) | (ltdefs->rx_iudp.ltype_match << 4) | ltdefs->rx_iudp.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OSCTP, (ltdefs->rx_osctp.lid << 8) | (ltdefs->rx_osctp.ltype_match << 4) | ltdefs->rx_osctp.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_ISCTP, (ltdefs->rx_isctp.lid << 8) | (ltdefs->rx_isctp.ltype_match << 4) | ltdefs->rx_isctp.ltype_mask); if (!is_rvu_otx2(rvu)) { /* Enable APAD calculation for other protocols * matching APAD0 and APAD1 lt def registers. */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_CST_APAD0, (ltdefs->rx_apad0.valid << 11) | (ltdefs->rx_apad0.lid << 8) | (ltdefs->rx_apad0.ltype_match << 4) | ltdefs->rx_apad0.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_CST_APAD1, (ltdefs->rx_apad1.valid << 11) | (ltdefs->rx_apad1.lid << 8) | (ltdefs->rx_apad1.ltype_match << 4) | ltdefs->rx_apad1.ltype_mask); /* Receive ethertype defination register defines layer * information in NPC_RESULT_S to identify the Ethertype * location in L2 header. Used for Ethertype overwriting * in inline IPsec flow. */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_ET(0), (ltdefs->rx_et[0].offset << 12) | (ltdefs->rx_et[0].valid << 11) | (ltdefs->rx_et[0].lid << 8) | (ltdefs->rx_et[0].ltype_match << 4) | ltdefs->rx_et[0].ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_ET(1), (ltdefs->rx_et[1].offset << 12) | (ltdefs->rx_et[1].valid << 11) | (ltdefs->rx_et[1].lid << 8) | (ltdefs->rx_et[1].ltype_match << 4) | ltdefs->rx_et[1].ltype_mask); } err = nix_rx_flowkey_alg_cfg(rvu, blkaddr); if (err) return err; nix_hw->tx_credits = kcalloc(hw->cgx_links + hw->lbk_links, sizeof(u64), GFP_KERNEL); if (!nix_hw->tx_credits) return -ENOMEM; /* Initialize CGX/LBK/SDP link credits, min/max pkt lengths */ nix_link_config(rvu, blkaddr, nix_hw); /* Enable Channel backpressure */ rvu_write64(rvu, blkaddr, NIX_AF_RX_CFG, BIT_ULL(0)); } return 0; } int rvu_nix_init(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; struct nix_hw *nix_hw; int blkaddr = 0, err; int i = 0; hw->nix = devm_kcalloc(rvu->dev, MAX_NIX_BLKS, sizeof(struct nix_hw), GFP_KERNEL); if (!hw->nix) return -ENOMEM; blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); while (blkaddr) { nix_hw = &hw->nix[i]; nix_hw->rvu = rvu; nix_hw->blkaddr = blkaddr; err = rvu_nix_block_init(rvu, nix_hw); if (err) return err; blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); i++; } return 0; } static void rvu_nix_block_freemem(struct rvu *rvu, int blkaddr, struct rvu_block *block) { struct nix_txsch *txsch; struct nix_mcast *mcast; struct nix_txvlan *vlan; struct nix_hw *nix_hw; int lvl; rvu_aq_free(rvu, block->aq); if (is_block_implemented(rvu->hw, blkaddr)) { nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return; for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { txsch = &nix_hw->txsch[lvl]; kfree(txsch->schq.bmap); } kfree(nix_hw->tx_credits); nix_ipolicer_freemem(rvu, nix_hw); vlan = &nix_hw->txvlan; kfree(vlan->rsrc.bmap); mutex_destroy(&vlan->rsrc_lock); mcast = &nix_hw->mcast; qmem_free(rvu->dev, mcast->mce_ctx); qmem_free(rvu->dev, mcast->mcast_buf); mutex_destroy(&mcast->mce_lock); } } void rvu_nix_freemem(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkaddr = 0; blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); while (blkaddr) { block = &hw->block[blkaddr]; rvu_nix_block_freemem(rvu, blkaddr, block); blkaddr = rvu_get_next_nix_blkaddr(rvu, blkaddr); } } int rvu_mbox_handler_nix_lf_start_rx(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int nixlf, err; err = nix_get_nixlf(rvu, pcifunc, &nixlf, NULL); if (err) return err; rvu_npc_enable_default_entries(rvu, pcifunc, nixlf); npc_mcam_enable_flows(rvu, pcifunc); pfvf = rvu_get_pfvf(rvu, pcifunc); set_bit(NIXLF_INITIALIZED, &pfvf->flags); rvu_switch_update_rules(rvu, pcifunc); return rvu_cgx_start_stop_io(rvu, pcifunc, true); } int rvu_mbox_handler_nix_lf_stop_rx(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_pfvf *pfvf; int nixlf, err; err = nix_get_nixlf(rvu, pcifunc, &nixlf, NULL); if (err) return err; rvu_npc_disable_mcam_entries(rvu, pcifunc, nixlf); pfvf = rvu_get_pfvf(rvu, pcifunc); clear_bit(NIXLF_INITIALIZED, &pfvf->flags); return rvu_cgx_start_stop_io(rvu, pcifunc, false); } #define RX_SA_BASE GENMASK_ULL(52, 7) void rvu_nix_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int nixlf) { struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); struct hwctx_disable_req ctx_req; int pf = rvu_get_pf(pcifunc); struct mac_ops *mac_ops; u8 cgx_id, lmac_id; u64 sa_base; void *cgxd; int err; ctx_req.hdr.pcifunc = pcifunc; /* Cleanup NPC MCAM entries, free Tx scheduler queues being used */ rvu_npc_disable_mcam_entries(rvu, pcifunc, nixlf); rvu_npc_free_mcam_entries(rvu, pcifunc, nixlf); nix_interface_deinit(rvu, pcifunc, nixlf); nix_rx_sync(rvu, blkaddr); nix_txschq_free(rvu, pcifunc); clear_bit(NIXLF_INITIALIZED, &pfvf->flags); rvu_cgx_start_stop_io(rvu, pcifunc, false); if (pfvf->sq_ctx) { ctx_req.ctype = NIX_AQ_CTYPE_SQ; err = nix_lf_hwctx_disable(rvu, &ctx_req); if (err) dev_err(rvu->dev, "SQ ctx disable failed\n"); } if (pfvf->rq_ctx) { ctx_req.ctype = NIX_AQ_CTYPE_RQ; err = nix_lf_hwctx_disable(rvu, &ctx_req); if (err) dev_err(rvu->dev, "RQ ctx disable failed\n"); } if (pfvf->cq_ctx) { ctx_req.ctype = NIX_AQ_CTYPE_CQ; err = nix_lf_hwctx_disable(rvu, &ctx_req); if (err) dev_err(rvu->dev, "CQ ctx disable failed\n"); } /* reset HW config done for Switch headers */ rvu_npc_set_parse_mode(rvu, pcifunc, OTX2_PRIV_FLAGS_DEFAULT, (PKIND_TX | PKIND_RX), 0, 0, 0, 0); /* Disabling CGX and NPC config done for PTP */ if (pfvf->hw_rx_tstamp_en) { rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); cgxd = rvu_cgx_pdata(cgx_id, rvu); mac_ops = get_mac_ops(cgxd); mac_ops->mac_enadis_ptp_config(cgxd, lmac_id, false); /* Undo NPC config done for PTP */ if (npc_config_ts_kpuaction(rvu, pf, pcifunc, false)) dev_err(rvu->dev, "NPC config for PTP failed\n"); pfvf->hw_rx_tstamp_en = false; } nix_ctx_free(rvu, pfvf); nix_free_all_bandprof(rvu, pcifunc); sa_base = rvu_read64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_SA_BASE(nixlf)); if (FIELD_GET(RX_SA_BASE, sa_base)) { err = rvu_cpt_ctx_flush(rvu, pcifunc); if (err) dev_err(rvu->dev, "CPT ctx flush failed with error: %d\n", err); } } #define NIX_AF_LFX_TX_CFG_PTP_EN BIT_ULL(32) static int rvu_nix_lf_ptp_tx_cfg(struct rvu *rvu, u16 pcifunc, bool enable) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int blkaddr, pf; int nixlf; u64 cfg; pf = rvu_get_pf(pcifunc); if (!is_mac_feature_supported(rvu, pf, RVU_LMAC_FEAT_PTP)) return 0; blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; block = &hw->block[blkaddr]; nixlf = rvu_get_lf(rvu, block, pcifunc, 0); if (nixlf < 0) return NIX_AF_ERR_AF_LF_INVALID; cfg = rvu_read64(rvu, blkaddr, NIX_AF_LFX_TX_CFG(nixlf)); if (enable) cfg |= NIX_AF_LFX_TX_CFG_PTP_EN; else cfg &= ~NIX_AF_LFX_TX_CFG_PTP_EN; rvu_write64(rvu, blkaddr, NIX_AF_LFX_TX_CFG(nixlf), cfg); return 0; } int rvu_mbox_handler_nix_lf_ptp_tx_enable(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { return rvu_nix_lf_ptp_tx_cfg(rvu, req->hdr.pcifunc, true); } int rvu_mbox_handler_nix_lf_ptp_tx_disable(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { return rvu_nix_lf_ptp_tx_cfg(rvu, req->hdr.pcifunc, false); } int rvu_mbox_handler_nix_lso_format_cfg(struct rvu *rvu, struct nix_lso_format_cfg *req, struct nix_lso_format_cfg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct nix_hw *nix_hw; struct rvu_pfvf *pfvf; int blkaddr, idx, f; u64 reg; pfvf = rvu_get_pfvf(rvu, pcifunc); blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (!pfvf->nixlf || blkaddr < 0) return NIX_AF_ERR_AF_LF_INVALID; nix_hw = get_nix_hw(rvu->hw, blkaddr); if (!nix_hw) return NIX_AF_ERR_INVALID_NIXBLK; /* Find existing matching LSO format, if any */ for (idx = 0; idx < nix_hw->lso.in_use; idx++) { for (f = 0; f < NIX_LSO_FIELD_MAX; f++) { reg = rvu_read64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(idx, f)); if (req->fields[f] != (reg & req->field_mask)) break; } if (f == NIX_LSO_FIELD_MAX) break; } if (idx < nix_hw->lso.in_use) { /* Match found */ rsp->lso_format_idx = idx; return 0; } if (nix_hw->lso.in_use == nix_hw->lso.total) return NIX_AF_ERR_LSO_CFG_FAIL; rsp->lso_format_idx = nix_hw->lso.in_use++; for (f = 0; f < NIX_LSO_FIELD_MAX; f++) rvu_write64(rvu, blkaddr, NIX_AF_LSO_FORMATX_FIELDX(rsp->lso_format_idx, f), req->fields[f]); return 0; } #define IPSEC_GEN_CFG_EGRP GENMASK_ULL(50, 48) #define IPSEC_GEN_CFG_OPCODE GENMASK_ULL(47, 32) #define IPSEC_GEN_CFG_PARAM1 GENMASK_ULL(31, 16) #define IPSEC_GEN_CFG_PARAM2 GENMASK_ULL(15, 0) #define CPT_INST_QSEL_BLOCK GENMASK_ULL(28, 24) #define CPT_INST_QSEL_PF_FUNC GENMASK_ULL(23, 8) #define CPT_INST_QSEL_SLOT GENMASK_ULL(7, 0) static void nix_inline_ipsec_cfg(struct rvu *rvu, struct nix_inline_ipsec_cfg *req, int blkaddr) { u8 cpt_idx, cpt_blkaddr; u64 val; cpt_idx = (blkaddr == BLKADDR_NIX0) ? 0 : 1; if (req->enable) { val = 0; /* Enable context prefetching */ if (!is_rvu_otx2(rvu)) val |= BIT_ULL(51); /* Set OPCODE and EGRP */ val |= FIELD_PREP(IPSEC_GEN_CFG_EGRP, req->gen_cfg.egrp); val |= FIELD_PREP(IPSEC_GEN_CFG_OPCODE, req->gen_cfg.opcode); val |= FIELD_PREP(IPSEC_GEN_CFG_PARAM1, req->gen_cfg.param1); val |= FIELD_PREP(IPSEC_GEN_CFG_PARAM2, req->gen_cfg.param2); rvu_write64(rvu, blkaddr, NIX_AF_RX_IPSEC_GEN_CFG, val); /* Set CPT queue for inline IPSec */ val = FIELD_PREP(CPT_INST_QSEL_SLOT, req->inst_qsel.cpt_slot); val |= FIELD_PREP(CPT_INST_QSEL_PF_FUNC, req->inst_qsel.cpt_pf_func); if (!is_rvu_otx2(rvu)) { cpt_blkaddr = (cpt_idx == 0) ? BLKADDR_CPT0 : BLKADDR_CPT1; val |= FIELD_PREP(CPT_INST_QSEL_BLOCK, cpt_blkaddr); } rvu_write64(rvu, blkaddr, NIX_AF_RX_CPTX_INST_QSEL(cpt_idx), val); /* Set CPT credit */ rvu_write64(rvu, blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx), req->cpt_credit); } else { rvu_write64(rvu, blkaddr, NIX_AF_RX_IPSEC_GEN_CFG, 0x0); rvu_write64(rvu, blkaddr, NIX_AF_RX_CPTX_INST_QSEL(cpt_idx), 0x0); rvu_write64(rvu, blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx), 0x3FFFFF); } } int rvu_mbox_handler_nix_inline_ipsec_cfg(struct rvu *rvu, struct nix_inline_ipsec_cfg *req, struct msg_rsp *rsp) { if (!is_block_implemented(rvu->hw, BLKADDR_CPT0)) return 0; nix_inline_ipsec_cfg(rvu, req, BLKADDR_NIX0); if (is_block_implemented(rvu->hw, BLKADDR_CPT1)) nix_inline_ipsec_cfg(rvu, req, BLKADDR_NIX1); return 0; } int rvu_mbox_handler_nix_inline_ipsec_lf_cfg(struct rvu *rvu, struct nix_inline_ipsec_lf_cfg *req, struct msg_rsp *rsp) { int lf, blkaddr, err; u64 val; if (!is_block_implemented(rvu->hw, BLKADDR_CPT0)) return 0; err = nix_get_nixlf(rvu, req->hdr.pcifunc, &lf, &blkaddr); if (err) return err; if (req->enable) { /* Set TT, TAG_CONST, SA_POW2_SIZE and LENM1_MAX */ val = (u64)req->ipsec_cfg0.tt << 44 | (u64)req->ipsec_cfg0.tag_const << 20 | (u64)req->ipsec_cfg0.sa_pow2_size << 16 | req->ipsec_cfg0.lenm1_max; if (blkaddr == BLKADDR_NIX1) val |= BIT_ULL(46); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_CFG0(lf), val); /* Set SA_IDX_W and SA_IDX_MAX */ val = (u64)req->ipsec_cfg1.sa_idx_w << 32 | req->ipsec_cfg1.sa_idx_max; rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_CFG1(lf), val); /* Set SA base address */ rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_SA_BASE(lf), req->sa_base_addr); } else { rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_CFG0(lf), 0x0); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_CFG1(lf), 0x0); rvu_write64(rvu, blkaddr, NIX_AF_LFX_RX_IPSEC_SA_BASE(lf), 0x0); } return 0; } void rvu_nix_reset_mac(struct rvu_pfvf *pfvf, int pcifunc) { bool from_vf = !!(pcifunc & RVU_PFVF_FUNC_MASK); /* overwrite vf mac address with default_mac */ if (from_vf) ether_addr_copy(pfvf->mac_addr, pfvf->default_mac); } /* NIX ingress policers or bandwidth profiles APIs */ static void nix_config_rx_pkt_policer_precolor(struct rvu *rvu, int blkaddr) { struct npc_lt_def_cfg defs, *ltdefs; ltdefs = &defs; memcpy(ltdefs, rvu->kpu.lt_def, sizeof(struct npc_lt_def_cfg)); /* Extract PCP and DEI fields from outer VLAN from byte offset * 2 from the start of LB_PTR (ie TAG). * VLAN0 is Outer VLAN and VLAN1 is Inner VLAN. Inner VLAN * fields are considered when 'Tunnel enable' is set in profile. */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_VLAN0_PCP_DEI, (2UL << 12) | (ltdefs->ovlan.lid << 8) | (ltdefs->ovlan.ltype_match << 4) | ltdefs->ovlan.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_VLAN1_PCP_DEI, (2UL << 12) | (ltdefs->ivlan.lid << 8) | (ltdefs->ivlan.ltype_match << 4) | ltdefs->ivlan.ltype_mask); /* DSCP field in outer and tunneled IPv4 packets */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OIP4_DSCP, (1UL << 12) | (ltdefs->rx_oip4.lid << 8) | (ltdefs->rx_oip4.ltype_match << 4) | ltdefs->rx_oip4.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_IIP4_DSCP, (1UL << 12) | (ltdefs->rx_iip4.lid << 8) | (ltdefs->rx_iip4.ltype_match << 4) | ltdefs->rx_iip4.ltype_mask); /* DSCP field (traffic class) in outer and tunneled IPv6 packets */ rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_OIP6_DSCP, (1UL << 11) | (ltdefs->rx_oip6.lid << 8) | (ltdefs->rx_oip6.ltype_match << 4) | ltdefs->rx_oip6.ltype_mask); rvu_write64(rvu, blkaddr, NIX_AF_RX_DEF_IIP6_DSCP, (1UL << 11) | (ltdefs->rx_iip6.lid << 8) | (ltdefs->rx_iip6.ltype_match << 4) | ltdefs->rx_iip6.ltype_mask); } static int nix_init_policer_context(struct rvu *rvu, struct nix_hw *nix_hw, int layer, int prof_idx) { struct nix_cn10k_aq_enq_req aq_req; int rc; memset(&aq_req, 0, sizeof(struct nix_cn10k_aq_enq_req)); aq_req.qidx = (prof_idx & 0x3FFF) | (layer << 14); aq_req.ctype = NIX_AQ_CTYPE_BANDPROF; aq_req.op = NIX_AQ_INSTOP_INIT; /* Context is all zeros, submit to AQ */ rc = rvu_nix_blk_aq_enq_inst(rvu, nix_hw, (struct nix_aq_enq_req *)&aq_req, NULL); if (rc) dev_err(rvu->dev, "Failed to INIT bandwidth profile layer %d profile %d\n", layer, prof_idx); return rc; } static int nix_setup_ipolicers(struct rvu *rvu, struct nix_hw *nix_hw, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct nix_ipolicer *ipolicer; int err, layer, prof_idx; u64 cfg; cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST); if (!(cfg & BIT_ULL(61))) { hw->cap.ipolicer = false; return 0; } hw->cap.ipolicer = true; nix_hw->ipolicer = devm_kcalloc(rvu->dev, BAND_PROF_NUM_LAYERS, sizeof(*ipolicer), GFP_KERNEL); if (!nix_hw->ipolicer) return -ENOMEM; cfg = rvu_read64(rvu, blkaddr, NIX_AF_PL_CONST); for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { ipolicer = &nix_hw->ipolicer[layer]; switch (layer) { case BAND_PROF_LEAF_LAYER: ipolicer->band_prof.max = cfg & 0XFFFF; break; case BAND_PROF_MID_LAYER: ipolicer->band_prof.max = (cfg >> 16) & 0XFFFF; break; case BAND_PROF_TOP_LAYER: ipolicer->band_prof.max = (cfg >> 32) & 0XFFFF; break; } if (!ipolicer->band_prof.max) continue; err = rvu_alloc_bitmap(&ipolicer->band_prof); if (err) return err; ipolicer->pfvf_map = devm_kcalloc(rvu->dev, ipolicer->band_prof.max, sizeof(u16), GFP_KERNEL); if (!ipolicer->pfvf_map) return -ENOMEM; ipolicer->match_id = devm_kcalloc(rvu->dev, ipolicer->band_prof.max, sizeof(u16), GFP_KERNEL); if (!ipolicer->match_id) return -ENOMEM; for (prof_idx = 0; prof_idx < ipolicer->band_prof.max; prof_idx++) { /* Set AF as current owner for INIT ops to succeed */ ipolicer->pfvf_map[prof_idx] = 0x00; /* There is no enable bit in the profile context, * so no context disable. So let's INIT them here * so that PF/VF later on have to just do WRITE to * setup policer rates and config. */ err = nix_init_policer_context(rvu, nix_hw, layer, prof_idx); if (err) return err; } /* Allocate memory for maintaining ref_counts for MID level * profiles, this will be needed for leaf layer profiles' * aggregation. */ if (layer != BAND_PROF_MID_LAYER) continue; ipolicer->ref_count = devm_kcalloc(rvu->dev, ipolicer->band_prof.max, sizeof(u16), GFP_KERNEL); } /* Set policer timeunit to 2us ie (19 + 1) * 100 nsec = 2us */ rvu_write64(rvu, blkaddr, NIX_AF_PL_TS, 19); nix_config_rx_pkt_policer_precolor(rvu, blkaddr); return 0; } static void nix_ipolicer_freemem(struct rvu *rvu, struct nix_hw *nix_hw) { struct nix_ipolicer *ipolicer; int layer; if (!rvu->hw->cap.ipolicer) return; for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { ipolicer = &nix_hw->ipolicer[layer]; if (!ipolicer->band_prof.max) continue; kfree(ipolicer->band_prof.bmap); } } static int nix_verify_bandprof(struct nix_cn10k_aq_enq_req *req, struct nix_hw *nix_hw, u16 pcifunc) { struct nix_ipolicer *ipolicer; int layer, hi_layer, prof_idx; /* Bits [15:14] in profile index represent layer */ layer = (req->qidx >> 14) & 0x03; prof_idx = req->qidx & 0x3FFF; ipolicer = &nix_hw->ipolicer[layer]; if (prof_idx >= ipolicer->band_prof.max) return -EINVAL; /* Check if the profile is allocated to the requesting PCIFUNC or not * with the exception of AF. AF is allowed to read and update contexts. */ if (pcifunc && ipolicer->pfvf_map[prof_idx] != pcifunc) return -EINVAL; /* If this profile is linked to higher layer profile then check * if that profile is also allocated to the requesting PCIFUNC * or not. */ if (!req->prof.hl_en) return 0; /* Leaf layer profile can link only to mid layer and * mid layer to top layer. */ if (layer == BAND_PROF_LEAF_LAYER) hi_layer = BAND_PROF_MID_LAYER; else if (layer == BAND_PROF_MID_LAYER) hi_layer = BAND_PROF_TOP_LAYER; else return -EINVAL; ipolicer = &nix_hw->ipolicer[hi_layer]; prof_idx = req->prof.band_prof_id; if (prof_idx >= ipolicer->band_prof.max || ipolicer->pfvf_map[prof_idx] != pcifunc) return -EINVAL; return 0; } int rvu_mbox_handler_nix_bandprof_alloc(struct rvu *rvu, struct nix_bandprof_alloc_req *req, struct nix_bandprof_alloc_rsp *rsp) { int blkaddr, layer, prof, idx, err; u16 pcifunc = req->hdr.pcifunc; struct nix_ipolicer *ipolicer; struct nix_hw *nix_hw; if (!rvu->hw->cap.ipolicer) return NIX_AF_ERR_IPOLICER_NOTSUPP; err = nix_get_struct_ptrs(rvu, pcifunc, &nix_hw, &blkaddr); if (err) return err; mutex_lock(&rvu->rsrc_lock); for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { if (layer == BAND_PROF_INVAL_LAYER) continue; if (!req->prof_count[layer]) continue; ipolicer = &nix_hw->ipolicer[layer]; for (idx = 0; idx < req->prof_count[layer]; idx++) { /* Allocate a max of 'MAX_BANDPROF_PER_PFFUNC' profiles */ if (idx == MAX_BANDPROF_PER_PFFUNC) break; prof = rvu_alloc_rsrc(&ipolicer->band_prof); if (prof < 0) break; rsp->prof_count[layer]++; rsp->prof_idx[layer][idx] = prof; ipolicer->pfvf_map[prof] = pcifunc; } } mutex_unlock(&rvu->rsrc_lock); return 0; } static int nix_free_all_bandprof(struct rvu *rvu, u16 pcifunc) { int blkaddr, layer, prof_idx, err; struct nix_ipolicer *ipolicer; struct nix_hw *nix_hw; if (!rvu->hw->cap.ipolicer) return NIX_AF_ERR_IPOLICER_NOTSUPP; err = nix_get_struct_ptrs(rvu, pcifunc, &nix_hw, &blkaddr); if (err) return err; mutex_lock(&rvu->rsrc_lock); /* Free all the profiles allocated to the PCIFUNC */ for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { if (layer == BAND_PROF_INVAL_LAYER) continue; ipolicer = &nix_hw->ipolicer[layer]; for (prof_idx = 0; prof_idx < ipolicer->band_prof.max; prof_idx++) { if (ipolicer->pfvf_map[prof_idx] != pcifunc) continue; /* Clear ratelimit aggregation, if any */ if (layer == BAND_PROF_LEAF_LAYER && ipolicer->match_id[prof_idx]) nix_clear_ratelimit_aggr(rvu, nix_hw, prof_idx); ipolicer->pfvf_map[prof_idx] = 0x00; ipolicer->match_id[prof_idx] = 0; rvu_free_rsrc(&ipolicer->band_prof, prof_idx); } } mutex_unlock(&rvu->rsrc_lock); return 0; } int rvu_mbox_handler_nix_bandprof_free(struct rvu *rvu, struct nix_bandprof_free_req *req, struct msg_rsp *rsp) { int blkaddr, layer, prof_idx, idx, err; u16 pcifunc = req->hdr.pcifunc; struct nix_ipolicer *ipolicer; struct nix_hw *nix_hw; if (req->free_all) return nix_free_all_bandprof(rvu, pcifunc); if (!rvu->hw->cap.ipolicer) return NIX_AF_ERR_IPOLICER_NOTSUPP; err = nix_get_struct_ptrs(rvu, pcifunc, &nix_hw, &blkaddr); if (err) return err; mutex_lock(&rvu->rsrc_lock); /* Free the requested profile indices */ for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { if (layer == BAND_PROF_INVAL_LAYER) continue; if (!req->prof_count[layer]) continue; ipolicer = &nix_hw->ipolicer[layer]; for (idx = 0; idx < req->prof_count[layer]; idx++) { prof_idx = req->prof_idx[layer][idx]; if (prof_idx >= ipolicer->band_prof.max || ipolicer->pfvf_map[prof_idx] != pcifunc) continue; /* Clear ratelimit aggregation, if any */ if (layer == BAND_PROF_LEAF_LAYER && ipolicer->match_id[prof_idx]) nix_clear_ratelimit_aggr(rvu, nix_hw, prof_idx); ipolicer->pfvf_map[prof_idx] = 0x00; ipolicer->match_id[prof_idx] = 0; rvu_free_rsrc(&ipolicer->band_prof, prof_idx); if (idx == MAX_BANDPROF_PER_PFFUNC) break; } } mutex_unlock(&rvu->rsrc_lock); return 0; } int nix_aq_context_read(struct rvu *rvu, struct nix_hw *nix_hw, struct nix_cn10k_aq_enq_req *aq_req, struct nix_cn10k_aq_enq_rsp *aq_rsp, u16 pcifunc, u8 ctype, u32 qidx) { memset(aq_req, 0, sizeof(struct nix_cn10k_aq_enq_req)); aq_req->hdr.pcifunc = pcifunc; aq_req->ctype = ctype; aq_req->op = NIX_AQ_INSTOP_READ; aq_req->qidx = qidx; return rvu_nix_blk_aq_enq_inst(rvu, nix_hw, (struct nix_aq_enq_req *)aq_req, (struct nix_aq_enq_rsp *)aq_rsp); } static int nix_ipolicer_map_leaf_midprofs(struct rvu *rvu, struct nix_hw *nix_hw, struct nix_cn10k_aq_enq_req *aq_req, struct nix_cn10k_aq_enq_rsp *aq_rsp, u32 leaf_prof, u16 mid_prof) { memset(aq_req, 0, sizeof(struct nix_cn10k_aq_enq_req)); aq_req->hdr.pcifunc = 0x00; aq_req->ctype = NIX_AQ_CTYPE_BANDPROF; aq_req->op = NIX_AQ_INSTOP_WRITE; aq_req->qidx = leaf_prof; aq_req->prof.band_prof_id = mid_prof; aq_req->prof_mask.band_prof_id = GENMASK(6, 0); aq_req->prof.hl_en = 1; aq_req->prof_mask.hl_en = 1; return rvu_nix_blk_aq_enq_inst(rvu, nix_hw, (struct nix_aq_enq_req *)aq_req, (struct nix_aq_enq_rsp *)aq_rsp); } int rvu_nix_setup_ratelimit_aggr(struct rvu *rvu, u16 pcifunc, u16 rq_idx, u16 match_id) { int leaf_prof, mid_prof, leaf_match; struct nix_cn10k_aq_enq_req aq_req; struct nix_cn10k_aq_enq_rsp aq_rsp; struct nix_ipolicer *ipolicer; struct nix_hw *nix_hw; int blkaddr, idx, rc; if (!rvu->hw->cap.ipolicer) return 0; rc = nix_get_struct_ptrs(rvu, pcifunc, &nix_hw, &blkaddr); if (rc) return rc; /* Fetch the RQ's context to see if policing is enabled */ rc = nix_aq_context_read(rvu, nix_hw, &aq_req, &aq_rsp, pcifunc, NIX_AQ_CTYPE_RQ, rq_idx); if (rc) { dev_err(rvu->dev, "%s: Failed to fetch RQ%d context of PFFUNC 0x%x\n", __func__, rq_idx, pcifunc); return rc; } if (!aq_rsp.rq.policer_ena) return 0; /* Get the bandwidth profile ID mapped to this RQ */ leaf_prof = aq_rsp.rq.band_prof_id; ipolicer = &nix_hw->ipolicer[BAND_PROF_LEAF_LAYER]; ipolicer->match_id[leaf_prof] = match_id; /* Check if any other leaf profile is marked with same match_id */ for (idx = 0; idx < ipolicer->band_prof.max; idx++) { if (idx == leaf_prof) continue; if (ipolicer->match_id[idx] != match_id) continue; leaf_match = idx; break; } if (idx == ipolicer->band_prof.max) return 0; /* Fetch the matching profile's context to check if it's already * mapped to a mid level profile. */ rc = nix_aq_context_read(rvu, nix_hw, &aq_req, &aq_rsp, 0x00, NIX_AQ_CTYPE_BANDPROF, leaf_match); if (rc) { dev_err(rvu->dev, "%s: Failed to fetch context of leaf profile %d\n", __func__, leaf_match); return rc; } ipolicer = &nix_hw->ipolicer[BAND_PROF_MID_LAYER]; if (aq_rsp.prof.hl_en) { /* Get Mid layer prof index and map leaf_prof index * also such that flows that are being steered * to different RQs and marked with same match_id * are rate limited in a aggregate fashion */ mid_prof = aq_rsp.prof.band_prof_id; rc = nix_ipolicer_map_leaf_midprofs(rvu, nix_hw, &aq_req, &aq_rsp, leaf_prof, mid_prof); if (rc) { dev_err(rvu->dev, "%s: Failed to map leaf(%d) and mid(%d) profiles\n", __func__, leaf_prof, mid_prof); goto exit; } mutex_lock(&rvu->rsrc_lock); ipolicer->ref_count[mid_prof]++; mutex_unlock(&rvu->rsrc_lock); goto exit; } /* Allocate a mid layer profile and * map both 'leaf_prof' and 'leaf_match' profiles to it. */ mutex_lock(&rvu->rsrc_lock); mid_prof = rvu_alloc_rsrc(&ipolicer->band_prof); if (mid_prof < 0) { dev_err(rvu->dev, "%s: Unable to allocate mid layer profile\n", __func__); mutex_unlock(&rvu->rsrc_lock); goto exit; } mutex_unlock(&rvu->rsrc_lock); ipolicer->pfvf_map[mid_prof] = 0x00; ipolicer->ref_count[mid_prof] = 0; /* Initialize mid layer profile same as 'leaf_prof' */ rc = nix_aq_context_read(rvu, nix_hw, &aq_req, &aq_rsp, 0x00, NIX_AQ_CTYPE_BANDPROF, leaf_prof); if (rc) { dev_err(rvu->dev, "%s: Failed to fetch context of leaf profile %d\n", __func__, leaf_prof); goto exit; } memset(&aq_req, 0, sizeof(struct nix_cn10k_aq_enq_req)); aq_req.hdr.pcifunc = 0x00; aq_req.qidx = (mid_prof & 0x3FFF) | (BAND_PROF_MID_LAYER << 14); aq_req.ctype = NIX_AQ_CTYPE_BANDPROF; aq_req.op = NIX_AQ_INSTOP_WRITE; memcpy(&aq_req.prof, &aq_rsp.prof, sizeof(struct nix_bandprof_s)); /* Clear higher layer enable bit in the mid profile, just in case */ aq_req.prof.hl_en = 0; aq_req.prof_mask.hl_en = 1; rc = rvu_nix_blk_aq_enq_inst(rvu, nix_hw, (struct nix_aq_enq_req *)&aq_req, NULL); if (rc) { dev_err(rvu->dev, "%s: Failed to INIT context of mid layer profile %d\n", __func__, mid_prof); goto exit; } /* Map both leaf profiles to this mid layer profile */ rc = nix_ipolicer_map_leaf_midprofs(rvu, nix_hw, &aq_req, &aq_rsp, leaf_prof, mid_prof); if (rc) { dev_err(rvu->dev, "%s: Failed to map leaf(%d) and mid(%d) profiles\n", __func__, leaf_prof, mid_prof); goto exit; } mutex_lock(&rvu->rsrc_lock); ipolicer->ref_count[mid_prof]++; mutex_unlock(&rvu->rsrc_lock); rc = nix_ipolicer_map_leaf_midprofs(rvu, nix_hw, &aq_req, &aq_rsp, leaf_match, mid_prof); if (rc) { dev_err(rvu->dev, "%s: Failed to map leaf(%d) and mid(%d) profiles\n", __func__, leaf_match, mid_prof); ipolicer->ref_count[mid_prof]--; goto exit; } mutex_lock(&rvu->rsrc_lock); ipolicer->ref_count[mid_prof]++; mutex_unlock(&rvu->rsrc_lock); exit: return rc; } /* Called with mutex rsrc_lock */ static void nix_clear_ratelimit_aggr(struct rvu *rvu, struct nix_hw *nix_hw, u32 leaf_prof) { struct nix_cn10k_aq_enq_req aq_req; struct nix_cn10k_aq_enq_rsp aq_rsp; struct nix_ipolicer *ipolicer; u16 mid_prof; int rc; mutex_unlock(&rvu->rsrc_lock); rc = nix_aq_context_read(rvu, nix_hw, &aq_req, &aq_rsp, 0x00, NIX_AQ_CTYPE_BANDPROF, leaf_prof); mutex_lock(&rvu->rsrc_lock); if (rc) { dev_err(rvu->dev, "%s: Failed to fetch context of leaf profile %d\n", __func__, leaf_prof); return; } if (!aq_rsp.prof.hl_en) return; mid_prof = aq_rsp.prof.band_prof_id; ipolicer = &nix_hw->ipolicer[BAND_PROF_MID_LAYER]; ipolicer->ref_count[mid_prof]--; /* If ref_count is zero, free mid layer profile */ if (!ipolicer->ref_count[mid_prof]) { ipolicer->pfvf_map[mid_prof] = 0x00; rvu_free_rsrc(&ipolicer->band_prof, mid_prof); } } int rvu_mbox_handler_nix_bandprof_get_hwinfo(struct rvu *rvu, struct msg_req *req, struct nix_bandprof_get_hwinfo_rsp *rsp) { struct nix_ipolicer *ipolicer; int blkaddr, layer, err; struct nix_hw *nix_hw; u64 tu; if (!rvu->hw->cap.ipolicer) return NIX_AF_ERR_IPOLICER_NOTSUPP; err = nix_get_struct_ptrs(rvu, req->hdr.pcifunc, &nix_hw, &blkaddr); if (err) return err; /* Return number of bandwidth profiles free at each layer */ mutex_lock(&rvu->rsrc_lock); for (layer = 0; layer < BAND_PROF_NUM_LAYERS; layer++) { if (layer == BAND_PROF_INVAL_LAYER) continue; ipolicer = &nix_hw->ipolicer[layer]; rsp->prof_count[layer] = rvu_rsrc_free_count(&ipolicer->band_prof); } mutex_unlock(&rvu->rsrc_lock); /* Set the policer timeunit in nanosec */ tu = rvu_read64(rvu, blkaddr, NIX_AF_PL_TS) & GENMASK_ULL(9, 0); rsp->policer_timeunit = (tu + 1) * 100; return 0; }