// SPDX-License-Identifier: GPL-2.0 /* Marvell PTP driver * * Copyright (C) 2020 Marvell. * */ #include #include #include #include #include "ptp.h" #include "mbox.h" #include "rvu.h" #define DRV_NAME "Marvell PTP Driver" #define PCI_DEVID_OCTEONTX2_PTP 0xA00C #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 #define PCI_DEVID_OCTEONTX2_RST 0xA085 #define PCI_DEVID_CN10K_PTP 0xA09E #define PCI_PTP_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) #define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) #define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) #define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) #define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) #define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) #define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) #define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) #define PTP_PPS_HI_INCR 0xF60ULL #define PTP_PPS_LO_INCR 0xF68ULL #define PTP_PPS_THRESH_HI 0xF58ULL #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL #define PTP_TIMESTAMP 0xF20ULL static struct ptp *first_ptp_block; static const struct pci_device_id ptp_id_table[]; struct ptp *ptp_get(void) { struct ptp *ptp = first_ptp_block; /* Check PTP block is present in hardware */ if (!pci_dev_present(ptp_id_table)) return ERR_PTR(-ENODEV); /* Check driver is bound to PTP block */ if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); else pci_dev_get(ptp->pdev); return ptp; } void ptp_put(struct ptp *ptp) { if (!ptp) return; pci_dev_put(ptp->pdev); } static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) { bool neg_adj = false; u64 comp; u64 adj; s64 ppb; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* The hardware adds the clock compensation value to the PTP clock * on every coprocessor clock cycle. Typical convention is that it * represent number of nanosecond betwen each cycle. In this * convention compensation value is in 64 bit fixed-point * representation where upper 32 bits are number of nanoseconds * and lower is fractions of nanosecond. * The scaled_ppm represent the ratio in "parts per million" by which * the compensation value should be corrected. * To calculate new compenstation value we use 64bit fixed point * arithmetic on following formula * comp = tbase + tbase * scaled_ppm / (1M * 2^16) * where tbase is the basic compensation value calculated * initialy in the probe function. */ comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* convert scaled_ppm to ppb */ ppb = 1 + scaled_ppm; ppb *= 125; ppb >>= 13; adj = comp * ppb; adj = div_u64(adj, 1000000000ull); comp = neg_adj ? comp - adj : comp + adj; writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); return 0; } static int ptp_get_clock(struct ptp *ptp, u64 *clk) { /* Return the current PTP clock */ *clk = readq(ptp->reg_base + PTP_CLOCK_HI); return 0; } void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts) { struct pci_dev *pdev; u64 clock_comp; u64 clock_cfg; if (!ptp) return; pdev = ptp->pdev; if (!sclk) { dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); return; } /* sclk is in MHz */ ptp->clock_rate = sclk * 1000000; /* Enable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); if (ext_clk_freq) { ptp->clock_rate = ext_clk_freq; /* Set GPIO as PTP clock source */ clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; } if (extts) { clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; /* Set GPIO as timestamping source */ clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; } clock_cfg |= PTP_CLOCK_CFG_PTP_EN; clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); /* Set 50% duty cycle for 1Hz output */ writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR); writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR); clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* Initial compensation value to start the nanosecs counter */ writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); } static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) { *clk = readq(ptp->reg_base + PTP_TIMESTAMP); return 0; } static int ptp_set_thresh(struct ptp *ptp, u64 thresh) { writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); return 0; } static int ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct ptp *ptp; int err; ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL); if (!ptp) { err = -ENOMEM; goto error; } ptp->pdev = pdev; err = pcim_enable_device(pdev); if (err) goto error_free; err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); if (err) goto error_free; ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; pci_set_drvdata(pdev, ptp); if (!first_ptp_block) first_ptp_block = ptp; return 0; error_free: devm_kfree(dev, ptp); error: /* For `ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when * the probe failed. In the later case we pretend that the * initialization was successful and keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); if (!first_ptp_block) first_ptp_block = ERR_PTR(err); return 0; } static void ptp_remove(struct pci_dev *pdev) { struct ptp *ptp = pci_get_drvdata(pdev); u64 clock_cfg; if (IS_ERR_OR_NULL(ptp)) return; /* Disable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); } static const struct pci_device_id ptp_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, { 0, } }; struct pci_driver ptp_driver = { .name = DRV_NAME, .id_table = ptp_id_table, .probe = ptp_probe, .remove = ptp_remove, }; int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, struct ptp_rsp *rsp) { int err = 0; /* This function is the PTP mailbox handler invoked when * called by AF consumers/netdev drivers via mailbox mechanism. * It is used by netdev driver to get the PTP clock and to set * frequency adjustments. Since mailbox can be called without * notion of whether the driver is bound to ptp device below * validation is needed as first step. */ if (!rvu->ptp) return -ENODEV; switch (req->op) { case PTP_OP_ADJFINE: err = ptp_adjfine(rvu->ptp, req->scaled_ppm); break; case PTP_OP_GET_CLOCK: err = ptp_get_clock(rvu->ptp, &rsp->clk); break; case PTP_OP_GET_TSTMP: err = ptp_get_tstmp(rvu->ptp, &rsp->clk); break; case PTP_OP_SET_THRESH: err = ptp_set_thresh(rvu->ptp, req->thresh); break; default: err = -EINVAL; break; } return err; }