/* * Driver for the IDT RC32434 (Korina) on-chip ethernet controller. * * Copyright 2004 IDT Inc. (rischelp@idt.com) * Copyright 2006 Felix Fietkau <nbd@openwrt.org> * Copyright 2008 Florian Fainelli <florian@openwrt.org> * Copyright 2017 Roman Yeryomin <roman@advem.lv> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * Writing to a DMA status register: * * When writing to the status register, you should mask the bit you have * been testing the status register with. Both Tx and Rx DMA registers * should stick to this procedure. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/ctype.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/iopoll.h> #include <linux/in.h> #include <linux/of.h> #include <linux/of_net.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/errno.h> #include <linux/platform_device.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/crc32.h> #include <linux/pgtable.h> #include <linux/clk.h> #define DRV_NAME "korina" #define DRV_VERSION "0.20" #define DRV_RELDATE "15Sep2017" struct eth_regs { u32 ethintfc; u32 ethfifott; u32 etharc; u32 ethhash0; u32 ethhash1; u32 ethu0[4]; /* Reserved. */ u32 ethpfs; u32 ethmcp; u32 eth_u1[10]; /* Reserved. */ u32 ethspare; u32 eth_u2[42]; /* Reserved. */ u32 ethsal0; u32 ethsah0; u32 ethsal1; u32 ethsah1; u32 ethsal2; u32 ethsah2; u32 ethsal3; u32 ethsah3; u32 ethrbc; u32 ethrpc; u32 ethrupc; u32 ethrfc; u32 ethtbc; u32 ethgpf; u32 eth_u9[50]; /* Reserved. */ u32 ethmac1; u32 ethmac2; u32 ethipgt; u32 ethipgr; u32 ethclrt; u32 ethmaxf; u32 eth_u10; /* Reserved. */ u32 ethmtest; u32 miimcfg; u32 miimcmd; u32 miimaddr; u32 miimwtd; u32 miimrdd; u32 miimind; u32 eth_u11; /* Reserved. */ u32 eth_u12; /* Reserved. */ u32 ethcfsa0; u32 ethcfsa1; u32 ethcfsa2; }; /* Ethernet interrupt registers */ #define ETH_INT_FC_EN BIT(0) #define ETH_INT_FC_ITS BIT(1) #define ETH_INT_FC_RIP BIT(2) #define ETH_INT_FC_JAM BIT(3) #define ETH_INT_FC_OVR BIT(4) #define ETH_INT_FC_UND BIT(5) #define ETH_INT_FC_IOC 0x000000c0 /* Ethernet FIFO registers */ #define ETH_FIFI_TT_TTH_BIT 0 #define ETH_FIFO_TT_TTH 0x0000007f /* Ethernet ARC/multicast registers */ #define ETH_ARC_PRO BIT(0) #define ETH_ARC_AM BIT(1) #define ETH_ARC_AFM BIT(2) #define ETH_ARC_AB BIT(3) /* Ethernet SAL registers */ #define ETH_SAL_BYTE_5 0x000000ff #define ETH_SAL_BYTE_4 0x0000ff00 #define ETH_SAL_BYTE_3 0x00ff0000 #define ETH_SAL_BYTE_2 0xff000000 /* Ethernet SAH registers */ #define ETH_SAH_BYTE1 0x000000ff #define ETH_SAH_BYTE0 0x0000ff00 /* Ethernet GPF register */ #define ETH_GPF_PTV 0x0000ffff /* Ethernet PFG register */ #define ETH_PFS_PFD BIT(0) /* Ethernet CFSA[0-3] registers */ #define ETH_CFSA0_CFSA4 0x000000ff #define ETH_CFSA0_CFSA5 0x0000ff00 #define ETH_CFSA1_CFSA2 0x000000ff #define ETH_CFSA1_CFSA3 0x0000ff00 #define ETH_CFSA1_CFSA0 0x000000ff #define ETH_CFSA1_CFSA1 0x0000ff00 /* Ethernet MAC1 registers */ #define ETH_MAC1_RE BIT(0) #define ETH_MAC1_PAF BIT(1) #define ETH_MAC1_RFC BIT(2) #define ETH_MAC1_TFC BIT(3) #define ETH_MAC1_LB BIT(4) #define ETH_MAC1_MR BIT(31) /* Ethernet MAC2 registers */ #define ETH_MAC2_FD BIT(0) #define ETH_MAC2_FLC BIT(1) #define ETH_MAC2_HFE BIT(2) #define ETH_MAC2_DC BIT(3) #define ETH_MAC2_CEN BIT(4) #define ETH_MAC2_PE BIT(5) #define ETH_MAC2_VPE BIT(6) #define ETH_MAC2_APE BIT(7) #define ETH_MAC2_PPE BIT(8) #define ETH_MAC2_LPE BIT(9) #define ETH_MAC2_NB BIT(12) #define ETH_MAC2_BP BIT(13) #define ETH_MAC2_ED BIT(14) /* Ethernet IPGT register */ #define ETH_IPGT 0x0000007f /* Ethernet IPGR registers */ #define ETH_IPGR_IPGR2 0x0000007f #define ETH_IPGR_IPGR1 0x00007f00 /* Ethernet CLRT registers */ #define ETH_CLRT_MAX_RET 0x0000000f #define ETH_CLRT_COL_WIN 0x00003f00 /* Ethernet MAXF register */ #define ETH_MAXF 0x0000ffff /* Ethernet test registers */ #define ETH_TEST_REG BIT(2) #define ETH_MCP_DIV 0x000000ff /* MII registers */ #define ETH_MII_CFG_RSVD 0x0000000c #define ETH_MII_CMD_RD BIT(0) #define ETH_MII_CMD_SCN BIT(1) #define ETH_MII_REG_ADDR 0x0000001f #define ETH_MII_PHY_ADDR 0x00001f00 #define ETH_MII_WTD_DATA 0x0000ffff #define ETH_MII_RDD_DATA 0x0000ffff #define ETH_MII_IND_BSY BIT(0) #define ETH_MII_IND_SCN BIT(1) #define ETH_MII_IND_NV BIT(2) /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */ #define ETH_RX_FD BIT(0) #define ETH_RX_LD BIT(1) #define ETH_RX_ROK BIT(2) #define ETH_RX_FM BIT(3) #define ETH_RX_MP BIT(4) #define ETH_RX_BP BIT(5) #define ETH_RX_VLT BIT(6) #define ETH_RX_CF BIT(7) #define ETH_RX_OVR BIT(8) #define ETH_RX_CRC BIT(9) #define ETH_RX_CV BIT(10) #define ETH_RX_DB BIT(11) #define ETH_RX_LE BIT(12) #define ETH_RX_LOR BIT(13) #define ETH_RX_CES BIT(14) #define ETH_RX_LEN_BIT 16 #define ETH_RX_LEN 0xffff0000 #define ETH_TX_FD BIT(0) #define ETH_TX_LD BIT(1) #define ETH_TX_OEN BIT(2) #define ETH_TX_PEN BIT(3) #define ETH_TX_CEN BIT(4) #define ETH_TX_HEN BIT(5) #define ETH_TX_TOK BIT(6) #define ETH_TX_MP BIT(7) #define ETH_TX_BP BIT(8) #define ETH_TX_UND BIT(9) #define ETH_TX_OF BIT(10) #define ETH_TX_ED BIT(11) #define ETH_TX_EC BIT(12) #define ETH_TX_LC BIT(13) #define ETH_TX_TD BIT(14) #define ETH_TX_CRC BIT(15) #define ETH_TX_LE BIT(16) #define ETH_TX_CC 0x001E0000 /* DMA descriptor (in physical memory). */ struct dma_desc { u32 control; /* Control. use DMAD_* */ u32 ca; /* Current Address. */ u32 devcs; /* Device control and status. */ u32 link; /* Next descriptor in chain. */ }; #define DMA_DESC_COUNT_BIT 0 #define DMA_DESC_COUNT_MSK 0x0003ffff #define DMA_DESC_DS_BIT 20 #define DMA_DESC_DS_MSK 0x00300000 #define DMA_DESC_DEV_CMD_BIT 22 #define DMA_DESC_DEV_CMD_MSK 0x01c00000 /* DMA descriptors interrupts */ #define DMA_DESC_COF BIT(25) /* Chain on finished */ #define DMA_DESC_COD BIT(26) /* Chain on done */ #define DMA_DESC_IOF BIT(27) /* Interrupt on finished */ #define DMA_DESC_IOD BIT(28) /* Interrupt on done */ #define DMA_DESC_TERM BIT(29) /* Terminated */ #define DMA_DESC_DONE BIT(30) /* Done */ #define DMA_DESC_FINI BIT(31) /* Finished */ /* DMA register (within Internal Register Map). */ struct dma_reg { u32 dmac; /* Control. */ u32 dmas; /* Status. */ u32 dmasm; /* Mask. */ u32 dmadptr; /* Descriptor pointer. */ u32 dmandptr; /* Next descriptor pointer. */ }; /* DMA channels specific registers */ #define DMA_CHAN_RUN_BIT BIT(0) #define DMA_CHAN_DONE_BIT BIT(1) #define DMA_CHAN_MODE_BIT BIT(2) #define DMA_CHAN_MODE_MSK 0x0000000c #define DMA_CHAN_MODE_AUTO 0 #define DMA_CHAN_MODE_BURST 1 #define DMA_CHAN_MODE_XFRT 2 #define DMA_CHAN_MODE_RSVD 3 #define DMA_CHAN_ACT_BIT BIT(4) /* DMA status registers */ #define DMA_STAT_FINI BIT(0) #define DMA_STAT_DONE BIT(1) #define DMA_STAT_CHAIN BIT(2) #define DMA_STAT_ERR BIT(3) #define DMA_STAT_HALT BIT(4) #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ ((dev)->dev_addr[1])) #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ ((dev)->dev_addr[3] << 16) | \ ((dev)->dev_addr[4] << 8) | \ ((dev)->dev_addr[5])) #define MII_CLOCK 1250000 /* no more than 2.5MHz */ /* the following must be powers of two */ #define KORINA_NUM_RDS 64 /* number of receive descriptors */ #define KORINA_NUM_TDS 64 /* number of transmit descriptors */ /* KORINA_RBSIZE is the hardware's default maximum receive * frame size in bytes. Having this hardcoded means that there * is no support for MTU sizes greater than 1500. */ #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */ #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1) #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1) #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc)) #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc)) #define TX_TIMEOUT (6000 * HZ / 1000) enum chain_status { desc_filled, desc_is_empty }; #define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK) #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) /* Information that need to be kept for each board. */ struct korina_private { struct eth_regs __iomem *eth_regs; struct dma_reg __iomem *rx_dma_regs; struct dma_reg __iomem *tx_dma_regs; struct dma_desc *td_ring; /* transmit descriptor ring */ struct dma_desc *rd_ring; /* receive descriptor ring */ dma_addr_t td_dma; dma_addr_t rd_dma; struct sk_buff *tx_skb[KORINA_NUM_TDS]; struct sk_buff *rx_skb[KORINA_NUM_RDS]; dma_addr_t rx_skb_dma[KORINA_NUM_RDS]; dma_addr_t tx_skb_dma[KORINA_NUM_TDS]; int rx_next_done; int rx_chain_head; int rx_chain_tail; enum chain_status rx_chain_status; int tx_next_done; int tx_chain_head; int tx_chain_tail; enum chain_status tx_chain_status; int tx_count; int tx_full; int rx_irq; int tx_irq; spinlock_t lock; /* NIC xmit lock */ int dma_halt_cnt; int dma_run_cnt; struct napi_struct napi; struct timer_list media_check_timer; struct mii_if_info mii_if; struct work_struct restart_task; struct net_device *dev; struct device *dmadev; int mii_clock_freq; }; static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx) { return lp->td_dma + (idx * sizeof(struct dma_desc)); } static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx) { return lp->rd_dma + (idx * sizeof(struct dma_desc)); } static inline void korina_abort_dma(struct net_device *dev, struct dma_reg *ch) { if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) { writel(0x10, &ch->dmac); while (!(readl(&ch->dmas) & DMA_STAT_HALT)) netif_trans_update(dev); writel(0, &ch->dmas); } writel(0, &ch->dmadptr); writel(0, &ch->dmandptr); } static void korina_abort_tx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); korina_abort_dma(dev, lp->tx_dma_regs); } static void korina_abort_rx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); korina_abort_dma(dev, lp->rx_dma_regs); } /* transmit packet */ static netdev_tx_t korina_send_packet(struct sk_buff *skb, struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); u32 chain_prev, chain_next; unsigned long flags; struct dma_desc *td; dma_addr_t ca; u32 length; int idx; spin_lock_irqsave(&lp->lock, flags); idx = lp->tx_chain_tail; td = &lp->td_ring[idx]; /* stop queue when full, drop pkts if queue already full */ if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { lp->tx_full = 1; if (lp->tx_count == (KORINA_NUM_TDS - 2)) netif_stop_queue(dev); else goto drop_packet; } lp->tx_count++; lp->tx_skb[idx] = skb; length = skb->len; /* Setup the transmit descriptor. */ ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE); if (dma_mapping_error(lp->dmadev, ca)) goto drop_packet; lp->tx_skb_dma[idx] = ca; td->ca = ca; chain_prev = (idx - 1) & KORINA_TDS_MASK; chain_next = (idx + 1) & KORINA_TDS_MASK; if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { if (lp->tx_chain_status == desc_is_empty) { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Move tail */ lp->tx_chain_tail = chain_next; /* Write to NDPTR */ writel(korina_tx_dma(lp, lp->tx_chain_head), &lp->tx_dma_regs->dmandptr); /* Move head to tail */ lp->tx_chain_head = lp->tx_chain_tail; } else { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Link to prev */ lp->td_ring[chain_prev].control &= ~DMA_DESC_COF; /* Link to prev */ lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx); /* Move tail */ lp->tx_chain_tail = chain_next; /* Write to NDPTR */ writel(korina_tx_dma(lp, lp->tx_chain_head), &lp->tx_dma_regs->dmandptr); /* Move head to tail */ lp->tx_chain_head = lp->tx_chain_tail; lp->tx_chain_status = desc_is_empty; } } else { if (lp->tx_chain_status == desc_is_empty) { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; /* Move tail */ lp->tx_chain_tail = chain_next; lp->tx_chain_status = desc_filled; } else { /* Update tail */ td->control = DMA_COUNT(length) | DMA_DESC_COF | DMA_DESC_IOF; lp->td_ring[chain_prev].control &= ~DMA_DESC_COF; lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx); lp->tx_chain_tail = chain_next; } } netif_trans_update(dev); spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; drop_packet: dev->stats.tx_dropped++; dev_kfree_skb_any(skb); spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } static int korina_mdio_wait(struct korina_private *lp) { u32 value; return readl_poll_timeout_atomic(&lp->eth_regs->miimind, value, value & ETH_MII_IND_BSY, 1, 1000); } static int korina_mdio_read(struct net_device *dev, int phy, int reg) { struct korina_private *lp = netdev_priv(dev); int ret; ret = korina_mdio_wait(lp); if (ret < 0) return ret; writel(phy << 8 | reg, &lp->eth_regs->miimaddr); writel(1, &lp->eth_regs->miimcmd); ret = korina_mdio_wait(lp); if (ret < 0) return ret; if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV) return -EINVAL; ret = readl(&lp->eth_regs->miimrdd); writel(0, &lp->eth_regs->miimcmd); return ret; } static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val) { struct korina_private *lp = netdev_priv(dev); if (korina_mdio_wait(lp)) return; writel(0, &lp->eth_regs->miimcmd); writel(phy << 8 | reg, &lp->eth_regs->miimaddr); writel(val, &lp->eth_regs->miimwtd); } /* Ethernet Rx DMA interrupt */ static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); u32 dmas, dmasm; irqreturn_t retval; dmas = readl(&lp->rx_dma_regs->dmas); if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) { dmasm = readl(&lp->rx_dma_regs->dmasm); writel(dmasm | (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); napi_schedule(&lp->napi); if (dmas & DMA_STAT_ERR) printk(KERN_ERR "%s: DMA error\n", dev->name); retval = IRQ_HANDLED; } else retval = IRQ_NONE; return retval; } static int korina_rx(struct net_device *dev, int limit) { struct korina_private *lp = netdev_priv(dev); struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; struct sk_buff *skb, *skb_new; u32 devcs, pkt_len, dmas; dma_addr_t ca; int count; for (count = 0; count < limit; count++) { skb = lp->rx_skb[lp->rx_next_done]; skb_new = NULL; devcs = rd->devcs; if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0) break; /* check that this is a whole packet * WARNING: DMA_FD bit incorrectly set * in Rc32434 (errata ref #077) */ if (!(devcs & ETH_RX_LD)) goto next; if (!(devcs & ETH_RX_ROK)) { /* Update statistics counters */ dev->stats.rx_errors++; dev->stats.rx_dropped++; if (devcs & ETH_RX_CRC) dev->stats.rx_crc_errors++; if (devcs & ETH_RX_LE) dev->stats.rx_length_errors++; if (devcs & ETH_RX_OVR) dev->stats.rx_fifo_errors++; if (devcs & ETH_RX_CV) dev->stats.rx_frame_errors++; if (devcs & ETH_RX_CES) dev->stats.rx_frame_errors++; goto next; } /* Malloc up new buffer. */ skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); if (!skb_new) break; ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(lp->dmadev, ca)) { dev_kfree_skb_any(skb_new); break; } pkt_len = RCVPKT_LENGTH(devcs); dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done], pkt_len, DMA_FROM_DEVICE); /* Do not count the CRC */ skb_put(skb, pkt_len - 4); skb->protocol = eth_type_trans(skb, dev); /* Pass the packet to upper layers */ napi_gro_receive(&lp->napi, skb); dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; /* Update the mcast stats */ if (devcs & ETH_RX_MP) dev->stats.multicast++; lp->rx_skb[lp->rx_next_done] = skb_new; lp->rx_skb_dma[lp->rx_next_done] = ca; next: rd->devcs = 0; /* Restore descriptor's curr_addr */ rd->ca = lp->rx_skb_dma[lp->rx_next_done]; rd->control = DMA_COUNT(KORINA_RBSIZE) | DMA_DESC_COD | DMA_DESC_IOD; lp->rd_ring[(lp->rx_next_done - 1) & KORINA_RDS_MASK].control &= ~DMA_DESC_COD; lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; rd = &lp->rd_ring[lp->rx_next_done]; writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); } dmas = readl(&lp->rx_dma_regs->dmas); if (dmas & DMA_STAT_HALT) { writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmas); lp->dma_halt_cnt++; rd->devcs = 0; rd->ca = lp->rx_skb_dma[lp->rx_next_done]; writel(korina_rx_dma(lp, rd - lp->rd_ring), &lp->rx_dma_regs->dmandptr); } return count; } static int korina_poll(struct napi_struct *napi, int budget) { struct korina_private *lp = container_of(napi, struct korina_private, napi); struct net_device *dev = lp->dev; int work_done; work_done = korina_rx(dev, budget); if (work_done < budget) { napi_complete_done(napi, work_done); writel(readl(&lp->rx_dma_regs->dmasm) & ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); } return work_done; } /* * Set or clear the multicast filter for this adaptor. */ static void korina_multicast_list(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); unsigned long flags; struct netdev_hw_addr *ha; u32 recognise = ETH_ARC_AB; /* always accept broadcasts */ /* Set promiscuous mode */ if (dev->flags & IFF_PROMISC) recognise |= ETH_ARC_PRO; else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4)) /* All multicast and broadcast */ recognise |= ETH_ARC_AM; /* Build the hash table */ if (netdev_mc_count(dev) > 4) { u16 hash_table[4] = { 0 }; u32 crc; netdev_for_each_mc_addr(ha, dev) { crc = ether_crc_le(6, ha->addr); crc >>= 26; hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); } /* Accept filtered multicast */ recognise |= ETH_ARC_AFM; /* Fill the MAC hash tables with their values */ writel((u32)(hash_table[1] << 16 | hash_table[0]), &lp->eth_regs->ethhash0); writel((u32)(hash_table[3] << 16 | hash_table[2]), &lp->eth_regs->ethhash1); } spin_lock_irqsave(&lp->lock, flags); writel(recognise, &lp->eth_regs->etharc); spin_unlock_irqrestore(&lp->lock, flags); } static void korina_tx(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); struct dma_desc *td = &lp->td_ring[lp->tx_next_done]; u32 devcs; u32 dmas; spin_lock(&lp->lock); /* Process all desc that are done */ while (IS_DMA_FINISHED(td->control)) { if (lp->tx_full == 1) { netif_wake_queue(dev); lp->tx_full = 0; } devcs = lp->td_ring[lp->tx_next_done].devcs; if ((devcs & (ETH_TX_FD | ETH_TX_LD)) != (ETH_TX_FD | ETH_TX_LD)) { dev->stats.tx_errors++; dev->stats.tx_dropped++; /* Should never happen */ printk(KERN_ERR "%s: split tx ignored\n", dev->name); } else if (devcs & ETH_TX_TOK) { dev->stats.tx_packets++; dev->stats.tx_bytes += lp->tx_skb[lp->tx_next_done]->len; } else { dev->stats.tx_errors++; dev->stats.tx_dropped++; /* Underflow */ if (devcs & ETH_TX_UND) dev->stats.tx_fifo_errors++; /* Oversized frame */ if (devcs & ETH_TX_OF) dev->stats.tx_aborted_errors++; /* Excessive deferrals */ if (devcs & ETH_TX_ED) dev->stats.tx_carrier_errors++; /* Collisions: medium busy */ if (devcs & ETH_TX_EC) dev->stats.collisions++; /* Late collision */ if (devcs & ETH_TX_LC) dev->stats.tx_window_errors++; } /* We must always free the original skb */ if (lp->tx_skb[lp->tx_next_done]) { dma_unmap_single(lp->dmadev, lp->tx_skb_dma[lp->tx_next_done], lp->tx_skb[lp->tx_next_done]->len, DMA_TO_DEVICE); dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); lp->tx_skb[lp->tx_next_done] = NULL; } lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF; lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD; lp->td_ring[lp->tx_next_done].link = 0; lp->td_ring[lp->tx_next_done].ca = 0; lp->tx_count--; /* Go on to next transmission */ lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK; td = &lp->td_ring[lp->tx_next_done]; } /* Clear the DMA status register */ dmas = readl(&lp->tx_dma_regs->dmas); writel(~dmas, &lp->tx_dma_regs->dmas); writel(readl(&lp->tx_dma_regs->dmasm) & ~(DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); spin_unlock(&lp->lock); } static irqreturn_t korina_tx_dma_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct korina_private *lp = netdev_priv(dev); u32 dmas, dmasm; irqreturn_t retval; dmas = readl(&lp->tx_dma_regs->dmas); if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) { dmasm = readl(&lp->tx_dma_regs->dmasm); writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); korina_tx(dev); if (lp->tx_chain_status == desc_filled && (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { writel(korina_tx_dma(lp, lp->tx_chain_head), &lp->tx_dma_regs->dmandptr); lp->tx_chain_status = desc_is_empty; lp->tx_chain_head = lp->tx_chain_tail; netif_trans_update(dev); } if (dmas & DMA_STAT_ERR) printk(KERN_ERR "%s: DMA error\n", dev->name); retval = IRQ_HANDLED; } else retval = IRQ_NONE; return retval; } static void korina_check_media(struct net_device *dev, unsigned int init_media) { struct korina_private *lp = netdev_priv(dev); mii_check_media(&lp->mii_if, 1, init_media); if (lp->mii_if.full_duplex) writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, &lp->eth_regs->ethmac2); else writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD, &lp->eth_regs->ethmac2); } static void korina_poll_media(struct timer_list *t) { struct korina_private *lp = from_timer(lp, t, media_check_timer); struct net_device *dev = lp->dev; korina_check_media(dev, 0); mod_timer(&lp->media_check_timer, jiffies + HZ); } static void korina_set_carrier(struct mii_if_info *mii) { if (mii->force_media) { /* autoneg is off: Link is always assumed to be up */ if (!netif_carrier_ok(mii->dev)) netif_carrier_on(mii->dev); } else /* Let MMI library update carrier status */ korina_check_media(mii->dev, 0); } static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct korina_private *lp = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(rq); int rc; if (!netif_running(dev)) return -EINVAL; spin_lock_irq(&lp->lock); rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); spin_unlock_irq(&lp->lock); korina_set_carrier(&lp->mii_if); return rc; } /* ethtool helpers */ static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct korina_private *lp = netdev_priv(dev); strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info)); } static int netdev_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct korina_private *lp = netdev_priv(dev); spin_lock_irq(&lp->lock); mii_ethtool_get_link_ksettings(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); return 0; } static int netdev_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct korina_private *lp = netdev_priv(dev); int rc; spin_lock_irq(&lp->lock); rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); korina_set_carrier(&lp->mii_if); return rc; } static u32 netdev_get_link(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); return mii_link_ok(&lp->mii_if); } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_link = netdev_get_link, .get_link_ksettings = netdev_get_link_ksettings, .set_link_ksettings = netdev_set_link_ksettings, }; static int korina_alloc_ring(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); struct sk_buff *skb; dma_addr_t ca; int i; /* Initialize the transmit descriptors */ for (i = 0; i < KORINA_NUM_TDS; i++) { lp->td_ring[i].control = DMA_DESC_IOF; lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD; lp->td_ring[i].ca = 0; lp->td_ring[i].link = 0; } lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = lp->tx_full = lp->tx_count = 0; lp->tx_chain_status = desc_is_empty; /* Initialize the receive descriptors */ for (i = 0; i < KORINA_NUM_RDS; i++) { skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); if (!skb) return -ENOMEM; lp->rx_skb[i] = skb; lp->rd_ring[i].control = DMA_DESC_IOD | DMA_COUNT(KORINA_RBSIZE); lp->rd_ring[i].devcs = 0; ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(lp->dmadev, ca)) return -ENOMEM; lp->rd_ring[i].ca = ca; lp->rx_skb_dma[i] = ca; lp->rd_ring[i].link = korina_rx_dma(lp, i + 1); } /* loop back receive descriptors, so the last * descriptor points to the first one */ lp->rd_ring[i - 1].link = lp->rd_dma; lp->rd_ring[i - 1].control |= DMA_DESC_COD; lp->rx_next_done = 0; lp->rx_chain_head = 0; lp->rx_chain_tail = 0; lp->rx_chain_status = desc_is_empty; return 0; } static void korina_free_ring(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); int i; for (i = 0; i < KORINA_NUM_RDS; i++) { lp->rd_ring[i].control = 0; if (lp->rx_skb[i]) { dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i], KORINA_RBSIZE, DMA_FROM_DEVICE); dev_kfree_skb_any(lp->rx_skb[i]); lp->rx_skb[i] = NULL; } } for (i = 0; i < KORINA_NUM_TDS; i++) { lp->td_ring[i].control = 0; if (lp->tx_skb[i]) { dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i], lp->tx_skb[i]->len, DMA_TO_DEVICE); dev_kfree_skb_any(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } } } /* * Initialize the RC32434 ethernet controller. */ static int korina_init(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); /* Disable DMA */ korina_abort_tx(dev); korina_abort_rx(dev); /* reset ethernet logic */ writel(0, &lp->eth_regs->ethintfc); while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP)) netif_trans_update(dev); /* Enable Ethernet Interface */ writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc); /* Allocate rings */ if (korina_alloc_ring(dev)) { printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name); korina_free_ring(dev); return -ENOMEM; } writel(0, &lp->rx_dma_regs->dmas); /* Start Rx DMA */ writel(0, &lp->rx_dma_regs->dmandptr); writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr); writel(readl(&lp->tx_dma_regs->dmasm) & ~(DMA_STAT_FINI | DMA_STAT_ERR), &lp->tx_dma_regs->dmasm); writel(readl(&lp->rx_dma_regs->dmasm) & ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), &lp->rx_dma_regs->dmasm); /* Accept only packets destined for this Ethernet device address */ writel(ETH_ARC_AB, &lp->eth_regs->etharc); /* Set all Ether station address registers to their initial values */ writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2); writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3); writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3); /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */ writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD, &lp->eth_regs->ethmac2); /* Back to back inter-packet-gap */ writel(0x15, &lp->eth_regs->ethipgt); /* Non - Back to back inter-packet-gap */ writel(0x12, &lp->eth_regs->ethipgr); /* Management Clock Prescaler Divisor * Clock independent setting */ writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1, &lp->eth_regs->ethmcp); writel(0, &lp->eth_regs->miimcfg); /* don't transmit until fifo contains 48b */ writel(48, &lp->eth_regs->ethfifott); writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); korina_check_media(dev, 1); napi_enable(&lp->napi); netif_start_queue(dev); return 0; } /* * Restart the RC32434 ethernet controller. */ static void korina_restart_task(struct work_struct *work) { struct korina_private *lp = container_of(work, struct korina_private, restart_task); struct net_device *dev = lp->dev; /* * Disable interrupts */ disable_irq(lp->rx_irq); disable_irq(lp->tx_irq); writel(readl(&lp->tx_dma_regs->dmasm) | DMA_STAT_FINI | DMA_STAT_ERR, &lp->tx_dma_regs->dmasm); writel(readl(&lp->rx_dma_regs->dmasm) | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR, &lp->rx_dma_regs->dmasm); napi_disable(&lp->napi); korina_free_ring(dev); if (korina_init(dev) < 0) { printk(KERN_ERR "%s: cannot restart device\n", dev->name); return; } korina_multicast_list(dev); enable_irq(lp->tx_irq); enable_irq(lp->rx_irq); } static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct korina_private *lp = netdev_priv(dev); schedule_work(&lp->restart_task); } #ifdef CONFIG_NET_POLL_CONTROLLER static void korina_poll_controller(struct net_device *dev) { disable_irq(dev->irq); korina_tx_dma_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static int korina_open(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); int ret; /* Initialize */ ret = korina_init(dev); if (ret < 0) { printk(KERN_ERR "%s: cannot open device\n", dev->name); goto out; } /* Install the interrupt handler * that handles the Done Finished */ ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt, 0, "Korina ethernet Rx", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n", dev->name, lp->rx_irq); goto err_release; } ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt, 0, "Korina ethernet Tx", dev); if (ret < 0) { printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n", dev->name, lp->tx_irq); goto err_free_rx_irq; } mod_timer(&lp->media_check_timer, jiffies + 1); out: return ret; err_free_rx_irq: free_irq(lp->rx_irq, dev); err_release: korina_free_ring(dev); goto out; } static int korina_close(struct net_device *dev) { struct korina_private *lp = netdev_priv(dev); u32 tmp; del_timer(&lp->media_check_timer); /* Disable interrupts */ disable_irq(lp->rx_irq); disable_irq(lp->tx_irq); korina_abort_tx(dev); tmp = readl(&lp->tx_dma_regs->dmasm); tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR; writel(tmp, &lp->tx_dma_regs->dmasm); korina_abort_rx(dev); tmp = readl(&lp->rx_dma_regs->dmasm); tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR; writel(tmp, &lp->rx_dma_regs->dmasm); napi_disable(&lp->napi); cancel_work_sync(&lp->restart_task); korina_free_ring(dev); free_irq(lp->rx_irq, dev); free_irq(lp->tx_irq, dev); return 0; } static const struct net_device_ops korina_netdev_ops = { .ndo_open = korina_open, .ndo_stop = korina_close, .ndo_start_xmit = korina_send_packet, .ndo_set_rx_mode = korina_multicast_list, .ndo_tx_timeout = korina_tx_timeout, .ndo_eth_ioctl = korina_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = korina_poll_controller, #endif }; static int korina_probe(struct platform_device *pdev) { u8 *mac_addr = dev_get_platdata(&pdev->dev); struct korina_private *lp; struct net_device *dev; struct clk *clk; void __iomem *p; int rc; dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private)); if (!dev) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); lp = netdev_priv(dev); if (mac_addr) eth_hw_addr_set(dev, mac_addr); else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0) eth_hw_addr_random(dev); clk = devm_clk_get_optional_enabled(&pdev->dev, "mdioclk"); if (IS_ERR(clk)) return PTR_ERR(clk); if (clk) { lp->mii_clock_freq = clk_get_rate(clk); } else { lp->mii_clock_freq = 200000000; /* max possible input clk */ } lp->rx_irq = platform_get_irq_byname(pdev, "rx"); lp->tx_irq = platform_get_irq_byname(pdev, "tx"); p = devm_platform_ioremap_resource_byname(pdev, "emac"); if (IS_ERR(p)) { printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); return PTR_ERR(p); } lp->eth_regs = p; p = devm_platform_ioremap_resource_byname(pdev, "dma_rx"); if (IS_ERR(p)) { printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); return PTR_ERR(p); } lp->rx_dma_regs = p; p = devm_platform_ioremap_resource_byname(pdev, "dma_tx"); if (IS_ERR(p)) { printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); return PTR_ERR(p); } lp->tx_dma_regs = p; lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE, &lp->td_dma, GFP_KERNEL); if (!lp->td_ring) return -ENOMEM; lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE, &lp->rd_dma, GFP_KERNEL); if (!lp->rd_ring) return -ENOMEM; spin_lock_init(&lp->lock); /* just use the rx dma irq */ dev->irq = lp->rx_irq; lp->dev = dev; lp->dmadev = &pdev->dev; dev->netdev_ops = &korina_netdev_ops; dev->ethtool_ops = &netdev_ethtool_ops; dev->watchdog_timeo = TX_TIMEOUT; netif_napi_add(dev, &lp->napi, korina_poll); lp->mii_if.dev = dev; lp->mii_if.mdio_read = korina_mdio_read; lp->mii_if.mdio_write = korina_mdio_write; lp->mii_if.phy_id = 1; lp->mii_if.phy_id_mask = 0x1f; lp->mii_if.reg_num_mask = 0x1f; platform_set_drvdata(pdev, dev); rc = register_netdev(dev); if (rc < 0) { printk(KERN_ERR DRV_NAME ": cannot register net device: %d\n", rc); return rc; } timer_setup(&lp->media_check_timer, korina_poll_media, 0); INIT_WORK(&lp->restart_task, korina_restart_task); printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", dev->name); return rc; } static int korina_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); return 0; } #ifdef CONFIG_OF static const struct of_device_id korina_match[] = { { .compatible = "idt,3243x-emac", }, { } }; MODULE_DEVICE_TABLE(of, korina_match); #endif static struct platform_driver korina_driver = { .driver = { .name = "korina", .of_match_table = of_match_ptr(korina_match), }, .probe = korina_probe, .remove = korina_remove, }; module_platform_driver(korina_driver); MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>"); MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>"); MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver"); MODULE_LICENSE("GPL");