// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ #include #include #include #include #include "ixgbe.h" #include "ixgbe_common.h" #include "ixgbe_phy.h" static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, u16 count); static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); static void ixgbe_release_eeprom(struct ixgbe_hw *hw); static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg); static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data); static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data); static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, u16 offset); static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw); /* Base table for registers values that change by MAC */ const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = { IXGBE_MVALS_INIT(8259X) }; /** * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow * control * @hw: pointer to hardware structure * * There are several phys that do not support autoneg flow control. This * function check the device id to see if the associated phy supports * autoneg flow control. **/ bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) { bool supported = false; ixgbe_link_speed speed; bool link_up; switch (hw->phy.media_type) { case ixgbe_media_type_fiber: /* flow control autoneg black list */ switch (hw->device_id) { case IXGBE_DEV_ID_X550EM_A_SFP: case IXGBE_DEV_ID_X550EM_A_SFP_N: supported = false; break; default: hw->mac.ops.check_link(hw, &speed, &link_up, false); /* if link is down, assume supported */ if (link_up) supported = speed == IXGBE_LINK_SPEED_1GB_FULL; else supported = true; } break; case ixgbe_media_type_backplane: if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI) supported = false; else supported = true; break; case ixgbe_media_type_copper: /* only some copper devices support flow control autoneg */ switch (hw->device_id) { case IXGBE_DEV_ID_82599_T3_LOM: case IXGBE_DEV_ID_X540T: case IXGBE_DEV_ID_X540T1: case IXGBE_DEV_ID_X550T: case IXGBE_DEV_ID_X550T1: case IXGBE_DEV_ID_X550EM_X_10G_T: case IXGBE_DEV_ID_X550EM_A_10G_T: case IXGBE_DEV_ID_X550EM_A_1G_T: case IXGBE_DEV_ID_X550EM_A_1G_T_L: supported = true; break; default: break; } break; default: break; } if (!supported) hw_dbg(hw, "Device %x does not support flow control autoneg\n", hw->device_id); return supported; } /** * ixgbe_setup_fc_generic - Set up flow control * @hw: pointer to hardware structure * * Called at init time to set up flow control. **/ s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw) { s32 ret_val = 0; u32 reg = 0, reg_bp = 0; u16 reg_cu = 0; bool locked = false; /* * Validate the requested mode. Strict IEEE mode does not allow * ixgbe_fc_rx_pause because it will cause us to fail at UNH. */ if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); return -EINVAL; } /* * 10gig parts do not have a word in the EEPROM to determine the * default flow control setting, so we explicitly set it to full. */ if (hw->fc.requested_mode == ixgbe_fc_default) hw->fc.requested_mode = ixgbe_fc_full; /* * Set up the 1G and 10G flow control advertisement registers so the * HW will be able to do fc autoneg once the cable is plugged in. If * we link at 10G, the 1G advertisement is harmless and vice versa. */ switch (hw->phy.media_type) { case ixgbe_media_type_backplane: /* some MAC's need RMW protection on AUTOC */ ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp); if (ret_val) return ret_val; fallthrough; /* only backplane uses autoc */ case ixgbe_media_type_fiber: reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); break; case ixgbe_media_type_copper: hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, ®_cu); break; default: break; } /* * The possible values of fc.requested_mode are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but * we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: Invalid. */ switch (hw->fc.requested_mode) { case ixgbe_fc_none: /* Flow control completely disabled by software override. */ reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); if (hw->phy.media_type == ixgbe_media_type_backplane) reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE); else if (hw->phy.media_type == ixgbe_media_type_copper) reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); break; case ixgbe_fc_tx_pause: /* * Tx Flow control is enabled, and Rx Flow control is * disabled by software override. */ reg |= IXGBE_PCS1GANA_ASM_PAUSE; reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; if (hw->phy.media_type == ixgbe_media_type_backplane) { reg_bp |= IXGBE_AUTOC_ASM_PAUSE; reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; } else if (hw->phy.media_type == ixgbe_media_type_copper) { reg_cu |= IXGBE_TAF_ASM_PAUSE; reg_cu &= ~IXGBE_TAF_SYM_PAUSE; } break; case ixgbe_fc_rx_pause: /* * Rx Flow control is enabled and Tx Flow control is * disabled by software override. Since there really * isn't a way to advertise that we are capable of RX * Pause ONLY, we will advertise that we support both * symmetric and asymmetric Rx PAUSE, as such we fall * through to the fc_full statement. Later, we will * disable the adapter's ability to send PAUSE frames. */ case ixgbe_fc_full: /* Flow control (both Rx and Tx) is enabled by SW override. */ reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; if (hw->phy.media_type == ixgbe_media_type_backplane) reg_bp |= IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE; else if (hw->phy.media_type == ixgbe_media_type_copper) reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; break; default: hw_dbg(hw, "Flow control param set incorrectly\n"); return -EIO; } if (hw->mac.type != ixgbe_mac_X540) { /* * Enable auto-negotiation between the MAC & PHY; * the MAC will advertise clause 37 flow control. */ IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); /* Disable AN timeout */ if (hw->fc.strict_ieee) reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); } /* * AUTOC restart handles negotiation of 1G and 10G on backplane * and copper. There is no need to set the PCS1GCTL register. * */ if (hw->phy.media_type == ixgbe_media_type_backplane) { /* Need the SW/FW semaphore around AUTOC writes if 82599 and * LESM is on, likewise reset_pipeline requries the lock as * it also writes AUTOC. */ ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked); if (ret_val) return ret_val; } else if ((hw->phy.media_type == ixgbe_media_type_copper) && ixgbe_device_supports_autoneg_fc(hw)) { hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, reg_cu); } hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); return ret_val; } /** * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx * @hw: pointer to hardware structure * * Starts the hardware by filling the bus info structure and media type, clears * all on chip counters, initializes receive address registers, multicast * table, VLAN filter table, calls routine to set up link and flow control * settings, and leaves transmit and receive units disabled and uninitialized **/ s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) { s32 ret_val; u32 ctrl_ext; u16 device_caps; /* Set the media type */ hw->phy.media_type = hw->mac.ops.get_media_type(hw); /* Identify the PHY */ hw->phy.ops.identify(hw); /* Clear the VLAN filter table */ hw->mac.ops.clear_vfta(hw); /* Clear statistics registers */ hw->mac.ops.clear_hw_cntrs(hw); /* Set No Snoop Disable */ ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); IXGBE_WRITE_FLUSH(hw); /* Setup flow control if method for doing so */ if (hw->mac.ops.setup_fc) { ret_val = hw->mac.ops.setup_fc(hw); if (ret_val) return ret_val; } /* Cashe bit indicating need for crosstalk fix */ switch (hw->mac.type) { case ixgbe_mac_82599EB: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: hw->mac.ops.get_device_caps(hw, &device_caps); if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR) hw->need_crosstalk_fix = false; else hw->need_crosstalk_fix = true; break; default: hw->need_crosstalk_fix = false; break; } /* Clear adapter stopped flag */ hw->adapter_stopped = false; return 0; } /** * ixgbe_start_hw_gen2 - Init sequence for common device family * @hw: pointer to hw structure * * Performs the init sequence common to the second generation * of 10 GbE devices. * Devices in the second generation: * 82599 * X540 **/ s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) { u32 i; /* Clear the rate limiters */ for (i = 0; i < hw->mac.max_tx_queues; i++) { IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); } IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_init_hw_generic - Generic hardware initialization * @hw: pointer to hardware structure * * Initialize the hardware by resetting the hardware, filling the bus info * structure and media type, clears all on chip counters, initializes receive * address registers, multicast table, VLAN filter table, calls routine to set * up link and flow control settings, and leaves transmit and receive units * disabled and uninitialized **/ s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) { s32 status; /* Reset the hardware */ status = hw->mac.ops.reset_hw(hw); if (status == 0) { /* Start the HW */ status = hw->mac.ops.start_hw(hw); } /* Initialize the LED link active for LED blink support */ if (hw->mac.ops.init_led_link_act) hw->mac.ops.init_led_link_act(hw); return status; } /** * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters * @hw: pointer to hardware structure * * Clears all hardware statistics counters by reading them from the hardware * Statistics counters are clear on read. **/ s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) { u16 i = 0; IXGBE_READ_REG(hw, IXGBE_CRCERRS); IXGBE_READ_REG(hw, IXGBE_ILLERRC); IXGBE_READ_REG(hw, IXGBE_ERRBC); IXGBE_READ_REG(hw, IXGBE_MSPDC); for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_MPC(i)); IXGBE_READ_REG(hw, IXGBE_MLFC); IXGBE_READ_REG(hw, IXGBE_MRFC); IXGBE_READ_REG(hw, IXGBE_RLEC); IXGBE_READ_REG(hw, IXGBE_LXONTXC); IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); } else { IXGBE_READ_REG(hw, IXGBE_LXONRXC); IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); } for (i = 0; i < 8; i++) { IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); } else { IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); } } if (hw->mac.type >= ixgbe_mac_82599EB) for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); IXGBE_READ_REG(hw, IXGBE_PRC64); IXGBE_READ_REG(hw, IXGBE_PRC127); IXGBE_READ_REG(hw, IXGBE_PRC255); IXGBE_READ_REG(hw, IXGBE_PRC511); IXGBE_READ_REG(hw, IXGBE_PRC1023); IXGBE_READ_REG(hw, IXGBE_PRC1522); IXGBE_READ_REG(hw, IXGBE_GPRC); IXGBE_READ_REG(hw, IXGBE_BPRC); IXGBE_READ_REG(hw, IXGBE_MPRC); IXGBE_READ_REG(hw, IXGBE_GPTC); IXGBE_READ_REG(hw, IXGBE_GORCL); IXGBE_READ_REG(hw, IXGBE_GORCH); IXGBE_READ_REG(hw, IXGBE_GOTCL); IXGBE_READ_REG(hw, IXGBE_GOTCH); if (hw->mac.type == ixgbe_mac_82598EB) for (i = 0; i < 8; i++) IXGBE_READ_REG(hw, IXGBE_RNBC(i)); IXGBE_READ_REG(hw, IXGBE_RUC); IXGBE_READ_REG(hw, IXGBE_RFC); IXGBE_READ_REG(hw, IXGBE_ROC); IXGBE_READ_REG(hw, IXGBE_RJC); IXGBE_READ_REG(hw, IXGBE_MNGPRC); IXGBE_READ_REG(hw, IXGBE_MNGPDC); IXGBE_READ_REG(hw, IXGBE_MNGPTC); IXGBE_READ_REG(hw, IXGBE_TORL); IXGBE_READ_REG(hw, IXGBE_TORH); IXGBE_READ_REG(hw, IXGBE_TPR); IXGBE_READ_REG(hw, IXGBE_TPT); IXGBE_READ_REG(hw, IXGBE_PTC64); IXGBE_READ_REG(hw, IXGBE_PTC127); IXGBE_READ_REG(hw, IXGBE_PTC255); IXGBE_READ_REG(hw, IXGBE_PTC511); IXGBE_READ_REG(hw, IXGBE_PTC1023); IXGBE_READ_REG(hw, IXGBE_PTC1522); IXGBE_READ_REG(hw, IXGBE_MPTC); IXGBE_READ_REG(hw, IXGBE_BPTC); for (i = 0; i < 16; i++) { IXGBE_READ_REG(hw, IXGBE_QPRC(i)); IXGBE_READ_REG(hw, IXGBE_QPTC(i)); if (hw->mac.type >= ixgbe_mac_82599EB) { IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); } else { IXGBE_READ_REG(hw, IXGBE_QBRC(i)); IXGBE_READ_REG(hw, IXGBE_QBTC(i)); } } if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) { if (hw->phy.id == 0) hw->phy.ops.identify(hw); hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i); hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i); hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i); hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i); } return 0; } /** * ixgbe_read_pba_string_generic - Reads part number string from EEPROM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the EEPROM * @pba_num_size: part number string buffer length * * Reads the part number string from the EEPROM. **/ s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, u32 pba_num_size) { s32 ret_val; u16 data; u16 pba_ptr; u16 offset; u16 length; if (pba_num == NULL) { hw_dbg(hw, "PBA string buffer was null\n"); return -EINVAL; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); if (ret_val) { hw_dbg(hw, "NVM Read Error\n"); return ret_val; } ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); if (ret_val) { hw_dbg(hw, "NVM Read Error\n"); return ret_val; } /* * if data is not ptr guard the PBA must be in legacy format which * means pba_ptr is actually our second data word for the PBA number * and we can decode it into an ascii string */ if (data != IXGBE_PBANUM_PTR_GUARD) { hw_dbg(hw, "NVM PBA number is not stored as string\n"); /* we will need 11 characters to store the PBA */ if (pba_num_size < 11) { hw_dbg(hw, "PBA string buffer too small\n"); return -ENOSPC; } /* extract hex string from data and pba_ptr */ pba_num[0] = (data >> 12) & 0xF; pba_num[1] = (data >> 8) & 0xF; pba_num[2] = (data >> 4) & 0xF; pba_num[3] = data & 0xF; pba_num[4] = (pba_ptr >> 12) & 0xF; pba_num[5] = (pba_ptr >> 8) & 0xF; pba_num[6] = '-'; pba_num[7] = 0; pba_num[8] = (pba_ptr >> 4) & 0xF; pba_num[9] = pba_ptr & 0xF; /* put a null character on the end of our string */ pba_num[10] = '\0'; /* switch all the data but the '-' to hex char */ for (offset = 0; offset < 10; offset++) { if (pba_num[offset] < 0xA) pba_num[offset] += '0'; else if (pba_num[offset] < 0x10) pba_num[offset] += 'A' - 0xA; } return 0; } ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); if (ret_val) { hw_dbg(hw, "NVM Read Error\n"); return ret_val; } if (length == 0xFFFF || length == 0) { hw_dbg(hw, "NVM PBA number section invalid length\n"); return -EIO; } /* check if pba_num buffer is big enough */ if (pba_num_size < (((u32)length * 2) - 1)) { hw_dbg(hw, "PBA string buffer too small\n"); return -ENOSPC; } /* trim pba length from start of string */ pba_ptr++; length--; for (offset = 0; offset < length; offset++) { ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); if (ret_val) { hw_dbg(hw, "NVM Read Error\n"); return ret_val; } pba_num[offset * 2] = (u8)(data >> 8); pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); } pba_num[offset * 2] = '\0'; return 0; } /** * ixgbe_get_mac_addr_generic - Generic get MAC address * @hw: pointer to hardware structure * @mac_addr: Adapter MAC address * * Reads the adapter's MAC address from first Receive Address Register (RAR0) * A reset of the adapter must be performed prior to calling this function * in order for the MAC address to have been loaded from the EEPROM into RAR0 **/ s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) { u32 rar_high; u32 rar_low; u16 i; rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); for (i = 0; i < 4; i++) mac_addr[i] = (u8)(rar_low >> (i*8)); for (i = 0; i < 2; i++) mac_addr[i+4] = (u8)(rar_high >> (i*8)); return 0; } enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status) { switch (link_status & IXGBE_PCI_LINK_WIDTH) { case IXGBE_PCI_LINK_WIDTH_1: return ixgbe_bus_width_pcie_x1; case IXGBE_PCI_LINK_WIDTH_2: return ixgbe_bus_width_pcie_x2; case IXGBE_PCI_LINK_WIDTH_4: return ixgbe_bus_width_pcie_x4; case IXGBE_PCI_LINK_WIDTH_8: return ixgbe_bus_width_pcie_x8; default: return ixgbe_bus_width_unknown; } } enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status) { switch (link_status & IXGBE_PCI_LINK_SPEED) { case IXGBE_PCI_LINK_SPEED_2500: return ixgbe_bus_speed_2500; case IXGBE_PCI_LINK_SPEED_5000: return ixgbe_bus_speed_5000; case IXGBE_PCI_LINK_SPEED_8000: return ixgbe_bus_speed_8000; default: return ixgbe_bus_speed_unknown; } } /** * ixgbe_get_bus_info_generic - Generic set PCI bus info * @hw: pointer to hardware structure * * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure **/ s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) { u16 link_status; hw->bus.type = ixgbe_bus_type_pci_express; /* Get the negotiated link width and speed from PCI config space */ link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS); hw->bus.width = ixgbe_convert_bus_width(link_status); hw->bus.speed = ixgbe_convert_bus_speed(link_status); hw->mac.ops.set_lan_id(hw); return 0; } /** * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices * @hw: pointer to the HW structure * * Determines the LAN function id by reading memory-mapped registers * and swaps the port value if requested. **/ void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) { struct ixgbe_bus_info *bus = &hw->bus; u16 ee_ctrl_4; u32 reg; reg = IXGBE_READ_REG(hw, IXGBE_STATUS); bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg); bus->lan_id = bus->func; /* check for a port swap */ reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw)); if (reg & IXGBE_FACTPS_LFS) bus->func ^= 0x1; /* Get MAC instance from EEPROM for configuring CS4227 */ if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) { hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4); bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID, ee_ctrl_4); } } /** * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units * @hw: pointer to hardware structure * * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, * disables transmit and receive units. The adapter_stopped flag is used by * the shared code and drivers to determine if the adapter is in a stopped * state and should not touch the hardware. **/ s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) { u32 reg_val; u16 i; /* * Set the adapter_stopped flag so other driver functions stop touching * the hardware */ hw->adapter_stopped = true; /* Disable the receive unit */ hw->mac.ops.disable_rx(hw); /* Clear interrupt mask to stop interrupts from being generated */ IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); /* Clear any pending interrupts, flush previous writes */ IXGBE_READ_REG(hw, IXGBE_EICR); /* Disable the transmit unit. Each queue must be disabled. */ for (i = 0; i < hw->mac.max_tx_queues; i++) IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); /* Disable the receive unit by stopping each queue */ for (i = 0; i < hw->mac.max_rx_queues; i++) { reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); reg_val &= ~IXGBE_RXDCTL_ENABLE; reg_val |= IXGBE_RXDCTL_SWFLSH; IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); } /* flush all queues disables */ IXGBE_WRITE_FLUSH(hw); usleep_range(1000, 2000); /* * Prevent the PCI-E bus from hanging by disabling PCI-E primary * access and verify no pending requests */ return ixgbe_disable_pcie_primary(hw); } /** * ixgbe_init_led_link_act_generic - Store the LED index link/activity. * @hw: pointer to hardware structure * * Store the index for the link active LED. This will be used to support * blinking the LED. **/ s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw) { struct ixgbe_mac_info *mac = &hw->mac; u32 led_reg, led_mode; u16 i; led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); /* Get LED link active from the LEDCTL register */ for (i = 0; i < 4; i++) { led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i); if ((led_mode & IXGBE_LED_MODE_MASK_BASE) == IXGBE_LED_LINK_ACTIVE) { mac->led_link_act = i; return 0; } } /* If LEDCTL register does not have the LED link active set, then use * known MAC defaults. */ switch (hw->mac.type) { case ixgbe_mac_x550em_a: mac->led_link_act = 0; break; case ixgbe_mac_X550EM_x: mac->led_link_act = 1; break; default: mac->led_link_act = 2; } return 0; } /** * ixgbe_led_on_generic - Turns on the software controllable LEDs. * @hw: pointer to hardware structure * @index: led number to turn on **/ s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) { u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); if (index > 3) return -EINVAL; /* To turn on the LED, set mode to ON. */ led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_led_off_generic - Turns off the software controllable LEDs. * @hw: pointer to hardware structure * @index: led number to turn off **/ s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) { u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); if (index > 3) return -EINVAL; /* To turn off the LED, set mode to OFF. */ led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_init_eeprom_params_generic - Initialize EEPROM params * @hw: pointer to hardware structure * * Initializes the EEPROM parameters ixgbe_eeprom_info within the * ixgbe_hw struct in order to set up EEPROM access. **/ s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) { struct ixgbe_eeprom_info *eeprom = &hw->eeprom; u32 eec; u16 eeprom_size; if (eeprom->type == ixgbe_eeprom_uninitialized) { eeprom->type = ixgbe_eeprom_none; /* Set default semaphore delay to 10ms which is a well * tested value */ eeprom->semaphore_delay = 10; /* Clear EEPROM page size, it will be initialized as needed */ eeprom->word_page_size = 0; /* * Check for EEPROM present first. * If not present leave as none */ eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); if (eec & IXGBE_EEC_PRES) { eeprom->type = ixgbe_eeprom_spi; /* * SPI EEPROM is assumed here. This code would need to * change if a future EEPROM is not SPI. */ eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec); eeprom->word_size = BIT(eeprom_size + IXGBE_EEPROM_WORD_SIZE_SHIFT); } if (eec & IXGBE_EEC_ADDR_SIZE) eeprom->address_bits = 16; else eeprom->address_bits = 8; hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n", eeprom->type, eeprom->word_size, eeprom->address_bits); } return 0; } /** * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang * @hw: pointer to hardware structure * @offset: offset within the EEPROM to write * @words: number of words * @data: 16 bit word(s) to write to EEPROM * * Reads 16 bit word(s) from EEPROM through bit-bang method **/ s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { s32 status; u16 i, count; hw->eeprom.ops.init_params(hw); if (words == 0 || (offset + words > hw->eeprom.word_size)) return -EINVAL; /* * The EEPROM page size cannot be queried from the chip. We do lazy * initialization. It is worth to do that when we write large buffer. */ if ((hw->eeprom.word_page_size == 0) && (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) ixgbe_detect_eeprom_page_size_generic(hw, offset); /* * We cannot hold synchronization semaphores for too long * to avoid other entity starvation. However it is more efficient * to read in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, count, &data[i]); if (status != 0) break; } return status; } /** * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be written to * @words: number of word(s) * @data: 16 bit word(s) to be written to the EEPROM * * If ixgbe_eeprom_update_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { s32 status; u16 word; u16 page_size; u16 i; u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; /* Prepare the EEPROM for writing */ status = ixgbe_acquire_eeprom(hw); if (status) return status; if (ixgbe_ready_eeprom(hw) != 0) { ixgbe_release_eeprom(hw); return -EIO; } for (i = 0; i < words; i++) { ixgbe_standby_eeprom(hw); /* Send the WRITE ENABLE command (8 bit opcode) */ ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI, IXGBE_EEPROM_OPCODE_BITS); ixgbe_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded * in the opcode */ if ((hw->eeprom.address_bits == 8) && ((offset + i) >= 128)) write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; /* Send the Write command (8-bit opcode + addr) */ ixgbe_shift_out_eeprom_bits(hw, write_opcode, IXGBE_EEPROM_OPCODE_BITS); ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), hw->eeprom.address_bits); page_size = hw->eeprom.word_page_size; /* Send the data in burst via SPI */ do { word = data[i]; word = (word >> 8) | (word << 8); ixgbe_shift_out_eeprom_bits(hw, word, 16); if (page_size == 0) break; /* do not wrap around page */ if (((offset + i) & (page_size - 1)) == (page_size - 1)) break; } while (++i < words); ixgbe_standby_eeprom(hw); usleep_range(10000, 20000); } /* Done with writing - release the EEPROM */ ixgbe_release_eeprom(hw); return 0; } /** * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be written to * @data: 16 bit word to be written to the EEPROM * * If ixgbe_eeprom_update_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. **/ s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) { hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) return -EINVAL; return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); } /** * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be read * @words: number of word(s) * @data: read 16 bit words(s) from EEPROM * * Reads 16 bit word(s) from EEPROM through bit-bang method **/ s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { s32 status; u16 i, count; hw->eeprom.ops.init_params(hw); if (words == 0 || (offset + words > hw->eeprom.word_size)) return -EINVAL; /* * We cannot hold synchronization semaphores for too long * to avoid other entity starvation. However it is more efficient * to read in bursts than synchronizing access for each word. */ for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, count, &data[i]); if (status) return status; } return 0; } /** * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be read * @words: number of word(s) * @data: read 16 bit word(s) from EEPROM * * Reads 16 bit word(s) from EEPROM through bit-bang method **/ static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { s32 status; u16 word_in; u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; u16 i; /* Prepare the EEPROM for reading */ status = ixgbe_acquire_eeprom(hw); if (status) return status; if (ixgbe_ready_eeprom(hw) != 0) { ixgbe_release_eeprom(hw); return -EIO; } for (i = 0; i < words; i++) { ixgbe_standby_eeprom(hw); /* Some SPI eeproms use the 8th address bit embedded * in the opcode */ if ((hw->eeprom.address_bits == 8) && ((offset + i) >= 128)) read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; /* Send the READ command (opcode + addr) */ ixgbe_shift_out_eeprom_bits(hw, read_opcode, IXGBE_EEPROM_OPCODE_BITS); ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), hw->eeprom.address_bits); /* Read the data. */ word_in = ixgbe_shift_in_eeprom_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); } /* End this read operation */ ixgbe_release_eeprom(hw); return 0; } /** * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be read * @data: read 16 bit value from EEPROM * * Reads 16 bit value from EEPROM through bit-bang method **/ s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) { hw->eeprom.ops.init_params(hw); if (offset >= hw->eeprom.word_size) return -EINVAL; return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); } /** * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @words: number of word(s) * @data: 16 bit word(s) from the EEPROM * * Reads a 16 bit word(s) from the EEPROM using the EERD register. **/ s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { u32 eerd; s32 status; u32 i; hw->eeprom.ops.init_params(hw); if (words == 0 || offset >= hw->eeprom.word_size) return -EINVAL; for (i = 0; i < words; i++) { eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | IXGBE_EEPROM_RW_REG_START; IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); if (status == 0) { data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> IXGBE_EEPROM_RW_REG_DATA); } else { hw_dbg(hw, "Eeprom read timed out\n"); return status; } } return 0; } /** * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size * @hw: pointer to hardware structure * @offset: offset within the EEPROM to be used as a scratch pad * * Discover EEPROM page size by writing marching data at given offset. * This function is called only when we are writing a new large buffer * at given offset so the data would be overwritten anyway. **/ static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, u16 offset) { u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; s32 status; u16 i; for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) data[i] = i; hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, IXGBE_EEPROM_PAGE_SIZE_MAX, data); hw->eeprom.word_page_size = 0; if (status) return status; status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); if (status) return status; /* * When writing in burst more than the actual page size * EEPROM address wraps around current page. */ hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; hw_dbg(hw, "Detected EEPROM page size = %d words.\n", hw->eeprom.word_page_size); return 0; } /** * ixgbe_read_eerd_generic - Read EEPROM word using EERD * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to read * @data: word read from the EEPROM * * Reads a 16 bit word from the EEPROM using the EERD register. **/ s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) { return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); } /** * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to write * @words: number of words * @data: word(s) write to the EEPROM * * Write a 16 bit word(s) to the EEPROM using the EEWR register. **/ s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, u16 words, u16 *data) { u32 eewr; s32 status; u16 i; hw->eeprom.ops.init_params(hw); if (words == 0 || offset >= hw->eeprom.word_size) return -EINVAL; for (i = 0; i < words; i++) { eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | (data[i] << IXGBE_EEPROM_RW_REG_DATA) | IXGBE_EEPROM_RW_REG_START; status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); if (status) { hw_dbg(hw, "Eeprom write EEWR timed out\n"); return status; } IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); if (status) { hw_dbg(hw, "Eeprom write EEWR timed out\n"); return status; } } return 0; } /** * ixgbe_write_eewr_generic - Write EEPROM word using EEWR * @hw: pointer to hardware structure * @offset: offset of word in the EEPROM to write * @data: word write to the EEPROM * * Write a 16 bit word to the EEPROM using the EEWR register. **/ s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) { return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); } /** * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status * @hw: pointer to hardware structure * @ee_reg: EEPROM flag for polling * * Polls the status bit (bit 1) of the EERD or EEWR to determine when the * read or write is done respectively. **/ static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) { u32 i; u32 reg; for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { if (ee_reg == IXGBE_NVM_POLL_READ) reg = IXGBE_READ_REG(hw, IXGBE_EERD); else reg = IXGBE_READ_REG(hw, IXGBE_EEWR); if (reg & IXGBE_EEPROM_RW_REG_DONE) { return 0; } udelay(5); } return -EIO; } /** * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang * @hw: pointer to hardware structure * * Prepares EEPROM for access using bit-bang method. This function should * be called before issuing a command to the EEPROM. **/ static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) { u32 eec; u32 i; if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) return -EBUSY; eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); /* Request EEPROM Access */ eec |= IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); if (eec & IXGBE_EEC_GNT) break; udelay(5); } /* Release if grant not acquired */ if (!(eec & IXGBE_EEC_GNT)) { eec &= ~IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); hw_dbg(hw, "Could not acquire EEPROM grant\n"); hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); return -EIO; } /* Setup EEPROM for Read/Write */ /* Clear CS and SK */ eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); udelay(1); return 0; } /** * ixgbe_get_eeprom_semaphore - Get hardware semaphore * @hw: pointer to hardware structure * * Sets the hardware semaphores so EEPROM access can occur for bit-bang method **/ static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) { u32 timeout = 2000; u32 i; u32 swsm; /* Get SMBI software semaphore between device drivers first */ for (i = 0; i < timeout; i++) { /* * If the SMBI bit is 0 when we read it, then the bit will be * set and we have the semaphore */ swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); if (!(swsm & IXGBE_SWSM_SMBI)) break; usleep_range(50, 100); } if (i == timeout) { hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n"); /* this release is particularly important because our attempts * above to get the semaphore may have succeeded, and if there * was a timeout, we should unconditionally clear the semaphore * bits to free the driver to make progress */ ixgbe_release_eeprom_semaphore(hw); usleep_range(50, 100); /* one last try * If the SMBI bit is 0 when we read it, then the bit will be * set and we have the semaphore */ swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); if (swsm & IXGBE_SWSM_SMBI) { hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n"); return -EIO; } } /* Now get the semaphore between SW/FW through the SWESMBI bit */ for (i = 0; i < timeout; i++) { swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); /* Set the SW EEPROM semaphore bit to request access */ swsm |= IXGBE_SWSM_SWESMBI; IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm); /* If we set the bit successfully then we got the * semaphore. */ swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); if (swsm & IXGBE_SWSM_SWESMBI) break; usleep_range(50, 100); } /* Release semaphores and return error if SW EEPROM semaphore * was not granted because we don't have access to the EEPROM */ if (i >= timeout) { hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n"); ixgbe_release_eeprom_semaphore(hw); return -EIO; } return 0; } /** * ixgbe_release_eeprom_semaphore - Release hardware semaphore * @hw: pointer to hardware structure * * This function clears hardware semaphore bits. **/ static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) { u32 swsm; swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm); IXGBE_WRITE_FLUSH(hw); } /** * ixgbe_ready_eeprom - Polls for EEPROM ready * @hw: pointer to hardware structure **/ static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) { u16 i; u8 spi_stat_reg; /* * Read "Status Register" repeatedly until the LSB is cleared. The * EEPROM will signal that the command has been completed by clearing * bit 0 of the internal status register. If it's not cleared within * 5 milliseconds, then error out. */ for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, IXGBE_EEPROM_OPCODE_BITS); spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) break; udelay(5); ixgbe_standby_eeprom(hw); } /* * On some parts, SPI write time could vary from 0-20mSec on 3.3V * devices (and only 0-5mSec on 5V devices) */ if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { hw_dbg(hw, "SPI EEPROM Status error\n"); return -EIO; } return 0; } /** * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state * @hw: pointer to hardware structure **/ static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) { u32 eec; eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); /* Toggle CS to flush commands */ eec |= IXGBE_EEC_CS; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); udelay(1); eec &= ~IXGBE_EEC_CS; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); udelay(1); } /** * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. * @hw: pointer to hardware structure * @data: data to send to the EEPROM * @count: number of bits to shift out **/ static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, u16 count) { u32 eec; u32 mask; u32 i; eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); /* * Mask is used to shift "count" bits of "data" out to the EEPROM * one bit at a time. Determine the starting bit based on count */ mask = BIT(count - 1); for (i = 0; i < count; i++) { /* * A "1" is shifted out to the EEPROM by setting bit "DI" to a * "1", and then raising and then lowering the clock (the SK * bit controls the clock input to the EEPROM). A "0" is * shifted out to the EEPROM by setting "DI" to "0" and then * raising and then lowering the clock. */ if (data & mask) eec |= IXGBE_EEC_DI; else eec &= ~IXGBE_EEC_DI; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); udelay(1); ixgbe_raise_eeprom_clk(hw, &eec); ixgbe_lower_eeprom_clk(hw, &eec); /* * Shift mask to signify next bit of data to shift in to the * EEPROM */ mask = mask >> 1; } /* We leave the "DI" bit set to "0" when we leave this routine. */ eec &= ~IXGBE_EEC_DI; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); } /** * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM * @hw: pointer to hardware structure * @count: number of bits to shift **/ static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) { u32 eec; u32 i; u16 data = 0; /* * In order to read a register from the EEPROM, we need to shift * 'count' bits in from the EEPROM. Bits are "shifted in" by raising * the clock input to the EEPROM (setting the SK bit), and then reading * the value of the "DO" bit. During this "shifting in" process the * "DI" bit should always be clear. */ eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); for (i = 0; i < count; i++) { data = data << 1; ixgbe_raise_eeprom_clk(hw, &eec); eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); eec &= ~(IXGBE_EEC_DI); if (eec & IXGBE_EEC_DO) data |= 1; ixgbe_lower_eeprom_clk(hw, &eec); } return data; } /** * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. * @hw: pointer to hardware structure * @eec: EEC register's current value **/ static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) { /* * Raise the clock input to the EEPROM * (setting the SK bit), then delay */ *eec = *eec | IXGBE_EEC_SK; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec); IXGBE_WRITE_FLUSH(hw); udelay(1); } /** * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. * @hw: pointer to hardware structure * @eec: EEC's current value **/ static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) { /* * Lower the clock input to the EEPROM (clearing the SK bit), then * delay */ *eec = *eec & ~IXGBE_EEC_SK; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec); IXGBE_WRITE_FLUSH(hw); udelay(1); } /** * ixgbe_release_eeprom - Release EEPROM, release semaphores * @hw: pointer to hardware structure **/ static void ixgbe_release_eeprom(struct ixgbe_hw *hw) { u32 eec; eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); eec |= IXGBE_EEC_CS; /* Pull CS high */ eec &= ~IXGBE_EEC_SK; /* Lower SCK */ IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); IXGBE_WRITE_FLUSH(hw); udelay(1); /* Stop requesting EEPROM access */ eec &= ~IXGBE_EEC_REQ; IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); /* * Delay before attempt to obtain semaphore again to allow FW * access. semaphore_delay is in ms we need us for usleep_range */ usleep_range(hw->eeprom.semaphore_delay * 1000, hw->eeprom.semaphore_delay * 2000); } /** * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum * @hw: pointer to hardware structure **/ s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) { u16 i; u16 j; u16 checksum = 0; u16 length = 0; u16 pointer = 0; u16 word = 0; /* Include 0x0-0x3F in the checksum */ for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { if (hw->eeprom.ops.read(hw, i, &word)) { hw_dbg(hw, "EEPROM read failed\n"); break; } checksum += word; } /* Include all data from pointers except for the fw pointer */ for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { if (hw->eeprom.ops.read(hw, i, &pointer)) { hw_dbg(hw, "EEPROM read failed\n"); return -EIO; } /* If the pointer seems invalid */ if (pointer == 0xFFFF || pointer == 0) continue; if (hw->eeprom.ops.read(hw, pointer, &length)) { hw_dbg(hw, "EEPROM read failed\n"); return -EIO; } if (length == 0xFFFF || length == 0) continue; for (j = pointer + 1; j <= pointer + length; j++) { if (hw->eeprom.ops.read(hw, j, &word)) { hw_dbg(hw, "EEPROM read failed\n"); return -EIO; } checksum += word; } } checksum = (u16)IXGBE_EEPROM_SUM - checksum; return (s32)checksum; } /** * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum * @hw: pointer to hardware structure * @checksum_val: calculated checksum * * Performs checksum calculation and validates the EEPROM checksum. If the * caller does not need checksum_val, the value can be NULL. **/ s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, u16 *checksum_val) { s32 status; u16 checksum; u16 read_checksum = 0; /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ status = hw->eeprom.ops.read(hw, 0, &checksum); if (status) { hw_dbg(hw, "EEPROM read failed\n"); return status; } status = hw->eeprom.ops.calc_checksum(hw); if (status < 0) return status; checksum = (u16)(status & 0xffff); status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); if (status) { hw_dbg(hw, "EEPROM read failed\n"); return status; } /* Verify read checksum from EEPROM is the same as * calculated checksum */ if (read_checksum != checksum) status = -EIO; /* If the user cares, return the calculated checksum */ if (checksum_val) *checksum_val = checksum; return status; } /** * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum * @hw: pointer to hardware structure **/ s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) { s32 status; u16 checksum; /* * Read the first word from the EEPROM. If this times out or fails, do * not continue or we could be in for a very long wait while every * EEPROM read fails */ status = hw->eeprom.ops.read(hw, 0, &checksum); if (status) { hw_dbg(hw, "EEPROM read failed\n"); return status; } status = hw->eeprom.ops.calc_checksum(hw); if (status < 0) return status; checksum = (u16)(status & 0xffff); status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); return status; } /** * ixgbe_set_rar_generic - Set Rx address register * @hw: pointer to hardware structure * @index: Receive address register to write * @addr: Address to put into receive address register * @vmdq: VMDq "set" or "pool" index * @enable_addr: set flag that address is active * * Puts an ethernet address into a receive address register. **/ s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, u32 enable_addr) { u32 rar_low, rar_high; u32 rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { hw_dbg(hw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* setup VMDq pool selection before this RAR gets enabled */ hw->mac.ops.set_vmdq(hw, index, vmdq); /* * HW expects these in little endian so we reverse the byte * order from network order (big endian) to little endian */ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); /* * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); if (enable_addr != 0) rar_high |= IXGBE_RAH_AV; /* Record lower 32 bits of MAC address and then make * sure that write is flushed to hardware before writing * the upper 16 bits and setting the valid bit. */ IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); IXGBE_WRITE_FLUSH(hw); IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); return 0; } /** * ixgbe_clear_rar_generic - Remove Rx address register * @hw: pointer to hardware structure * @index: Receive address register to write * * Clears an ethernet address from a receive address register. **/ s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) { u32 rar_high; u32 rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (index >= rar_entries) { hw_dbg(hw, "RAR index %d is out of range.\n", index); return -EINVAL; } /* * Some parts put the VMDq setting in the extra RAH bits, * so save everything except the lower 16 bits that hold part * of the address and the address valid bit. */ rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); /* Clear the address valid bit and upper 16 bits of the address * before clearing the lower bits. This way we aren't updating * a live filter. */ IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); IXGBE_WRITE_FLUSH(hw); IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); /* clear VMDq pool/queue selection for this RAR */ hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); return 0; } /** * ixgbe_init_rx_addrs_generic - Initializes receive address filters. * @hw: pointer to hardware structure * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. **/ s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) { u32 i; u32 rar_entries = hw->mac.num_rar_entries; /* * If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (!is_valid_ether_addr(hw->mac.addr)) { /* Get the MAC address from the RAR0 for later reference */ hw->mac.ops.get_mac_addr(hw, hw->mac.addr); hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr); } else { /* Setup the receive address. */ hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr); hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); } /* clear VMDq pool/queue selection for RAR 0 */ hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); hw->addr_ctrl.overflow_promisc = 0; hw->addr_ctrl.rar_used_count = 1; /* Zero out the other receive addresses. */ hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); for (i = 1; i < rar_entries; i++) { IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); } /* Clear the MTA */ hw->addr_ctrl.mta_in_use = 0; IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); hw_dbg(hw, " Clearing MTA\n"); for (i = 0; i < hw->mac.mcft_size; i++) IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); if (hw->mac.ops.init_uta_tables) hw->mac.ops.init_uta_tables(hw); return 0; } /** * ixgbe_mta_vector - Determines bit-vector in multicast table to set * @hw: pointer to hardware structure * @mc_addr: the multicast address * * Extracts the 12 bits, from a multicast address, to determine which * bit-vector to set in the multicast table. The hardware uses 12 bits, from * incoming rx multicast addresses, to determine the bit-vector to check in * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set * by the MO field of the MCSTCTRL. The MO field is set during initialization * to mc_filter_type. **/ static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) { u32 vector = 0; switch (hw->mac.mc_filter_type) { case 0: /* use bits [47:36] of the address */ vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); break; case 1: /* use bits [46:35] of the address */ vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); break; case 2: /* use bits [45:34] of the address */ vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); break; case 3: /* use bits [43:32] of the address */ vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); break; default: /* Invalid mc_filter_type */ hw_dbg(hw, "MC filter type param set incorrectly\n"); break; } /* vector can only be 12-bits or boundary will be exceeded */ vector &= 0xFFF; return vector; } /** * ixgbe_set_mta - Set bit-vector in multicast table * @hw: pointer to hardware structure * @mc_addr: Multicast address * * Sets the bit-vector in the multicast table. **/ static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) { u32 vector; u32 vector_bit; u32 vector_reg; hw->addr_ctrl.mta_in_use++; vector = ixgbe_mta_vector(hw, mc_addr); hw_dbg(hw, " bit-vector = 0x%03X\n", vector); /* * The MTA is a register array of 128 32-bit registers. It is treated * like an array of 4096 bits. We want to set bit * BitArray[vector_value]. So we figure out what register the bit is * in, read it, OR in the new bit, then write back the new value. The * register is determined by the upper 7 bits of the vector value and * the bit within that register are determined by the lower 5 bits of * the value. */ vector_reg = (vector >> 5) & 0x7F; vector_bit = vector & 0x1F; hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit); } /** * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses * @hw: pointer to hardware structure * @netdev: pointer to net device structure * * The given list replaces any existing list. Clears the MC addrs from receive * address registers and the multicast table. Uses unused receive address * registers for the first multicast addresses, and hashes the rest into the * multicast table. **/ s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, struct net_device *netdev) { struct netdev_hw_addr *ha; u32 i; /* * Set the new number of MC addresses that we are being requested to * use. */ hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); hw->addr_ctrl.mta_in_use = 0; /* Clear mta_shadow */ hw_dbg(hw, " Clearing MTA\n"); memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* Update mta shadow */ netdev_for_each_mc_addr(ha, netdev) { hw_dbg(hw, " Adding the multicast addresses:\n"); ixgbe_set_mta(hw, ha->addr); } /* Enable mta */ for (i = 0; i < hw->mac.mcft_size; i++) IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, hw->mac.mta_shadow[i]); if (hw->addr_ctrl.mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); return 0; } /** * ixgbe_enable_mc_generic - Enable multicast address in RAR * @hw: pointer to hardware structure * * Enables multicast address in RAR and the use of the multicast hash table. **/ s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) { struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; if (a->mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); return 0; } /** * ixgbe_disable_mc_generic - Disable multicast address in RAR * @hw: pointer to hardware structure * * Disables multicast address in RAR and the use of the multicast hash table. **/ s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) { struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; if (a->mta_in_use > 0) IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); return 0; } /** * ixgbe_fc_enable_generic - Enable flow control * @hw: pointer to hardware structure * * Enable flow control according to the current settings. **/ s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) { u32 mflcn_reg, fccfg_reg; u32 reg; u32 fcrtl, fcrth; int i; /* Validate the water mark configuration. */ if (!hw->fc.pause_time) return -EINVAL; /* Low water mark of zero causes XOFF floods */ for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && hw->fc.high_water[i]) { if (!hw->fc.low_water[i] || hw->fc.low_water[i] >= hw->fc.high_water[i]) { hw_dbg(hw, "Invalid water mark configuration\n"); return -EINVAL; } } } /* Negotiate the fc mode to use */ hw->mac.ops.fc_autoneg(hw); /* Disable any previous flow control settings */ mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); /* * The possible values of fc.current_mode are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but * we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: Invalid. */ switch (hw->fc.current_mode) { case ixgbe_fc_none: /* * Flow control is disabled by software override or autoneg. * The code below will actually disable it in the HW. */ break; case ixgbe_fc_rx_pause: /* * Rx Flow control is enabled and Tx Flow control is * disabled by software override. Since there really * isn't a way to advertise that we are capable of RX * Pause ONLY, we will advertise that we support both * symmetric and asymmetric Rx PAUSE. Later, we will * disable the adapter's ability to send PAUSE frames. */ mflcn_reg |= IXGBE_MFLCN_RFCE; break; case ixgbe_fc_tx_pause: /* * Tx Flow control is enabled, and Rx Flow control is * disabled by software override. */ fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; break; case ixgbe_fc_full: /* Flow control (both Rx and Tx) is enabled by SW override. */ mflcn_reg |= IXGBE_MFLCN_RFCE; fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; break; default: hw_dbg(hw, "Flow control param set incorrectly\n"); return -EIO; } /* Set 802.3x based flow control settings. */ mflcn_reg |= IXGBE_MFLCN_DPF; IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); /* Set up and enable Rx high/low water mark thresholds, enable XON. */ for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && hw->fc.high_water[i]) { fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; } else { IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); /* * In order to prevent Tx hangs when the internal Tx * switch is enabled we must set the high water mark * to the Rx packet buffer size - 24KB. This allows * the Tx switch to function even under heavy Rx * workloads. */ fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576; } IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); } /* Configure pause time (2 TCs per register) */ reg = hw->fc.pause_time * 0x00010001U; for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++) IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); return 0; } /** * ixgbe_negotiate_fc - Negotiate flow control * @hw: pointer to hardware structure * @adv_reg: flow control advertised settings * @lp_reg: link partner's flow control settings * @adv_sym: symmetric pause bit in advertisement * @adv_asm: asymmetric pause bit in advertisement * @lp_sym: symmetric pause bit in link partner advertisement * @lp_asm: asymmetric pause bit in link partner advertisement * * Find the intersection between advertised settings and link partner's * advertised settings **/ s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) { if ((!(adv_reg)) || (!(lp_reg))) return -EINVAL; if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { /* * Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise RX * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == ixgbe_fc_full) { hw->fc.current_mode = ixgbe_fc_full; hw_dbg(hw, "Flow Control = FULL.\n"); } else { hw->fc.current_mode = ixgbe_fc_rx_pause; hw_dbg(hw, "Flow Control=RX PAUSE frames only\n"); } } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && (lp_reg & lp_sym) && (lp_reg & lp_asm)) { hw->fc.current_mode = ixgbe_fc_tx_pause; hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { hw->fc.current_mode = ixgbe_fc_rx_pause; hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); } else { hw->fc.current_mode = ixgbe_fc_none; hw_dbg(hw, "Flow Control = NONE.\n"); } return 0; } /** * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber * @hw: pointer to hardware structure * * Enable flow control according on 1 gig fiber. **/ static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) { u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; s32 ret_val; /* * On multispeed fiber at 1g, bail out if * - link is up but AN did not complete, or if * - link is up and AN completed but timed out */ linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) return -EIO; pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, IXGBE_PCS1GANA_ASM_PAUSE, IXGBE_PCS1GANA_SYM_PAUSE, IXGBE_PCS1GANA_ASM_PAUSE); return ret_val; } /** * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 * @hw: pointer to hardware structure * * Enable flow control according to IEEE clause 37. **/ static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) { u32 links2, anlp1_reg, autoc_reg, links; s32 ret_val; /* * On backplane, bail out if * - backplane autoneg was not completed, or if * - we are 82599 and link partner is not AN enabled */ links = IXGBE_READ_REG(hw, IXGBE_LINKS); if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) return -EIO; if (hw->mac.type == ixgbe_mac_82599EB) { links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) return -EIO; } /* * Read the 10g AN autoc and LP ability registers and resolve * local flow control settings accordingly */ autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); ret_val = ixgbe_negotiate_fc(hw, autoc_reg, anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); return ret_val; } /** * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 * @hw: pointer to hardware structure * * Enable flow control according to IEEE clause 37. **/ static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) { u16 technology_ability_reg = 0; u16 lp_technology_ability_reg = 0; hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &technology_ability_reg); hw->phy.ops.read_reg(hw, MDIO_AN_LPA, MDIO_MMD_AN, &lp_technology_ability_reg); return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, (u32)lp_technology_ability_reg, IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); } /** * ixgbe_fc_autoneg - Configure flow control * @hw: pointer to hardware structure * * Compares our advertised flow control capabilities to those advertised by * our link partner, and determines the proper flow control mode to use. **/ void ixgbe_fc_autoneg(struct ixgbe_hw *hw) { ixgbe_link_speed speed; s32 ret_val = -EIO; bool link_up; /* * AN should have completed when the cable was plugged in. * Look for reasons to bail out. Bail out if: * - FC autoneg is disabled, or if * - link is not up. * * Since we're being called from an LSC, link is already known to be up. * So use link_up_wait_to_complete=false. */ if (hw->fc.disable_fc_autoneg) goto out; hw->mac.ops.check_link(hw, &speed, &link_up, false); if (!link_up) goto out; switch (hw->phy.media_type) { /* Autoneg flow control on fiber adapters */ case ixgbe_media_type_fiber: if (speed == IXGBE_LINK_SPEED_1GB_FULL) ret_val = ixgbe_fc_autoneg_fiber(hw); break; /* Autoneg flow control on backplane adapters */ case ixgbe_media_type_backplane: ret_val = ixgbe_fc_autoneg_backplane(hw); break; /* Autoneg flow control on copper adapters */ case ixgbe_media_type_copper: if (ixgbe_device_supports_autoneg_fc(hw)) ret_val = ixgbe_fc_autoneg_copper(hw); break; default: break; } out: if (ret_val == 0) { hw->fc.fc_was_autonegged = true; } else { hw->fc.fc_was_autonegged = false; hw->fc.current_mode = hw->fc.requested_mode; } } /** * ixgbe_pcie_timeout_poll - Return number of times to poll for completion * @hw: pointer to hardware structure * * System-wide timeout range is encoded in PCIe Device Control2 register. * * Add 10% to specified maximum and return the number of times to poll for * completion timeout, in units of 100 microsec. Never return less than * 800 = 80 millisec. **/ static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw) { s16 devctl2; u32 pollcnt; devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2); devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK; switch (devctl2) { case IXGBE_PCIDEVCTRL2_65_130ms: pollcnt = 1300; /* 130 millisec */ break; case IXGBE_PCIDEVCTRL2_260_520ms: pollcnt = 5200; /* 520 millisec */ break; case IXGBE_PCIDEVCTRL2_1_2s: pollcnt = 20000; /* 2 sec */ break; case IXGBE_PCIDEVCTRL2_4_8s: pollcnt = 80000; /* 8 sec */ break; case IXGBE_PCIDEVCTRL2_17_34s: pollcnt = 34000; /* 34 sec */ break; case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */ case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */ case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */ case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */ default: pollcnt = 800; /* 80 millisec minimum */ break; } /* add 10% to spec maximum */ return (pollcnt * 11) / 10; } /** * ixgbe_disable_pcie_primary - Disable PCI-express primary access * @hw: pointer to hardware structure * * Disables PCI-Express primary access and verifies there are no pending * requests. -EALREADY is returned if primary disable * bit hasn't caused the primary requests to be disabled, else 0 * is returned signifying primary requests disabled. **/ static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw) { u32 i, poll; u16 value; /* Always set this bit to ensure any future transactions are blocked */ IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); /* Poll for bit to read as set */ for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) { if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS) break; usleep_range(100, 120); } if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) { hw_dbg(hw, "GIO disable did not set - requesting resets\n"); goto gio_disable_fail; } /* Exit if primary requests are blocked */ if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) || ixgbe_removed(hw->hw_addr)) return 0; /* Poll for primary request bit to clear */ for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) { udelay(100); if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) return 0; } /* * Two consecutive resets are required via CTRL.RST per datasheet * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine * of this need. The first reset prevents new primary requests from * being issued by our device. We then must wait 1usec or more for any * remaining completions from the PCIe bus to trickle in, and then reset * again to clear out any effects they may have had on our device. */ hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n"); gio_disable_fail: hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; if (hw->mac.type >= ixgbe_mac_X550) return 0; /* * Before proceeding, make sure that the PCIe block does not have * transactions pending. */ poll = ixgbe_pcie_timeout_poll(hw); for (i = 0; i < poll; i++) { udelay(100); value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS); if (ixgbe_removed(hw->hw_addr)) return 0; if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) return 0; } hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n"); return -EALREADY; } /** * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore * @hw: pointer to hardware structure * @mask: Mask to specify which semaphore to acquire * * Acquires the SWFW semaphore through the GSSR register for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask) { u32 gssr = 0; u32 swmask = mask; u32 fwmask = mask << 5; u32 timeout = 200; u32 i; for (i = 0; i < timeout; i++) { /* * SW NVM semaphore bit is used for access to all * SW_FW_SYNC bits (not just NVM) */ if (ixgbe_get_eeprom_semaphore(hw)) return -EBUSY; gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); if (!(gssr & (fwmask | swmask))) { gssr |= swmask; IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); ixgbe_release_eeprom_semaphore(hw); return 0; } else { /* Resource is currently in use by FW or SW */ ixgbe_release_eeprom_semaphore(hw); usleep_range(5000, 10000); } } /* If time expired clear the bits holding the lock and retry */ if (gssr & (fwmask | swmask)) ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask)); usleep_range(5000, 10000); return -EBUSY; } /** * ixgbe_release_swfw_sync - Release SWFW semaphore * @hw: pointer to hardware structure * @mask: Mask to specify which semaphore to release * * Releases the SWFW semaphore through the GSSR register for the specified * function (CSR, PHY0, PHY1, EEPROM, Flash) **/ void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask) { u32 gssr; u32 swmask = mask; ixgbe_get_eeprom_semaphore(hw); gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); gssr &= ~swmask; IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); ixgbe_release_eeprom_semaphore(hw); } /** * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read * @hw: pointer to hardware structure * @reg_val: Value we read from AUTOC * @locked: bool to indicate whether the SW/FW lock should be taken. Never * true in this the generic case. * * The default case requires no protection so just to the register read. **/ s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val) { *locked = false; *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC); return 0; } /** * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write * @hw: pointer to hardware structure * @reg_val: value to write to AUTOC * @locked: bool to indicate whether the SW/FW lock was already taken by * previous read. **/ s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked) { IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val); return 0; } /** * ixgbe_disable_rx_buff_generic - Stops the receive data path * @hw: pointer to hardware structure * * Stops the receive data path and waits for the HW to internally * empty the Rx security block. **/ s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw) { #define IXGBE_MAX_SECRX_POLL 40 int i; int secrxreg; secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); secrxreg |= IXGBE_SECRXCTRL_RX_DIS; IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) break; else /* Use interrupt-safe sleep just in case */ udelay(1000); } /* For informational purposes only */ if (i >= IXGBE_MAX_SECRX_POLL) hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n"); return 0; } /** * ixgbe_enable_rx_buff_generic - Enables the receive data path * @hw: pointer to hardware structure * * Enables the receive data path **/ s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw) { u32 secrxreg; secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit * @hw: pointer to hardware structure * @regval: register value to write to RXCTRL * * Enables the Rx DMA unit **/ s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) { if (regval & IXGBE_RXCTRL_RXEN) hw->mac.ops.enable_rx(hw); else hw->mac.ops.disable_rx(hw); return 0; } /** * ixgbe_blink_led_start_generic - Blink LED based on index. * @hw: pointer to hardware structure * @index: led number to blink **/ s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) { ixgbe_link_speed speed = 0; bool link_up = false; u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); bool locked = false; s32 ret_val; if (index > 3) return -EINVAL; /* * Link must be up to auto-blink the LEDs; * Force it if link is down. */ hw->mac.ops.check_link(hw, &speed, &link_up, false); if (!link_up) { ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); if (ret_val) return ret_val; autoc_reg |= IXGBE_AUTOC_AN_RESTART; autoc_reg |= IXGBE_AUTOC_FLU; ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); if (ret_val) return ret_val; IXGBE_WRITE_FLUSH(hw); usleep_range(10000, 20000); } led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg |= IXGBE_LED_BLINK(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. * @hw: pointer to hardware structure * @index: led number to stop blinking **/ s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) { u32 autoc_reg = 0; u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); bool locked = false; s32 ret_val; if (index > 3) return -EINVAL; ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); if (ret_val) return ret_val; autoc_reg &= ~IXGBE_AUTOC_FLU; autoc_reg |= IXGBE_AUTOC_AN_RESTART; ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); if (ret_val) return ret_val; led_reg &= ~IXGBE_LED_MODE_MASK(index); led_reg &= ~IXGBE_LED_BLINK(index); led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); IXGBE_WRITE_FLUSH(hw); return 0; } /** * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM * @hw: pointer to hardware structure * @san_mac_offset: SAN MAC address offset * * This function will read the EEPROM location for the SAN MAC address * pointer, and returns the value at that location. This is used in both * get and set mac_addr routines. **/ static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, u16 *san_mac_offset) { s32 ret_val; /* * First read the EEPROM pointer to see if the MAC addresses are * available. */ ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); if (ret_val) hw_err(hw, "eeprom read at offset %d failed\n", IXGBE_SAN_MAC_ADDR_PTR); return ret_val; } /** * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM * @hw: pointer to hardware structure * @san_mac_addr: SAN MAC address * * Reads the SAN MAC address from the EEPROM, if it's available. This is * per-port, so set_lan_id() must be called before reading the addresses. * set_lan_id() is called by identify_sfp(), but this cannot be relied * upon for non-SFP connections, so we must call it here. **/ s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) { u16 san_mac_data, san_mac_offset; u8 i; s32 ret_val; /* * First read the EEPROM pointer to see if the MAC addresses are * available. If they're not, no point in calling set_lan_id() here. */ ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) goto san_mac_addr_clr; /* make sure we know which port we need to program */ hw->mac.ops.set_lan_id(hw); /* apply the port offset to the address offset */ (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); for (i = 0; i < 3; i++) { ret_val = hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); if (ret_val) { hw_err(hw, "eeprom read at offset %d failed\n", san_mac_offset); goto san_mac_addr_clr; } san_mac_addr[i * 2] = (u8)(san_mac_data); san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); san_mac_offset++; } return 0; san_mac_addr_clr: /* No addresses available in this EEPROM. It's not necessarily an * error though, so just wipe the local address and return. */ for (i = 0; i < 6; i++) san_mac_addr[i] = 0xFF; return ret_val; } /** * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count * @hw: pointer to hardware structure * * Read PCIe configuration space, and get the MSI-X vector count from * the capabilities table. **/ u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) { u16 msix_count; u16 max_msix_count; u16 pcie_offset; switch (hw->mac.type) { case ixgbe_mac_82598EB: pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; break; case ixgbe_mac_82599EB: case ixgbe_mac_X540: case ixgbe_mac_X550: case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; break; default: return 1; } msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset); if (ixgbe_removed(hw->hw_addr)) msix_count = 0; msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; /* MSI-X count is zero-based in HW */ msix_count++; if (msix_count > max_msix_count) msix_count = max_msix_count; return msix_count; } /** * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address * @hw: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar **/ s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) { u32 mpsar_lo, mpsar_hi; u32 rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { hw_dbg(hw, "RAR index %d is out of range.\n", rar); return -EINVAL; } mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); if (ixgbe_removed(hw->hw_addr)) return 0; if (!mpsar_lo && !mpsar_hi) return 0; if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { if (mpsar_lo) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); mpsar_lo = 0; } if (mpsar_hi) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); mpsar_hi = 0; } } else if (vmdq < 32) { mpsar_lo &= ~BIT(vmdq); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); } else { mpsar_hi &= ~BIT(vmdq - 32); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); } /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0 && rar != hw->mac.san_mac_rar_index) hw->mac.ops.clear_rar(hw, rar); return 0; } /** * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address * @hw: pointer to hardware struct * @rar: receive address register index to associate with a VMDq index * @vmdq: VMDq pool index **/ s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) { u32 mpsar; u32 rar_entries = hw->mac.num_rar_entries; /* Make sure we are using a valid rar index range */ if (rar >= rar_entries) { hw_dbg(hw, "RAR index %d is out of range.\n", rar); return -EINVAL; } if (vmdq < 32) { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar |= BIT(vmdq); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); } else { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); mpsar |= BIT(vmdq - 32); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); } return 0; } /** * ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address * @hw: pointer to hardware struct * @vmdq: VMDq pool index * * This function should only be involved in the IOV mode. * In IOV mode, Default pool is next pool after the number of * VFs advertized and not 0. * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] **/ s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) { u32 rar = hw->mac.san_mac_rar_index; if (vmdq < 32) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq)); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); } else { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32)); } return 0; } /** * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array * @hw: pointer to hardware structure **/ s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) { int i; for (i = 0; i < 128; i++) IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); return 0; } /** * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vlvf_bypass: true to find vlanid only, false returns first empty slot if * vlanid not found * * return the VLVF index where this VLAN id should be placed * **/ static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass) { s32 regindex, first_empty_slot; u32 bits; /* short cut the special case */ if (vlan == 0) return 0; /* if vlvf_bypass is set we don't want to use an empty slot, we * will simply bypass the VLVF if there are no entries present in the * VLVF that contain our VLAN */ first_empty_slot = vlvf_bypass ? -ENOSPC : 0; /* add VLAN enable bit for comparison */ vlan |= IXGBE_VLVF_VIEN; /* Search for the vlan id in the VLVF entries. Save off the first empty * slot found along the way. * * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 */ for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) { bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); if (bits == vlan) return regindex; if (!first_empty_slot && !bits) first_empty_slot = regindex; } /* If we are here then we didn't find the VLAN. Return first empty * slot we found during our search, else error. */ if (!first_empty_slot) hw_dbg(hw, "No space in VLVF.\n"); return first_empty_slot ? : -ENOSPC; } /** * ixgbe_set_vfta_generic - Set VLAN filter table * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vind: VMDq output index that maps queue to VLAN id in VFVFB * @vlan_on: boolean flag to turn on/off VLAN in VFVF * @vlvf_bypass: boolean flag indicating updating default pool is okay * * Turn on/off specified VLAN in the VLAN filter table. **/ s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, bool vlan_on, bool vlvf_bypass) { u32 regidx, vfta_delta, vfta, bits; s32 vlvf_index; if ((vlan > 4095) || (vind > 63)) return -EINVAL; /* * this is a 2 part operation - first the VFTA, then the * VLVF and VLVFB if VT Mode is set * We don't write the VFTA until we know the VLVF part succeeded. */ /* Part 1 * The VFTA is a bitstring made up of 128 32-bit registers * that enable the particular VLAN id, much like the MTA: * bits[11-5]: which register * bits[4-0]: which bit in the register */ regidx = vlan / 32; vfta_delta = BIT(vlan % 32); vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx)); /* vfta_delta represents the difference between the current value * of vfta and the value we want in the register. Since the diff * is an XOR mask we can just update vfta using an XOR. */ vfta_delta &= vlan_on ? ~vfta : vfta; vfta ^= vfta_delta; /* Part 2 * If VT Mode is set * Either vlan_on * make sure the vlan is in VLVF * set the vind bit in the matching VLVFB * Or !vlan_on * clear the pool bit and possibly the vind */ if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE)) goto vfta_update; vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass); if (vlvf_index < 0) { if (vlvf_bypass) goto vfta_update; return vlvf_index; } bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32)); /* set the pool bit */ bits |= BIT(vind % 32); if (vlan_on) goto vlvf_update; /* clear the pool bit */ bits ^= BIT(vind % 32); if (!bits && !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) { /* Clear VFTA first, then disable VLVF. Otherwise * we run the risk of stray packets leaking into * the PF via the default pool */ if (vfta_delta) IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta); /* disable VLVF and clear remaining bit from pool */ IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0); return 0; } /* If there are still bits set in the VLVFB registers * for the VLAN ID indicated we need to see if the * caller is requesting that we clear the VFTA entry bit. * If the caller has requested that we clear the VFTA * entry bit but there are still pools/VFs using this VLAN * ID entry then ignore the request. We're not worried * about the case where we're turning the VFTA VLAN ID * entry bit on, only when requested to turn it off as * there may be multiple pools and/or VFs using the * VLAN ID entry. In that case we cannot clear the * VFTA bit until all pools/VFs using that VLAN ID have also * been cleared. This will be indicated by "bits" being * zero. */ vfta_delta = 0; vlvf_update: /* record pool change and enable VLAN ID if not already enabled */ IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits); IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan); vfta_update: /* Update VFTA now that we are ready for traffic */ if (vfta_delta) IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta); return 0; } /** * ixgbe_clear_vfta_generic - Clear VLAN filter table * @hw: pointer to hardware structure * * Clears the VLAN filter table, and the VMDq index associated with the filter **/ s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) { u32 offset; for (offset = 0; offset < hw->mac.vft_size; offset++) IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0); } return 0; } /** * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix * @hw: pointer to hardware structure * * Contains the logic to identify if we need to verify link for the * crosstalk fix **/ static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw) { /* Does FW say we need the fix */ if (!hw->need_crosstalk_fix) return false; /* Only consider SFP+ PHYs i.e. media type fiber */ switch (hw->mac.ops.get_media_type(hw)) { case ixgbe_media_type_fiber: case ixgbe_media_type_fiber_qsfp: break; default: return false; } return true; } /** * ixgbe_check_mac_link_generic - Determine link and speed status * @hw: pointer to hardware structure * @speed: pointer to link speed * @link_up: true when link is up * @link_up_wait_to_complete: bool used to wait for link up or not * * Reads the links register to determine if link is up and the current speed **/ s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *link_up, bool link_up_wait_to_complete) { bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw); u32 links_reg, links_orig; u32 i; /* If Crosstalk fix enabled do the sanity check of making sure * the SFP+ cage is full. */ if (crosstalk_fix_active) { u32 sfp_cage_full; switch (hw->mac.type) { case ixgbe_mac_82599EB: sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & IXGBE_ESDP_SDP2; break; case ixgbe_mac_X550EM_x: case ixgbe_mac_x550em_a: sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & IXGBE_ESDP_SDP0; break; default: /* sanity check - No SFP+ devices here */ sfp_cage_full = false; break; } if (!sfp_cage_full) { *link_up = false; *speed = IXGBE_LINK_SPEED_UNKNOWN; return 0; } } /* clear the old state */ links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (links_orig != links_reg) { hw_dbg(hw, "LINKS changed from %08X to %08X\n", links_orig, links_reg); } if (link_up_wait_to_complete) { for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { if (links_reg & IXGBE_LINKS_UP) { *link_up = true; break; } else { *link_up = false; } msleep(100); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); } } else { if (links_reg & IXGBE_LINKS_UP) { if (crosstalk_fix_active) { /* Check the link state again after a delay * to filter out spurious link up * notifications. */ mdelay(5); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (!(links_reg & IXGBE_LINKS_UP)) { *link_up = false; *speed = IXGBE_LINK_SPEED_UNKNOWN; return 0; } } *link_up = true; } else { *link_up = false; } } switch (links_reg & IXGBE_LINKS_SPEED_82599) { case IXGBE_LINKS_SPEED_10G_82599: if ((hw->mac.type >= ixgbe_mac_X550) && (links_reg & IXGBE_LINKS_SPEED_NON_STD)) *speed = IXGBE_LINK_SPEED_2_5GB_FULL; else *speed = IXGBE_LINK_SPEED_10GB_FULL; break; case IXGBE_LINKS_SPEED_1G_82599: *speed = IXGBE_LINK_SPEED_1GB_FULL; break; case IXGBE_LINKS_SPEED_100_82599: if ((hw->mac.type >= ixgbe_mac_X550) && (links_reg & IXGBE_LINKS_SPEED_NON_STD)) *speed = IXGBE_LINK_SPEED_5GB_FULL; else *speed = IXGBE_LINK_SPEED_100_FULL; break; case IXGBE_LINKS_SPEED_10_X550EM_A: *speed = IXGBE_LINK_SPEED_UNKNOWN; if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T || hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) { *speed = IXGBE_LINK_SPEED_10_FULL; } break; default: *speed = IXGBE_LINK_SPEED_UNKNOWN; } return 0; } /** * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from * the EEPROM * @hw: pointer to hardware structure * @wwnn_prefix: the alternative WWNN prefix * @wwpn_prefix: the alternative WWPN prefix * * This function will read the EEPROM from the alternative SAN MAC address * block to check the support for the alternative WWNN/WWPN prefix support. **/ s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, u16 *wwpn_prefix) { u16 offset, caps; u16 alt_san_mac_blk_offset; /* clear output first */ *wwnn_prefix = 0xFFFF; *wwpn_prefix = 0xFFFF; /* check if alternative SAN MAC is supported */ offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR; if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset)) goto wwn_prefix_err; if ((alt_san_mac_blk_offset == 0) || (alt_san_mac_blk_offset == 0xFFFF)) return 0; /* check capability in alternative san mac address block */ offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; if (hw->eeprom.ops.read(hw, offset, &caps)) goto wwn_prefix_err; if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) return 0; /* get the corresponding prefix for WWNN/WWPN */ offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) hw_err(hw, "eeprom read at offset %d failed\n", offset); offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; if (hw->eeprom.ops.read(hw, offset, wwpn_prefix)) goto wwn_prefix_err; return 0; wwn_prefix_err: hw_err(hw, "eeprom read at offset %d failed\n", offset); return 0; } /** * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing * @hw: pointer to hardware structure * @enable: enable or disable switch for MAC anti-spoofing * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing * **/ void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) { int vf_target_reg = vf >> 3; int vf_target_shift = vf % 8; u32 pfvfspoof; if (hw->mac.type == ixgbe_mac_82598EB) return; pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); if (enable) pfvfspoof |= BIT(vf_target_shift); else pfvfspoof &= ~BIT(vf_target_shift); IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); } /** * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing * @hw: pointer to hardware structure * @enable: enable or disable switch for VLAN anti-spoofing * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing * **/ void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) { int vf_target_reg = vf >> 3; int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; u32 pfvfspoof; if (hw->mac.type == ixgbe_mac_82598EB) return; pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); if (enable) pfvfspoof |= BIT(vf_target_shift); else pfvfspoof &= ~BIT(vf_target_shift); IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); } /** * ixgbe_get_device_caps_generic - Get additional device capabilities * @hw: pointer to hardware structure * @device_caps: the EEPROM word with the extra device capabilities * * This function will read the EEPROM location for the device capabilities, * and return the word through device_caps. **/ s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) { hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); return 0; } /** * ixgbe_set_rxpba_generic - Initialize RX packet buffer * @hw: pointer to hardware structure * @num_pb: number of packet buffers to allocate * @headroom: reserve n KB of headroom * @strategy: packet buffer allocation strategy **/ void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom, int strategy) { u32 pbsize = hw->mac.rx_pb_size; int i = 0; u32 rxpktsize, txpktsize, txpbthresh; /* Reserve headroom */ pbsize -= headroom; if (!num_pb) num_pb = 1; /* Divide remaining packet buffer space amongst the number * of packet buffers requested using supplied strategy. */ switch (strategy) { case (PBA_STRATEGY_WEIGHTED): /* pba_80_48 strategy weight first half of packet buffer with * 5/8 of the packet buffer space. */ rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8)); pbsize -= rxpktsize * (num_pb / 2); rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; for (; i < (num_pb / 2); i++) IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); fallthrough; /* configure remaining packet buffers */ case (PBA_STRATEGY_EQUAL): /* Divide the remaining Rx packet buffer evenly among the TCs */ rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; for (; i < num_pb; i++) IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); break; default: break; } /* * Setup Tx packet buffer and threshold equally for all TCs * TXPBTHRESH register is set in K so divide by 1024 and subtract * 10 since the largest packet we support is just over 9K. */ txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; for (i = 0; i < num_pb; i++) { IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); } /* Clear unused TCs, if any, to zero buffer size*/ for (; i < IXGBE_MAX_PB; i++) { IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); } } /** * ixgbe_calculate_checksum - Calculate checksum for buffer * @buffer: pointer to EEPROM * @length: size of EEPROM to calculate a checksum for * * Calculates the checksum for some buffer on a specified length. The * checksum calculated is returned. **/ u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) { u32 i; u8 sum = 0; if (!buffer) return 0; for (i = 0; i < length; i++) sum += buffer[i]; return (u8) (0 - sum); } /** * ixgbe_hic_unlocked - Issue command to manageability block unlocked * @hw: pointer to the HW structure * @buffer: command to write and where the return status will be placed * @length: length of buffer, must be multiple of 4 bytes * @timeout: time in ms to wait for command completion * * Communicates with the manageability block. On success return 0 * else returns semaphore error when encountering an error acquiring * semaphore, -EINVAL when incorrect parameters passed or -EIO when * command fails. * * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held * by the caller. **/ s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length, u32 timeout) { u32 hicr, i, fwsts; u16 dword_len; if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length); return -EINVAL; } /* Set bit 9 of FWSTS clearing FW reset indication */ fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS); IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI); /* Check that the host interface is enabled. */ hicr = IXGBE_READ_REG(hw, IXGBE_HICR); if (!(hicr & IXGBE_HICR_EN)) { hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n"); return -EIO; } /* Calculate length in DWORDs. We must be DWORD aligned */ if (length % sizeof(u32)) { hw_dbg(hw, "Buffer length failure, not aligned to dword"); return -EINVAL; } dword_len = length >> 2; /* The device driver writes the relevant command block * into the ram area. */ for (i = 0; i < dword_len; i++) IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, i, (__force u32)cpu_to_le32(buffer[i])); /* Setting this bit tells the ARC that a new command is pending. */ IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); for (i = 0; i < timeout; i++) { hicr = IXGBE_READ_REG(hw, IXGBE_HICR); if (!(hicr & IXGBE_HICR_C)) break; usleep_range(1000, 2000); } /* Check command successful completion. */ if ((timeout && i == timeout) || !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) return -EIO; return 0; } /** * ixgbe_host_interface_command - Issue command to manageability block * @hw: pointer to the HW structure * @buffer: contains the command to write and where the return status will * be placed * @length: length of buffer, must be multiple of 4 bytes * @timeout: time in ms to wait for command completion * @return_data: read and return data from the buffer (true) or not (false) * Needed because FW structures are big endian and decoding of * these fields can be 8 bit or 16 bit based on command. Decoding * is not easily understood without making a table of commands. * So we will leave this up to the caller to read back the data * in these cases. * * Communicates with the manageability block. On success return 0 * else return -EIO or -EINVAL. **/ s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer, u32 length, u32 timeout, bool return_data) { u32 hdr_size = sizeof(struct ixgbe_hic_hdr); struct ixgbe_hic_hdr *hdr = buffer; u32 *u32arr = buffer; u16 buf_len, dword_len; s32 status; u32 bi; if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length); return -EINVAL; } /* Take management host interface semaphore */ status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); if (status) return status; status = ixgbe_hic_unlocked(hw, buffer, length, timeout); if (status) goto rel_out; if (!return_data) goto rel_out; /* Calculate length in DWORDs */ dword_len = hdr_size >> 2; /* first pull in the header so we know the buffer length */ for (bi = 0; bi < dword_len; bi++) { u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); le32_to_cpus(&u32arr[bi]); } /* If there is any thing in data position pull it in */ buf_len = hdr->buf_len; if (!buf_len) goto rel_out; if (length < round_up(buf_len, 4) + hdr_size) { hw_dbg(hw, "Buffer not large enough for reply message.\n"); status = -EIO; goto rel_out; } /* Calculate length in DWORDs, add 3 for odd lengths */ dword_len = (buf_len + 3) >> 2; /* Pull in the rest of the buffer (bi is where we left off) */ for (; bi <= dword_len; bi++) { u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); le32_to_cpus(&u32arr[bi]); } rel_out: hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); return status; } /** * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware * @hw: pointer to the HW structure * @maj: driver version major number * @min: driver version minor number * @build: driver version build number * @sub: driver version sub build number * @len: length of driver_ver string * @driver_ver: driver string * * Sends driver version number to firmware through the manageability * block. On success return 0 * else returns -EBUSY when encountering an error acquiring * semaphore or -EIO when command fails. **/ s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, u8 build, u8 sub, __always_unused u16 len, __always_unused const char *driver_ver) { struct ixgbe_hic_drv_info fw_cmd; int i; s32 ret_val; fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; fw_cmd.port_num = hw->bus.func; fw_cmd.ver_maj = maj; fw_cmd.ver_min = min; fw_cmd.ver_build = build; fw_cmd.ver_sub = sub; fw_cmd.hdr.checksum = 0; fw_cmd.pad = 0; fw_cmd.pad2 = 0; fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { ret_val = ixgbe_host_interface_command(hw, &fw_cmd, sizeof(fw_cmd), IXGBE_HI_COMMAND_TIMEOUT, true); if (ret_val != 0) continue; if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_CEM_RESP_STATUS_SUCCESS) ret_val = 0; else ret_val = -EIO; break; } return ret_val; } /** * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo * @hw: pointer to the hardware structure * * The 82599 and x540 MACs can experience issues if TX work is still pending * when a reset occurs. This function prevents this by flushing the PCIe * buffers on the system. **/ void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) { u32 gcr_ext, hlreg0, i, poll; u16 value; /* * If double reset is not requested then all transactions should * already be clear and as such there is no work to do */ if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) return; /* * Set loopback enable to prevent any transmits from being sent * should the link come up. This assumes that the RXCTRL.RXEN bit * has already been cleared. */ hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); /* wait for a last completion before clearing buffers */ IXGBE_WRITE_FLUSH(hw); usleep_range(3000, 6000); /* Before proceeding, make sure that the PCIe block does not have * transactions pending. */ poll = ixgbe_pcie_timeout_poll(hw); for (i = 0; i < poll; i++) { usleep_range(100, 200); value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS); if (ixgbe_removed(hw->hw_addr)) break; if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) break; } /* initiate cleaning flow for buffers in the PCIe transaction layer */ gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); /* Flush all writes and allow 20usec for all transactions to clear */ IXGBE_WRITE_FLUSH(hw); udelay(20); /* restore previous register values */ IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); } static const u8 ixgbe_emc_temp_data[4] = { IXGBE_EMC_INTERNAL_DATA, IXGBE_EMC_DIODE1_DATA, IXGBE_EMC_DIODE2_DATA, IXGBE_EMC_DIODE3_DATA }; static const u8 ixgbe_emc_therm_limit[4] = { IXGBE_EMC_INTERNAL_THERM_LIMIT, IXGBE_EMC_DIODE1_THERM_LIMIT, IXGBE_EMC_DIODE2_THERM_LIMIT, IXGBE_EMC_DIODE3_THERM_LIMIT }; /** * ixgbe_get_ets_data - Extracts the ETS bit data * @hw: pointer to hardware structure * @ets_cfg: extected ETS data * @ets_offset: offset of ETS data * * Returns error code. **/ static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg, u16 *ets_offset) { s32 status; status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset); if (status) return status; if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) return -EOPNOTSUPP; status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg); if (status) return status; if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) return -EOPNOTSUPP; return 0; } /** * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data * @hw: pointer to hardware structure * * Returns the thermal sensor data structure **/ s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) { s32 status; u16 ets_offset; u16 ets_cfg; u16 ets_sensor; u8 num_sensors; u8 i; struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; /* Only support thermal sensors attached to physical port 0 */ if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) return -EOPNOTSUPP; status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); if (status) return status; num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); if (num_sensors > IXGBE_MAX_SENSORS) num_sensors = IXGBE_MAX_SENSORS; for (i = 0; i < num_sensors; i++) { u8 sensor_index; u8 sensor_location; status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor); if (status) return status; sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK, ets_sensor); sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK, ets_sensor); if (sensor_location != 0) { status = hw->phy.ops.read_i2c_byte(hw, ixgbe_emc_temp_data[sensor_index], IXGBE_I2C_THERMAL_SENSOR_ADDR, &data->sensor[i].temp); if (status) return status; } } return 0; } /** * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds * @hw: pointer to hardware structure * * Inits the thermal sensor thresholds according to the NVM map * and save off the threshold and location values into mac.thermal_sensor_data **/ s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) { s32 status; u16 ets_offset; u16 ets_cfg; u16 ets_sensor; u8 low_thresh_delta; u8 num_sensors; u8 therm_limit; u8 i; struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); /* Only support thermal sensors attached to physical port 0 */ if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) return -EOPNOTSUPP; status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); if (status) return status; low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg); num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); if (num_sensors > IXGBE_MAX_SENSORS) num_sensors = IXGBE_MAX_SENSORS; for (i = 0; i < num_sensors; i++) { u8 sensor_index; u8 sensor_location; if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) { hw_err(hw, "eeprom read at offset %d failed\n", ets_offset + 1 + i); continue; } sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK, ets_sensor); sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK, ets_sensor); therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; hw->phy.ops.write_i2c_byte(hw, ixgbe_emc_therm_limit[sensor_index], IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); if (sensor_location == 0) continue; data->sensor[i].location = sensor_location; data->sensor[i].caution_thresh = therm_limit; data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta; } return 0; } /** * ixgbe_get_orom_version - Return option ROM from EEPROM * * @hw: pointer to hardware structure * @nvm_ver: pointer to output structure * * if valid option ROM version, nvm_ver->or_valid set to true * else nvm_ver->or_valid is false. **/ void ixgbe_get_orom_version(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) { u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl; nvm_ver->or_valid = false; /* Option Rom may or may not be present. Start with pointer */ hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset); /* make sure offset is valid */ if (offset == 0x0 || offset == NVM_INVALID_PTR) return; hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh); hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl); /* option rom exists and is valid */ if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 || eeprom_cfg_blkl == NVM_VER_INVALID || eeprom_cfg_blkh == NVM_VER_INVALID) return; nvm_ver->or_valid = true; nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT; nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) | (eeprom_cfg_blkh >> NVM_OROM_SHIFT); nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK; } /** * ixgbe_get_oem_prod_version - Etrack ID from EEPROM * @hw: pointer to hardware structure * @nvm_ver: pointer to output structure * * if valid OEM product version, nvm_ver->oem_valid set to true * else nvm_ver->oem_valid is false. **/ void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) { u16 rel_num, prod_ver, mod_len, cap, offset; nvm_ver->oem_valid = false; hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset); /* Return is offset to OEM Product Version block is invalid */ if (offset == 0x0 || offset == NVM_INVALID_PTR) return; /* Read product version block */ hw->eeprom.ops.read(hw, offset, &mod_len); hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap); /* Return if OEM product version block is invalid */ if (mod_len != NVM_OEM_PROD_VER_MOD_LEN || (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0) return; hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver); hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num); /* Return if version is invalid */ if ((rel_num | prod_ver) == 0x0 || rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID) return; nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT; nvm_ver->oem_minor = prod_ver & NVM_VER_MASK; nvm_ver->oem_release = rel_num; nvm_ver->oem_valid = true; } /** * ixgbe_get_etk_id - Return Etrack ID from EEPROM * * @hw: pointer to hardware structure * @nvm_ver: pointer to output structure * * word read errors will return 0xFFFF **/ void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) { u16 etk_id_l, etk_id_h; if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l)) etk_id_l = NVM_VER_INVALID; if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h)) etk_id_h = NVM_VER_INVALID; /* The word order for the version format is determined by high order * word bit 15. */ if ((etk_id_h & NVM_ETK_VALID) == 0) { nvm_ver->etk_id = etk_id_h; nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT); } else { nvm_ver->etk_id = etk_id_l; nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT); } } void ixgbe_disable_rx_generic(struct ixgbe_hw *hw) { u32 rxctrl; rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); if (rxctrl & IXGBE_RXCTRL_RXEN) { if (hw->mac.type != ixgbe_mac_82598EB) { u32 pfdtxgswc; pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); hw->mac.set_lben = true; } else { hw->mac.set_lben = false; } } rxctrl &= ~IXGBE_RXCTRL_RXEN; IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); } } void ixgbe_enable_rx_generic(struct ixgbe_hw *hw) { u32 rxctrl; rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN)); if (hw->mac.type != ixgbe_mac_82598EB) { if (hw->mac.set_lben) { u32 pfdtxgswc; pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN; IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); hw->mac.set_lben = false; } } } /** ixgbe_mng_present - returns true when management capability is present * @hw: pointer to hardware structure **/ bool ixgbe_mng_present(struct ixgbe_hw *hw) { u32 fwsm; if (hw->mac.type < ixgbe_mac_82599EB) return false; fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw)); return !!(fwsm & IXGBE_FWSM_FW_MODE_PT); } /** * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed * @hw: pointer to hardware structure * @speed: new link speed * @autoneg_wait_to_complete: true when waiting for completion is needed * * Set the link speed in the MAC and/or PHY register and restarts link. */ s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg_wait_to_complete) { ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; s32 status = 0; u32 speedcnt = 0; u32 i = 0; bool autoneg, link_up = false; /* Mask off requested but non-supported speeds */ status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg); if (status) return status; speed &= link_speed; /* Try each speed one by one, highest priority first. We do this in * software because 10Gb fiber doesn't support speed autonegotiation. */ if (speed & IXGBE_LINK_SPEED_10GB_FULL) { speedcnt++; highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; /* Set the module link speed */ switch (hw->phy.media_type) { case ixgbe_media_type_fiber: hw->mac.ops.set_rate_select_speed(hw, IXGBE_LINK_SPEED_10GB_FULL); break; case ixgbe_media_type_fiber_qsfp: /* QSFP module automatically detects MAC link speed */ break; default: hw_dbg(hw, "Unexpected media type\n"); break; } /* Allow module to change analog characteristics (1G->10G) */ msleep(40); status = hw->mac.ops.setup_mac_link(hw, IXGBE_LINK_SPEED_10GB_FULL, autoneg_wait_to_complete); if (status) return status; /* Flap the Tx laser if it has not already been done */ if (hw->mac.ops.flap_tx_laser) hw->mac.ops.flap_tx_laser(hw); /* Wait for the controller to acquire link. Per IEEE 802.3ap, * Section 73.10.2, we may have to wait up to 500ms if KR is * attempted. 82599 uses the same timing for 10g SFI. */ for (i = 0; i < 5; i++) { /* Wait for the link partner to also set speed */ msleep(100); /* If we have link, just jump out */ status = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); if (status) return status; if (link_up) goto out; } } if (speed & IXGBE_LINK_SPEED_1GB_FULL) { speedcnt++; if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; /* Set the module link speed */ switch (hw->phy.media_type) { case ixgbe_media_type_fiber: hw->mac.ops.set_rate_select_speed(hw, IXGBE_LINK_SPEED_1GB_FULL); break; case ixgbe_media_type_fiber_qsfp: /* QSFP module automatically detects link speed */ break; default: hw_dbg(hw, "Unexpected media type\n"); break; } /* Allow module to change analog characteristics (10G->1G) */ msleep(40); status = hw->mac.ops.setup_mac_link(hw, IXGBE_LINK_SPEED_1GB_FULL, autoneg_wait_to_complete); if (status) return status; /* Flap the Tx laser if it has not already been done */ if (hw->mac.ops.flap_tx_laser) hw->mac.ops.flap_tx_laser(hw); /* Wait for the link partner to also set speed */ msleep(100); /* If we have link, just jump out */ status = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); if (status) return status; if (link_up) goto out; } /* We didn't get link. Configure back to the highest speed we tried, * (if there was more than one). We call ourselves back with just the * single highest speed that the user requested. */ if (speedcnt > 1) status = ixgbe_setup_mac_link_multispeed_fiber(hw, highest_link_speed, autoneg_wait_to_complete); out: /* Set autoneg_advertised value based on input link speed */ hw->phy.autoneg_advertised = 0; if (speed & IXGBE_LINK_SPEED_10GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; if (speed & IXGBE_LINK_SPEED_1GB_FULL) hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; return status; } /** * ixgbe_set_soft_rate_select_speed - Set module link speed * @hw: pointer to hardware structure * @speed: link speed to set * * Set module link speed via the soft rate select. */ void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw, ixgbe_link_speed speed) { s32 status; u8 rs, eeprom_data; switch (speed) { case IXGBE_LINK_SPEED_10GB_FULL: /* one bit mask same as setting on */ rs = IXGBE_SFF_SOFT_RS_SELECT_10G; break; case IXGBE_LINK_SPEED_1GB_FULL: rs = IXGBE_SFF_SOFT_RS_SELECT_1G; break; default: hw_dbg(hw, "Invalid fixed module speed\n"); return; } /* Set RS0 */ status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, IXGBE_I2C_EEPROM_DEV_ADDR2, &eeprom_data); if (status) { hw_dbg(hw, "Failed to read Rx Rate Select RS0\n"); return; } eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, IXGBE_I2C_EEPROM_DEV_ADDR2, eeprom_data); if (status) { hw_dbg(hw, "Failed to write Rx Rate Select RS0\n"); return; } /* Set RS1 */ status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, IXGBE_I2C_EEPROM_DEV_ADDR2, &eeprom_data); if (status) { hw_dbg(hw, "Failed to read Rx Rate Select RS1\n"); return; } eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, IXGBE_I2C_EEPROM_DEV_ADDR2, eeprom_data); if (status) { hw_dbg(hw, "Failed to write Rx Rate Select RS1\n"); return; } }