// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2018 Intel Corporation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IGB_DCA #include #endif #include #include "igb.h" enum queue_mode { QUEUE_MODE_STRICT_PRIORITY, QUEUE_MODE_STREAM_RESERVATION, }; enum tx_queue_prio { TX_QUEUE_PRIO_HIGH, TX_QUEUE_PRIO_LOW, }; char igb_driver_name[] = "igb"; static const char igb_driver_string[] = "Intel(R) Gigabit Ethernet Network Driver"; static const char igb_copyright[] = "Copyright (c) 2007-2014 Intel Corporation."; static const struct e1000_info *igb_info_tbl[] = { [board_82575] = &e1000_82575_info, }; static const struct pci_device_id igb_pci_tbl[] = { { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, igb_pci_tbl); static int igb_setup_all_tx_resources(struct igb_adapter *); static int igb_setup_all_rx_resources(struct igb_adapter *); static void igb_free_all_tx_resources(struct igb_adapter *); static void igb_free_all_rx_resources(struct igb_adapter *); static void igb_setup_mrqc(struct igb_adapter *); static int igb_probe(struct pci_dev *, const struct pci_device_id *); static void igb_remove(struct pci_dev *pdev); static int igb_sw_init(struct igb_adapter *); int igb_open(struct net_device *); int igb_close(struct net_device *); static void igb_configure(struct igb_adapter *); static void igb_configure_tx(struct igb_adapter *); static void igb_configure_rx(struct igb_adapter *); static void igb_clean_all_tx_rings(struct igb_adapter *); static void igb_clean_all_rx_rings(struct igb_adapter *); static void igb_clean_tx_ring(struct igb_ring *); static void igb_clean_rx_ring(struct igb_ring *); static void igb_set_rx_mode(struct net_device *); static void igb_update_phy_info(struct timer_list *); static void igb_watchdog(struct timer_list *); static void igb_watchdog_task(struct work_struct *); static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); static void igb_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats); static int igb_change_mtu(struct net_device *, int); static int igb_set_mac(struct net_device *, void *); static void igb_set_uta(struct igb_adapter *adapter, bool set); static irqreturn_t igb_intr(int irq, void *); static irqreturn_t igb_intr_msi(int irq, void *); static irqreturn_t igb_msix_other(int irq, void *); static irqreturn_t igb_msix_ring(int irq, void *); #ifdef CONFIG_IGB_DCA static void igb_update_dca(struct igb_q_vector *); static void igb_setup_dca(struct igb_adapter *); #endif /* CONFIG_IGB_DCA */ static int igb_poll(struct napi_struct *, int); static bool igb_clean_tx_irq(struct igb_q_vector *, int); static int igb_clean_rx_irq(struct igb_q_vector *, int); static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); static void igb_tx_timeout(struct net_device *, unsigned int txqueue); static void igb_reset_task(struct work_struct *); static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); static void igb_restore_vlan(struct igb_adapter *); static void igb_rar_set_index(struct igb_adapter *, u32); static void igb_ping_all_vfs(struct igb_adapter *); static void igb_msg_task(struct igb_adapter *); static void igb_vmm_control(struct igb_adapter *); static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); static void igb_flush_mac_table(struct igb_adapter *); static int igb_available_rars(struct igb_adapter *, u8); static void igb_set_default_mac_filter(struct igb_adapter *); static int igb_uc_sync(struct net_device *, const unsigned char *); static int igb_uc_unsync(struct net_device *, const unsigned char *); static void igb_restore_vf_multicasts(struct igb_adapter *adapter); static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos, __be16 vlan_proto); static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, bool setting); static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting); static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, struct ifla_vf_info *ivi); static void igb_check_vf_rate_limit(struct igb_adapter *); static void igb_nfc_filter_exit(struct igb_adapter *adapter); static void igb_nfc_filter_restore(struct igb_adapter *adapter); #ifdef CONFIG_PCI_IOV static int igb_vf_configure(struct igb_adapter *adapter, int vf); static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); static int igb_disable_sriov(struct pci_dev *dev); static int igb_pci_disable_sriov(struct pci_dev *dev); #endif static int igb_suspend(struct device *); static int igb_resume(struct device *); static int igb_runtime_suspend(struct device *dev); static int igb_runtime_resume(struct device *dev); static int igb_runtime_idle(struct device *dev); static const struct dev_pm_ops igb_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, igb_runtime_idle) }; static void igb_shutdown(struct pci_dev *); static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); #ifdef CONFIG_IGB_DCA static int igb_notify_dca(struct notifier_block *, unsigned long, void *); static struct notifier_block dca_notifier = { .notifier_call = igb_notify_dca, .next = NULL, .priority = 0 }; #endif #ifdef CONFIG_PCI_IOV static unsigned int max_vfs; module_param(max_vfs, uint, 0); MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); #endif /* CONFIG_PCI_IOV */ static pci_ers_result_t igb_io_error_detected(struct pci_dev *, pci_channel_state_t); static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); static void igb_io_resume(struct pci_dev *); static const struct pci_error_handlers igb_err_handler = { .error_detected = igb_io_error_detected, .slot_reset = igb_io_slot_reset, .resume = igb_io_resume, }; static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); static struct pci_driver igb_driver = { .name = igb_driver_name, .id_table = igb_pci_tbl, .probe = igb_probe, .remove = igb_remove, #ifdef CONFIG_PM .driver.pm = &igb_pm_ops, #endif .shutdown = igb_shutdown, .sriov_configure = igb_pci_sriov_configure, .err_handler = &igb_err_handler }; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); MODULE_LICENSE("GPL v2"); #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); struct igb_reg_info { u32 ofs; char *name; }; static const struct igb_reg_info igb_reg_info_tbl[] = { /* General Registers */ {E1000_CTRL, "CTRL"}, {E1000_STATUS, "STATUS"}, {E1000_CTRL_EXT, "CTRL_EXT"}, /* Interrupt Registers */ {E1000_ICR, "ICR"}, /* RX Registers */ {E1000_RCTL, "RCTL"}, {E1000_RDLEN(0), "RDLEN"}, {E1000_RDH(0), "RDH"}, {E1000_RDT(0), "RDT"}, {E1000_RXDCTL(0), "RXDCTL"}, {E1000_RDBAL(0), "RDBAL"}, {E1000_RDBAH(0), "RDBAH"}, /* TX Registers */ {E1000_TCTL, "TCTL"}, {E1000_TDBAL(0), "TDBAL"}, {E1000_TDBAH(0), "TDBAH"}, {E1000_TDLEN(0), "TDLEN"}, {E1000_TDH(0), "TDH"}, {E1000_TDT(0), "TDT"}, {E1000_TXDCTL(0), "TXDCTL"}, {E1000_TDFH, "TDFH"}, {E1000_TDFT, "TDFT"}, {E1000_TDFHS, "TDFHS"}, {E1000_TDFPC, "TDFPC"}, /* List Terminator */ {} }; /* igb_regdump - register printout routine */ static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) { int n = 0; char rname[16]; u32 regs[8]; switch (reginfo->ofs) { case E1000_RDLEN(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDLEN(n)); break; case E1000_RDH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDH(n)); break; case E1000_RDT(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDT(n)); break; case E1000_RXDCTL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RXDCTL(n)); break; case E1000_RDBAL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDBAL(n)); break; case E1000_RDBAH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDBAH(n)); break; case E1000_TDBAL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDBAL(n)); break; case E1000_TDBAH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDBAH(n)); break; case E1000_TDLEN(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDLEN(n)); break; case E1000_TDH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDH(n)); break; case E1000_TDT(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDT(n)); break; case E1000_TXDCTL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TXDCTL(n)); break; default: pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); return; } snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], regs[2], regs[3]); } /* igb_dump - Print registers, Tx-rings and Rx-rings */ static void igb_dump(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; struct igb_reg_info *reginfo; struct igb_ring *tx_ring; union e1000_adv_tx_desc *tx_desc; struct my_u0 { __le64 a; __le64 b; } *u0; struct igb_ring *rx_ring; union e1000_adv_rx_desc *rx_desc; u32 staterr; u16 i, n; if (!netif_msg_hw(adapter)) return; /* Print netdevice Info */ if (netdev) { dev_info(&adapter->pdev->dev, "Net device Info\n"); pr_info("Device Name state trans_start\n"); pr_info("%-15s %016lX %016lX\n", netdev->name, netdev->state, dev_trans_start(netdev)); } /* Print Registers */ dev_info(&adapter->pdev->dev, "Register Dump\n"); pr_info(" Register Name Value\n"); for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; reginfo->name; reginfo++) { igb_regdump(hw, reginfo); } /* Print TX Ring Summary */ if (!netdev || !netif_running(netdev)) goto exit; dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); for (n = 0; n < adapter->num_tx_queues; n++) { struct igb_tx_buffer *buffer_info; tx_ring = adapter->tx_ring[n]; buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", n, tx_ring->next_to_use, tx_ring->next_to_clean, (u64)dma_unmap_addr(buffer_info, dma), dma_unmap_len(buffer_info, len), buffer_info->next_to_watch, (u64)buffer_info->time_stamp); } /* Print TX Rings */ if (!netif_msg_tx_done(adapter)) goto rx_ring_summary; dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); /* Transmit Descriptor Formats * * Advanced Transmit Descriptor * +--------------------------------------------------------------+ * 0 | Buffer Address [63:0] | * +--------------------------------------------------------------+ * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | * +--------------------------------------------------------------+ * 63 46 45 40 39 38 36 35 32 31 24 15 0 */ for (n = 0; n < adapter->num_tx_queues; n++) { tx_ring = adapter->tx_ring[n]; pr_info("------------------------------------\n"); pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); pr_info("------------------------------------\n"); pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { const char *next_desc; struct igb_tx_buffer *buffer_info; tx_desc = IGB_TX_DESC(tx_ring, i); buffer_info = &tx_ring->tx_buffer_info[i]; u0 = (struct my_u0 *)tx_desc; if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) next_desc = " NTC/U"; else if (i == tx_ring->next_to_use) next_desc = " NTU"; else if (i == tx_ring->next_to_clean) next_desc = " NTC"; else next_desc = ""; pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), (u64)dma_unmap_addr(buffer_info, dma), dma_unmap_len(buffer_info, len), buffer_info->next_to_watch, (u64)buffer_info->time_stamp, buffer_info->skb, next_desc); if (netif_msg_pktdata(adapter) && buffer_info->skb) print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 1, buffer_info->skb->data, dma_unmap_len(buffer_info, len), true); } } /* Print RX Rings Summary */ rx_ring_summary: dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); pr_info("Queue [NTU] [NTC]\n"); for (n = 0; n < adapter->num_rx_queues; n++) { rx_ring = adapter->rx_ring[n]; pr_info(" %5d %5X %5X\n", n, rx_ring->next_to_use, rx_ring->next_to_clean); } /* Print RX Rings */ if (!netif_msg_rx_status(adapter)) goto exit; dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); /* Advanced Receive Descriptor (Read) Format * 63 1 0 * +-----------------------------------------------------+ * 0 | Packet Buffer Address [63:1] |A0/NSE| * +----------------------------------------------+------+ * 8 | Header Buffer Address [63:1] | DD | * +-----------------------------------------------------+ * * * Advanced Receive Descriptor (Write-Back) Format * * 63 48 47 32 31 30 21 20 17 16 4 3 0 * +------------------------------------------------------+ * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | * | Checksum Ident | | | | Type | Type | * +------------------------------------------------------+ * 8 | VLAN Tag | Length | Extended Error | Extended Status | * +------------------------------------------------------+ * 63 48 47 32 31 20 19 0 */ for (n = 0; n < adapter->num_rx_queues; n++) { rx_ring = adapter->rx_ring[n]; pr_info("------------------------------------\n"); pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); pr_info("------------------------------------\n"); pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); for (i = 0; i < rx_ring->count; i++) { const char *next_desc; struct igb_rx_buffer *buffer_info; buffer_info = &rx_ring->rx_buffer_info[i]; rx_desc = IGB_RX_DESC(rx_ring, i); u0 = (struct my_u0 *)rx_desc; staterr = le32_to_cpu(rx_desc->wb.upper.status_error); if (i == rx_ring->next_to_use) next_desc = " NTU"; else if (i == rx_ring->next_to_clean) next_desc = " NTC"; else next_desc = ""; if (staterr & E1000_RXD_STAT_DD) { /* Descriptor Done */ pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", "RWB", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), next_desc); } else { pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", "R ", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), (u64)buffer_info->dma, next_desc); if (netif_msg_pktdata(adapter) && buffer_info->dma && buffer_info->page) { print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 1, page_address(buffer_info->page) + buffer_info->page_offset, igb_rx_bufsz(rx_ring), true); } } } } exit: return; } /** * igb_get_i2c_data - Reads the I2C SDA data bit * @data: opaque pointer to adapter struct * * Returns the I2C data bit value **/ static int igb_get_i2c_data(void *data) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); return !!(i2cctl & E1000_I2C_DATA_IN); } /** * igb_set_i2c_data - Sets the I2C data bit * @data: pointer to hardware structure * @state: I2C data value (0 or 1) to set * * Sets the I2C data bit **/ static void igb_set_i2c_data(void *data, int state) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); if (state) { i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; } else { i2cctl &= ~E1000_I2C_DATA_OE_N; i2cctl &= ~E1000_I2C_DATA_OUT; } wr32(E1000_I2CPARAMS, i2cctl); wrfl(); } /** * igb_set_i2c_clk - Sets the I2C SCL clock * @data: pointer to hardware structure * @state: state to set clock * * Sets the I2C clock line to state **/ static void igb_set_i2c_clk(void *data, int state) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); if (state) { i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N; } else { i2cctl &= ~E1000_I2C_CLK_OUT; i2cctl &= ~E1000_I2C_CLK_OE_N; } wr32(E1000_I2CPARAMS, i2cctl); wrfl(); } /** * igb_get_i2c_clk - Gets the I2C SCL clock state * @data: pointer to hardware structure * * Gets the I2C clock state **/ static int igb_get_i2c_clk(void *data) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); return !!(i2cctl & E1000_I2C_CLK_IN); } static const struct i2c_algo_bit_data igb_i2c_algo = { .setsda = igb_set_i2c_data, .setscl = igb_set_i2c_clk, .getsda = igb_get_i2c_data, .getscl = igb_get_i2c_clk, .udelay = 5, .timeout = 20, }; /** * igb_get_hw_dev - return device * @hw: pointer to hardware structure * * used by hardware layer to print debugging information **/ struct net_device *igb_get_hw_dev(struct e1000_hw *hw) { struct igb_adapter *adapter = hw->back; return adapter->netdev; } /** * igb_init_module - Driver Registration Routine * * igb_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init igb_init_module(void) { int ret; pr_info("%s\n", igb_driver_string); pr_info("%s\n", igb_copyright); #ifdef CONFIG_IGB_DCA dca_register_notify(&dca_notifier); #endif ret = pci_register_driver(&igb_driver); return ret; } module_init(igb_init_module); /** * igb_exit_module - Driver Exit Cleanup Routine * * igb_exit_module is called just before the driver is removed * from memory. **/ static void __exit igb_exit_module(void) { #ifdef CONFIG_IGB_DCA dca_unregister_notify(&dca_notifier); #endif pci_unregister_driver(&igb_driver); } module_exit(igb_exit_module); #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) /** * igb_cache_ring_register - Descriptor ring to register mapping * @adapter: board private structure to initialize * * Once we know the feature-set enabled for the device, we'll cache * the register offset the descriptor ring is assigned to. **/ static void igb_cache_ring_register(struct igb_adapter *adapter) { int i = 0, j = 0; u32 rbase_offset = adapter->vfs_allocated_count; switch (adapter->hw.mac.type) { case e1000_82576: /* The queues are allocated for virtualization such that VF 0 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. * In order to avoid collision we start at the first free queue * and continue consuming queues in the same sequence */ if (adapter->vfs_allocated_count) { for (; i < adapter->rss_queues; i++) adapter->rx_ring[i]->reg_idx = rbase_offset + Q_IDX_82576(i); } fallthrough; case e1000_82575: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: default: for (; i < adapter->num_rx_queues; i++) adapter->rx_ring[i]->reg_idx = rbase_offset + i; for (; j < adapter->num_tx_queues; j++) adapter->tx_ring[j]->reg_idx = rbase_offset + j; break; } } u32 igb_rd32(struct e1000_hw *hw, u32 reg) { struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr); u32 value = 0; if (E1000_REMOVED(hw_addr)) return ~value; value = readl(&hw_addr[reg]); /* reads should not return all F's */ if (!(~value) && (!reg || !(~readl(hw_addr)))) { struct net_device *netdev = igb->netdev; hw->hw_addr = NULL; netdev_err(netdev, "PCIe link lost\n"); WARN(pci_device_is_present(igb->pdev), "igb: Failed to read reg 0x%x!\n", reg); } return value; } /** * igb_write_ivar - configure ivar for given MSI-X vector * @hw: pointer to the HW structure * @msix_vector: vector number we are allocating to a given ring * @index: row index of IVAR register to write within IVAR table * @offset: column offset of in IVAR, should be multiple of 8 * * This function is intended to handle the writing of the IVAR register * for adapters 82576 and newer. The IVAR table consists of 2 columns, * each containing an cause allocation for an Rx and Tx ring, and a * variable number of rows depending on the number of queues supported. **/ static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, int index, int offset) { u32 ivar = array_rd32(E1000_IVAR0, index); /* clear any bits that are currently set */ ivar &= ~((u32)0xFF << offset); /* write vector and valid bit */ ivar |= (msix_vector | E1000_IVAR_VALID) << offset; array_wr32(E1000_IVAR0, index, ivar); } #define IGB_N0_QUEUE -1 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) { struct igb_adapter *adapter = q_vector->adapter; struct e1000_hw *hw = &adapter->hw; int rx_queue = IGB_N0_QUEUE; int tx_queue = IGB_N0_QUEUE; u32 msixbm = 0; if (q_vector->rx.ring) rx_queue = q_vector->rx.ring->reg_idx; if (q_vector->tx.ring) tx_queue = q_vector->tx.ring->reg_idx; switch (hw->mac.type) { case e1000_82575: /* The 82575 assigns vectors using a bitmask, which matches the * bitmask for the EICR/EIMS/EIMC registers. To assign one * or more queues to a vector, we write the appropriate bits * into the MSIXBM register for that vector. */ if (rx_queue > IGB_N0_QUEUE) msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; if (tx_queue > IGB_N0_QUEUE) msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) msixbm |= E1000_EIMS_OTHER; array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); q_vector->eims_value = msixbm; break; case e1000_82576: /* 82576 uses a table that essentially consists of 2 columns * with 8 rows. The ordering is column-major so we use the * lower 3 bits as the row index, and the 4th bit as the * column offset. */ if (rx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, rx_queue & 0x7, (rx_queue & 0x8) << 1); if (tx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, tx_queue & 0x7, ((tx_queue & 0x8) << 1) + 8); q_vector->eims_value = BIT(msix_vector); break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: /* On 82580 and newer adapters the scheme is similar to 82576 * however instead of ordering column-major we have things * ordered row-major. So we traverse the table by using * bit 0 as the column offset, and the remaining bits as the * row index. */ if (rx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, rx_queue >> 1, (rx_queue & 0x1) << 4); if (tx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, tx_queue >> 1, ((tx_queue & 0x1) << 4) + 8); q_vector->eims_value = BIT(msix_vector); break; default: BUG(); break; } /* add q_vector eims value to global eims_enable_mask */ adapter->eims_enable_mask |= q_vector->eims_value; /* configure q_vector to set itr on first interrupt */ q_vector->set_itr = 1; } /** * igb_configure_msix - Configure MSI-X hardware * @adapter: board private structure to initialize * * igb_configure_msix sets up the hardware to properly * generate MSI-X interrupts. **/ static void igb_configure_msix(struct igb_adapter *adapter) { u32 tmp; int i, vector = 0; struct e1000_hw *hw = &adapter->hw; adapter->eims_enable_mask = 0; /* set vector for other causes, i.e. link changes */ switch (hw->mac.type) { case e1000_82575: tmp = rd32(E1000_CTRL_EXT); /* enable MSI-X PBA support*/ tmp |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read. */ tmp |= E1000_CTRL_EXT_EIAME; tmp |= E1000_CTRL_EXT_IRCA; wr32(E1000_CTRL_EXT, tmp); /* enable msix_other interrupt */ array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); adapter->eims_other = E1000_EIMS_OTHER; break; case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: /* Turn on MSI-X capability first, or our settings * won't stick. And it will take days to debug. */ wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_EIAME | E1000_GPIE_NSICR); /* enable msix_other interrupt */ adapter->eims_other = BIT(vector); tmp = (vector++ | E1000_IVAR_VALID) << 8; wr32(E1000_IVAR_MISC, tmp); break; default: /* do nothing, since nothing else supports MSI-X */ break; } /* switch (hw->mac.type) */ adapter->eims_enable_mask |= adapter->eims_other; for (i = 0; i < adapter->num_q_vectors; i++) igb_assign_vector(adapter->q_vector[i], vector++); wrfl(); } /** * igb_request_msix - Initialize MSI-X interrupts * @adapter: board private structure to initialize * * igb_request_msix allocates MSI-X vectors and requests interrupts from the * kernel. **/ static int igb_request_msix(struct igb_adapter *adapter) { unsigned int num_q_vectors = adapter->num_q_vectors; struct net_device *netdev = adapter->netdev; int i, err = 0, vector = 0, free_vector = 0; err = request_irq(adapter->msix_entries[vector].vector, igb_msix_other, 0, netdev->name, adapter); if (err) goto err_out; if (num_q_vectors > MAX_Q_VECTORS) { num_q_vectors = MAX_Q_VECTORS; dev_warn(&adapter->pdev->dev, "The number of queue vectors (%d) is higher than max allowed (%d)\n", adapter->num_q_vectors, MAX_Q_VECTORS); } for (i = 0; i < num_q_vectors; i++) { struct igb_q_vector *q_vector = adapter->q_vector[i]; vector++; q_vector->itr_register = adapter->io_addr + E1000_EITR(vector); if (q_vector->rx.ring && q_vector->tx.ring) sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, q_vector->rx.ring->queue_index); else if (q_vector->tx.ring) sprintf(q_vector->name, "%s-tx-%u", netdev->name, q_vector->tx.ring->queue_index); else if (q_vector->rx.ring) sprintf(q_vector->name, "%s-rx-%u", netdev->name, q_vector->rx.ring->queue_index); else sprintf(q_vector->name, "%s-unused", netdev->name); err = request_irq(adapter->msix_entries[vector].vector, igb_msix_ring, 0, q_vector->name, q_vector); if (err) goto err_free; } igb_configure_msix(adapter); return 0; err_free: /* free already assigned IRQs */ free_irq(adapter->msix_entries[free_vector++].vector, adapter); vector--; for (i = 0; i < vector; i++) { free_irq(adapter->msix_entries[free_vector++].vector, adapter->q_vector[i]); } err_out: return err; } /** * igb_free_q_vector - Free memory allocated for specific interrupt vector * @adapter: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. **/ static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) { struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; adapter->q_vector[v_idx] = NULL; /* igb_get_stats64() might access the rings on this vector, * we must wait a grace period before freeing it. */ if (q_vector) kfree_rcu(q_vector, rcu); } /** * igb_reset_q_vector - Reset config for interrupt vector * @adapter: board private structure to initialize * @v_idx: Index of vector to be reset * * If NAPI is enabled it will delete any references to the * NAPI struct. This is preparation for igb_free_q_vector. **/ static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) { struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; /* Coming from igb_set_interrupt_capability, the vectors are not yet * allocated. So, q_vector is NULL so we should stop here. */ if (!q_vector) return; if (q_vector->tx.ring) adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; if (q_vector->rx.ring) adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; netif_napi_del(&q_vector->napi); } static void igb_reset_interrupt_capability(struct igb_adapter *adapter) { int v_idx = adapter->num_q_vectors; if (adapter->flags & IGB_FLAG_HAS_MSIX) pci_disable_msix(adapter->pdev); else if (adapter->flags & IGB_FLAG_HAS_MSI) pci_disable_msi(adapter->pdev); while (v_idx--) igb_reset_q_vector(adapter, v_idx); } /** * igb_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void igb_free_q_vectors(struct igb_adapter *adapter) { int v_idx = adapter->num_q_vectors; adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) { igb_reset_q_vector(adapter, v_idx); igb_free_q_vector(adapter, v_idx); } } /** * igb_clear_interrupt_scheme - reset the device to a state of no interrupts * @adapter: board private structure to initialize * * This function resets the device so that it has 0 Rx queues, Tx queues, and * MSI-X interrupts allocated. */ static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) { igb_free_q_vectors(adapter); igb_reset_interrupt_capability(adapter); } /** * igb_set_interrupt_capability - set MSI or MSI-X if supported * @adapter: board private structure to initialize * @msix: boolean value of MSIX capability * * Attempt to configure interrupts using the best available * capabilities of the hardware and kernel. **/ static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) { int err; int numvecs, i; if (!msix) goto msi_only; adapter->flags |= IGB_FLAG_HAS_MSIX; /* Number of supported queues. */ adapter->num_rx_queues = adapter->rss_queues; if (adapter->vfs_allocated_count) adapter->num_tx_queues = 1; else adapter->num_tx_queues = adapter->rss_queues; /* start with one vector for every Rx queue */ numvecs = adapter->num_rx_queues; /* if Tx handler is separate add 1 for every Tx queue */ if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) numvecs += adapter->num_tx_queues; /* store the number of vectors reserved for queues */ adapter->num_q_vectors = numvecs; /* add 1 vector for link status interrupts */ numvecs++; for (i = 0; i < numvecs; i++) adapter->msix_entries[i].entry = i; err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, numvecs, numvecs); if (err > 0) return; igb_reset_interrupt_capability(adapter); /* If we can't do MSI-X, try MSI */ msi_only: adapter->flags &= ~IGB_FLAG_HAS_MSIX; #ifdef CONFIG_PCI_IOV /* disable SR-IOV for non MSI-X configurations */ if (adapter->vf_data) { struct e1000_hw *hw = &adapter->hw; /* disable iov and allow time for transactions to clear */ pci_disable_sriov(adapter->pdev); msleep(500); kfree(adapter->vf_mac_list); adapter->vf_mac_list = NULL; kfree(adapter->vf_data); adapter->vf_data = NULL; wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); wrfl(); msleep(100); dev_info(&adapter->pdev->dev, "IOV Disabled\n"); } #endif adapter->vfs_allocated_count = 0; adapter->rss_queues = 1; adapter->flags |= IGB_FLAG_QUEUE_PAIRS; adapter->num_rx_queues = 1; adapter->num_tx_queues = 1; adapter->num_q_vectors = 1; if (!pci_enable_msi(adapter->pdev)) adapter->flags |= IGB_FLAG_HAS_MSI; } static void igb_add_ring(struct igb_ring *ring, struct igb_ring_container *head) { head->ring = ring; head->count++; } /** * igb_alloc_q_vector - Allocate memory for a single interrupt vector * @adapter: board private structure to initialize * @v_count: q_vectors allocated on adapter, used for ring interleaving * @v_idx: index of vector in adapter struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int igb_alloc_q_vector(struct igb_adapter *adapter, int v_count, int v_idx, int txr_count, int txr_idx, int rxr_count, int rxr_idx) { struct igb_q_vector *q_vector; struct igb_ring *ring; int ring_count; size_t size; /* igb only supports 1 Tx and/or 1 Rx queue per vector */ if (txr_count > 1 || rxr_count > 1) return -ENOMEM; ring_count = txr_count + rxr_count; size = struct_size(q_vector, ring, ring_count); /* allocate q_vector and rings */ q_vector = adapter->q_vector[v_idx]; if (!q_vector) { q_vector = kzalloc(size, GFP_KERNEL); } else if (size > ksize(q_vector)) { kfree_rcu(q_vector, rcu); q_vector = kzalloc(size, GFP_KERNEL); } else { memset(q_vector, 0, size); } if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); /* tie q_vector and adapter together */ adapter->q_vector[v_idx] = q_vector; q_vector->adapter = adapter; /* initialize work limits */ q_vector->tx.work_limit = adapter->tx_work_limit; /* initialize ITR configuration */ q_vector->itr_register = adapter->io_addr + E1000_EITR(0); q_vector->itr_val = IGB_START_ITR; /* initialize pointer to rings */ ring = q_vector->ring; /* intialize ITR */ if (rxr_count) { /* rx or rx/tx vector */ if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) q_vector->itr_val = adapter->rx_itr_setting; } else { /* tx only vector */ if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) q_vector->itr_val = adapter->tx_itr_setting; } if (txr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ igb_add_ring(ring, &q_vector->tx); /* For 82575, context index must be unique per ring. */ if (adapter->hw.mac.type == e1000_82575) set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); /* apply Tx specific ring traits */ ring->count = adapter->tx_ring_count; ring->queue_index = txr_idx; ring->cbs_enable = false; ring->idleslope = 0; ring->sendslope = 0; ring->hicredit = 0; ring->locredit = 0; u64_stats_init(&ring->tx_syncp); u64_stats_init(&ring->tx_syncp2); /* assign ring to adapter */ adapter->tx_ring[txr_idx] = ring; /* push pointer to next ring */ ring++; } if (rxr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ igb_add_ring(ring, &q_vector->rx); /* set flag indicating ring supports SCTP checksum offload */ if (adapter->hw.mac.type >= e1000_82576) set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); /* On i350, i354, i210, and i211, loopback VLAN packets * have the tag byte-swapped. */ if (adapter->hw.mac.type >= e1000_i350) set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); /* apply Rx specific ring traits */ ring->count = adapter->rx_ring_count; ring->queue_index = rxr_idx; u64_stats_init(&ring->rx_syncp); /* assign ring to adapter */ adapter->rx_ring[rxr_idx] = ring; } return 0; } /** * igb_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int igb_alloc_q_vectors(struct igb_adapter *adapter) { int q_vectors = adapter->num_q_vectors; int rxr_remaining = adapter->num_rx_queues; int txr_remaining = adapter->num_tx_queues; int rxr_idx = 0, txr_idx = 0, v_idx = 0; int err; if (q_vectors >= (rxr_remaining + txr_remaining)) { for (; rxr_remaining; v_idx++) { err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 0, 0, 1, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining--; rxr_idx++; } } for (; v_idx < q_vectors; v_idx++) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = igb_alloc_q_vector(adapter, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) igb_free_q_vector(adapter, v_idx); return -ENOMEM; } /** * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors * @adapter: board private structure to initialize * @msix: boolean value of MSIX capability * * This function initializes the interrupts and allocates all of the queues. **/ static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) { struct pci_dev *pdev = adapter->pdev; int err; igb_set_interrupt_capability(adapter, msix); err = igb_alloc_q_vectors(adapter); if (err) { dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); goto err_alloc_q_vectors; } igb_cache_ring_register(adapter); return 0; err_alloc_q_vectors: igb_reset_interrupt_capability(adapter); return err; } /** * igb_request_irq - initialize interrupts * @adapter: board private structure to initialize * * Attempts to configure interrupts using the best available * capabilities of the hardware and kernel. **/ static int igb_request_irq(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err = 0; if (adapter->flags & IGB_FLAG_HAS_MSIX) { err = igb_request_msix(adapter); if (!err) goto request_done; /* fall back to MSI */ igb_free_all_tx_resources(adapter); igb_free_all_rx_resources(adapter); igb_clear_interrupt_scheme(adapter); err = igb_init_interrupt_scheme(adapter, false); if (err) goto request_done; igb_setup_all_tx_resources(adapter); igb_setup_all_rx_resources(adapter); igb_configure(adapter); } igb_assign_vector(adapter->q_vector[0], 0); if (adapter->flags & IGB_FLAG_HAS_MSI) { err = request_irq(pdev->irq, igb_intr_msi, 0, netdev->name, adapter); if (!err) goto request_done; /* fall back to legacy interrupts */ igb_reset_interrupt_capability(adapter); adapter->flags &= ~IGB_FLAG_HAS_MSI; } err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, netdev->name, adapter); if (err) dev_err(&pdev->dev, "Error %d getting interrupt\n", err); request_done: return err; } static void igb_free_irq(struct igb_adapter *adapter) { if (adapter->flags & IGB_FLAG_HAS_MSIX) { int vector = 0, i; free_irq(adapter->msix_entries[vector++].vector, adapter); for (i = 0; i < adapter->num_q_vectors; i++) free_irq(adapter->msix_entries[vector++].vector, adapter->q_vector[i]); } else { free_irq(adapter->pdev->irq, adapter); } } /** * igb_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void igb_irq_disable(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* we need to be careful when disabling interrupts. The VFs are also * mapped into these registers and so clearing the bits can cause * issues on the VF drivers so we only need to clear what we set */ if (adapter->flags & IGB_FLAG_HAS_MSIX) { u32 regval = rd32(E1000_EIAM); wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); wr32(E1000_EIMC, adapter->eims_enable_mask); regval = rd32(E1000_EIAC); wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); } wr32(E1000_IAM, 0); wr32(E1000_IMC, ~0); wrfl(); if (adapter->flags & IGB_FLAG_HAS_MSIX) { int i; for (i = 0; i < adapter->num_q_vectors; i++) synchronize_irq(adapter->msix_entries[i].vector); } else { synchronize_irq(adapter->pdev->irq); } } /** * igb_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void igb_irq_enable(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; if (adapter->flags & IGB_FLAG_HAS_MSIX) { u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; u32 regval = rd32(E1000_EIAC); wr32(E1000_EIAC, regval | adapter->eims_enable_mask); regval = rd32(E1000_EIAM); wr32(E1000_EIAM, regval | adapter->eims_enable_mask); wr32(E1000_EIMS, adapter->eims_enable_mask); if (adapter->vfs_allocated_count) { wr32(E1000_MBVFIMR, 0xFF); ims |= E1000_IMS_VMMB; } wr32(E1000_IMS, ims); } else { wr32(E1000_IMS, IMS_ENABLE_MASK | E1000_IMS_DRSTA); wr32(E1000_IAM, IMS_ENABLE_MASK | E1000_IMS_DRSTA); } } static void igb_update_mng_vlan(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 pf_id = adapter->vfs_allocated_count; u16 vid = adapter->hw.mng_cookie.vlan_id; u16 old_vid = adapter->mng_vlan_id; if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { /* add VID to filter table */ igb_vfta_set(hw, vid, pf_id, true, true); adapter->mng_vlan_id = vid; } else { adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; } if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && (vid != old_vid) && !test_bit(old_vid, adapter->active_vlans)) { /* remove VID from filter table */ igb_vfta_set(hw, vid, pf_id, false, true); } } /** * igb_release_hw_control - release control of the h/w to f/w * @adapter: address of board private structure * * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. **/ static void igb_release_hw_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_ext; /* Let firmware take over control of h/w */ ctrl_ext = rd32(E1000_CTRL_EXT); wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } /** * igb_get_hw_control - get control of the h/w from f/w * @adapter: address of board private structure * * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. **/ static void igb_get_hw_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = rd32(E1000_CTRL_EXT); wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } static void enable_fqtss(struct igb_adapter *adapter, bool enable) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; WARN_ON(hw->mac.type != e1000_i210); if (enable) adapter->flags |= IGB_FLAG_FQTSS; else adapter->flags &= ~IGB_FLAG_FQTSS; if (netif_running(netdev)) schedule_work(&adapter->reset_task); } static bool is_fqtss_enabled(struct igb_adapter *adapter) { return (adapter->flags & IGB_FLAG_FQTSS) ? true : false; } static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue, enum tx_queue_prio prio) { u32 val; WARN_ON(hw->mac.type != e1000_i210); WARN_ON(queue < 0 || queue > 4); val = rd32(E1000_I210_TXDCTL(queue)); if (prio == TX_QUEUE_PRIO_HIGH) val |= E1000_TXDCTL_PRIORITY; else val &= ~E1000_TXDCTL_PRIORITY; wr32(E1000_I210_TXDCTL(queue), val); } static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode) { u32 val; WARN_ON(hw->mac.type != e1000_i210); WARN_ON(queue < 0 || queue > 1); val = rd32(E1000_I210_TQAVCC(queue)); if (mode == QUEUE_MODE_STREAM_RESERVATION) val |= E1000_TQAVCC_QUEUEMODE; else val &= ~E1000_TQAVCC_QUEUEMODE; wr32(E1000_I210_TQAVCC(queue), val); } static bool is_any_cbs_enabled(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) { if (adapter->tx_ring[i]->cbs_enable) return true; } return false; } static bool is_any_txtime_enabled(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) { if (adapter->tx_ring[i]->launchtime_enable) return true; } return false; } /** * igb_config_tx_modes - Configure "Qav Tx mode" features on igb * @adapter: pointer to adapter struct * @queue: queue number * * Configure CBS and Launchtime for a given hardware queue. * Parameters are retrieved from the correct Tx ring, so * igb_save_cbs_params() and igb_save_txtime_params() should be used * for setting those correctly prior to this function being called. **/ static void igb_config_tx_modes(struct igb_adapter *adapter, int queue) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; struct igb_ring *ring; u32 tqavcc, tqavctrl; u16 value; WARN_ON(hw->mac.type != e1000_i210); WARN_ON(queue < 0 || queue > 1); ring = adapter->tx_ring[queue]; /* If any of the Qav features is enabled, configure queues as SR and * with HIGH PRIO. If none is, then configure them with LOW PRIO and * as SP. */ if (ring->cbs_enable || ring->launchtime_enable) { set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH); set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION); } else { set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW); set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY); } /* If CBS is enabled, set DataTranARB and config its parameters. */ if (ring->cbs_enable || queue == 0) { /* i210 does not allow the queue 0 to be in the Strict * Priority mode while the Qav mode is enabled, so, * instead of disabling strict priority mode, we give * queue 0 the maximum of credits possible. * * See section 8.12.19 of the i210 datasheet, "Note: * Queue0 QueueMode must be set to 1b when * TransmitMode is set to Qav." */ if (queue == 0 && !ring->cbs_enable) { /* max "linkspeed" idleslope in kbps */ ring->idleslope = 1000000; ring->hicredit = ETH_FRAME_LEN; } /* Always set data transfer arbitration to credit-based * shaper algorithm on TQAVCTRL if CBS is enabled for any of * the queues. */ tqavctrl = rd32(E1000_I210_TQAVCTRL); tqavctrl |= E1000_TQAVCTRL_DATATRANARB; wr32(E1000_I210_TQAVCTRL, tqavctrl); /* According to i210 datasheet section 7.2.7.7, we should set * the 'idleSlope' field from TQAVCC register following the * equation: * * For 100 Mbps link speed: * * value = BW * 0x7735 * 0.2 (E1) * * For 1000Mbps link speed: * * value = BW * 0x7735 * 2 (E2) * * E1 and E2 can be merged into one equation as shown below. * Note that 'link-speed' is in Mbps. * * value = BW * 0x7735 * 2 * link-speed * -------------- (E3) * 1000 * * 'BW' is the percentage bandwidth out of full link speed * which can be found with the following equation. Note that * idleSlope here is the parameter from this function which * is in kbps. * * BW = idleSlope * ----------------- (E4) * link-speed * 1000 * * That said, we can come up with a generic equation to * calculate the value we should set it TQAVCC register by * replacing 'BW' in E3 by E4. The resulting equation is: * * value = idleSlope * 0x7735 * 2 * link-speed * ----------------- -------------- (E5) * link-speed * 1000 1000 * * 'link-speed' is present in both sides of the fraction so * it is canceled out. The final equation is the following: * * value = idleSlope * 61034 * ----------------- (E6) * 1000000 * * NOTE: For i210, given the above, we can see that idleslope * is represented in 16.38431 kbps units by the value at * the TQAVCC register (1Gbps / 61034), which reduces * the granularity for idleslope increments. * For instance, if you want to configure a 2576kbps * idleslope, the value to be written on the register * would have to be 157.23. If rounded down, you end * up with less bandwidth available than originally * required (~2572 kbps). If rounded up, you end up * with a higher bandwidth (~2589 kbps). Below the * approach we take is to always round up the * calculated value, so the resulting bandwidth might * be slightly higher for some configurations. */ value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000); tqavcc = rd32(E1000_I210_TQAVCC(queue)); tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; tqavcc |= value; wr32(E1000_I210_TQAVCC(queue), tqavcc); wr32(E1000_I210_TQAVHC(queue), 0x80000000 + ring->hicredit * 0x7735); } else { /* Set idleSlope to zero. */ tqavcc = rd32(E1000_I210_TQAVCC(queue)); tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK; wr32(E1000_I210_TQAVCC(queue), tqavcc); /* Set hiCredit to zero. */ wr32(E1000_I210_TQAVHC(queue), 0); /* If CBS is not enabled for any queues anymore, then return to * the default state of Data Transmission Arbitration on * TQAVCTRL. */ if (!is_any_cbs_enabled(adapter)) { tqavctrl = rd32(E1000_I210_TQAVCTRL); tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB; wr32(E1000_I210_TQAVCTRL, tqavctrl); } } /* If LaunchTime is enabled, set DataTranTIM. */ if (ring->launchtime_enable) { /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled * for any of the SR queues, and configure fetchtime delta. * XXX NOTE: * - LaunchTime will be enabled for all SR queues. * - A fixed offset can be added relative to the launch * time of all packets if configured at reg LAUNCH_OS0. * We are keeping it as 0 for now (default value). */ tqavctrl = rd32(E1000_I210_TQAVCTRL); tqavctrl |= E1000_TQAVCTRL_DATATRANTIM | E1000_TQAVCTRL_FETCHTIME_DELTA; wr32(E1000_I210_TQAVCTRL, tqavctrl); } else { /* If Launchtime is not enabled for any SR queues anymore, * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta, * effectively disabling Launchtime. */ if (!is_any_txtime_enabled(adapter)) { tqavctrl = rd32(E1000_I210_TQAVCTRL); tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM; tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA; wr32(E1000_I210_TQAVCTRL, tqavctrl); } } /* XXX: In i210 controller the sendSlope and loCredit parameters from * CBS are not configurable by software so we don't do any 'controller * configuration' in respect to these parameters. */ netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n", ring->cbs_enable ? "enabled" : "disabled", ring->launchtime_enable ? "enabled" : "disabled", queue, ring->idleslope, ring->sendslope, ring->hicredit, ring->locredit); } static int igb_save_txtime_params(struct igb_adapter *adapter, int queue, bool enable) { struct igb_ring *ring; if (queue < 0 || queue > adapter->num_tx_queues) return -EINVAL; ring = adapter->tx_ring[queue]; ring->launchtime_enable = enable; return 0; } static int igb_save_cbs_params(struct igb_adapter *adapter, int queue, bool enable, int idleslope, int sendslope, int hicredit, int locredit) { struct igb_ring *ring; if (queue < 0 || queue > adapter->num_tx_queues) return -EINVAL; ring = adapter->tx_ring[queue]; ring->cbs_enable = enable; ring->idleslope = idleslope; ring->sendslope = sendslope; ring->hicredit = hicredit; ring->locredit = locredit; return 0; } /** * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable * @adapter: pointer to adapter struct * * Configure TQAVCTRL register switching the controller's Tx mode * if FQTSS mode is enabled or disabled. Additionally, will issue * a call to igb_config_tx_modes() per queue so any previously saved * Tx parameters are applied. **/ static void igb_setup_tx_mode(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; u32 val; /* Only i210 controller supports changing the transmission mode. */ if (hw->mac.type != e1000_i210) return; if (is_fqtss_enabled(adapter)) { int i, max_queue; /* Configure TQAVCTRL register: set transmit mode to 'Qav', * set data fetch arbitration to 'round robin', set SP_WAIT_SR * so SP queues wait for SR ones. */ val = rd32(E1000_I210_TQAVCTRL); val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR; val &= ~E1000_TQAVCTRL_DATAFETCHARB; wr32(E1000_I210_TQAVCTRL, val); /* Configure Tx and Rx packet buffers sizes as described in * i210 datasheet section 7.2.7.7. */ val = rd32(E1000_TXPBS); val &= ~I210_TXPBSIZE_MASK; val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB | I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB; wr32(E1000_TXPBS, val); val = rd32(E1000_RXPBS); val &= ~I210_RXPBSIZE_MASK; val |= I210_RXPBSIZE_PB_30KB; wr32(E1000_RXPBS, val); /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ * register should not exceed the buffer size programmed in * TXPBS. The smallest buffer size programmed in TXPBS is 4kB * so according to the datasheet we should set MAX_TPKT_SIZE to * 4kB / 64. * * However, when we do so, no frame from queue 2 and 3 are * transmitted. It seems the MAX_TPKT_SIZE should not be great * or _equal_ to the buffer size programmed in TXPBS. For this * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64. */ val = (4096 - 1) / 64; wr32(E1000_I210_DTXMXPKTSZ, val); /* Since FQTSS mode is enabled, apply any CBS configuration * previously set. If no previous CBS configuration has been * done, then the initial configuration is applied, which means * CBS is disabled. */ max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ? adapter->num_tx_queues : I210_SR_QUEUES_NUM; for (i = 0; i < max_queue; i++) { igb_config_tx_modes(adapter, i); } } else { wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT); val = rd32(E1000_I210_TQAVCTRL); /* According to Section 8.12.21, the other flags we've set when * enabling FQTSS are not relevant when disabling FQTSS so we * don't set they here. */ val &= ~E1000_TQAVCTRL_XMIT_MODE; wr32(E1000_I210_TQAVCTRL, val); } netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ? "enabled" : "disabled"); } /** * igb_configure - configure the hardware for RX and TX * @adapter: private board structure **/ static void igb_configure(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; igb_get_hw_control(adapter); igb_set_rx_mode(netdev); igb_setup_tx_mode(adapter); igb_restore_vlan(adapter); igb_setup_tctl(adapter); igb_setup_mrqc(adapter); igb_setup_rctl(adapter); igb_nfc_filter_restore(adapter); igb_configure_tx(adapter); igb_configure_rx(adapter); igb_rx_fifo_flush_82575(&adapter->hw); /* call igb_desc_unused which always leaves * at least 1 descriptor unused to make sure * next_to_use != next_to_clean */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *ring = adapter->rx_ring[i]; igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); } } /** * igb_power_up_link - Power up the phy/serdes link * @adapter: address of board private structure **/ void igb_power_up_link(struct igb_adapter *adapter) { igb_reset_phy(&adapter->hw); if (adapter->hw.phy.media_type == e1000_media_type_copper) igb_power_up_phy_copper(&adapter->hw); else igb_power_up_serdes_link_82575(&adapter->hw); igb_setup_link(&adapter->hw); } /** * igb_power_down_link - Power down the phy/serdes link * @adapter: address of board private structure */ static void igb_power_down_link(struct igb_adapter *adapter) { if (adapter->hw.phy.media_type == e1000_media_type_copper) igb_power_down_phy_copper_82575(&adapter->hw); else igb_shutdown_serdes_link_82575(&adapter->hw); } /** * igb_check_swap_media - Detect and switch function for Media Auto Sense * @adapter: address of the board private structure **/ static void igb_check_swap_media(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_ext, connsw; bool swap_now = false; ctrl_ext = rd32(E1000_CTRL_EXT); connsw = rd32(E1000_CONNSW); /* need to live swap if current media is copper and we have fiber/serdes * to go to. */ if ((hw->phy.media_type == e1000_media_type_copper) && (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { swap_now = true; } else if ((hw->phy.media_type != e1000_media_type_copper) && !(connsw & E1000_CONNSW_SERDESD)) { /* copper signal takes time to appear */ if (adapter->copper_tries < 4) { adapter->copper_tries++; connsw |= E1000_CONNSW_AUTOSENSE_CONF; wr32(E1000_CONNSW, connsw); return; } else { adapter->copper_tries = 0; if ((connsw & E1000_CONNSW_PHYSD) && (!(connsw & E1000_CONNSW_PHY_PDN))) { swap_now = true; connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; wr32(E1000_CONNSW, connsw); } } } if (!swap_now) return; switch (hw->phy.media_type) { case e1000_media_type_copper: netdev_info(adapter->netdev, "MAS: changing media to fiber/serdes\n"); ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; adapter->flags |= IGB_FLAG_MEDIA_RESET; adapter->copper_tries = 0; break; case e1000_media_type_internal_serdes: case e1000_media_type_fiber: netdev_info(adapter->netdev, "MAS: changing media to copper\n"); ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; adapter->flags |= IGB_FLAG_MEDIA_RESET; break; default: /* shouldn't get here during regular operation */ netdev_err(adapter->netdev, "AMS: Invalid media type found, returning\n"); break; } wr32(E1000_CTRL_EXT, ctrl_ext); } /** * igb_up - Open the interface and prepare it to handle traffic * @adapter: board private structure **/ int igb_up(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; /* hardware has been reset, we need to reload some things */ igb_configure(adapter); clear_bit(__IGB_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&(adapter->q_vector[i]->napi)); if (adapter->flags & IGB_FLAG_HAS_MSIX) igb_configure_msix(adapter); else igb_assign_vector(adapter->q_vector[0], 0); /* Clear any pending interrupts. */ rd32(E1000_TSICR); rd32(E1000_ICR); igb_irq_enable(adapter); /* notify VFs that reset has been completed */ if (adapter->vfs_allocated_count) { u32 reg_data = rd32(E1000_CTRL_EXT); reg_data |= E1000_CTRL_EXT_PFRSTD; wr32(E1000_CTRL_EXT, reg_data); } netif_tx_start_all_queues(adapter->netdev); /* start the watchdog. */ hw->mac.get_link_status = 1; schedule_work(&adapter->watchdog_task); if ((adapter->flags & IGB_FLAG_EEE) && (!hw->dev_spec._82575.eee_disable)) adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; return 0; } void igb_down(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; u32 tctl, rctl; int i; /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__IGB_DOWN, &adapter->state); /* disable receives in the hardware */ rctl = rd32(E1000_RCTL); wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); /* flush and sleep below */ igb_nfc_filter_exit(adapter); netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); /* disable transmits in the hardware */ tctl = rd32(E1000_TCTL); tctl &= ~E1000_TCTL_EN; wr32(E1000_TCTL, tctl); /* flush both disables and wait for them to finish */ wrfl(); usleep_range(10000, 11000); igb_irq_disable(adapter); adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; for (i = 0; i < adapter->num_q_vectors; i++) { if (adapter->q_vector[i]) { napi_synchronize(&adapter->q_vector[i]->napi); napi_disable(&adapter->q_vector[i]->napi); } } del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); /* record the stats before reset*/ spin_lock(&adapter->stats64_lock); igb_update_stats(adapter); spin_unlock(&adapter->stats64_lock); adapter->link_speed = 0; adapter->link_duplex = 0; if (!pci_channel_offline(adapter->pdev)) igb_reset(adapter); /* clear VLAN promisc flag so VFTA will be updated if necessary */ adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; igb_clean_all_tx_rings(adapter); igb_clean_all_rx_rings(adapter); #ifdef CONFIG_IGB_DCA /* since we reset the hardware DCA settings were cleared */ igb_setup_dca(adapter); #endif } void igb_reinit_locked(struct igb_adapter *adapter) { while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) usleep_range(1000, 2000); igb_down(adapter); igb_up(adapter); clear_bit(__IGB_RESETTING, &adapter->state); } /** igb_enable_mas - Media Autosense re-enable after swap * * @adapter: adapter struct **/ static void igb_enable_mas(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 connsw = rd32(E1000_CONNSW); /* configure for SerDes media detect */ if ((hw->phy.media_type == e1000_media_type_copper) && (!(connsw & E1000_CONNSW_SERDESD))) { connsw |= E1000_CONNSW_ENRGSRC; connsw |= E1000_CONNSW_AUTOSENSE_EN; wr32(E1000_CONNSW, connsw); wrfl(); } } void igb_reset(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; struct e1000_mac_info *mac = &hw->mac; struct e1000_fc_info *fc = &hw->fc; u32 pba, hwm; /* Repartition Pba for greater than 9k mtu * To take effect CTRL.RST is required. */ switch (mac->type) { case e1000_i350: case e1000_i354: case e1000_82580: pba = rd32(E1000_RXPBS); pba = igb_rxpbs_adjust_82580(pba); break; case e1000_82576: pba = rd32(E1000_RXPBS); pba &= E1000_RXPBS_SIZE_MASK_82576; break; case e1000_82575: case e1000_i210: case e1000_i211: default: pba = E1000_PBA_34K; break; } if (mac->type == e1000_82575) { u32 min_rx_space, min_tx_space, needed_tx_space; /* write Rx PBA so that hardware can report correct Tx PBA */ wr32(E1000_PBA, pba); /* To maintain wire speed transmits, the Tx FIFO should be * large enough to accommodate two full transmit packets, * rounded up to the next 1KB and expressed in KB. Likewise, * the Rx FIFO should be large enough to accommodate at least * one full receive packet and is similarly rounded up and * expressed in KB. */ min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024); /* The Tx FIFO also stores 16 bytes of information about the Tx * but don't include Ethernet FCS because hardware appends it. * We only need to round down to the nearest 512 byte block * count since the value we care about is 2 frames, not 1. */ min_tx_space = adapter->max_frame_size; min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN; min_tx_space = DIV_ROUND_UP(min_tx_space, 512); /* upper 16 bits has Tx packet buffer allocation size in KB */ needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16); /* If current Tx allocation is less than the min Tx FIFO size, * and the min Tx FIFO size is less than the current Rx FIFO * allocation, take space away from current Rx allocation. */ if (needed_tx_space < pba) { pba -= needed_tx_space; /* if short on Rx space, Rx wins and must trump Tx * adjustment */ if (pba < min_rx_space) pba = min_rx_space; } /* adjust PBA for jumbo frames */ wr32(E1000_PBA, pba); } /* flow control settings * The high water mark must be low enough to fit one full frame * after transmitting the pause frame. As such we must have enough * space to allow for us to complete our current transmit and then * receive the frame that is in progress from the link partner. * Set it to: * - the full Rx FIFO size minus one full Tx plus one full Rx frame */ hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE); fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ fc->low_water = fc->high_water - 16; fc->pause_time = 0xFFFF; fc->send_xon = 1; fc->current_mode = fc->requested_mode; /* disable receive for all VFs and wait one second */ if (adapter->vfs_allocated_count) { int i; for (i = 0 ; i < adapter->vfs_allocated_count; i++) adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; /* ping all the active vfs to let them know we are going down */ igb_ping_all_vfs(adapter); /* disable transmits and receives */ wr32(E1000_VFRE, 0); wr32(E1000_VFTE, 0); } /* Allow time for pending master requests to run */ hw->mac.ops.reset_hw(hw); wr32(E1000_WUC, 0); if (adapter->flags & IGB_FLAG_MEDIA_RESET) { /* need to resetup here after media swap */ adapter->ei.get_invariants(hw); adapter->flags &= ~IGB_FLAG_MEDIA_RESET; } if ((mac->type == e1000_82575 || mac->type == e1000_i350) && (adapter->flags & IGB_FLAG_MAS_ENABLE)) { igb_enable_mas(adapter); } if (hw->mac.ops.init_hw(hw)) dev_err(&pdev->dev, "Hardware Error\n"); /* RAR registers were cleared during init_hw, clear mac table */ igb_flush_mac_table(adapter); __dev_uc_unsync(adapter->netdev, NULL); /* Recover default RAR entry */ igb_set_default_mac_filter(adapter); /* Flow control settings reset on hardware reset, so guarantee flow * control is off when forcing speed. */ if (!hw->mac.autoneg) igb_force_mac_fc(hw); igb_init_dmac(adapter, pba); #ifdef CONFIG_IGB_HWMON /* Re-initialize the thermal sensor on i350 devices. */ if (!test_bit(__IGB_DOWN, &adapter->state)) { if (mac->type == e1000_i350 && hw->bus.func == 0) { /* If present, re-initialize the external thermal sensor * interface. */ if (adapter->ets) mac->ops.init_thermal_sensor_thresh(hw); } } #endif /* Re-establish EEE setting */ if (hw->phy.media_type == e1000_media_type_copper) { switch (mac->type) { case e1000_i350: case e1000_i210: case e1000_i211: igb_set_eee_i350(hw, true, true); break; case e1000_i354: igb_set_eee_i354(hw, true, true); break; default: break; } } if (!netif_running(adapter->netdev)) igb_power_down_link(adapter); igb_update_mng_vlan(adapter); /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); /* Re-enable PTP, where applicable. */ if (adapter->ptp_flags & IGB_PTP_ENABLED) igb_ptp_reset(adapter); igb_get_phy_info(hw); } static netdev_features_t igb_fix_features(struct net_device *netdev, netdev_features_t features) { /* Since there is no support for separate Rx/Tx vlan accel * enable/disable make sure Tx flag is always in same state as Rx. */ if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_CTAG_TX; else features &= ~NETIF_F_HW_VLAN_CTAG_TX; return features; } static int igb_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct igb_adapter *adapter = netdev_priv(netdev); if (changed & NETIF_F_HW_VLAN_CTAG_RX) igb_vlan_mode(netdev, features); if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE))) return 0; if (!(features & NETIF_F_NTUPLE)) { struct hlist_node *node2; struct igb_nfc_filter *rule; spin_lock(&adapter->nfc_lock); hlist_for_each_entry_safe(rule, node2, &adapter->nfc_filter_list, nfc_node) { igb_erase_filter(adapter, rule); hlist_del(&rule->nfc_node); kfree(rule); } spin_unlock(&adapter->nfc_lock); adapter->nfc_filter_count = 0; } netdev->features = features; if (netif_running(netdev)) igb_reinit_locked(adapter); else igb_reset(adapter); return 1; } static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, struct netlink_ext_ack *extack) { /* guarantee we can provide a unique filter for the unicast address */ if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { struct igb_adapter *adapter = netdev_priv(dev); int vfn = adapter->vfs_allocated_count; if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn)) return -ENOMEM; } return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags); } #define IGB_MAX_MAC_HDR_LEN 127 #define IGB_MAX_NETWORK_HDR_LEN 511 static netdev_features_t igb_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { unsigned int network_hdr_len, mac_hdr_len; /* Make certain the headers can be described by a context descriptor */ mac_hdr_len = skb_network_header(skb) - skb->data; if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_TSO | NETIF_F_TSO6); network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN)) return features & ~(NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4 | NETIF_F_TSO | NETIF_F_TSO6); /* We can only support IPV4 TSO in tunnels if we can mangle the * inner IP ID field, so strip TSO if MANGLEID is not supported. */ if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) features &= ~NETIF_F_TSO; return features; } static void igb_offload_apply(struct igb_adapter *adapter, s32 queue) { if (!is_fqtss_enabled(adapter)) { enable_fqtss(adapter, true); return; } igb_config_tx_modes(adapter, queue); if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter)) enable_fqtss(adapter, false); } static int igb_offload_cbs(struct igb_adapter *adapter, struct tc_cbs_qopt_offload *qopt) { struct e1000_hw *hw = &adapter->hw; int err; /* CBS offloading is only supported by i210 controller. */ if (hw->mac.type != e1000_i210) return -EOPNOTSUPP; /* CBS offloading is only supported by queue 0 and queue 1. */ if (qopt->queue < 0 || qopt->queue > 1) return -EINVAL; err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable, qopt->idleslope, qopt->sendslope, qopt->hicredit, qopt->locredit); if (err) return err; igb_offload_apply(adapter, qopt->queue); return 0; } #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) #define VLAN_PRIO_FULL_MASK (0x07) static int igb_parse_cls_flower(struct igb_adapter *adapter, struct flow_cls_offload *f, int traffic_class, struct igb_nfc_filter *input) { struct flow_rule *rule = flow_cls_offload_flow_rule(f); struct flow_dissector *dissector = rule->match.dissector; struct netlink_ext_ack *extack = f->common.extack; if (dissector->used_keys & ~(BIT(FLOW_DISSECTOR_KEY_BASIC) | BIT(FLOW_DISSECTOR_KEY_CONTROL) | BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | BIT(FLOW_DISSECTOR_KEY_VLAN))) { NL_SET_ERR_MSG_MOD(extack, "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported"); return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_match_eth_addrs match; flow_rule_match_eth_addrs(rule, &match); if (!is_zero_ether_addr(match.mask->dst)) { if (!is_broadcast_ether_addr(match.mask->dst)) { NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address"); return -EINVAL; } input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR; ether_addr_copy(input->filter.dst_addr, match.key->dst); } if (!is_zero_ether_addr(match.mask->src)) { if (!is_broadcast_ether_addr(match.mask->src)) { NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address"); return -EINVAL; } input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR; ether_addr_copy(input->filter.src_addr, match.key->src); } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_match_basic match; flow_rule_match_basic(rule, &match); if (match.mask->n_proto) { if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) { NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter"); return -EINVAL; } input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE; input->filter.etype = match.key->n_proto; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan match; flow_rule_match_vlan(rule, &match); if (match.mask->vlan_priority) { if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) { NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority"); return -EINVAL; } input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; input->filter.vlan_tci = (__force __be16)match.key->vlan_priority; } } input->action = traffic_class; input->cookie = f->cookie; return 0; } static int igb_configure_clsflower(struct igb_adapter *adapter, struct flow_cls_offload *cls_flower) { struct netlink_ext_ack *extack = cls_flower->common.extack; struct igb_nfc_filter *filter, *f; int err, tc; tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); if (tc < 0) { NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class"); return -EINVAL; } filter = kzalloc(sizeof(*filter), GFP_KERNEL); if (!filter) return -ENOMEM; err = igb_parse_cls_flower(adapter, cls_flower, tc, filter); if (err < 0) goto err_parse; spin_lock(&adapter->nfc_lock); hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) { if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { err = -EEXIST; NL_SET_ERR_MSG_MOD(extack, "This filter is already set in ethtool"); goto err_locked; } } hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) { if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) { err = -EEXIST; NL_SET_ERR_MSG_MOD(extack, "This filter is already set in cls_flower"); goto err_locked; } } err = igb_add_filter(adapter, filter); if (err < 0) { NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter"); goto err_locked; } hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list); spin_unlock(&adapter->nfc_lock); return 0; err_locked: spin_unlock(&adapter->nfc_lock); err_parse: kfree(filter); return err; } static int igb_delete_clsflower(struct igb_adapter *adapter, struct flow_cls_offload *cls_flower) { struct igb_nfc_filter *filter; int err; spin_lock(&adapter->nfc_lock); hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node) if (filter->cookie == cls_flower->cookie) break; if (!filter) { err = -ENOENT; goto out; } err = igb_erase_filter(adapter, filter); if (err < 0) goto out; hlist_del(&filter->nfc_node); kfree(filter); out: spin_unlock(&adapter->nfc_lock); return err; } static int igb_setup_tc_cls_flower(struct igb_adapter *adapter, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return igb_configure_clsflower(adapter, cls_flower); case FLOW_CLS_DESTROY: return igb_delete_clsflower(adapter, cls_flower); case FLOW_CLS_STATS: return -EOPNOTSUPP; default: return -EOPNOTSUPP; } } static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct igb_adapter *adapter = cb_priv; if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return igb_setup_tc_cls_flower(adapter, type_data); default: return -EOPNOTSUPP; } } static int igb_offload_txtime(struct igb_adapter *adapter, struct tc_etf_qopt_offload *qopt) { struct e1000_hw *hw = &adapter->hw; int err; /* Launchtime offloading is only supported by i210 controller. */ if (hw->mac.type != e1000_i210) return -EOPNOTSUPP; /* Launchtime offloading is only supported by queues 0 and 1. */ if (qopt->queue < 0 || qopt->queue > 1) return -EINVAL; err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable); if (err) return err; igb_offload_apply(adapter, qopt->queue); return 0; } static LIST_HEAD(igb_block_cb_list); static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { struct igb_adapter *adapter = netdev_priv(dev); switch (type) { case TC_SETUP_QDISC_CBS: return igb_offload_cbs(adapter, type_data); case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &igb_block_cb_list, igb_setup_tc_block_cb, adapter, adapter, true); case TC_SETUP_QDISC_ETF: return igb_offload_txtime(adapter, type_data); default: return -EOPNOTSUPP; } } static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf) { int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD; struct igb_adapter *adapter = netdev_priv(dev); struct bpf_prog *prog = bpf->prog, *old_prog; bool running = netif_running(dev); bool need_reset; /* verify igb ring attributes are sufficient for XDP */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *ring = adapter->rx_ring[i]; if (frame_size > igb_rx_bufsz(ring)) { NL_SET_ERR_MSG_MOD(bpf->extack, "The RX buffer size is too small for the frame size"); netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n", igb_rx_bufsz(ring), frame_size); return -EINVAL; } } old_prog = xchg(&adapter->xdp_prog, prog); need_reset = (!!prog != !!old_prog); /* device is up and bpf is added/removed, must setup the RX queues */ if (need_reset && running) { igb_close(dev); } else { for (i = 0; i < adapter->num_rx_queues; i++) (void)xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); } if (old_prog) bpf_prog_put(old_prog); /* bpf is just replaced, RXQ and MTU are already setup */ if (!need_reset) return 0; if (running) igb_open(dev); return 0; } static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return igb_xdp_setup(dev, xdp); default: return -EINVAL; } } static void igb_xdp_ring_update_tail(struct igb_ring *ring) { /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. */ wmb(); writel(ring->next_to_use, ring->tail); } static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter) { unsigned int r_idx = smp_processor_id(); if (r_idx >= adapter->num_tx_queues) r_idx = r_idx % adapter->num_tx_queues; return adapter->tx_ring[r_idx]; } static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp) { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); int cpu = smp_processor_id(); struct igb_ring *tx_ring; struct netdev_queue *nq; u32 ret; if (unlikely(!xdpf)) return IGB_XDP_CONSUMED; /* During program transitions its possible adapter->xdp_prog is assigned * but ring has not been configured yet. In this case simply abort xmit. */ tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; if (unlikely(!tx_ring)) return IGB_XDP_CONSUMED; nq = txring_txq(tx_ring); __netif_tx_lock(nq, cpu); /* Avoid transmit queue timeout since we share it with the slow path */ txq_trans_cond_update(nq); ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); __netif_tx_unlock(nq); return ret; } static int igb_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct igb_adapter *adapter = netdev_priv(dev); int cpu = smp_processor_id(); struct igb_ring *tx_ring; struct netdev_queue *nq; int nxmit = 0; int i; if (unlikely(test_bit(__IGB_DOWN, &adapter->state))) return -ENETDOWN; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; /* During program transitions its possible adapter->xdp_prog is assigned * but ring has not been configured yet. In this case simply abort xmit. */ tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL; if (unlikely(!tx_ring)) return -ENXIO; nq = txring_txq(tx_ring); __netif_tx_lock(nq, cpu); /* Avoid transmit queue timeout since we share it with the slow path */ txq_trans_cond_update(nq); for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; int err; err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf); if (err != IGB_XDP_TX) break; nxmit++; } __netif_tx_unlock(nq); if (unlikely(flags & XDP_XMIT_FLUSH)) igb_xdp_ring_update_tail(tx_ring); return nxmit; } static const struct net_device_ops igb_netdev_ops = { .ndo_open = igb_open, .ndo_stop = igb_close, .ndo_start_xmit = igb_xmit_frame, .ndo_get_stats64 = igb_get_stats64, .ndo_set_rx_mode = igb_set_rx_mode, .ndo_set_mac_address = igb_set_mac, .ndo_change_mtu = igb_change_mtu, .ndo_eth_ioctl = igb_ioctl, .ndo_tx_timeout = igb_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, .ndo_set_vf_mac = igb_ndo_set_vf_mac, .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, .ndo_set_vf_rate = igb_ndo_set_vf_bw, .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, .ndo_set_vf_trust = igb_ndo_set_vf_trust, .ndo_get_vf_config = igb_ndo_get_vf_config, .ndo_fix_features = igb_fix_features, .ndo_set_features = igb_set_features, .ndo_fdb_add = igb_ndo_fdb_add, .ndo_features_check = igb_features_check, .ndo_setup_tc = igb_setup_tc, .ndo_bpf = igb_xdp, .ndo_xdp_xmit = igb_xdp_xmit, }; /** * igb_set_fw_version - Configure version string for ethtool * @adapter: adapter struct **/ void igb_set_fw_version(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct e1000_fw_version fw; igb_get_fw_version(hw, &fw); switch (hw->mac.type) { case e1000_i210: case e1000_i211: if (!(igb_get_flash_presence_i210(hw))) { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%2d.%2d-%d", fw.invm_major, fw.invm_minor, fw.invm_img_type); break; } fallthrough; default: /* if option is rom valid, display its version too */ if (fw.or_valid) { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%d.%d, 0x%08x, %d.%d.%d", fw.eep_major, fw.eep_minor, fw.etrack_id, fw.or_major, fw.or_build, fw.or_patch); /* no option rom */ } else if (fw.etrack_id != 0X0000) { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%d.%d, 0x%08x", fw.eep_major, fw.eep_minor, fw.etrack_id); } else { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%d.%d.%d", fw.eep_major, fw.eep_minor, fw.eep_build); } break; } } /** * igb_init_mas - init Media Autosense feature if enabled in the NVM * * @adapter: adapter struct **/ static void igb_init_mas(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 eeprom_data; hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); switch (hw->bus.func) { case E1000_FUNC_0: if (eeprom_data & IGB_MAS_ENABLE_0) { adapter->flags |= IGB_FLAG_MAS_ENABLE; netdev_info(adapter->netdev, "MAS: Enabling Media Autosense for port %d\n", hw->bus.func); } break; case E1000_FUNC_1: if (eeprom_data & IGB_MAS_ENABLE_1) { adapter->flags |= IGB_FLAG_MAS_ENABLE; netdev_info(adapter->netdev, "MAS: Enabling Media Autosense for port %d\n", hw->bus.func); } break; case E1000_FUNC_2: if (eeprom_data & IGB_MAS_ENABLE_2) { adapter->flags |= IGB_FLAG_MAS_ENABLE; netdev_info(adapter->netdev, "MAS: Enabling Media Autosense for port %d\n", hw->bus.func); } break; case E1000_FUNC_3: if (eeprom_data & IGB_MAS_ENABLE_3) { adapter->flags |= IGB_FLAG_MAS_ENABLE; netdev_info(adapter->netdev, "MAS: Enabling Media Autosense for port %d\n", hw->bus.func); } break; default: /* Shouldn't get here */ netdev_err(adapter->netdev, "MAS: Invalid port configuration, returning\n"); break; } } /** * igb_init_i2c - Init I2C interface * @adapter: pointer to adapter structure **/ static s32 igb_init_i2c(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; s32 status = 0; s32 i2cctl; /* I2C interface supported on i350 devices */ if (adapter->hw.mac.type != e1000_i350) return 0; i2cctl = rd32(E1000_I2CPARAMS); i2cctl |= E1000_I2CBB_EN | E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N | E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N; wr32(E1000_I2CPARAMS, i2cctl); wrfl(); /* Initialize the i2c bus which is controlled by the registers. * This bus will use the i2c_algo_bit structure that implements * the protocol through toggling of the 4 bits in the register. */ adapter->i2c_adap.owner = THIS_MODULE; adapter->i2c_algo = igb_i2c_algo; adapter->i2c_algo.data = adapter; adapter->i2c_adap.algo_data = &adapter->i2c_algo; adapter->i2c_adap.dev.parent = &adapter->pdev->dev; strlcpy(adapter->i2c_adap.name, "igb BB", sizeof(adapter->i2c_adap.name)); status = i2c_bit_add_bus(&adapter->i2c_adap); return status; } /** * igb_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in igb_pci_tbl * * Returns 0 on success, negative on failure * * igb_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct igb_adapter *adapter; struct e1000_hw *hw; u16 eeprom_data = 0; s32 ret_val; static int global_quad_port_a; /* global quad port a indication */ const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; int err, pci_using_dac; u8 part_str[E1000_PBANUM_LENGTH]; /* Catch broken hardware that put the wrong VF device ID in * the PCIe SR-IOV capability. */ if (pdev->is_virtfn) { WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n", pci_name(pdev), pdev->vendor, pdev->device); return -EINVAL; } err = pci_enable_device_mem(pdev); if (err) return err; pci_using_dac = 0; err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (!err) { pci_using_dac = 1; } else { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); goto err_dma; } } err = pci_request_mem_regions(pdev, igb_driver_name); if (err) goto err_pci_reg; pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); pci_save_state(pdev); err = -ENOMEM; netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES); if (!netdev) goto err_alloc_etherdev; SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); err = -EIO; adapter->io_addr = pci_iomap(pdev, 0, 0); if (!adapter->io_addr) goto err_ioremap; /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */ hw->hw_addr = adapter->io_addr; netdev->netdev_ops = &igb_netdev_ops; igb_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); netdev->mem_start = pci_resource_start(pdev, 0); netdev->mem_end = pci_resource_end(pdev, 0); /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; /* Copy the default MAC, PHY and NVM function pointers */ memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); /* Initialize skew-specific constants */ err = ei->get_invariants(hw); if (err) goto err_sw_init; /* setup the private structure */ err = igb_sw_init(adapter); if (err) goto err_sw_init; igb_get_bus_info_pcie(hw); hw->phy.autoneg_wait_to_complete = false; /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = AUTO_ALL_MODES; hw->phy.disable_polarity_correction = false; hw->phy.ms_type = e1000_ms_hw_default; } if (igb_check_reset_block(hw)) dev_info(&pdev->dev, "PHY reset is blocked due to SOL/IDER session.\n"); /* features is initialized to 0 in allocation, it might have bits * set by igb_sw_init so we should use an or instead of an * assignment. */ netdev->features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXHASH | NETIF_F_RXCSUM | NETIF_F_HW_CSUM; if (hw->mac.type >= e1000_82576) netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4; if (hw->mac.type >= e1000_i350) netdev->features |= NETIF_F_HW_TC; #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ NETIF_F_GSO_GRE_CSUM | \ NETIF_F_GSO_IPXIP4 | \ NETIF_F_GSO_IPXIP6 | \ NETIF_F_GSO_UDP_TUNNEL | \ NETIF_F_GSO_UDP_TUNNEL_CSUM) netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES; netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES; /* copy netdev features into list of user selectable features */ netdev->hw_features |= netdev->features | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXALL; if (hw->mac.type >= e1000_i350) netdev->hw_features |= NETIF_F_NTUPLE; if (pci_using_dac) netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; netdev->mpls_features |= NETIF_F_HW_CSUM; netdev->hw_enc_features |= netdev->vlan_features; /* set this bit last since it cannot be part of vlan_features */ netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->priv_flags |= IFF_SUPP_NOFCS; netdev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 68 - 9216 */ netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE; adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); /* before reading the NVM, reset the controller to put the device in a * known good starting state */ hw->mac.ops.reset_hw(hw); /* make sure the NVM is good , i211/i210 parts can have special NVM * that doesn't contain a checksum */ switch (hw->mac.type) { case e1000_i210: case e1000_i211: if (igb_get_flash_presence_i210(hw)) { if (hw->nvm.ops.validate(hw) < 0) { dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); err = -EIO; goto err_eeprom; } } break; default: if (hw->nvm.ops.validate(hw) < 0) { dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); err = -EIO; goto err_eeprom; } break; } if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) { /* copy the MAC address out of the NVM */ if (hw->mac.ops.read_mac_addr(hw)) dev_err(&pdev->dev, "NVM Read Error\n"); } eth_hw_addr_set(netdev, hw->mac.addr); if (!is_valid_ether_addr(netdev->dev_addr)) { dev_err(&pdev->dev, "Invalid MAC Address\n"); err = -EIO; goto err_eeprom; } igb_set_default_mac_filter(adapter); /* get firmware version for ethtool -i */ igb_set_fw_version(adapter); /* configure RXPBSIZE and TXPBSIZE */ if (hw->mac.type == e1000_i210) { wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); } timer_setup(&adapter->watchdog_timer, igb_watchdog, 0); timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0); INIT_WORK(&adapter->reset_task, igb_reset_task); INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); /* Initialize link properties that are user-changeable */ adapter->fc_autoneg = true; hw->mac.autoneg = true; hw->phy.autoneg_advertised = 0x2f; hw->fc.requested_mode = e1000_fc_default; hw->fc.current_mode = e1000_fc_default; igb_validate_mdi_setting(hw); /* By default, support wake on port A */ if (hw->bus.func == 0) adapter->flags |= IGB_FLAG_WOL_SUPPORTED; /* Check the NVM for wake support on non-port A ports */ if (hw->mac.type >= e1000_82580) hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, &eeprom_data); else if (hw->bus.func == 1) hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); if (eeprom_data & IGB_EEPROM_APME) adapter->flags |= IGB_FLAG_WOL_SUPPORTED; /* now that we have the eeprom settings, apply the special cases where * the eeprom may be wrong or the board simply won't support wake on * lan on a particular port */ switch (pdev->device) { case E1000_DEV_ID_82575GB_QUAD_COPPER: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; break; case E1000_DEV_ID_82575EB_FIBER_SERDES: case E1000_DEV_ID_82576_FIBER: case E1000_DEV_ID_82576_SERDES: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; break; case E1000_DEV_ID_82576_QUAD_COPPER: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; else adapter->flags |= IGB_FLAG_QUAD_PORT_A; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; default: /* If the device can't wake, don't set software support */ if (!device_can_wakeup(&adapter->pdev->dev)) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; } /* initialize the wol settings based on the eeprom settings */ if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) adapter->wol |= E1000_WUFC_MAG; /* Some vendors want WoL disabled by default, but still supported */ if ((hw->mac.type == e1000_i350) && (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { adapter->flags |= IGB_FLAG_WOL_SUPPORTED; adapter->wol = 0; } /* Some vendors want the ability to Use the EEPROM setting as * enable/disable only, and not for capability */ if (((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) && (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) { adapter->flags |= IGB_FLAG_WOL_SUPPORTED; adapter->wol = 0; } if (hw->mac.type == e1000_i350) { if (((pdev->subsystem_device == 0x5001) || (pdev->subsystem_device == 0x5002)) && (hw->bus.func == 0)) { adapter->flags |= IGB_FLAG_WOL_SUPPORTED; adapter->wol = 0; } if (pdev->subsystem_device == 0x1F52) adapter->flags |= IGB_FLAG_WOL_SUPPORTED; } device_set_wakeup_enable(&adapter->pdev->dev, adapter->flags & IGB_FLAG_WOL_SUPPORTED); /* reset the hardware with the new settings */ igb_reset(adapter); /* Init the I2C interface */ err = igb_init_i2c(adapter); if (err) { dev_err(&pdev->dev, "failed to init i2c interface\n"); goto err_eeprom; } /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); strcpy(netdev->name, "eth%d"); err = register_netdev(netdev); if (err) goto err_register; /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); #ifdef CONFIG_IGB_DCA if (dca_add_requester(&pdev->dev) == 0) { adapter->flags |= IGB_FLAG_DCA_ENABLED; dev_info(&pdev->dev, "DCA enabled\n"); igb_setup_dca(adapter); } #endif #ifdef CONFIG_IGB_HWMON /* Initialize the thermal sensor on i350 devices. */ if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { u16 ets_word; /* Read the NVM to determine if this i350 device supports an * external thermal sensor. */ hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); if (ets_word != 0x0000 && ets_word != 0xFFFF) adapter->ets = true; else adapter->ets = false; if (igb_sysfs_init(adapter)) dev_err(&pdev->dev, "failed to allocate sysfs resources\n"); } else { adapter->ets = false; } #endif /* Check if Media Autosense is enabled */ adapter->ei = *ei; if (hw->dev_spec._82575.mas_capable) igb_init_mas(adapter); /* do hw tstamp init after resetting */ igb_ptp_init(adapter); dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); /* print bus type/speed/width info, not applicable to i354 */ if (hw->mac.type != e1000_i354) { dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", netdev->name, ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : "unknown"), ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : "unknown"), netdev->dev_addr); } if ((hw->mac.type == e1000_82576 && rd32(E1000_EECD) & E1000_EECD_PRES) || (hw->mac.type >= e1000_i210 || igb_get_flash_presence_i210(hw))) { ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); } else { ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; } if (ret_val) strcpy(part_str, "Unknown"); dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); dev_info(&pdev->dev, "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", adapter->num_rx_queues, adapter->num_tx_queues); if (hw->phy.media_type == e1000_media_type_copper) { switch (hw->mac.type) { case e1000_i350: case e1000_i210: case e1000_i211: /* Enable EEE for internal copper PHY devices */ err = igb_set_eee_i350(hw, true, true); if ((!err) && (!hw->dev_spec._82575.eee_disable)) { adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; adapter->flags |= IGB_FLAG_EEE; } break; case e1000_i354: if ((rd32(E1000_CTRL_EXT) & E1000_CTRL_EXT_LINK_MODE_SGMII)) { err = igb_set_eee_i354(hw, true, true); if ((!err) && (!hw->dev_spec._82575.eee_disable)) { adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; adapter->flags |= IGB_FLAG_EEE; } } break; default: break; } } dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE); pm_runtime_put_noidle(&pdev->dev); return 0; err_register: igb_release_hw_control(adapter); memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); err_eeprom: if (!igb_check_reset_block(hw)) igb_reset_phy(hw); if (hw->flash_address) iounmap(hw->flash_address); err_sw_init: kfree(adapter->mac_table); kfree(adapter->shadow_vfta); igb_clear_interrupt_scheme(adapter); #ifdef CONFIG_PCI_IOV igb_disable_sriov(pdev); #endif pci_iounmap(pdev, adapter->io_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_disable_pcie_error_reporting(pdev); pci_release_mem_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } #ifdef CONFIG_PCI_IOV static int igb_disable_sriov(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* reclaim resources allocated to VFs */ if (adapter->vf_data) { /* disable iov and allow time for transactions to clear */ if (pci_vfs_assigned(pdev)) { dev_warn(&pdev->dev, "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); return -EPERM; } else { pci_disable_sriov(pdev); msleep(500); } kfree(adapter->vf_mac_list); adapter->vf_mac_list = NULL; kfree(adapter->vf_data); adapter->vf_data = NULL; adapter->vfs_allocated_count = 0; wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); wrfl(); msleep(100); dev_info(&pdev->dev, "IOV Disabled\n"); /* Re-enable DMA Coalescing flag since IOV is turned off */ adapter->flags |= IGB_FLAG_DMAC; } return 0; } static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); int old_vfs = pci_num_vf(pdev); struct vf_mac_filter *mac_list; int err = 0; int num_vf_mac_filters, i; if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { err = -EPERM; goto out; } if (!num_vfs) goto out; if (old_vfs) { dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", old_vfs, max_vfs); adapter->vfs_allocated_count = old_vfs; } else adapter->vfs_allocated_count = num_vfs; adapter->vf_data = kcalloc(adapter->vfs_allocated_count, sizeof(struct vf_data_storage), GFP_KERNEL); /* if allocation failed then we do not support SR-IOV */ if (!adapter->vf_data) { adapter->vfs_allocated_count = 0; err = -ENOMEM; goto out; } /* Due to the limited number of RAR entries calculate potential * number of MAC filters available for the VFs. Reserve entries * for PF default MAC, PF MAC filters and at least one RAR entry * for each VF for VF MAC. */ num_vf_mac_filters = adapter->hw.mac.rar_entry_count - (1 + IGB_PF_MAC_FILTERS_RESERVED + adapter->vfs_allocated_count); adapter->vf_mac_list = kcalloc(num_vf_mac_filters, sizeof(struct vf_mac_filter), GFP_KERNEL); mac_list = adapter->vf_mac_list; INIT_LIST_HEAD(&adapter->vf_macs.l); if (adapter->vf_mac_list) { /* Initialize list of VF MAC filters */ for (i = 0; i < num_vf_mac_filters; i++) { mac_list->vf = -1; mac_list->free = true; list_add(&mac_list->l, &adapter->vf_macs.l); mac_list++; } } else { /* If we could not allocate memory for the VF MAC filters * we can continue without this feature but warn user. */ dev_err(&pdev->dev, "Unable to allocate memory for VF MAC filter list\n"); } /* only call pci_enable_sriov() if no VFs are allocated already */ if (!old_vfs) { err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); if (err) goto err_out; } dev_info(&pdev->dev, "%d VFs allocated\n", adapter->vfs_allocated_count); for (i = 0; i < adapter->vfs_allocated_count; i++) igb_vf_configure(adapter, i); /* DMA Coalescing is not supported in IOV mode. */ adapter->flags &= ~IGB_FLAG_DMAC; goto out; err_out: kfree(adapter->vf_mac_list); adapter->vf_mac_list = NULL; kfree(adapter->vf_data); adapter->vf_data = NULL; adapter->vfs_allocated_count = 0; out: return err; } #endif /** * igb_remove_i2c - Cleanup I2C interface * @adapter: pointer to adapter structure **/ static void igb_remove_i2c(struct igb_adapter *adapter) { /* free the adapter bus structure */ i2c_del_adapter(&adapter->i2c_adap); } /** * igb_remove - Device Removal Routine * @pdev: PCI device information struct * * igb_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void igb_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pm_runtime_get_noresume(&pdev->dev); #ifdef CONFIG_IGB_HWMON igb_sysfs_exit(adapter); #endif igb_remove_i2c(adapter); igb_ptp_stop(adapter); /* The watchdog timer may be rescheduled, so explicitly * disable watchdog from being rescheduled. */ set_bit(__IGB_DOWN, &adapter->state); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->watchdog_task); #ifdef CONFIG_IGB_DCA if (adapter->flags & IGB_FLAG_DCA_ENABLED) { dev_info(&pdev->dev, "DCA disabled\n"); dca_remove_requester(&pdev->dev); adapter->flags &= ~IGB_FLAG_DCA_ENABLED; wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); } #endif /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igb_release_hw_control(adapter); #ifdef CONFIG_PCI_IOV igb_disable_sriov(pdev); #endif unregister_netdev(netdev); igb_clear_interrupt_scheme(adapter); pci_iounmap(pdev, adapter->io_addr); if (hw->flash_address) iounmap(hw->flash_address); pci_release_mem_regions(pdev); kfree(adapter->mac_table); kfree(adapter->shadow_vfta); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } /** * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space * @adapter: board private structure to initialize * * This function initializes the vf specific data storage and then attempts to * allocate the VFs. The reason for ordering it this way is because it is much * mor expensive time wise to disable SR-IOV than it is to allocate and free * the memory for the VFs. **/ static void igb_probe_vfs(struct igb_adapter *adapter) { #ifdef CONFIG_PCI_IOV struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; /* Virtualization features not supported on i210 family. */ if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) return; /* Of the below we really only want the effect of getting * IGB_FLAG_HAS_MSIX set (if available), without which * igb_enable_sriov() has no effect. */ igb_set_interrupt_capability(adapter, true); igb_reset_interrupt_capability(adapter); pci_sriov_set_totalvfs(pdev, 7); igb_enable_sriov(pdev, max_vfs); #endif /* CONFIG_PCI_IOV */ } unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; unsigned int max_rss_queues; /* Determine the maximum number of RSS queues supported. */ switch (hw->mac.type) { case e1000_i211: max_rss_queues = IGB_MAX_RX_QUEUES_I211; break; case e1000_82575: case e1000_i210: max_rss_queues = IGB_MAX_RX_QUEUES_82575; break; case e1000_i350: /* I350 cannot do RSS and SR-IOV at the same time */ if (!!adapter->vfs_allocated_count) { max_rss_queues = 1; break; } fallthrough; case e1000_82576: if (!!adapter->vfs_allocated_count) { max_rss_queues = 2; break; } fallthrough; case e1000_82580: case e1000_i354: default: max_rss_queues = IGB_MAX_RX_QUEUES; break; } return max_rss_queues; } static void igb_init_queue_configuration(struct igb_adapter *adapter) { u32 max_rss_queues; max_rss_queues = igb_get_max_rss_queues(adapter); adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); igb_set_flag_queue_pairs(adapter, max_rss_queues); } void igb_set_flag_queue_pairs(struct igb_adapter *adapter, const u32 max_rss_queues) { struct e1000_hw *hw = &adapter->hw; /* Determine if we need to pair queues. */ switch (hw->mac.type) { case e1000_82575: case e1000_i211: /* Device supports enough interrupts without queue pairing. */ break; case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: default: /* If rss_queues > half of max_rss_queues, pair the queues in * order to conserve interrupts due to limited supply. */ if (adapter->rss_queues > (max_rss_queues / 2)) adapter->flags |= IGB_FLAG_QUEUE_PAIRS; else adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS; break; } } /** * igb_sw_init - Initialize general software structures (struct igb_adapter) * @adapter: board private structure to initialize * * igb_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int igb_sw_init(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); /* set default ring sizes */ adapter->tx_ring_count = IGB_DEFAULT_TXD; adapter->rx_ring_count = IGB_DEFAULT_RXD; /* set default ITR values */ adapter->rx_itr_setting = IGB_DEFAULT_ITR; adapter->tx_itr_setting = IGB_DEFAULT_ITR; /* set default work limits */ adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD; adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; spin_lock_init(&adapter->nfc_lock); spin_lock_init(&adapter->stats64_lock); #ifdef CONFIG_PCI_IOV switch (hw->mac.type) { case e1000_82576: case e1000_i350: if (max_vfs > 7) { dev_warn(&pdev->dev, "Maximum of 7 VFs per PF, using max\n"); max_vfs = adapter->vfs_allocated_count = 7; } else adapter->vfs_allocated_count = max_vfs; if (adapter->vfs_allocated_count) dev_warn(&pdev->dev, "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); break; default: break; } #endif /* CONFIG_PCI_IOV */ /* Assume MSI-X interrupts, will be checked during IRQ allocation */ adapter->flags |= IGB_FLAG_HAS_MSIX; adapter->mac_table = kcalloc(hw->mac.rar_entry_count, sizeof(struct igb_mac_addr), GFP_KERNEL); if (!adapter->mac_table) return -ENOMEM; igb_probe_vfs(adapter); igb_init_queue_configuration(adapter); /* Setup and initialize a copy of the hw vlan table array */ adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), GFP_KERNEL); if (!adapter->shadow_vfta) return -ENOMEM; /* This call may decrease the number of queues */ if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } /* Explicitly disable IRQ since the NIC can be in any state. */ igb_irq_disable(adapter); if (hw->mac.type >= e1000_i350) adapter->flags &= ~IGB_FLAG_DMAC; set_bit(__IGB_DOWN, &adapter->state); return 0; } /** * __igb_open - Called when a network interface is made active * @netdev: network interface device structure * @resuming: indicates whether we are in a resume call * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int __igb_open(struct net_device *netdev, bool resuming) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; int err; int i; /* disallow open during test */ if (test_bit(__IGB_TESTING, &adapter->state)) { WARN_ON(resuming); return -EBUSY; } if (!resuming) pm_runtime_get_sync(&pdev->dev); netif_carrier_off(netdev); /* allocate transmit descriptors */ err = igb_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = igb_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; igb_power_up_link(adapter); /* before we allocate an interrupt, we must be ready to handle it. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt * as soon as we call pci_request_irq, so we have to setup our * clean_rx handler before we do so. */ igb_configure(adapter); err = igb_request_irq(adapter); if (err) goto err_req_irq; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(adapter->netdev, adapter->num_rx_queues); if (err) goto err_set_queues; /* From here on the code is the same as igb_up() */ clear_bit(__IGB_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&(adapter->q_vector[i]->napi)); /* Clear any pending interrupts. */ rd32(E1000_TSICR); rd32(E1000_ICR); igb_irq_enable(adapter); /* notify VFs that reset has been completed */ if (adapter->vfs_allocated_count) { u32 reg_data = rd32(E1000_CTRL_EXT); reg_data |= E1000_CTRL_EXT_PFRSTD; wr32(E1000_CTRL_EXT, reg_data); } netif_tx_start_all_queues(netdev); if (!resuming) pm_runtime_put(&pdev->dev); /* start the watchdog. */ hw->mac.get_link_status = 1; schedule_work(&adapter->watchdog_task); return 0; err_set_queues: igb_free_irq(adapter); err_req_irq: igb_release_hw_control(adapter); igb_power_down_link(adapter); igb_free_all_rx_resources(adapter); err_setup_rx: igb_free_all_tx_resources(adapter); err_setup_tx: igb_reset(adapter); if (!resuming) pm_runtime_put(&pdev->dev); return err; } int igb_open(struct net_device *netdev) { return __igb_open(netdev, false); } /** * __igb_close - Disables a network interface * @netdev: network interface device structure * @suspending: indicates we are in a suspend call * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the driver's control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ static int __igb_close(struct net_device *netdev, bool suspending) { struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); if (!suspending) pm_runtime_get_sync(&pdev->dev); igb_down(adapter); igb_free_irq(adapter); igb_free_all_tx_resources(adapter); igb_free_all_rx_resources(adapter); if (!suspending) pm_runtime_put_sync(&pdev->dev); return 0; } int igb_close(struct net_device *netdev) { if (netif_device_present(netdev) || netdev->dismantle) return __igb_close(netdev, false); return 0; } /** * igb_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ int igb_setup_tx_resources(struct igb_ring *tx_ring) { struct device *dev = tx_ring->dev; int size; size = sizeof(struct igb_tx_buffer) * tx_ring->count; tx_ring->tx_buffer_info = vmalloc(size); if (!tx_ring->tx_buffer_info) goto err; /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) goto err; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; return 0; err: vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); return -ENOMEM; } /** * igb_setup_all_tx_resources - wrapper to allocate Tx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int igb_setup_all_tx_resources(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int i, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = igb_setup_tx_resources(adapter->tx_ring[i]); if (err) { dev_err(&pdev->dev, "Allocation for Tx Queue %u failed\n", i); for (i--; i >= 0; i--) igb_free_tx_resources(adapter->tx_ring[i]); break; } } return err; } /** * igb_setup_tctl - configure the transmit control registers * @adapter: Board private structure **/ void igb_setup_tctl(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 tctl; /* disable queue 0 which is enabled by default on 82575 and 82576 */ wr32(E1000_TXDCTL(0), 0); /* Program the Transmit Control Register */ tctl = rd32(E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); igb_config_collision_dist(hw); /* Enable transmits */ tctl |= E1000_TCTL_EN; wr32(E1000_TCTL, tctl); } /** * igb_configure_tx_ring - Configure transmit ring after Reset * @adapter: board private structure * @ring: tx ring to configure * * Configure a transmit ring after a reset. **/ void igb_configure_tx_ring(struct igb_adapter *adapter, struct igb_ring *ring) { struct e1000_hw *hw = &adapter->hw; u32 txdctl = 0; u64 tdba = ring->dma; int reg_idx = ring->reg_idx; wr32(E1000_TDLEN(reg_idx), ring->count * sizeof(union e1000_adv_tx_desc)); wr32(E1000_TDBAL(reg_idx), tdba & 0x00000000ffffffffULL); wr32(E1000_TDBAH(reg_idx), tdba >> 32); ring->tail = adapter->io_addr + E1000_TDT(reg_idx); wr32(E1000_TDH(reg_idx), 0); writel(0, ring->tail); txdctl |= IGB_TX_PTHRESH; txdctl |= IGB_TX_HTHRESH << 8; txdctl |= IGB_TX_WTHRESH << 16; /* reinitialize tx_buffer_info */ memset(ring->tx_buffer_info, 0, sizeof(struct igb_tx_buffer) * ring->count); txdctl |= E1000_TXDCTL_QUEUE_ENABLE; wr32(E1000_TXDCTL(reg_idx), txdctl); } /** * igb_configure_tx - Configure transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void igb_configure_tx(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; /* disable the queues */ for (i = 0; i < adapter->num_tx_queues; i++) wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0); wrfl(); usleep_range(10000, 20000); for (i = 0; i < adapter->num_tx_queues; i++) igb_configure_tx_ring(adapter, adapter->tx_ring[i]); } /** * igb_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: Rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ int igb_setup_rx_resources(struct igb_ring *rx_ring) { struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); struct device *dev = rx_ring->dev; int size; size = sizeof(struct igb_rx_buffer) * rx_ring->count; rx_ring->rx_buffer_info = vmalloc(size); if (!rx_ring->rx_buffer_info) goto err; /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) goto err; rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; rx_ring->xdp_prog = adapter->xdp_prog; /* XDP RX-queue info */ if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->queue_index, 0) < 0) goto err; return 0; err: vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); return -ENOMEM; } /** * igb_setup_all_rx_resources - wrapper to allocate Rx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int igb_setup_all_rx_resources(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = igb_setup_rx_resources(adapter->rx_ring[i]); if (err) { dev_err(&pdev->dev, "Allocation for Rx Queue %u failed\n", i); for (i--; i >= 0; i--) igb_free_rx_resources(adapter->rx_ring[i]); break; } } return err; } /** * igb_setup_mrqc - configure the multiple receive queue control registers * @adapter: Board private structure **/ static void igb_setup_mrqc(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 mrqc, rxcsum; u32 j, num_rx_queues; u32 rss_key[10]; netdev_rss_key_fill(rss_key, sizeof(rss_key)); for (j = 0; j < 10; j++) wr32(E1000_RSSRK(j), rss_key[j]); num_rx_queues = adapter->rss_queues; switch (hw->mac.type) { case e1000_82576: /* 82576 supports 2 RSS queues for SR-IOV */ if (adapter->vfs_allocated_count) num_rx_queues = 2; break; default: break; } if (adapter->rss_indir_tbl_init != num_rx_queues) { for (j = 0; j < IGB_RETA_SIZE; j++) adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE; adapter->rss_indir_tbl_init = num_rx_queues; } igb_write_rss_indir_tbl(adapter); /* Disable raw packet checksumming so that RSS hash is placed in * descriptor on writeback. No need to enable TCP/UDP/IP checksum * offloads as they are enabled by default */ rxcsum = rd32(E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; if (adapter->hw.mac.type >= e1000_82576) /* Enable Receive Checksum Offload for SCTP */ rxcsum |= E1000_RXCSUM_CRCOFL; /* Don't need to set TUOFL or IPOFL, they default to 1 */ wr32(E1000_RXCSUM, rxcsum); /* Generate RSS hash based on packet types, TCP/UDP * port numbers and/or IPv4/v6 src and dst addresses */ mrqc = E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; /* If VMDq is enabled then we set the appropriate mode for that, else * we default to RSS so that an RSS hash is calculated per packet even * if we are only using one queue */ if (adapter->vfs_allocated_count) { if (hw->mac.type > e1000_82575) { /* Set the default pool for the PF's first queue */ u32 vtctl = rd32(E1000_VT_CTL); vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | E1000_VT_CTL_DISABLE_DEF_POOL); vtctl |= adapter->vfs_allocated_count << E1000_VT_CTL_DEFAULT_POOL_SHIFT; wr32(E1000_VT_CTL, vtctl); } if (adapter->rss_queues > 1) mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ; else mrqc |= E1000_MRQC_ENABLE_VMDQ; } else { mrqc |= E1000_MRQC_ENABLE_RSS_MQ; } igb_vmm_control(adapter); wr32(E1000_MRQC, mrqc); } /** * igb_setup_rctl - configure the receive control registers * @adapter: Board private structure **/ void igb_setup_rctl(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; rctl = rd32(E1000_RCTL); rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* enable stripping of CRC. It's unlikely this will break BMC * redirection as it did with e1000. Newer features require * that the HW strips the CRC. */ rctl |= E1000_RCTL_SECRC; /* disable store bad packets and clear size bits. */ rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); /* enable LPE to allow for reception of jumbo frames */ rctl |= E1000_RCTL_LPE; /* disable queue 0 to prevent tail write w/o re-config */ wr32(E1000_RXDCTL(0), 0); /* Attention!!! For SR-IOV PF driver operations you must enable * queue drop for all VF and PF queues to prevent head of line blocking * if an un-trusted VF does not provide descriptors to hardware. */ if (adapter->vfs_allocated_count) { /* set all queue drop enable bits */ wr32(E1000_QDE, ALL_QUEUES); } /* This is useful for sniffing bad packets. */ if (adapter->netdev->features & NETIF_F_RXALL) { /* UPE and MPE will be handled by normal PROMISC logic * in e1000e_set_rx_mode */ rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ E1000_RCTL_BAM | /* RX All Bcast Pkts */ E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */ E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ /* Do not mess with E1000_CTRL_VME, it affects transmit as well, * and that breaks VLANs. */ } wr32(E1000_RCTL, rctl); } static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, int vfn) { struct e1000_hw *hw = &adapter->hw; u32 vmolr; if (size > MAX_JUMBO_FRAME_SIZE) size = MAX_JUMBO_FRAME_SIZE; vmolr = rd32(E1000_VMOLR(vfn)); vmolr &= ~E1000_VMOLR_RLPML_MASK; vmolr |= size | E1000_VMOLR_LPE; wr32(E1000_VMOLR(vfn), vmolr); return 0; } static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, int vfn, bool enable) { struct e1000_hw *hw = &adapter->hw; u32 val, reg; if (hw->mac.type < e1000_82576) return; if (hw->mac.type == e1000_i350) reg = E1000_DVMOLR(vfn); else reg = E1000_VMOLR(vfn); val = rd32(reg); if (enable) val |= E1000_VMOLR_STRVLAN; else val &= ~(E1000_VMOLR_STRVLAN); wr32(reg, val); } static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn, bool aupe) { struct e1000_hw *hw = &adapter->hw; u32 vmolr; /* This register exists only on 82576 and newer so if we are older then * we should exit and do nothing */ if (hw->mac.type < e1000_82576) return; vmolr = rd32(E1000_VMOLR(vfn)); if (aupe) vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ else vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ /* clear all bits that might not be set */ vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ /* for VMDq only allow the VFs and pool 0 to accept broadcast and * multicast packets */ if (vfn <= adapter->vfs_allocated_count) vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ wr32(E1000_VMOLR(vfn), vmolr); } /** * igb_setup_srrctl - configure the split and replication receive control * registers * @adapter: Board private structure * @ring: receive ring to be configured **/ void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring) { struct e1000_hw *hw = &adapter->hw; int reg_idx = ring->reg_idx; u32 srrctl = 0; srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; if (ring_uses_large_buffer(ring)) srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT; else srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; if (hw->mac.type >= e1000_82580) srrctl |= E1000_SRRCTL_TIMESTAMP; /* Only set Drop Enable if VFs allocated, or we are supporting multiple * queues and rx flow control is disabled */ if (adapter->vfs_allocated_count || (!(hw->fc.current_mode & e1000_fc_rx_pause) && adapter->num_rx_queues > 1)) srrctl |= E1000_SRRCTL_DROP_EN; wr32(E1000_SRRCTL(reg_idx), srrctl); } /** * igb_configure_rx_ring - Configure a receive ring after Reset * @adapter: board private structure * @ring: receive ring to be configured * * Configure the Rx unit of the MAC after a reset. **/ void igb_configure_rx_ring(struct igb_adapter *adapter, struct igb_ring *ring) { struct e1000_hw *hw = &adapter->hw; union e1000_adv_rx_desc *rx_desc; u64 rdba = ring->dma; int reg_idx = ring->reg_idx; u32 rxdctl = 0; xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL)); /* disable the queue */ wr32(E1000_RXDCTL(reg_idx), 0); /* Set DMA base address registers */ wr32(E1000_RDBAL(reg_idx), rdba & 0x00000000ffffffffULL); wr32(E1000_RDBAH(reg_idx), rdba >> 32); wr32(E1000_RDLEN(reg_idx), ring->count * sizeof(union e1000_adv_rx_desc)); /* initialize head and tail */ ring->tail = adapter->io_addr + E1000_RDT(reg_idx); wr32(E1000_RDH(reg_idx), 0); writel(0, ring->tail); /* set descriptor configuration */ igb_setup_srrctl(adapter, ring); /* set filtering for VMDQ pools */ igb_set_vmolr(adapter, reg_idx & 0x7, true); rxdctl |= IGB_RX_PTHRESH; rxdctl |= IGB_RX_HTHRESH << 8; rxdctl |= IGB_RX_WTHRESH << 16; /* initialize rx_buffer_info */ memset(ring->rx_buffer_info, 0, sizeof(struct igb_rx_buffer) * ring->count); /* initialize Rx descriptor 0 */ rx_desc = IGB_RX_DESC(ring, 0); rx_desc->wb.upper.length = 0; /* enable receive descriptor fetching */ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; wr32(E1000_RXDCTL(reg_idx), rxdctl); } static void igb_set_rx_buffer_len(struct igb_adapter *adapter, struct igb_ring *rx_ring) { /* set build_skb and buffer size flags */ clear_ring_build_skb_enabled(rx_ring); clear_ring_uses_large_buffer(rx_ring); if (adapter->flags & IGB_FLAG_RX_LEGACY) return; set_ring_build_skb_enabled(rx_ring); #if (PAGE_SIZE < 8192) if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) return; set_ring_uses_large_buffer(rx_ring); #endif } /** * igb_configure_rx - Configure receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void igb_configure_rx(struct igb_adapter *adapter) { int i; /* set the correct pool for the PF default MAC address in entry 0 */ igb_set_default_mac_filter(adapter); /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *rx_ring = adapter->rx_ring[i]; igb_set_rx_buffer_len(adapter, rx_ring); igb_configure_rx_ring(adapter, rx_ring); } } /** * igb_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ void igb_free_tx_resources(struct igb_ring *tx_ring) { igb_clean_tx_ring(tx_ring); vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * igb_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ static void igb_free_all_tx_resources(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) if (adapter->tx_ring[i]) igb_free_tx_resources(adapter->tx_ring[i]); } /** * igb_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void igb_clean_tx_ring(struct igb_ring *tx_ring) { u16 i = tx_ring->next_to_clean; struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; while (i != tx_ring->next_to_use) { union e1000_adv_tx_desc *eop_desc, *tx_desc; /* Free all the Tx ring sk_buffs */ dev_kfree_skb_any(tx_buffer->skb); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* check for eop_desc to determine the end of the packet */ eop_desc = tx_buffer->next_to_watch; tx_desc = IGB_TX_DESC(tx_ring, i); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGB_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } tx_buffer->next_to_watch = NULL; /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; i++; if (unlikely(i == tx_ring->count)) { i = 0; tx_buffer = tx_ring->tx_buffer_info; } } /* reset BQL for queue */ netdev_tx_reset_queue(txring_txq(tx_ring)); /* reset next_to_use and next_to_clean */ tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * igb_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void igb_clean_all_tx_rings(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) if (adapter->tx_ring[i]) igb_clean_tx_ring(adapter->tx_ring[i]); } /** * igb_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ void igb_free_rx_resources(struct igb_ring *rx_ring) { igb_clean_rx_ring(rx_ring); rx_ring->xdp_prog = NULL; xdp_rxq_info_unreg(&rx_ring->xdp_rxq); vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * igb_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ static void igb_free_all_rx_resources(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->rx_ring[i]) igb_free_rx_resources(adapter->rx_ring[i]); } /** * igb_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void igb_clean_rx_ring(struct igb_ring *rx_ring) { u16 i = rx_ring->next_to_clean; dev_kfree_skb(rx_ring->skb); rx_ring->skb = NULL; /* Free all the Rx ring sk_buffs */ while (i != rx_ring->next_to_alloc) { struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, buffer_info->dma, buffer_info->page_offset, igb_rx_bufsz(rx_ring), DMA_FROM_DEVICE); /* free resources associated with mapping */ dma_unmap_page_attrs(rx_ring->dev, buffer_info->dma, igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGB_RX_DMA_ATTR); __page_frag_cache_drain(buffer_info->page, buffer_info->pagecnt_bias); i++; if (i == rx_ring->count) i = 0; } rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * igb_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void igb_clean_all_rx_rings(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) if (adapter->rx_ring[i]) igb_clean_rx_ring(adapter->rx_ring[i]); } /** * igb_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int igb_set_mac(struct net_device *netdev, void *p) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(netdev, addr->sa_data); memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); /* set the correct pool for the new PF MAC address in entry 0 */ igb_set_default_mac_filter(adapter); return 0; } /** * igb_write_mc_addr_list - write multicast addresses to MTA * @netdev: network interface device structure * * Writes multicast address list to the MTA hash table. * Returns: -ENOMEM on failure * 0 on no addresses written * X on writing X addresses to MTA **/ static int igb_write_mc_addr_list(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; u8 *mta_list; int i; if (netdev_mc_empty(netdev)) { /* nothing to program, so clear mc list */ igb_update_mc_addr_list(hw, NULL, 0); igb_restore_vf_multicasts(adapter); return 0; } mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC); if (!mta_list) return -ENOMEM; /* The shared function expects a packed array of only addresses. */ i = 0; netdev_for_each_mc_addr(ha, netdev) memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); igb_update_mc_addr_list(hw, mta_list, i); kfree(mta_list); return netdev_mc_count(netdev); } static int igb_vlan_promisc_enable(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 i, pf_id; switch (hw->mac.type) { case e1000_i210: case e1000_i211: case e1000_i350: /* VLAN filtering needed for VLAN prio filter */ if (adapter->netdev->features & NETIF_F_NTUPLE) break; fallthrough; case e1000_82576: case e1000_82580: case e1000_i354: /* VLAN filtering needed for pool filtering */ if (adapter->vfs_allocated_count) break; fallthrough; default: return 1; } /* We are already in VLAN promisc, nothing to do */ if (adapter->flags & IGB_FLAG_VLAN_PROMISC) return 0; if (!adapter->vfs_allocated_count) goto set_vfta; /* Add PF to all active pools */ pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; for (i = E1000_VLVF_ARRAY_SIZE; --i;) { u32 vlvf = rd32(E1000_VLVF(i)); vlvf |= BIT(pf_id); wr32(E1000_VLVF(i), vlvf); } set_vfta: /* Set all bits in the VLAN filter table array */ for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;) hw->mac.ops.write_vfta(hw, i, ~0U); /* Set flag so we don't redo unnecessary work */ adapter->flags |= IGB_FLAG_VLAN_PROMISC; return 0; } #define VFTA_BLOCK_SIZE 8 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset) { struct e1000_hw *hw = &adapter->hw; u32 vfta[VFTA_BLOCK_SIZE] = { 0 }; u32 vid_start = vfta_offset * 32; u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32); u32 i, vid, word, bits, pf_id; /* guarantee that we don't scrub out management VLAN */ vid = adapter->mng_vlan_id; if (vid >= vid_start && vid < vid_end) vfta[(vid - vid_start) / 32] |= BIT(vid % 32); if (!adapter->vfs_allocated_count) goto set_vfta; pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; for (i = E1000_VLVF_ARRAY_SIZE; --i;) { u32 vlvf = rd32(E1000_VLVF(i)); /* pull VLAN ID from VLVF */ vid = vlvf & VLAN_VID_MASK; /* only concern ourselves with a certain range */ if (vid < vid_start || vid >= vid_end) continue; if (vlvf & E1000_VLVF_VLANID_ENABLE) { /* record VLAN ID in VFTA */ vfta[(vid - vid_start) / 32] |= BIT(vid % 32); /* if PF is part of this then continue */ if (test_bit(vid, adapter->active_vlans)) continue; } /* remove PF from the pool */ bits = ~BIT(pf_id); bits &= rd32(E1000_VLVF(i)); wr32(E1000_VLVF(i), bits); } set_vfta: /* extract values from active_vlans and write back to VFTA */ for (i = VFTA_BLOCK_SIZE; i--;) { vid = (vfta_offset + i) * 32; word = vid / BITS_PER_LONG; bits = vid % BITS_PER_LONG; vfta[i] |= adapter->active_vlans[word] >> bits; hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]); } } static void igb_vlan_promisc_disable(struct igb_adapter *adapter) { u32 i; /* We are not in VLAN promisc, nothing to do */ if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC)) return; /* Set flag so we don't redo unnecessary work */ adapter->flags &= ~IGB_FLAG_VLAN_PROMISC; for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE) igb_scrub_vfta(adapter, i); } /** * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_rx_mode entry point is called whenever the unicast or multicast * address lists or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper unicast, multicast, * promiscuous mode, and all-multi behavior. **/ static void igb_set_rx_mode(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; unsigned int vfn = adapter->vfs_allocated_count; u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE; int count; /* Check for Promiscuous and All Multicast modes */ if (netdev->flags & IFF_PROMISC) { rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; /* enable use of UTA filter to force packets to default pool */ if (hw->mac.type == e1000_82576) vmolr |= E1000_VMOLR_ROPE; } else { if (netdev->flags & IFF_ALLMULTI) { rctl |= E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; } else { /* Write addresses to the MTA, if the attempt fails * then we should just turn on promiscuous mode so * that we can at least receive multicast traffic */ count = igb_write_mc_addr_list(netdev); if (count < 0) { rctl |= E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; } else if (count) { vmolr |= E1000_VMOLR_ROMPE; } } } /* Write addresses to available RAR registers, if there is not * sufficient space to store all the addresses then enable * unicast promiscuous mode */ if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) { rctl |= E1000_RCTL_UPE; vmolr |= E1000_VMOLR_ROPE; } /* enable VLAN filtering by default */ rctl |= E1000_RCTL_VFE; /* disable VLAN filtering for modes that require it */ if ((netdev->flags & IFF_PROMISC) || (netdev->features & NETIF_F_RXALL)) { /* if we fail to set all rules then just clear VFE */ if (igb_vlan_promisc_enable(adapter)) rctl &= ~E1000_RCTL_VFE; } else { igb_vlan_promisc_disable(adapter); } /* update state of unicast, multicast, and VLAN filtering modes */ rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); wr32(E1000_RCTL, rctl); #if (PAGE_SIZE < 8192) if (!adapter->vfs_allocated_count) { if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) rlpml = IGB_MAX_FRAME_BUILD_SKB; } #endif wr32(E1000_RLPML, rlpml); /* In order to support SR-IOV and eventually VMDq it is necessary to set * the VMOLR to enable the appropriate modes. Without this workaround * we will have issues with VLAN tag stripping not being done for frames * that are only arriving because we are the default pool */ if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) return; /* set UTA to appropriate mode */ igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE)); vmolr |= rd32(E1000_VMOLR(vfn)) & ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); /* enable Rx jumbo frames, restrict as needed to support build_skb */ vmolr &= ~E1000_VMOLR_RLPML_MASK; #if (PAGE_SIZE < 8192) if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB) vmolr |= IGB_MAX_FRAME_BUILD_SKB; else #endif vmolr |= MAX_JUMBO_FRAME_SIZE; vmolr |= E1000_VMOLR_LPE; wr32(E1000_VMOLR(vfn), vmolr); igb_restore_vf_multicasts(adapter); } static void igb_check_wvbr(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 wvbr = 0; switch (hw->mac.type) { case e1000_82576: case e1000_i350: wvbr = rd32(E1000_WVBR); if (!wvbr) return; break; default: break; } adapter->wvbr |= wvbr; } #define IGB_STAGGERED_QUEUE_OFFSET 8 static void igb_spoof_check(struct igb_adapter *adapter) { int j; if (!adapter->wvbr) return; for (j = 0; j < adapter->vfs_allocated_count; j++) { if (adapter->wvbr & BIT(j) || adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) { dev_warn(&adapter->pdev->dev, "Spoof event(s) detected on VF %d\n", j); adapter->wvbr &= ~(BIT(j) | BIT(j + IGB_STAGGERED_QUEUE_OFFSET)); } } } /* Need to wait a few seconds after link up to get diagnostic information from * the phy */ static void igb_update_phy_info(struct timer_list *t) { struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); igb_get_phy_info(&adapter->hw); } /** * igb_has_link - check shared code for link and determine up/down * @adapter: pointer to driver private info **/ bool igb_has_link(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; bool link_active = false; /* get_link_status is set on LSC (link status) interrupt or * rx sequence error interrupt. get_link_status will stay * false until the e1000_check_for_link establishes link * for copper adapters ONLY */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (!hw->mac.get_link_status) return true; fallthrough; case e1000_media_type_internal_serdes: hw->mac.ops.check_for_link(hw); link_active = !hw->mac.get_link_status; break; default: case e1000_media_type_unknown: break; } if (((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) && (hw->phy.id == I210_I_PHY_ID)) { if (!netif_carrier_ok(adapter->netdev)) { adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; adapter->link_check_timeout = jiffies; } } return link_active; } static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) { bool ret = false; u32 ctrl_ext, thstat; /* check for thermal sensor event on i350 copper only */ if (hw->mac.type == e1000_i350) { thstat = rd32(E1000_THSTAT); ctrl_ext = rd32(E1000_CTRL_EXT); if ((hw->phy.media_type == e1000_media_type_copper) && !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) ret = !!(thstat & event); } return ret; } /** * igb_check_lvmmc - check for malformed packets received * and indicated in LVMMC register * @adapter: pointer to adapter **/ static void igb_check_lvmmc(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 lvmmc; lvmmc = rd32(E1000_LVMMC); if (lvmmc) { if (unlikely(net_ratelimit())) { netdev_warn(adapter->netdev, "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", lvmmc); } } } /** * igb_watchdog - Timer Call-back * @t: pointer to timer_list containing our private info pointer **/ static void igb_watchdog(struct timer_list *t) { struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); /* Do the rest outside of interrupt context */ schedule_work(&adapter->watchdog_task); } static void igb_watchdog_task(struct work_struct *work) { struct igb_adapter *adapter = container_of(work, struct igb_adapter, watchdog_task); struct e1000_hw *hw = &adapter->hw; struct e1000_phy_info *phy = &hw->phy; struct net_device *netdev = adapter->netdev; u32 link; int i; u32 connsw; u16 phy_data, retry_count = 20; link = igb_has_link(adapter); if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { if (time_after(jiffies, (adapter->link_check_timeout + HZ))) adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; else link = false; } /* Force link down if we have fiber to swap to */ if (adapter->flags & IGB_FLAG_MAS_ENABLE) { if (hw->phy.media_type == e1000_media_type_copper) { connsw = rd32(E1000_CONNSW); if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) link = 0; } } if (link) { /* Perform a reset if the media type changed. */ if (hw->dev_spec._82575.media_changed) { hw->dev_spec._82575.media_changed = false; adapter->flags |= IGB_FLAG_MEDIA_RESET; igb_reset(adapter); } /* Cancel scheduled suspend requests. */ pm_runtime_resume(netdev->dev.parent); if (!netif_carrier_ok(netdev)) { u32 ctrl; hw->mac.ops.get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); ctrl = rd32(E1000_CTRL); /* Links status message must follow this format */ netdev_info(netdev, "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : (ctrl & E1000_CTRL_RFCE) ? "RX" : (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); /* disable EEE if enabled */ if ((adapter->flags & IGB_FLAG_EEE) && (adapter->link_duplex == HALF_DUPLEX)) { dev_info(&adapter->pdev->dev, "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); adapter->hw.dev_spec._82575.eee_disable = true; adapter->flags &= ~IGB_FLAG_EEE; } /* check if SmartSpeed worked */ igb_check_downshift(hw); if (phy->speed_downgraded) netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); /* check for thermal sensor event */ if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); /* adjust timeout factor according to speed/duplex */ adapter->tx_timeout_factor = 1; switch (adapter->link_speed) { case SPEED_10: adapter->tx_timeout_factor = 14; break; case SPEED_100: /* maybe add some timeout factor ? */ break; } if (adapter->link_speed != SPEED_1000) goto no_wait; /* wait for Remote receiver status OK */ retry_read_status: if (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data)) { if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) && retry_count) { msleep(100); retry_count--; goto retry_read_status; } else if (!retry_count) { dev_err(&adapter->pdev->dev, "exceed max 2 second\n"); } } else { dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n"); } no_wait: netif_carrier_on(netdev); igb_ping_all_vfs(adapter); igb_check_vf_rate_limit(adapter); /* link state has changed, schedule phy info update */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); } } else { if (netif_carrier_ok(netdev)) { adapter->link_speed = 0; adapter->link_duplex = 0; /* check for thermal sensor event */ if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { netdev_err(netdev, "The network adapter was stopped because it overheated\n"); } /* Links status message must follow this format */ netdev_info(netdev, "igb: %s NIC Link is Down\n", netdev->name); netif_carrier_off(netdev); igb_ping_all_vfs(adapter); /* link state has changed, schedule phy info update */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); /* link is down, time to check for alternate media */ if (adapter->flags & IGB_FLAG_MAS_ENABLE) { igb_check_swap_media(adapter); if (adapter->flags & IGB_FLAG_MEDIA_RESET) { schedule_work(&adapter->reset_task); /* return immediately */ return; } } pm_schedule_suspend(netdev->dev.parent, MSEC_PER_SEC * 5); /* also check for alternate media here */ } else if (!netif_carrier_ok(netdev) && (adapter->flags & IGB_FLAG_MAS_ENABLE)) { igb_check_swap_media(adapter); if (adapter->flags & IGB_FLAG_MEDIA_RESET) { schedule_work(&adapter->reset_task); /* return immediately */ return; } } } spin_lock(&adapter->stats64_lock); igb_update_stats(adapter); spin_unlock(&adapter->stats64_lock); for (i = 0; i < adapter->num_tx_queues; i++) { struct igb_ring *tx_ring = adapter->tx_ring[i]; if (!netif_carrier_ok(netdev)) { /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. * (Do the reset outside of interrupt context). */ if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); /* return immediately since reset is imminent */ return; } } /* Force detection of hung controller every watchdog period */ set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); } /* Cause software interrupt to ensure Rx ring is cleaned */ if (adapter->flags & IGB_FLAG_HAS_MSIX) { u32 eics = 0; for (i = 0; i < adapter->num_q_vectors; i++) eics |= adapter->q_vector[i]->eims_value; wr32(E1000_EICS, eics); } else { wr32(E1000_ICS, E1000_ICS_RXDMT0); } igb_spoof_check(adapter); igb_ptp_rx_hang(adapter); igb_ptp_tx_hang(adapter); /* Check LVMMC register on i350/i354 only */ if ((adapter->hw.mac.type == e1000_i350) || (adapter->hw.mac.type == e1000_i354)) igb_check_lvmmc(adapter); /* Reset the timer */ if (!test_bit(__IGB_DOWN, &adapter->state)) { if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + HZ)); else mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); } } enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; /** * igb_update_ring_itr - update the dynamic ITR value based on packet size * @q_vector: pointer to q_vector * * Stores a new ITR value based on strictly on packet size. This * algorithm is less sophisticated than that used in igb_update_itr, * due to the difficulty of synchronizing statistics across multiple * receive rings. The divisors and thresholds used by this function * were determined based on theoretical maximum wire speed and testing * data, in order to minimize response time while increasing bulk * throughput. * This functionality is controlled by ethtool's coalescing settings. * NOTE: This function is called only when operating in a multiqueue * receive environment. **/ static void igb_update_ring_itr(struct igb_q_vector *q_vector) { int new_val = q_vector->itr_val; int avg_wire_size = 0; struct igb_adapter *adapter = q_vector->adapter; unsigned int packets; /* For non-gigabit speeds, just fix the interrupt rate at 4000 * ints/sec - ITR timer value of 120 ticks. */ if (adapter->link_speed != SPEED_1000) { new_val = IGB_4K_ITR; goto set_itr_val; } packets = q_vector->rx.total_packets; if (packets) avg_wire_size = q_vector->rx.total_bytes / packets; packets = q_vector->tx.total_packets; if (packets) avg_wire_size = max_t(u32, avg_wire_size, q_vector->tx.total_bytes / packets); /* if avg_wire_size isn't set no work was done */ if (!avg_wire_size) goto clear_counts; /* Add 24 bytes to size to account for CRC, preamble, and gap */ avg_wire_size += 24; /* Don't starve jumbo frames */ avg_wire_size = min(avg_wire_size, 3000); /* Give a little boost to mid-size frames */ if ((avg_wire_size > 300) && (avg_wire_size < 1200)) new_val = avg_wire_size / 3; else new_val = avg_wire_size / 2; /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (new_val < IGB_20K_ITR && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) new_val = IGB_20K_ITR; set_itr_val: if (new_val != q_vector->itr_val) { q_vector->itr_val = new_val; q_vector->set_itr = 1; } clear_counts: q_vector->rx.total_bytes = 0; q_vector->rx.total_packets = 0; q_vector->tx.total_bytes = 0; q_vector->tx.total_packets = 0; } /** * igb_update_itr - update the dynamic ITR value based on statistics * @q_vector: pointer to q_vector * @ring_container: ring info to update the itr for * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. * This functionality is controlled by ethtool's coalescing settings. * NOTE: These calculations are only valid when operating in a single- * queue environment. **/ static void igb_update_itr(struct igb_q_vector *q_vector, struct igb_ring_container *ring_container) { unsigned int packets = ring_container->total_packets; unsigned int bytes = ring_container->total_bytes; u8 itrval = ring_container->itr; /* no packets, exit with status unchanged */ if (packets == 0) return; switch (itrval) { case lowest_latency: /* handle TSO and jumbo frames */ if (bytes/packets > 8000) itrval = bulk_latency; else if ((packets < 5) && (bytes > 512)) itrval = low_latency; break; case low_latency: /* 50 usec aka 20000 ints/s */ if (bytes > 10000) { /* this if handles the TSO accounting */ if (bytes/packets > 8000) itrval = bulk_latency; else if ((packets < 10) || ((bytes/packets) > 1200)) itrval = bulk_latency; else if ((packets > 35)) itrval = lowest_latency; } else if (bytes/packets > 2000) { itrval = bulk_latency; } else if (packets <= 2 && bytes < 512) { itrval = lowest_latency; } break; case bulk_latency: /* 250 usec aka 4000 ints/s */ if (bytes > 25000) { if (packets > 35) itrval = low_latency; } else if (bytes < 1500) { itrval = low_latency; } break; } /* clear work counters since we have the values we need */ ring_container->total_bytes = 0; ring_container->total_packets = 0; /* write updated itr to ring container */ ring_container->itr = itrval; } static void igb_set_itr(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; u32 new_itr = q_vector->itr_val; u8 current_itr = 0; /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ if (adapter->link_speed != SPEED_1000) { current_itr = 0; new_itr = IGB_4K_ITR; goto set_itr_now; } igb_update_itr(q_vector, &q_vector->tx); igb_update_itr(q_vector, &q_vector->rx); current_itr = max(q_vector->rx.itr, q_vector->tx.itr); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (current_itr == lowest_latency && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) current_itr = low_latency; switch (current_itr) { /* counts and packets in update_itr are dependent on these numbers */ case lowest_latency: new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ break; case low_latency: new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ break; case bulk_latency: new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ break; default: break; } set_itr_now: if (new_itr != q_vector->itr_val) { /* this attempts to bias the interrupt rate towards Bulk * by adding intermediate steps when interrupt rate is * increasing */ new_itr = new_itr > q_vector->itr_val ? max((new_itr * q_vector->itr_val) / (new_itr + (q_vector->itr_val >> 2)), new_itr) : new_itr; /* Don't write the value here; it resets the adapter's * internal timer, and causes us to delay far longer than * we should between interrupts. Instead, we write the ITR * value at the beginning of the next interrupt so the timing * ends up being correct. */ q_vector->itr_val = new_itr; q_vector->set_itr = 1; } } static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, struct igb_tx_buffer *first, u32 vlan_macip_lens, u32 type_tucmd, u32 mss_l4len_idx) { struct e1000_adv_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; struct timespec64 ts; context_desc = IGB_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; /* For 82575, context index must be unique per ring. */ if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) mss_l4len_idx |= tx_ring->reg_idx << 4; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); /* We assume there is always a valid tx time available. Invalid times * should have been handled by the upper layers. */ if (tx_ring->launchtime_enable) { ts = ktime_to_timespec64(first->skb->tstamp); skb_txtime_consumed(first->skb); context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32); } else { context_desc->seqnum_seed = 0; } } static int igb_tso(struct igb_ring *tx_ring, struct igb_tx_buffer *first, u8 *hdr_len) { u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; struct sk_buff *skb = first->skb; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; struct udphdr *udp; unsigned char *hdr; } l4; u32 paylen, l4_offset; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; ip.hdr = skb_network_header(skb); l4.hdr = skb_checksum_start(skb); /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP; /* initialize outer IP header fields */ if (ip.v4->version == 4) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); /* IP header will have to cancel out any data that * is not a part of the outer IP header */ ip.v4->check = csum_fold(csum_partial(trans_start, csum_start - trans_start, 0)); type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; ip.v4->tot_len = 0; first->tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_IPV4; } else { ip.v6->payload_len = 0; first->tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM; } /* determine offset of inner transport header */ l4_offset = l4.hdr - skb->data; /* remove payload length from inner checksum */ paylen = skb->len - l4_offset; if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) { /* compute length of segmentation header */ *hdr_len = (l4.tcp->doff * 4) + l4_offset; csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); } else { /* compute length of segmentation header */ *hdr_len = sizeof(*l4.udp) + l4_offset; csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); } /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* MSS L4LEN IDX */ mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; /* VLAN MACLEN IPLEN */ vlan_macip_lens = l4.hdr - ip.hdr; vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, mss_l4len_idx); return 1; } static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) { struct sk_buff *skb = first->skb; u32 vlan_macip_lens = 0; u32 type_tucmd = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) { csum_failed: if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) && !tx_ring->launchtime_enable) return; goto no_csum; } switch (skb->csum_offset) { case offsetof(struct tcphdr, check): type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; fallthrough; case offsetof(struct udphdr, check): break; case offsetof(struct sctphdr, checksum): /* validate that this is actually an SCTP request */ if (skb_csum_is_sctp(skb)) { type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP; break; } fallthrough; default: skb_checksum_help(skb); goto csum_failed; } /* update TX checksum flag */ first->tx_flags |= IGB_TX_FLAGS_CSUM; vlan_macip_lens = skb_checksum_start_offset(skb) - skb_network_offset(skb); no_csum: vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0); } #define IGB_SET_FLAG(_input, _flag, _result) \ ((_flag <= _result) ? \ ((u32)(_input & _flag) * (_result / _flag)) : \ ((u32)(_input & _flag) / (_flag / _result))) static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DCMD_IFCS; /* set HW vlan bit if vlan is present */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, (E1000_ADVTXD_DCMD_VLE)); /* set segmentation bits for TSO */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, (E1000_ADVTXD_DCMD_TSE)); /* set timestamp bit if present */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, (E1000_ADVTXD_MAC_TSTAMP)); /* insert frame checksum */ cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); return cmd_type; } static void igb_tx_olinfo_status(struct igb_ring *tx_ring, union e1000_adv_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; /* 82575 requires a unique index per ring */ if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) olinfo_status |= tx_ring->reg_idx << 4; /* insert L4 checksum */ olinfo_status |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_CSUM, (E1000_TXD_POPTS_TXSM << 8)); /* insert IPv4 checksum */ olinfo_status |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_IPV4, (E1000_TXD_POPTS_IXSM << 8)); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); } static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) { struct net_device *netdev = tx_ring->netdev; netif_stop_subqueue(netdev, tx_ring->queue_index); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (igb_desc_unused(tx_ring) < size) return -EBUSY; /* A reprieve! */ netif_wake_subqueue(netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp2); tx_ring->tx_stats.restart_queue2++; u64_stats_update_end(&tx_ring->tx_syncp2); return 0; } static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) { if (igb_desc_unused(tx_ring) >= size) return 0; return __igb_maybe_stop_tx(tx_ring, size); } static int igb_tx_map(struct igb_ring *tx_ring, struct igb_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct igb_tx_buffer *tx_buffer; union e1000_adv_tx_desc *tx_desc; skb_frag_t *frag; dma_addr_t dma; unsigned int data_len, size; u32 tx_flags = first->tx_flags; u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); u16 i = tx_ring->next_to_use; tx_desc = IGB_TX_DESC(tx_ring, i); igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGB_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += IGB_MAX_DATA_PER_TXD; size -= IGB_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGB_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= size | IGB_TXD_DCMD; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); /* set the timestamp */ first->time_stamp = jiffies; skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ dma_wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; /* Make sure there is space in the ring for the next send. */ igb_maybe_stop_tx(tx_ring, DESC_NEEDED); if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { writel(i, tx_ring->tail); } return 0; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); tx_buffer = &tx_ring->tx_buffer_info[i]; /* clear dma mappings for failed tx_buffer_info map */ while (tx_buffer != first) { if (dma_unmap_len(tx_buffer, len)) dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); if (i-- == 0) i += tx_ring->count; tx_buffer = &tx_ring->tx_buffer_info[i]; } if (dma_unmap_len(tx_buffer, len)) dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); dev_kfree_skb_any(tx_buffer->skb); tx_buffer->skb = NULL; tx_ring->next_to_use = i; return -1; } int igb_xmit_xdp_ring(struct igb_adapter *adapter, struct igb_ring *tx_ring, struct xdp_frame *xdpf) { union e1000_adv_tx_desc *tx_desc; u32 len, cmd_type, olinfo_status; struct igb_tx_buffer *tx_buffer; dma_addr_t dma; u16 i; len = xdpf->len; if (unlikely(!igb_desc_unused(tx_ring))) return IGB_XDP_CONSUMED; dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE); if (dma_mapping_error(tx_ring->dev, dma)) return IGB_XDP_CONSUMED; /* record the location of the first descriptor for this packet */ tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; tx_buffer->bytecount = len; tx_buffer->gso_segs = 1; tx_buffer->protocol = 0; i = tx_ring->next_to_use; tx_desc = IGB_TX_DESC(tx_ring, i); dma_unmap_len_set(tx_buffer, len, len); dma_unmap_addr_set(tx_buffer, dma, dma); tx_buffer->type = IGB_TYPE_XDP; tx_buffer->xdpf = xdpf; tx_desc->read.buffer_addr = cpu_to_le64(dma); /* put descriptor type bits */ cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DCMD_IFCS; cmd_type |= len | IGB_TXD_DCMD; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT; /* 82575 requires a unique index per ring */ if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) olinfo_status |= tx_ring->reg_idx << 4; tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount); /* set the timestamp */ tx_buffer->time_stamp = jiffies; /* Avoid any potential race with xdp_xmit and cleanup */ smp_wmb(); /* set next_to_watch value indicating a packet is present */ i++; if (i == tx_ring->count) i = 0; tx_buffer->next_to_watch = tx_desc; tx_ring->next_to_use = i; /* Make sure there is space in the ring for the next send. */ igb_maybe_stop_tx(tx_ring, DESC_NEEDED); if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) writel(i, tx_ring->tail); return IGB_XDP_TX; } netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, struct igb_ring *tx_ring) { struct igb_tx_buffer *first; int tso; u32 tx_flags = 0; unsigned short f; u16 count = TXD_USE_COUNT(skb_headlen(skb)); __be16 protocol = vlan_get_protocol(skb); u8 hdr_len = 0; /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_frag_size( &skb_shinfo(skb)->frags[f])); if (igb_maybe_stop_tx(tx_ring, count + 3)) { /* this is a hard error */ return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->type = IGB_TYPE_SKB; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; tx_flags |= IGB_TX_FLAGS_TSTAMP; adapter->ptp_tx_skb = skb_get(skb); adapter->ptp_tx_start = jiffies; if (adapter->hw.mac.type == e1000_82576) schedule_work(&adapter->ptp_tx_work); } else { adapter->tx_hwtstamp_skipped++; } } if (skb_vlan_tag_present(skb)) { tx_flags |= IGB_TX_FLAGS_VLAN; tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = protocol; tso = igb_tso(tx_ring, first, &hdr_len); if (tso < 0) goto out_drop; else if (!tso) igb_tx_csum(tx_ring, first); if (igb_tx_map(tx_ring, first, hdr_len)) goto cleanup_tx_tstamp; return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; cleanup_tx_tstamp: if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) { struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; if (adapter->hw.mac.type == e1000_82576) cancel_work_sync(&adapter->ptp_tx_work); clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); } return NETDEV_TX_OK; } static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, struct sk_buff *skb) { unsigned int r_idx = skb->queue_mapping; if (r_idx >= adapter->num_tx_queues) r_idx = r_idx % adapter->num_tx_queues; return adapter->tx_ring[r_idx]; } static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); /* The minimum packet size with TCTL.PSP set is 17 so pad the skb * in order to meet this minimum size requirement. */ if (skb_put_padto(skb, 17)) return NETDEV_TX_OK; return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); } /** * igb_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: number of the Tx queue that hung (unused) **/ static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* Do the reset outside of interrupt context */ adapter->tx_timeout_count++; if (hw->mac.type >= e1000_82580) hw->dev_spec._82575.global_device_reset = true; schedule_work(&adapter->reset_task); wr32(E1000_EICS, (adapter->eims_enable_mask & ~adapter->eims_other)); } static void igb_reset_task(struct work_struct *work) { struct igb_adapter *adapter; adapter = container_of(work, struct igb_adapter, reset_task); rtnl_lock(); /* If we're already down or resetting, just bail */ if (test_bit(__IGB_DOWN, &adapter->state) || test_bit(__IGB_RESETTING, &adapter->state)) { rtnl_unlock(); return; } igb_dump(adapter); netdev_err(adapter->netdev, "Reset adapter\n"); igb_reinit_locked(adapter); rtnl_unlock(); } /** * igb_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: rtnl_link_stats64 pointer **/ static void igb_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct igb_adapter *adapter = netdev_priv(netdev); spin_lock(&adapter->stats64_lock); igb_update_stats(adapter); memcpy(stats, &adapter->stats64, sizeof(*stats)); spin_unlock(&adapter->stats64_lock); } /** * igb_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int igb_change_mtu(struct net_device *netdev, int new_mtu) { struct igb_adapter *adapter = netdev_priv(netdev); int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD; if (adapter->xdp_prog) { int i; for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *ring = adapter->rx_ring[i]; if (max_frame > igb_rx_bufsz(ring)) { netdev_warn(adapter->netdev, "Requested MTU size is not supported with XDP. Max frame size is %d\n", max_frame); return -EINVAL; } } } /* adjust max frame to be at least the size of a standard frame */ if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) usleep_range(1000, 2000); /* igb_down has a dependency on max_frame_size */ adapter->max_frame_size = max_frame; if (netif_running(netdev)) igb_down(adapter); netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (netif_running(netdev)) igb_up(adapter); else igb_reset(adapter); clear_bit(__IGB_RESETTING, &adapter->state); return 0; } /** * igb_update_stats - Update the board statistics counters * @adapter: board private structure **/ void igb_update_stats(struct igb_adapter *adapter) { struct rtnl_link_stats64 *net_stats = &adapter->stats64; struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; u32 reg, mpc; int i; u64 bytes, packets; unsigned int start; u64 _bytes, _packets; /* Prevent stats update while adapter is being reset, or if the pci * connection is down. */ if (adapter->link_speed == 0) return; if (pci_channel_offline(pdev)) return; bytes = 0; packets = 0; rcu_read_lock(); for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *ring = adapter->rx_ring[i]; u32 rqdpc = rd32(E1000_RQDPC(i)); if (hw->mac.type >= e1000_i210) wr32(E1000_RQDPC(i), 0); if (rqdpc) { ring->rx_stats.drops += rqdpc; net_stats->rx_fifo_errors += rqdpc; } do { start = u64_stats_fetch_begin_irq(&ring->rx_syncp); _bytes = ring->rx_stats.bytes; _packets = ring->rx_stats.packets; } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->rx_bytes = bytes; net_stats->rx_packets = packets; bytes = 0; packets = 0; for (i = 0; i < adapter->num_tx_queues; i++) { struct igb_ring *ring = adapter->tx_ring[i]; do { start = u64_stats_fetch_begin_irq(&ring->tx_syncp); _bytes = ring->tx_stats.bytes; _packets = ring->tx_stats.packets; } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->tx_bytes = bytes; net_stats->tx_packets = packets; rcu_read_unlock(); /* read stats registers */ adapter->stats.crcerrs += rd32(E1000_CRCERRS); adapter->stats.gprc += rd32(E1000_GPRC); adapter->stats.gorc += rd32(E1000_GORCL); rd32(E1000_GORCH); /* clear GORCL */ adapter->stats.bprc += rd32(E1000_BPRC); adapter->stats.mprc += rd32(E1000_MPRC); adapter->stats.roc += rd32(E1000_ROC); adapter->stats.prc64 += rd32(E1000_PRC64); adapter->stats.prc127 += rd32(E1000_PRC127); adapter->stats.prc255 += rd32(E1000_PRC255); adapter->stats.prc511 += rd32(E1000_PRC511); adapter->stats.prc1023 += rd32(E1000_PRC1023); adapter->stats.prc1522 += rd32(E1000_PRC1522); adapter->stats.symerrs += rd32(E1000_SYMERRS); adapter->stats.sec += rd32(E1000_SEC); mpc = rd32(E1000_MPC); adapter->stats.mpc += mpc; net_stats->rx_fifo_errors += mpc; adapter->stats.scc += rd32(E1000_SCC); adapter->stats.ecol += rd32(E1000_ECOL); adapter->stats.mcc += rd32(E1000_MCC); adapter->stats.latecol += rd32(E1000_LATECOL); adapter->stats.dc += rd32(E1000_DC); adapter->stats.rlec += rd32(E1000_RLEC); adapter->stats.xonrxc += rd32(E1000_XONRXC); adapter->stats.xontxc += rd32(E1000_XONTXC); adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); adapter->stats.xofftxc += rd32(E1000_XOFFTXC); adapter->stats.fcruc += rd32(E1000_FCRUC); adapter->stats.gptc += rd32(E1000_GPTC); adapter->stats.gotc += rd32(E1000_GOTCL); rd32(E1000_GOTCH); /* clear GOTCL */ adapter->stats.rnbc += rd32(E1000_RNBC); adapter->stats.ruc += rd32(E1000_RUC); adapter->stats.rfc += rd32(E1000_RFC); adapter->stats.rjc += rd32(E1000_RJC); adapter->stats.tor += rd32(E1000_TORH); adapter->stats.tot += rd32(E1000_TOTH); adapter->stats.tpr += rd32(E1000_TPR); adapter->stats.ptc64 += rd32(E1000_PTC64); adapter->stats.ptc127 += rd32(E1000_PTC127); adapter->stats.ptc255 += rd32(E1000_PTC255); adapter->stats.ptc511 += rd32(E1000_PTC511); adapter->stats.ptc1023 += rd32(E1000_PTC1023); adapter->stats.ptc1522 += rd32(E1000_PTC1522); adapter->stats.mptc += rd32(E1000_MPTC); adapter->stats.bptc += rd32(E1000_BPTC); adapter->stats.tpt += rd32(E1000_TPT); adapter->stats.colc += rd32(E1000_COLC); adapter->stats.algnerrc += rd32(E1000_ALGNERRC); /* read internal phy specific stats */ reg = rd32(E1000_CTRL_EXT); if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { adapter->stats.rxerrc += rd32(E1000_RXERRC); /* this stat has invalid values on i210/i211 */ if ((hw->mac.type != e1000_i210) && (hw->mac.type != e1000_i211)) adapter->stats.tncrs += rd32(E1000_TNCRS); } adapter->stats.tsctc += rd32(E1000_TSCTC); adapter->stats.tsctfc += rd32(E1000_TSCTFC); adapter->stats.iac += rd32(E1000_IAC); adapter->stats.icrxoc += rd32(E1000_ICRXOC); adapter->stats.icrxptc += rd32(E1000_ICRXPTC); adapter->stats.icrxatc += rd32(E1000_ICRXATC); adapter->stats.ictxptc += rd32(E1000_ICTXPTC); adapter->stats.ictxatc += rd32(E1000_ICTXATC); adapter->stats.ictxqec += rd32(E1000_ICTXQEC); adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); /* Fill out the OS statistics structure */ net_stats->multicast = adapter->stats.mprc; net_stats->collisions = adapter->stats.colc; /* Rx Errors */ /* RLEC on some newer hardware can be incorrect so build * our own version based on RUC and ROC */ net_stats->rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; net_stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; net_stats->rx_crc_errors = adapter->stats.crcerrs; net_stats->rx_frame_errors = adapter->stats.algnerrc; net_stats->rx_missed_errors = adapter->stats.mpc; /* Tx Errors */ net_stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; net_stats->tx_aborted_errors = adapter->stats.ecol; net_stats->tx_window_errors = adapter->stats.latecol; net_stats->tx_carrier_errors = adapter->stats.tncrs; /* Tx Dropped needs to be maintained elsewhere */ /* Management Stats */ adapter->stats.mgptc += rd32(E1000_MGTPTC); adapter->stats.mgprc += rd32(E1000_MGTPRC); adapter->stats.mgpdc += rd32(E1000_MGTPDC); /* OS2BMC Stats */ reg = rd32(E1000_MANC); if (reg & E1000_MANC_EN_BMC2OS) { adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); adapter->stats.o2bspc += rd32(E1000_O2BSPC); adapter->stats.b2ospc += rd32(E1000_B2OSPC); adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); } } static void igb_perout(struct igb_adapter *adapter, int tsintr_tt) { int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt); struct e1000_hw *hw = &adapter->hw; struct timespec64 ts; u32 tsauxc; if (pin < 0 || pin >= IGB_N_PEROUT) return; spin_lock(&adapter->tmreg_lock); if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i354 || hw->mac.type == e1000_i350) { s64 ns = timespec64_to_ns(&adapter->perout[pin].period); u32 systiml, systimh, level_mask, level, rem; u64 systim, now; /* read systim registers in sequence */ rd32(E1000_SYSTIMR); systiml = rd32(E1000_SYSTIML); systimh = rd32(E1000_SYSTIMH); systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml); now = timecounter_cyc2time(&adapter->tc, systim); if (pin < 2) { level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000; level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0; } else { level_mask = (tsintr_tt == 1) ? 0x80 : 0x40; level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0; } div_u64_rem(now, ns, &rem); systim = systim + (ns - rem); /* synchronize pin level with rising/falling edges */ div_u64_rem(now, ns << 1, &rem); if (rem < ns) { /* first half of period */ if (level == 0) { /* output is already low, skip this period */ systim += ns; pr_notice("igb: periodic output on %s missed falling edge\n", adapter->sdp_config[pin].name); } } else { /* second half of period */ if (level == 1) { /* output is already high, skip this period */ systim += ns; pr_notice("igb: periodic output on %s missed rising edge\n", adapter->sdp_config[pin].name); } } /* for this chip family tv_sec is the upper part of the binary value, * so not seconds */ ts.tv_nsec = (u32)systim; ts.tv_sec = ((u32)(systim >> 32)) & 0xFF; } else { ts = timespec64_add(adapter->perout[pin].start, adapter->perout[pin].period); } /* u32 conversion of tv_sec is safe until y2106 */ wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec); wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec); tsauxc = rd32(E1000_TSAUXC); tsauxc |= TSAUXC_EN_TT0; wr32(E1000_TSAUXC, tsauxc); adapter->perout[pin].start = ts; spin_unlock(&adapter->tmreg_lock); } static void igb_extts(struct igb_adapter *adapter, int tsintr_tt) { int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt); int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0; int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0; struct e1000_hw *hw = &adapter->hw; struct ptp_clock_event event; struct timespec64 ts; if (pin < 0 || pin >= IGB_N_EXTTS) return; if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i354 || hw->mac.type == e1000_i350) { s64 ns = rd32(auxstmpl); ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32; ts = ns_to_timespec64(ns); } else { ts.tv_nsec = rd32(auxstmpl); ts.tv_sec = rd32(auxstmph); } event.type = PTP_CLOCK_EXTTS; event.index = tsintr_tt; event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec; ptp_clock_event(adapter->ptp_clock, &event); } static void igb_tsync_interrupt(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ack = 0, tsicr = rd32(E1000_TSICR); struct ptp_clock_event event; if (tsicr & TSINTR_SYS_WRAP) { event.type = PTP_CLOCK_PPS; if (adapter->ptp_caps.pps) ptp_clock_event(adapter->ptp_clock, &event); ack |= TSINTR_SYS_WRAP; } if (tsicr & E1000_TSICR_TXTS) { /* retrieve hardware timestamp */ schedule_work(&adapter->ptp_tx_work); ack |= E1000_TSICR_TXTS; } if (tsicr & TSINTR_TT0) { igb_perout(adapter, 0); ack |= TSINTR_TT0; } if (tsicr & TSINTR_TT1) { igb_perout(adapter, 1); ack |= TSINTR_TT1; } if (tsicr & TSINTR_AUTT0) { igb_extts(adapter, 0); ack |= TSINTR_AUTT0; } if (tsicr & TSINTR_AUTT1) { igb_extts(adapter, 1); ack |= TSINTR_AUTT1; } /* acknowledge the interrupts */ wr32(E1000_TSICR, ack); } static irqreturn_t igb_msix_other(int irq, void *data) { struct igb_adapter *adapter = data; struct e1000_hw *hw = &adapter->hw; u32 icr = rd32(E1000_ICR); /* reading ICR causes bit 31 of EICR to be cleared */ if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; /* The DMA Out of Sync is also indication of a spoof event * in IOV mode. Check the Wrong VM Behavior register to * see if it is really a spoof event. */ igb_check_wvbr(adapter); } /* Check for a mailbox event */ if (icr & E1000_ICR_VMMB) igb_msg_task(adapter); if (icr & E1000_ICR_LSC) { hw->mac.get_link_status = 1; /* guard against interrupt when we're going down */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) igb_tsync_interrupt(adapter); wr32(E1000_EIMS, adapter->eims_other); return IRQ_HANDLED; } static void igb_write_itr(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; u32 itr_val = q_vector->itr_val & 0x7FFC; if (!q_vector->set_itr) return; if (!itr_val) itr_val = 0x4; if (adapter->hw.mac.type == e1000_82575) itr_val |= itr_val << 16; else itr_val |= E1000_EITR_CNT_IGNR; writel(itr_val, q_vector->itr_register); q_vector->set_itr = 0; } static irqreturn_t igb_msix_ring(int irq, void *data) { struct igb_q_vector *q_vector = data; /* Write the ITR value calculated from the previous interrupt. */ igb_write_itr(q_vector); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } #ifdef CONFIG_IGB_DCA static void igb_update_tx_dca(struct igb_adapter *adapter, struct igb_ring *tx_ring, int cpu) { struct e1000_hw *hw = &adapter->hw; u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); if (hw->mac.type != e1000_82575) txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; /* We can enable relaxed ordering for reads, but not writes when * DCA is enabled. This is due to a known issue in some chipsets * which will cause the DCA tag to be cleared. */ txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | E1000_DCA_TXCTRL_DATA_RRO_EN | E1000_DCA_TXCTRL_DESC_DCA_EN; wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); } static void igb_update_rx_dca(struct igb_adapter *adapter, struct igb_ring *rx_ring, int cpu) { struct e1000_hw *hw = &adapter->hw; u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); if (hw->mac.type != e1000_82575) rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; /* We can enable relaxed ordering for reads, but not writes when * DCA is enabled. This is due to a known issue in some chipsets * which will cause the DCA tag to be cleared. */ rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | E1000_DCA_RXCTRL_DESC_DCA_EN; wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); } static void igb_update_dca(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; int cpu = get_cpu(); if (q_vector->cpu == cpu) goto out_no_update; if (q_vector->tx.ring) igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); if (q_vector->rx.ring) igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); q_vector->cpu = cpu; out_no_update: put_cpu(); } static void igb_setup_dca(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) return; /* Always use CB2 mode, difference is masked in the CB driver. */ wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); for (i = 0; i < adapter->num_q_vectors; i++) { adapter->q_vector[i]->cpu = -1; igb_update_dca(adapter->q_vector[i]); } } static int __igb_notify_dca(struct device *dev, void *data) { struct net_device *netdev = dev_get_drvdata(dev); struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; unsigned long event = *(unsigned long *)data; switch (event) { case DCA_PROVIDER_ADD: /* if already enabled, don't do it again */ if (adapter->flags & IGB_FLAG_DCA_ENABLED) break; if (dca_add_requester(dev) == 0) { adapter->flags |= IGB_FLAG_DCA_ENABLED; dev_info(&pdev->dev, "DCA enabled\n"); igb_setup_dca(adapter); break; } fallthrough; /* since DCA is disabled. */ case DCA_PROVIDER_REMOVE: if (adapter->flags & IGB_FLAG_DCA_ENABLED) { /* without this a class_device is left * hanging around in the sysfs model */ dca_remove_requester(dev); dev_info(&pdev->dev, "DCA disabled\n"); adapter->flags &= ~IGB_FLAG_DCA_ENABLED; wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); } break; } return 0; } static int igb_notify_dca(struct notifier_block *nb, unsigned long event, void *p) { int ret_val; ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, __igb_notify_dca); return ret_val ? NOTIFY_BAD : NOTIFY_DONE; } #endif /* CONFIG_IGB_DCA */ #ifdef CONFIG_PCI_IOV static int igb_vf_configure(struct igb_adapter *adapter, int vf) { unsigned char mac_addr[ETH_ALEN]; eth_zero_addr(mac_addr); igb_set_vf_mac(adapter, vf, mac_addr); /* By default spoof check is enabled for all VFs */ adapter->vf_data[vf].spoofchk_enabled = true; /* By default VFs are not trusted */ adapter->vf_data[vf].trusted = false; return 0; } #endif static void igb_ping_all_vfs(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ping; int i; for (i = 0 ; i < adapter->vfs_allocated_count; i++) { ping = E1000_PF_CONTROL_MSG; if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) ping |= E1000_VT_MSGTYPE_CTS; igb_write_mbx(hw, &ping, 1, i); } } static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { struct e1000_hw *hw = &adapter->hw; u32 vmolr = rd32(E1000_VMOLR(vf)); struct vf_data_storage *vf_data = &adapter->vf_data[vf]; vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | IGB_VF_FLAG_MULTI_PROMISC); vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { vmolr |= E1000_VMOLR_MPME; vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; } else { /* if we have hashes and we are clearing a multicast promisc * flag we need to write the hashes to the MTA as this step * was previously skipped */ if (vf_data->num_vf_mc_hashes > 30) { vmolr |= E1000_VMOLR_MPME; } else if (vf_data->num_vf_mc_hashes) { int j; vmolr |= E1000_VMOLR_ROMPE; for (j = 0; j < vf_data->num_vf_mc_hashes; j++) igb_mta_set(hw, vf_data->vf_mc_hashes[j]); } } wr32(E1000_VMOLR(vf), vmolr); /* there are flags left unprocessed, likely not supported */ if (*msgbuf & E1000_VT_MSGINFO_MASK) return -EINVAL; return 0; } static int igb_set_vf_multicasts(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; u16 *hash_list = (u16 *)&msgbuf[1]; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; int i; /* salt away the number of multicast addresses assigned * to this VF for later use to restore when the PF multi cast * list changes */ vf_data->num_vf_mc_hashes = n; /* only up to 30 hash values supported */ if (n > 30) n = 30; /* store the hashes for later use */ for (i = 0; i < n; i++) vf_data->vf_mc_hashes[i] = hash_list[i]; /* Flush and reset the mta with the new values */ igb_set_rx_mode(adapter->netdev); return 0; } static void igb_restore_vf_multicasts(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data; int i, j; for (i = 0; i < adapter->vfs_allocated_count; i++) { u32 vmolr = rd32(E1000_VMOLR(i)); vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); vf_data = &adapter->vf_data[i]; if ((vf_data->num_vf_mc_hashes > 30) || (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { vmolr |= E1000_VMOLR_MPME; } else if (vf_data->num_vf_mc_hashes) { vmolr |= E1000_VMOLR_ROMPE; for (j = 0; j < vf_data->num_vf_mc_hashes; j++) igb_mta_set(hw, vf_data->vf_mc_hashes[j]); } wr32(E1000_VMOLR(i), vmolr); } } static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; u32 pool_mask, vlvf_mask, i; /* create mask for VF and other pools */ pool_mask = E1000_VLVF_POOLSEL_MASK; vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf); /* drop PF from pool bits */ pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT + adapter->vfs_allocated_count); /* Find the vlan filter for this id */ for (i = E1000_VLVF_ARRAY_SIZE; i--;) { u32 vlvf = rd32(E1000_VLVF(i)); u32 vfta_mask, vid, vfta; /* remove the vf from the pool */ if (!(vlvf & vlvf_mask)) continue; /* clear out bit from VLVF */ vlvf ^= vlvf_mask; /* if other pools are present, just remove ourselves */ if (vlvf & pool_mask) goto update_vlvfb; /* if PF is present, leave VFTA */ if (vlvf & E1000_VLVF_POOLSEL_MASK) goto update_vlvf; vid = vlvf & E1000_VLVF_VLANID_MASK; vfta_mask = BIT(vid % 32); /* clear bit from VFTA */ vfta = adapter->shadow_vfta[vid / 32]; if (vfta & vfta_mask) hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask); update_vlvf: /* clear pool selection enable */ if (adapter->flags & IGB_FLAG_VLAN_PROMISC) vlvf &= E1000_VLVF_POOLSEL_MASK; else vlvf = 0; update_vlvfb: /* clear pool bits */ wr32(E1000_VLVF(i), vlvf); } } static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan) { u32 vlvf; int idx; /* short cut the special case */ if (vlan == 0) return 0; /* Search for the VLAN id in the VLVF entries */ for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) { vlvf = rd32(E1000_VLVF(idx)); if ((vlvf & VLAN_VID_MASK) == vlan) break; } return idx; } static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid) { struct e1000_hw *hw = &adapter->hw; u32 bits, pf_id; int idx; idx = igb_find_vlvf_entry(hw, vid); if (!idx) return; /* See if any other pools are set for this VLAN filter * entry other than the PF. */ pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT; bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK; bits &= rd32(E1000_VLVF(idx)); /* Disable the filter so this falls into the default pool. */ if (!bits) { if (adapter->flags & IGB_FLAG_VLAN_PROMISC) wr32(E1000_VLVF(idx), BIT(pf_id)); else wr32(E1000_VLVF(idx), 0); } } static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) { int pf_id = adapter->vfs_allocated_count; struct e1000_hw *hw = &adapter->hw; int err; /* If VLAN overlaps with one the PF is currently monitoring make * sure that we are able to allocate a VLVF entry. This may be * redundant but it guarantees PF will maintain visibility to * the VLAN. */ if (add && test_bit(vid, adapter->active_vlans)) { err = igb_vfta_set(hw, vid, pf_id, true, false); if (err) return err; } err = igb_vfta_set(hw, vid, vf, add, false); if (add && !err) return err; /* If we failed to add the VF VLAN or we are removing the VF VLAN * we may need to drop the PF pool bit in order to allow us to free * up the VLVF resources. */ if (test_bit(vid, adapter->active_vlans) || (adapter->flags & IGB_FLAG_VLAN_PROMISC)) igb_update_pf_vlvf(adapter, vid); return err; } static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) { struct e1000_hw *hw = &adapter->hw; if (vid) wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); else wr32(E1000_VMVIR(vf), 0); } static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf, u16 vlan, u8 qos) { int err; err = igb_set_vf_vlan(adapter, vlan, true, vf); if (err) return err; igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); igb_set_vmolr(adapter, vf, !vlan); /* revoke access to previous VLAN */ if (vlan != adapter->vf_data[vf].pf_vlan) igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, false, vf); adapter->vf_data[vf].pf_vlan = vlan; adapter->vf_data[vf].pf_qos = qos; igb_set_vf_vlan_strip(adapter, vf, true); dev_info(&adapter->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); if (test_bit(__IGB_DOWN, &adapter->state)) { dev_warn(&adapter->pdev->dev, "The VF VLAN has been set, but the PF device is not up.\n"); dev_warn(&adapter->pdev->dev, "Bring the PF device up before attempting to use the VF device.\n"); } return err; } static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf) { /* Restore tagless access via VLAN 0 */ igb_set_vf_vlan(adapter, 0, true, vf); igb_set_vmvir(adapter, 0, vf); igb_set_vmolr(adapter, vf, true); /* Remove any PF assigned VLAN */ if (adapter->vf_data[vf].pf_vlan) igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan, false, vf); adapter->vf_data[vf].pf_vlan = 0; adapter->vf_data[vf].pf_qos = 0; igb_set_vf_vlan_strip(adapter, vf, false); return 0; } static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos, __be16 vlan_proto) { struct igb_adapter *adapter = netdev_priv(netdev); if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) return -EINVAL; if (vlan_proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) : igb_disable_port_vlan(adapter, vf); } static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); int ret; if (adapter->vf_data[vf].pf_vlan) return -1; /* VLAN 0 is a special case, don't allow it to be removed */ if (!vid && !add) return 0; ret = igb_set_vf_vlan(adapter, vid, !!add, vf); if (!ret) igb_set_vf_vlan_strip(adapter, vf, !!vid); return ret; } static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) { struct vf_data_storage *vf_data = &adapter->vf_data[vf]; /* clear flags - except flag that indicates PF has set the MAC */ vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC; vf_data->last_nack = jiffies; /* reset vlans for device */ igb_clear_vf_vfta(adapter, vf); igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf); igb_set_vmvir(adapter, vf_data->pf_vlan | (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf); igb_set_vmolr(adapter, vf, !vf_data->pf_vlan); igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan)); /* reset multicast table array for vf */ adapter->vf_data[vf].num_vf_mc_hashes = 0; /* Flush and reset the mta with the new values */ igb_set_rx_mode(adapter->netdev); } static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) { unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; /* clear mac address as we were hotplug removed/added */ if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) eth_zero_addr(vf_mac); /* process remaining reset events */ igb_vf_reset(adapter, vf); } static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; u32 reg, msgbuf[3]; u8 *addr = (u8 *)(&msgbuf[1]); /* process all the same items cleared in a function level reset */ igb_vf_reset(adapter, vf); /* set vf mac address */ igb_set_vf_mac(adapter, vf, vf_mac); /* enable transmit and receive for vf */ reg = rd32(E1000_VFTE); wr32(E1000_VFTE, reg | BIT(vf)); reg = rd32(E1000_VFRE); wr32(E1000_VFRE, reg | BIT(vf)); adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; /* reply to reset with ack and vf mac address */ if (!is_zero_ether_addr(vf_mac)) { msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; memcpy(addr, vf_mac, ETH_ALEN); } else { msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; } igb_write_mbx(hw, msgbuf, 3, vf); } static void igb_flush_mac_table(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; for (i = 0; i < hw->mac.rar_entry_count; i++) { adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE; eth_zero_addr(adapter->mac_table[i].addr); adapter->mac_table[i].queue = 0; igb_rar_set_index(adapter, i); } } static int igb_available_rars(struct igb_adapter *adapter, u8 queue) { struct e1000_hw *hw = &adapter->hw; /* do not count rar entries reserved for VFs MAC addresses */ int rar_entries = hw->mac.rar_entry_count - adapter->vfs_allocated_count; int i, count = 0; for (i = 0; i < rar_entries; i++) { /* do not count default entries */ if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) continue; /* do not count "in use" entries for different queues */ if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) && (adapter->mac_table[i].queue != queue)) continue; count++; } return count; } /* Set default MAC address for the PF in the first RAR entry */ static void igb_set_default_mac_filter(struct igb_adapter *adapter) { struct igb_mac_addr *mac_table = &adapter->mac_table[0]; ether_addr_copy(mac_table->addr, adapter->hw.mac.addr); mac_table->queue = adapter->vfs_allocated_count; mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; igb_rar_set_index(adapter, 0); } /* If the filter to be added and an already existing filter express * the same address and address type, it should be possible to only * override the other configurations, for example the queue to steer * traffic. */ static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry, const u8 *addr, const u8 flags) { if (!(entry->state & IGB_MAC_STATE_IN_USE)) return true; if ((entry->state & IGB_MAC_STATE_SRC_ADDR) != (flags & IGB_MAC_STATE_SRC_ADDR)) return false; if (!ether_addr_equal(addr, entry->addr)) return false; return true; } /* Add a MAC filter for 'addr' directing matching traffic to 'queue', * 'flags' is used to indicate what kind of match is made, match is by * default for the destination address, if matching by source address * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used. */ static int igb_add_mac_filter_flags(struct igb_adapter *adapter, const u8 *addr, const u8 queue, const u8 flags) { struct e1000_hw *hw = &adapter->hw; int rar_entries = hw->mac.rar_entry_count - adapter->vfs_allocated_count; int i; if (is_zero_ether_addr(addr)) return -EINVAL; /* Search for the first empty entry in the MAC table. * Do not touch entries at the end of the table reserved for the VF MAC * addresses. */ for (i = 0; i < rar_entries; i++) { if (!igb_mac_entry_can_be_used(&adapter->mac_table[i], addr, flags)) continue; ether_addr_copy(adapter->mac_table[i].addr, addr); adapter->mac_table[i].queue = queue; adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags; igb_rar_set_index(adapter, i); return i; } return -ENOSPC; } static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr, const u8 queue) { return igb_add_mac_filter_flags(adapter, addr, queue, 0); } /* Remove a MAC filter for 'addr' directing matching traffic to * 'queue', 'flags' is used to indicate what kind of match need to be * removed, match is by default for the destination address, if * matching by source address is to be removed the flag * IGB_MAC_STATE_SRC_ADDR can be used. */ static int igb_del_mac_filter_flags(struct igb_adapter *adapter, const u8 *addr, const u8 queue, const u8 flags) { struct e1000_hw *hw = &adapter->hw; int rar_entries = hw->mac.rar_entry_count - adapter->vfs_allocated_count; int i; if (is_zero_ether_addr(addr)) return -EINVAL; /* Search for matching entry in the MAC table based on given address * and queue. Do not touch entries at the end of the table reserved * for the VF MAC addresses. */ for (i = 0; i < rar_entries; i++) { if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)) continue; if ((adapter->mac_table[i].state & flags) != flags) continue; if (adapter->mac_table[i].queue != queue) continue; if (!ether_addr_equal(adapter->mac_table[i].addr, addr)) continue; /* When a filter for the default address is "deleted", * we return it to its initial configuration */ if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) { adapter->mac_table[i].state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE; adapter->mac_table[i].queue = adapter->vfs_allocated_count; } else { adapter->mac_table[i].state = 0; adapter->mac_table[i].queue = 0; eth_zero_addr(adapter->mac_table[i].addr); } igb_rar_set_index(adapter, i); return 0; } return -ENOENT; } static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr, const u8 queue) { return igb_del_mac_filter_flags(adapter, addr, queue, 0); } int igb_add_mac_steering_filter(struct igb_adapter *adapter, const u8 *addr, u8 queue, u8 flags) { struct e1000_hw *hw = &adapter->hw; /* In theory, this should be supported on 82575 as well, but * that part wasn't easily accessible during development. */ if (hw->mac.type != e1000_i210) return -EOPNOTSUPP; return igb_add_mac_filter_flags(adapter, addr, queue, IGB_MAC_STATE_QUEUE_STEERING | flags); } int igb_del_mac_steering_filter(struct igb_adapter *adapter, const u8 *addr, u8 queue, u8 flags) { return igb_del_mac_filter_flags(adapter, addr, queue, IGB_MAC_STATE_QUEUE_STEERING | flags); } static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr) { struct igb_adapter *adapter = netdev_priv(netdev); int ret; ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count); return min_t(int, ret, 0); } static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr) { struct igb_adapter *adapter = netdev_priv(netdev); igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count); return 0; } static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf, const u32 info, const u8 *addr) { struct pci_dev *pdev = adapter->pdev; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; struct list_head *pos; struct vf_mac_filter *entry = NULL; int ret = 0; if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && !vf_data->trusted) { dev_warn(&pdev->dev, "VF %d requested MAC filter but is administratively denied\n", vf); return -EINVAL; } if (!is_valid_ether_addr(addr)) { dev_warn(&pdev->dev, "VF %d attempted to set invalid MAC filter\n", vf); return -EINVAL; } switch (info) { case E1000_VF_MAC_FILTER_CLR: /* remove all unicast MAC filters related to the current VF */ list_for_each(pos, &adapter->vf_macs.l) { entry = list_entry(pos, struct vf_mac_filter, l); if (entry->vf == vf) { entry->vf = -1; entry->free = true; igb_del_mac_filter(adapter, entry->vf_mac, vf); } } break; case E1000_VF_MAC_FILTER_ADD: /* try to find empty slot in the list */ list_for_each(pos, &adapter->vf_macs.l) { entry = list_entry(pos, struct vf_mac_filter, l); if (entry->free) break; } if (entry && entry->free) { entry->free = false; entry->vf = vf; ether_addr_copy(entry->vf_mac, addr); ret = igb_add_mac_filter(adapter, addr, vf); ret = min_t(int, ret, 0); } else { ret = -ENOSPC; } if (ret == -ENOSPC) dev_warn(&pdev->dev, "VF %d has requested MAC filter but there is no space for it\n", vf); break; default: ret = -EINVAL; break; } return ret; } static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) { struct pci_dev *pdev = adapter->pdev; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; u32 info = msg[0] & E1000_VT_MSGINFO_MASK; /* The VF MAC Address is stored in a packed array of bytes * starting at the second 32 bit word of the msg array */ unsigned char *addr = (unsigned char *)&msg[1]; int ret = 0; if (!info) { if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) && !vf_data->trusted) { dev_warn(&pdev->dev, "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", vf); return -EINVAL; } if (!is_valid_ether_addr(addr)) { dev_warn(&pdev->dev, "VF %d attempted to set invalid MAC\n", vf); return -EINVAL; } ret = igb_set_vf_mac(adapter, vf, addr); } else { ret = igb_set_vf_mac_filter(adapter, vf, info, addr); } return ret; } static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; u32 msg = E1000_VT_MSGTYPE_NACK; /* if device isn't clear to send it shouldn't be reading either */ if (!(vf_data->flags & IGB_VF_FLAG_CTS) && time_after(jiffies, vf_data->last_nack + (2 * HZ))) { igb_write_mbx(hw, &msg, 1, vf); vf_data->last_nack = jiffies; } } static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) { struct pci_dev *pdev = adapter->pdev; u32 msgbuf[E1000_VFMAILBOX_SIZE]; struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; s32 retval; retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false); if (retval) { /* if receive failed revoke VF CTS stats and restart init */ dev_err(&pdev->dev, "Error receiving message from VF\n"); vf_data->flags &= ~IGB_VF_FLAG_CTS; if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) goto unlock; goto out; } /* this is a message we already processed, do nothing */ if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) goto unlock; /* until the vf completes a reset it should not be * allowed to start any configuration. */ if (msgbuf[0] == E1000_VF_RESET) { /* unlocks mailbox */ igb_vf_reset_msg(adapter, vf); return; } if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) goto unlock; retval = -1; goto out; } switch ((msgbuf[0] & 0xFFFF)) { case E1000_VF_SET_MAC_ADDR: retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); break; case E1000_VF_SET_PROMISC: retval = igb_set_vf_promisc(adapter, msgbuf, vf); break; case E1000_VF_SET_MULTICAST: retval = igb_set_vf_multicasts(adapter, msgbuf, vf); break; case E1000_VF_SET_LPE: retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); break; case E1000_VF_SET_VLAN: retval = -1; if (vf_data->pf_vlan) dev_warn(&pdev->dev, "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", vf); else retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf); break; default: dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); retval = -1; break; } msgbuf[0] |= E1000_VT_MSGTYPE_CTS; out: /* notify the VF of the results of what it sent us */ if (retval) msgbuf[0] |= E1000_VT_MSGTYPE_NACK; else msgbuf[0] |= E1000_VT_MSGTYPE_ACK; /* unlocks mailbox */ igb_write_mbx(hw, msgbuf, 1, vf); return; unlock: igb_unlock_mbx(hw, vf); } static void igb_msg_task(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 vf; for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { /* process any reset requests */ if (!igb_check_for_rst(hw, vf)) igb_vf_reset_event(adapter, vf); /* process any messages pending */ if (!igb_check_for_msg(hw, vf)) igb_rcv_msg_from_vf(adapter, vf); /* process any acks */ if (!igb_check_for_ack(hw, vf)) igb_rcv_ack_from_vf(adapter, vf); } } /** * igb_set_uta - Set unicast filter table address * @adapter: board private structure * @set: boolean indicating if we are setting or clearing bits * * The unicast table address is a register array of 32-bit registers. * The table is meant to be used in a way similar to how the MTA is used * however due to certain limitations in the hardware it is necessary to * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous * enable bit to allow vlan tag stripping when promiscuous mode is enabled **/ static void igb_set_uta(struct igb_adapter *adapter, bool set) { struct e1000_hw *hw = &adapter->hw; u32 uta = set ? ~0 : 0; int i; /* we only need to do this if VMDq is enabled */ if (!adapter->vfs_allocated_count) return; for (i = hw->mac.uta_reg_count; i--;) array_wr32(E1000_UTA, i, uta); } /** * igb_intr_msi - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure **/ static irqreturn_t igb_intr_msi(int irq, void *data) { struct igb_adapter *adapter = data; struct igb_q_vector *q_vector = adapter->q_vector[0]; struct e1000_hw *hw = &adapter->hw; /* read ICR disables interrupts using IAM */ u32 icr = rd32(E1000_ICR); igb_write_itr(q_vector); if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { hw->mac.get_link_status = 1; if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) igb_tsync_interrupt(adapter); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * igb_intr - Legacy Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure **/ static irqreturn_t igb_intr(int irq, void *data) { struct igb_adapter *adapter = data; struct igb_q_vector *q_vector = adapter->q_vector[0]; struct e1000_hw *hw = &adapter->hw; /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No * need for the IMC write */ u32 icr = rd32(E1000_ICR); /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is * not set, then the adapter didn't send an interrupt */ if (!(icr & E1000_ICR_INT_ASSERTED)) return IRQ_NONE; igb_write_itr(q_vector); if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { hw->mac.get_link_status = 1; /* guard against interrupt when we're going down */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) igb_tsync_interrupt(adapter); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } static void igb_ring_irq_enable(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; struct e1000_hw *hw = &adapter->hw; if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { if ((adapter->num_q_vectors == 1) && !adapter->vf_data) igb_set_itr(q_vector); else igb_update_ring_itr(q_vector); } if (!test_bit(__IGB_DOWN, &adapter->state)) { if (adapter->flags & IGB_FLAG_HAS_MSIX) wr32(E1000_EIMS, q_vector->eims_value); else igb_irq_enable(adapter); } } /** * igb_poll - NAPI Rx polling callback * @napi: napi polling structure * @budget: count of how many packets we should handle **/ static int igb_poll(struct napi_struct *napi, int budget) { struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi); bool clean_complete = true; int work_done = 0; #ifdef CONFIG_IGB_DCA if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) igb_update_dca(q_vector); #endif if (q_vector->tx.ring) clean_complete = igb_clean_tx_irq(q_vector, budget); if (q_vector->rx.ring) { int cleaned = igb_clean_rx_irq(q_vector, budget); work_done += cleaned; if (cleaned >= budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) igb_ring_irq_enable(q_vector); return work_done; } /** * igb_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: pointer to q_vector containing needed info * @napi_budget: Used to determine if we are in netpoll * * returns true if ring is completely cleaned **/ static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget) { struct igb_adapter *adapter = q_vector->adapter; struct igb_ring *tx_ring = q_vector->tx.ring; struct igb_tx_buffer *tx_buffer; union e1000_adv_tx_desc *tx_desc; unsigned int total_bytes = 0, total_packets = 0; unsigned int budget = q_vector->tx.work_limit; unsigned int i = tx_ring->next_to_clean; if (test_bit(__IGB_DOWN, &adapter->state)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = IGB_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; /* free the skb */ if (tx_buffer->type == IGB_TYPE_SKB) napi_consume_skb(tx_buffer->skb, napi_budget); else xdp_return_frame(tx_buffer->xdpf); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ dma_unmap_len_set(tx_buffer, len, 0); /* clear last DMA location and unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGB_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGB_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); netdev_tx_completed_queue(txring_txq(tx_ring), total_packets, total_bytes); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->tx_syncp); tx_ring->tx_stats.bytes += total_bytes; tx_ring->tx_stats.packets += total_packets; u64_stats_update_end(&tx_ring->tx_syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { struct e1000_hw *hw = &adapter->hw; /* Detect a transmit hang in hardware, this serializes the * check with the clearing of time_stamp and movement of i */ clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); if (tx_buffer->next_to_watch && time_after(jiffies, tx_buffer->time_stamp + (adapter->tx_timeout_factor * HZ)) && !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { /* detected Tx unit hang */ dev_err(tx_ring->dev, "Detected Tx Unit Hang\n" " Tx Queue <%d>\n" " TDH <%x>\n" " TDT <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "buffer_info[next_to_clean]\n" " time_stamp <%lx>\n" " next_to_watch <%p>\n" " jiffies <%lx>\n" " desc.status <%x>\n", tx_ring->queue_index, rd32(E1000_TDH(tx_ring->reg_idx)), readl(tx_ring->tail), tx_ring->next_to_use, tx_ring->next_to_clean, tx_buffer->time_stamp, tx_buffer->next_to_watch, jiffies, tx_buffer->next_to_watch->wb.status); netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* we are about to reset, no point in enabling stuff */ return true; } } #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !(test_bit(__IGB_DOWN, &adapter->state))) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp); tx_ring->tx_stats.restart_queue++; u64_stats_update_end(&tx_ring->tx_syncp); } } return !!budget; } /** * igb_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the adapter **/ static void igb_reuse_rx_page(struct igb_ring *rx_ring, struct igb_rx_buffer *old_buff) { struct igb_rx_buffer *new_buff; u16 nta = rx_ring->next_to_alloc; new_buff = &rx_ring->rx_buffer_info[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* Transfer page from old buffer to new buffer. * Move each member individually to avoid possible store * forwarding stalls. */ new_buff->dma = old_buff->dma; new_buff->page = old_buff->page; new_buff->page_offset = old_buff->page_offset; new_buff->pagecnt_bias = old_buff->pagecnt_bias; } static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) { unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; struct page *page = rx_buffer->page; /* avoid re-using remote and pfmemalloc pages */ if (!dev_page_is_reusable(page)) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) return false; #else #define IGB_LAST_OFFSET \ (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048) if (rx_buffer->page_offset > IGB_LAST_OFFSET) return false; #endif /* If we have drained the page fragment pool we need to update * the pagecnt_bias and page count so that we fully restock the * number of references the driver holds. */ if (unlikely(pagecnt_bias == 1)) { page_ref_add(page, USHRT_MAX - 1); rx_buffer->pagecnt_bias = USHRT_MAX; } return true; } /** * igb_add_rx_frag - Add contents of Rx buffer to sk_buff * @rx_ring: rx descriptor ring to transact packets on * @rx_buffer: buffer containing page to add * @skb: sk_buff to place the data into * @size: size of buffer to be added * * This function will add the data contained in rx_buffer->page to the skb. **/ static void igb_add_rx_frag(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, struct sk_buff *skb, unsigned int size) { #if (PAGE_SIZE < 8192) unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = ring_uses_build_skb(rx_ring) ? SKB_DATA_ALIGN(IGB_SKB_PAD + size) : SKB_DATA_ALIGN(size); #endif skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, rx_buffer->page_offset, size, truesize); #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, struct xdp_buff *xdp, ktime_t timestamp) { #if (PAGE_SIZE < 8192) unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - xdp->data_hard_start); #endif unsigned int size = xdp->data_end - xdp->data; unsigned int headlen; struct sk_buff *skb; /* prefetch first cache line of first page */ net_prefetch(xdp->data); /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); if (unlikely(!skb)) return NULL; if (timestamp) skb_hwtstamps(skb)->hwtstamp = timestamp; /* Determine available headroom for copy */ headlen = size; if (headlen > IGB_RX_HDR_LEN) headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); /* update all of the pointers */ size -= headlen; if (size) { skb_add_rx_frag(skb, 0, rx_buffer->page, (xdp->data + headlen) - page_address(rx_buffer->page), size, truesize); #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } else { rx_buffer->pagecnt_bias++; } return skb; } static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, struct xdp_buff *xdp, ktime_t timestamp) { #if (PAGE_SIZE < 8192) unsigned int truesize = igb_rx_pg_size(rx_ring) / 2; #else unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + SKB_DATA_ALIGN(xdp->data_end - xdp->data_hard_start); #endif unsigned int metasize = xdp->data - xdp->data_meta; struct sk_buff *skb; /* prefetch first cache line of first page */ net_prefetch(xdp->data_meta); /* build an skb around the page buffer */ skb = napi_build_skb(xdp->data_hard_start, truesize); if (unlikely(!skb)) return NULL; /* update pointers within the skb to store the data */ skb_reserve(skb, xdp->data - xdp->data_hard_start); __skb_put(skb, xdp->data_end - xdp->data); if (metasize) skb_metadata_set(skb, metasize); if (timestamp) skb_hwtstamps(skb)->hwtstamp = timestamp; /* update buffer offset */ #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif return skb; } static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter, struct igb_ring *rx_ring, struct xdp_buff *xdp) { int err, result = IGB_XDP_PASS; struct bpf_prog *xdp_prog; u32 act; xdp_prog = READ_ONCE(rx_ring->xdp_prog); if (!xdp_prog) goto xdp_out; prefetchw(xdp->data_hard_start); /* xdp_frame write */ act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: result = igb_xdp_xmit_back(adapter, xdp); if (result == IGB_XDP_CONSUMED) goto out_failure; break; case XDP_REDIRECT: err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog); if (err) goto out_failure; result = IGB_XDP_REDIR; break; default: bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: out_failure: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); fallthrough; case XDP_DROP: result = IGB_XDP_CONSUMED; break; } xdp_out: return ERR_PTR(-result); } static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring, unsigned int size) { unsigned int truesize; #if (PAGE_SIZE < 8192) truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ #else truesize = ring_uses_build_skb(rx_ring) ? SKB_DATA_ALIGN(IGB_SKB_PAD + size) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : SKB_DATA_ALIGN(size); #endif return truesize; } static void igb_rx_buffer_flip(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, unsigned int size) { unsigned int truesize = igb_rx_frame_truesize(rx_ring, size); #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } static inline void igb_rx_checksum(struct igb_ring *ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* Ignore Checksum bit is set */ if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) return; /* Rx checksum disabled via ethtool */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* TCP/UDP checksum error bit is set */ if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { /* work around errata with sctp packets where the TCPE aka * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) * packets, (aka let the stack check the crc32c) */ if (!((skb->len == 60) && test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { u64_stats_update_begin(&ring->rx_syncp); ring->rx_stats.csum_err++; u64_stats_update_end(&ring->rx_syncp); } /* let the stack verify checksum errors */ return; } /* It must be a TCP or UDP packet with a valid checksum */ if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) skb->ip_summed = CHECKSUM_UNNECESSARY; dev_dbg(ring->dev, "cksum success: bits %08X\n", le32_to_cpu(rx_desc->wb.upper.status_error)); } static inline void igb_rx_hash(struct igb_ring *ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { if (ring->netdev->features & NETIF_F_RXHASH) skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), PKT_HASH_TYPE_L3); } /** * igb_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool igb_is_non_eop(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(IGB_RX_DESC(rx_ring, ntc)); if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) return false; return true; } /** * igb_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool igb_cleanup_headers(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { /* XDP packets use error pointer so abort at this point */ if (IS_ERR(skb)) return true; if (unlikely((igb_test_staterr(rx_desc, E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { struct net_device *netdev = rx_ring->netdev; if (!(netdev->features & NETIF_F_RXALL)) { dev_kfree_skb_any(skb); return true; } } /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } /** * igb_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, timestamp, protocol, and * other fields within the skb. **/ static void igb_process_skb_fields(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct net_device *dev = rx_ring->netdev; igb_rx_hash(rx_ring, rx_desc, skb); igb_rx_checksum(rx_ring, rx_desc, skb); if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { u16 vid; if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan); else vid = le16_to_cpu(rx_desc->wb.upper.vlan); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); } skb_record_rx_queue(skb, rx_ring->queue_index); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } static unsigned int igb_rx_offset(struct igb_ring *rx_ring) { return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0; } static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring, const unsigned int size, int *rx_buf_pgcnt) { struct igb_rx_buffer *rx_buffer; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; *rx_buf_pgcnt = #if (PAGE_SIZE < 8192) page_count(rx_buffer->page); #else 0; #endif prefetchw(rx_buffer->page); /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); rx_buffer->pagecnt_bias--; return rx_buffer; } static void igb_put_rx_buffer(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt) { if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) { /* hand second half of page back to the ring */ igb_reuse_rx_page(rx_ring, rx_buffer); } else { /* We are not reusing the buffer so unmap it and free * any references we are holding to it */ dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGB_RX_DMA_ATTR); __page_frag_cache_drain(rx_buffer->page, rx_buffer->pagecnt_bias); } /* clear contents of rx_buffer */ rx_buffer->page = NULL; } static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) { struct igb_adapter *adapter = q_vector->adapter; struct igb_ring *rx_ring = q_vector->rx.ring; struct sk_buff *skb = rx_ring->skb; unsigned int total_bytes = 0, total_packets = 0; u16 cleaned_count = igb_desc_unused(rx_ring); unsigned int xdp_xmit = 0; struct xdp_buff xdp; u32 frame_sz = 0; int rx_buf_pgcnt; /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ #if (PAGE_SIZE < 8192) frame_sz = igb_rx_frame_truesize(rx_ring, 0); #endif xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); while (likely(total_packets < budget)) { union e1000_adv_rx_desc *rx_desc; struct igb_rx_buffer *rx_buffer; ktime_t timestamp = 0; int pkt_offset = 0; unsigned int size; void *pktbuf; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= IGB_RX_BUFFER_WRITE) { igb_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); size = le16_to_cpu(rx_desc->wb.upper.length); if (!size) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt); pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset; /* pull rx packet timestamp if available and valid */ if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { int ts_hdr_len; ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector, pktbuf, ×tamp); pkt_offset += ts_hdr_len; size -= ts_hdr_len; } /* retrieve a buffer from the ring */ if (!skb) { unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring); unsigned int offset = pkt_offset + igb_rx_offset(rx_ring); xdp_prepare_buff(&xdp, hard_start, offset, size, true); #if (PAGE_SIZE > 4096) /* At larger PAGE_SIZE, frame_sz depend on len size */ xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size); #endif skb = igb_run_xdp(adapter, rx_ring, &xdp); } if (IS_ERR(skb)) { unsigned int xdp_res = -PTR_ERR(skb); if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) { xdp_xmit |= xdp_res; igb_rx_buffer_flip(rx_ring, rx_buffer, size); } else { rx_buffer->pagecnt_bias++; } total_packets++; total_bytes += size; } else if (skb) igb_add_rx_frag(rx_ring, rx_buffer, skb, size); else if (ring_uses_build_skb(rx_ring)) skb = igb_build_skb(rx_ring, rx_buffer, &xdp, timestamp); else skb = igb_construct_skb(rx_ring, rx_buffer, &xdp, timestamp); /* exit if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_failed++; rx_buffer->pagecnt_bias++; break; } igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt); cleaned_count++; /* fetch next buffer in frame if non-eop */ if (igb_is_non_eop(rx_ring, rx_desc)) continue; /* verify the packet layout is correct */ if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_bytes += skb->len; /* populate checksum, timestamp, VLAN, and protocol */ igb_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&q_vector->napi, skb); /* reset skb pointer */ skb = NULL; /* update budget accounting */ total_packets++; } /* place incomplete frames back on ring for completion */ rx_ring->skb = skb; if (xdp_xmit & IGB_XDP_REDIR) xdp_do_flush(); if (xdp_xmit & IGB_XDP_TX) { struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter); igb_xdp_ring_update_tail(tx_ring); } u64_stats_update_begin(&rx_ring->rx_syncp); rx_ring->rx_stats.packets += total_packets; rx_ring->rx_stats.bytes += total_bytes; u64_stats_update_end(&rx_ring->rx_syncp); q_vector->rx.total_packets += total_packets; q_vector->rx.total_bytes += total_bytes; if (cleaned_count) igb_alloc_rx_buffers(rx_ring, cleaned_count); return total_packets; } static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, struct igb_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; /* alloc new page for storage */ page = dev_alloc_pages(igb_rx_pg_order(rx_ring)); if (unlikely(!page)) { rx_ring->rx_stats.alloc_failed++; return false; } /* map page for use */ dma = dma_map_page_attrs(rx_ring->dev, page, 0, igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE, IGB_RX_DMA_ATTR); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_pages(page, igb_rx_pg_order(rx_ring)); rx_ring->rx_stats.alloc_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = igb_rx_offset(rx_ring); page_ref_add(page, USHRT_MAX - 1); bi->pagecnt_bias = USHRT_MAX; return true; } /** * igb_alloc_rx_buffers - Replace used receive buffers * @rx_ring: rx descriptor ring to allocate new receive buffers * @cleaned_count: count of buffers to allocate **/ void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) { union e1000_adv_rx_desc *rx_desc; struct igb_rx_buffer *bi; u16 i = rx_ring->next_to_use; u16 bufsz; /* nothing to do */ if (!cleaned_count) return; rx_desc = IGB_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; bufsz = igb_rx_bufsz(rx_ring); do { if (!igb_alloc_mapped_page(rx_ring, bi)) break; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, bufsz, DMA_FROM_DEVICE); /* Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = IGB_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the length for the next_to_use descriptor */ rx_desc->wb.upper.length = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { /* record the next descriptor to use */ rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ dma_wmb(); writel(i, rx_ring->tail); } } /** * igb_mii_ioctl - * @netdev: pointer to netdev struct * @ifr: interface structure * @cmd: ioctl command to execute **/ static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct igb_adapter *adapter = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(ifr); if (adapter->hw.phy.media_type != e1000_media_type_copper) return -EOPNOTSUPP; switch (cmd) { case SIOCGMIIPHY: data->phy_id = adapter->hw.phy.addr; break; case SIOCGMIIREG: if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) return -EIO; break; case SIOCSMIIREG: default: return -EOPNOTSUPP; } return 0; } /** * igb_ioctl - * @netdev: pointer to netdev struct * @ifr: interface structure * @cmd: ioctl command to execute **/ static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return igb_mii_ioctl(netdev, ifr, cmd); case SIOCGHWTSTAMP: return igb_ptp_get_ts_config(netdev, ifr); case SIOCSHWTSTAMP: return igb_ptp_set_ts_config(netdev, ifr); default: return -EOPNOTSUPP; } } void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; pci_read_config_word(adapter->pdev, reg, value); } void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; pci_write_config_word(adapter->pdev, reg, *value); } s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; if (pcie_capability_read_word(adapter->pdev, reg, value)) return -E1000_ERR_CONFIG; return 0; } s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; if (pcie_capability_write_word(adapter->pdev, reg, *value)) return -E1000_ERR_CONFIG; return 0; } static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ctrl, rctl; bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); if (enable) { /* enable VLAN tag insert/strip */ ctrl = rd32(E1000_CTRL); ctrl |= E1000_CTRL_VME; wr32(E1000_CTRL, ctrl); /* Disable CFI check */ rctl = rd32(E1000_RCTL); rctl &= ~E1000_RCTL_CFIEN; wr32(E1000_RCTL, rctl); } else { /* disable VLAN tag insert/strip */ ctrl = rd32(E1000_CTRL); ctrl &= ~E1000_CTRL_VME; wr32(E1000_CTRL, ctrl); } igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable); } static int igb_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int pf_id = adapter->vfs_allocated_count; /* add the filter since PF can receive vlans w/o entry in vlvf */ if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) igb_vfta_set(hw, vid, pf_id, true, !!vid); set_bit(vid, adapter->active_vlans); return 0; } static int igb_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct igb_adapter *adapter = netdev_priv(netdev); int pf_id = adapter->vfs_allocated_count; struct e1000_hw *hw = &adapter->hw; /* remove VID from filter table */ if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC)) igb_vfta_set(hw, vid, pf_id, false, true); clear_bit(vid, adapter->active_vlans); return 0; } static void igb_restore_vlan(struct igb_adapter *adapter) { u16 vid = 1; igb_vlan_mode(adapter->netdev, adapter->netdev->features); igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID) igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); } int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) { struct pci_dev *pdev = adapter->pdev; struct e1000_mac_info *mac = &adapter->hw.mac; mac->autoneg = 0; /* Make sure dplx is at most 1 bit and lsb of speed is not set * for the switch() below to work */ if ((spd & 1) || (dplx & ~1)) goto err_inval; /* Fiber NIC's only allow 1000 gbps Full duplex * and 100Mbps Full duplex for 100baseFx sfp */ if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { switch (spd + dplx) { case SPEED_10 + DUPLEX_HALF: case SPEED_10 + DUPLEX_FULL: case SPEED_100 + DUPLEX_HALF: goto err_inval; default: break; } } switch (spd + dplx) { case SPEED_10 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_10_HALF; break; case SPEED_10 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_10_FULL; break; case SPEED_100 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_100_HALF; break; case SPEED_100 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_100_FULL; break; case SPEED_1000 + DUPLEX_FULL: mac->autoneg = 1; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case SPEED_1000 + DUPLEX_HALF: /* not supported */ default: goto err_inval; } /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ adapter->hw.phy.mdix = AUTO_ALL_MODES; return 0; err_inval: dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); return -EINVAL; } static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, bool runtime) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ctrl, rctl, status; u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; bool wake; rtnl_lock(); netif_device_detach(netdev); if (netif_running(netdev)) __igb_close(netdev, true); igb_ptp_suspend(adapter); igb_clear_interrupt_scheme(adapter); rtnl_unlock(); status = rd32(E1000_STATUS); if (status & E1000_STATUS_LU) wufc &= ~E1000_WUFC_LNKC; if (wufc) { igb_setup_rctl(adapter); igb_set_rx_mode(netdev); /* turn on all-multi mode if wake on multicast is enabled */ if (wufc & E1000_WUFC_MC) { rctl = rd32(E1000_RCTL); rctl |= E1000_RCTL_MPE; wr32(E1000_RCTL, rctl); } ctrl = rd32(E1000_CTRL); ctrl |= E1000_CTRL_ADVD3WUC; wr32(E1000_CTRL, ctrl); /* Allow time for pending master requests to run */ igb_disable_pcie_master(hw); wr32(E1000_WUC, E1000_WUC_PME_EN); wr32(E1000_WUFC, wufc); } else { wr32(E1000_WUC, 0); wr32(E1000_WUFC, 0); } wake = wufc || adapter->en_mng_pt; if (!wake) igb_power_down_link(adapter); else igb_power_up_link(adapter); if (enable_wake) *enable_wake = wake; /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igb_release_hw_control(adapter); pci_disable_device(pdev); return 0; } static void igb_deliver_wake_packet(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct sk_buff *skb; u32 wupl; wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK; /* WUPM stores only the first 128 bytes of the wake packet. * Read the packet only if we have the whole thing. */ if ((wupl == 0) || (wupl > E1000_WUPM_BYTES)) return; skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES); if (!skb) return; skb_put(skb, wupl); /* Ensure reads are 32-bit aligned */ wupl = roundup(wupl, 4); memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl); skb->protocol = eth_type_trans(skb, netdev); netif_rx(skb); } static int __maybe_unused igb_suspend(struct device *dev) { return __igb_shutdown(to_pci_dev(dev), NULL, 0); } static int __maybe_unused __igb_resume(struct device *dev, bool rpm) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 err, val; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_save_state(pdev); if (!pci_device_is_present(pdev)) return -ENODEV; err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "igb: Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } igb_reset(adapter); /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); val = rd32(E1000_WUS); if (val & WAKE_PKT_WUS) igb_deliver_wake_packet(netdev); wr32(E1000_WUS, ~0); if (!rpm) rtnl_lock(); if (!err && netif_running(netdev)) err = __igb_open(netdev, true); if (!err) netif_device_attach(netdev); if (!rpm) rtnl_unlock(); return err; } static int __maybe_unused igb_resume(struct device *dev) { return __igb_resume(dev, false); } static int __maybe_unused igb_runtime_idle(struct device *dev) { struct net_device *netdev = dev_get_drvdata(dev); struct igb_adapter *adapter = netdev_priv(netdev); if (!igb_has_link(adapter)) pm_schedule_suspend(dev, MSEC_PER_SEC * 5); return -EBUSY; } static int __maybe_unused igb_runtime_suspend(struct device *dev) { return __igb_shutdown(to_pci_dev(dev), NULL, 1); } static int __maybe_unused igb_runtime_resume(struct device *dev) { return __igb_resume(dev, true); } static void igb_shutdown(struct pci_dev *pdev) { bool wake; __igb_shutdown(pdev, &wake, 0); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, wake); pci_set_power_state(pdev, PCI_D3hot); } } #ifdef CONFIG_PCI_IOV static int igb_sriov_reinit(struct pci_dev *dev) { struct net_device *netdev = pci_get_drvdata(dev); struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; rtnl_lock(); if (netif_running(netdev)) igb_close(netdev); else igb_reset(adapter); igb_clear_interrupt_scheme(adapter); igb_init_queue_configuration(adapter); if (igb_init_interrupt_scheme(adapter, true)) { rtnl_unlock(); dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } if (netif_running(netdev)) igb_open(netdev); rtnl_unlock(); return 0; } static int igb_pci_disable_sriov(struct pci_dev *dev) { int err = igb_disable_sriov(dev); if (!err) err = igb_sriov_reinit(dev); return err; } static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) { int err = igb_enable_sriov(dev, num_vfs); if (err) goto out; err = igb_sriov_reinit(dev); if (!err) return num_vfs; out: return err; } #endif static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) { #ifdef CONFIG_PCI_IOV if (num_vfs == 0) return igb_pci_disable_sriov(dev); else return igb_pci_enable_sriov(dev, num_vfs); #endif return 0; } /** * igb_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. **/ static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) igb_down(adapter); pci_disable_device(pdev); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * igb_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the __igb_resume routine. **/ static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pci_ers_result_t result; if (pci_enable_device_mem(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); /* In case of PCI error, adapter lose its HW address * so we should re-assign it here. */ hw->hw_addr = adapter->io_addr; igb_reset(adapter); wr32(E1000_WUS, ~0); result = PCI_ERS_RESULT_RECOVERED; } return result; } /** * igb_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the __igb_resume routine. */ static void igb_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { if (igb_up(adapter)) { dev_err(&pdev->dev, "igb_up failed after reset\n"); return; } } netif_device_attach(netdev); /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); } /** * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table * @adapter: Pointer to adapter structure * @index: Index of the RAR entry which need to be synced with MAC table **/ static void igb_rar_set_index(struct igb_adapter *adapter, u32 index) { struct e1000_hw *hw = &adapter->hw; u32 rar_low, rar_high; u8 *addr = adapter->mac_table[index].addr; /* HW expects these to be in network order when they are plugged * into the registers which are little endian. In order to guarantee * that ordering we need to do an leXX_to_cpup here in order to be * ready for the byteswap that occurs with writel */ rar_low = le32_to_cpup((__le32 *)(addr)); rar_high = le16_to_cpup((__le16 *)(addr + 4)); /* Indicate to hardware the Address is Valid. */ if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) { if (is_valid_ether_addr(addr)) rar_high |= E1000_RAH_AV; if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR) rar_high |= E1000_RAH_ASEL_SRC_ADDR; switch (hw->mac.type) { case e1000_82575: case e1000_i210: if (adapter->mac_table[index].state & IGB_MAC_STATE_QUEUE_STEERING) rar_high |= E1000_RAH_QSEL_ENABLE; rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue; break; default: rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue; break; } } wr32(E1000_RAL(index), rar_low); wrfl(); wr32(E1000_RAH(index), rar_high); wrfl(); } static int igb_set_vf_mac(struct igb_adapter *adapter, int vf, unsigned char *mac_addr) { struct e1000_hw *hw = &adapter->hw; /* VF MAC addresses start at end of receive addresses and moves * towards the first, as a result a collision should not be possible */ int rar_entry = hw->mac.rar_entry_count - (vf + 1); unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses; ether_addr_copy(vf_mac_addr, mac_addr); ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr); adapter->mac_table[rar_entry].queue = vf; adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE; igb_rar_set_index(adapter, rar_entry); return 0; } static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) { struct igb_adapter *adapter = netdev_priv(netdev); if (vf >= adapter->vfs_allocated_count) return -EINVAL; /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC * flag and allows to overwrite the MAC via VF netdev. This * is necessary to allow libvirt a way to restore the original * MAC after unbinding vfio-pci and reloading igbvf after shutting * down a VM. */ if (is_zero_ether_addr(mac)) { adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC; dev_info(&adapter->pdev->dev, "remove administratively set MAC on VF %d\n", vf); } else if (is_valid_ether_addr(mac)) { adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); dev_info(&adapter->pdev->dev, "Reload the VF driver to make this change effective."); /* Generate additional warning if PF is down */ if (test_bit(__IGB_DOWN, &adapter->state)) { dev_warn(&adapter->pdev->dev, "The VF MAC address has been set, but the PF device is not up.\n"); dev_warn(&adapter->pdev->dev, "Bring the PF device up before attempting to use the VF device.\n"); } } else { return -EINVAL; } return igb_set_vf_mac(adapter, vf, mac); } static int igb_link_mbps(int internal_link_speed) { switch (internal_link_speed) { case SPEED_100: return 100; case SPEED_1000: return 1000; default: return 0; } } static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, int link_speed) { int rf_dec, rf_int; u32 bcnrc_val; if (tx_rate != 0) { /* Calculate the rate factor values to set */ rf_int = link_speed / tx_rate; rf_dec = (link_speed - (rf_int * tx_rate)); rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; bcnrc_val = E1000_RTTBCNRC_RS_ENA; bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & E1000_RTTBCNRC_RF_INT_MASK); bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); } else { bcnrc_val = 0; } wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. */ wr32(E1000_RTTBCNRM, 0x14); wr32(E1000_RTTBCNRC, bcnrc_val); } static void igb_check_vf_rate_limit(struct igb_adapter *adapter) { int actual_link_speed, i; bool reset_rate = false; /* VF TX rate limit was not set or not supported */ if ((adapter->vf_rate_link_speed == 0) || (adapter->hw.mac.type != e1000_82576)) return; actual_link_speed = igb_link_mbps(adapter->link_speed); if (actual_link_speed != adapter->vf_rate_link_speed) { reset_rate = true; adapter->vf_rate_link_speed = 0; dev_info(&adapter->pdev->dev, "Link speed has been changed. VF Transmit rate is disabled\n"); } for (i = 0; i < adapter->vfs_allocated_count; i++) { if (reset_rate) adapter->vf_data[i].tx_rate = 0; igb_set_vf_rate_limit(&adapter->hw, i, adapter->vf_data[i].tx_rate, actual_link_speed); } } static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int min_tx_rate, int max_tx_rate) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int actual_link_speed; if (hw->mac.type != e1000_82576) return -EOPNOTSUPP; if (min_tx_rate) return -EINVAL; actual_link_speed = igb_link_mbps(adapter->link_speed); if ((vf >= adapter->vfs_allocated_count) || (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || (max_tx_rate < 0) || (max_tx_rate > actual_link_speed)) return -EINVAL; adapter->vf_rate_link_speed = actual_link_speed; adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); return 0; } static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, bool setting) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 reg_val, reg_offset; if (!adapter->vfs_allocated_count) return -EOPNOTSUPP; if (vf >= adapter->vfs_allocated_count) return -EINVAL; reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; reg_val = rd32(reg_offset); if (setting) reg_val |= (BIT(vf) | BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); else reg_val &= ~(BIT(vf) | BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); wr32(reg_offset, reg_val); adapter->vf_data[vf].spoofchk_enabled = setting; return 0; } static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting) { struct igb_adapter *adapter = netdev_priv(netdev); if (vf >= adapter->vfs_allocated_count) return -EINVAL; if (adapter->vf_data[vf].trusted == setting) return 0; adapter->vf_data[vf].trusted = setting; dev_info(&adapter->pdev->dev, "VF %u is %strusted\n", vf, setting ? "" : "not "); return 0; } static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, struct ifla_vf_info *ivi) { struct igb_adapter *adapter = netdev_priv(netdev); if (vf >= adapter->vfs_allocated_count) return -EINVAL; ivi->vf = vf; memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; ivi->min_tx_rate = 0; ivi->vlan = adapter->vf_data[vf].pf_vlan; ivi->qos = adapter->vf_data[vf].pf_qos; ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; ivi->trusted = adapter->vf_data[vf].trusted; return 0; } static void igb_vmm_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 reg; switch (hw->mac.type) { case e1000_82575: case e1000_i210: case e1000_i211: case e1000_i354: default: /* replication is not supported for 82575 */ return; case e1000_82576: /* notify HW that the MAC is adding vlan tags */ reg = rd32(E1000_DTXCTL); reg |= E1000_DTXCTL_VLAN_ADDED; wr32(E1000_DTXCTL, reg); fallthrough; case e1000_82580: /* enable replication vlan tag stripping */ reg = rd32(E1000_RPLOLR); reg |= E1000_RPLOLR_STRVLAN; wr32(E1000_RPLOLR, reg); fallthrough; case e1000_i350: /* none of the above registers are supported by i350 */ break; } if (adapter->vfs_allocated_count) { igb_vmdq_set_loopback_pf(hw, true); igb_vmdq_set_replication_pf(hw, true); igb_vmdq_set_anti_spoofing_pf(hw, true, adapter->vfs_allocated_count); } else { igb_vmdq_set_loopback_pf(hw, false); igb_vmdq_set_replication_pf(hw, false); } } static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) { struct e1000_hw *hw = &adapter->hw; u32 dmac_thr; u16 hwm; if (hw->mac.type > e1000_82580) { if (adapter->flags & IGB_FLAG_DMAC) { u32 reg; /* force threshold to 0. */ wr32(E1000_DMCTXTH, 0); /* DMA Coalescing high water mark needs to be greater * than the Rx threshold. Set hwm to PBA - max frame * size in 16B units, capping it at PBA - 6KB. */ hwm = 64 * (pba - 6); reg = rd32(E1000_FCRTC); reg &= ~E1000_FCRTC_RTH_COAL_MASK; reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) & E1000_FCRTC_RTH_COAL_MASK); wr32(E1000_FCRTC, reg); /* Set the DMA Coalescing Rx threshold to PBA - 2 * max * frame size, capping it at PBA - 10KB. */ dmac_thr = pba - 10; reg = rd32(E1000_DMACR); reg &= ~E1000_DMACR_DMACTHR_MASK; reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) & E1000_DMACR_DMACTHR_MASK); /* transition to L0x or L1 if available..*/ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); /* watchdog timer= +-1000 usec in 32usec intervals */ reg |= (1000 >> 5); /* Disable BMC-to-OS Watchdog Enable */ if (hw->mac.type != e1000_i354) reg &= ~E1000_DMACR_DC_BMC2OSW_EN; wr32(E1000_DMACR, reg); /* no lower threshold to disable * coalescing(smart fifb)-UTRESH=0 */ wr32(E1000_DMCRTRH, 0); reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); wr32(E1000_DMCTLX, reg); /* free space in tx packet buffer to wake from * DMA coal */ wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); /* make low power state decision controlled * by DMA coal */ reg = rd32(E1000_PCIEMISC); reg &= ~E1000_PCIEMISC_LX_DECISION; wr32(E1000_PCIEMISC, reg); } /* endif adapter->dmac is not disabled */ } else if (hw->mac.type == e1000_82580) { u32 reg = rd32(E1000_PCIEMISC); wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); wr32(E1000_DMACR, 0); } } /** * igb_read_i2c_byte - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: device address * @data: value read * * Performs byte read operation over I2C interface at * a specified device address. **/ s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data) { struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); struct i2c_client *this_client = adapter->i2c_client; s32 status; u16 swfw_mask = 0; if (!this_client) return E1000_ERR_I2C; swfw_mask = E1000_SWFW_PHY0_SM; if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) return E1000_ERR_SWFW_SYNC; status = i2c_smbus_read_byte_data(this_client, byte_offset); hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (status < 0) return E1000_ERR_I2C; else { *data = status; return 0; } } /** * igb_write_i2c_byte - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: device address * @data: value to write * * Performs byte write operation over I2C interface at * a specified device address. **/ s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 data) { struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); struct i2c_client *this_client = adapter->i2c_client; s32 status; u16 swfw_mask = E1000_SWFW_PHY0_SM; if (!this_client) return E1000_ERR_I2C; if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) return E1000_ERR_SWFW_SYNC; status = i2c_smbus_write_byte_data(this_client, byte_offset, data); hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (status) return E1000_ERR_I2C; else return 0; } int igb_reinit_queues(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err = 0; if (netif_running(netdev)) igb_close(netdev); igb_reset_interrupt_capability(adapter); if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } if (netif_running(netdev)) err = igb_open(netdev); return err; } static void igb_nfc_filter_exit(struct igb_adapter *adapter) { struct igb_nfc_filter *rule; spin_lock(&adapter->nfc_lock); hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) igb_erase_filter(adapter, rule); hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node) igb_erase_filter(adapter, rule); spin_unlock(&adapter->nfc_lock); } static void igb_nfc_filter_restore(struct igb_adapter *adapter) { struct igb_nfc_filter *rule; spin_lock(&adapter->nfc_lock); hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) igb_add_filter(adapter, rule); spin_unlock(&adapter->nfc_lock); } /* igb_main.c */