// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2022, Intel Corporation. */ #include "ice_vf_lib_private.h" #include "ice.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_virtchnl_allowlist.h" /* Public functions which may be accessed by all driver files */ /** * ice_get_vf_by_id - Get pointer to VF by ID * @pf: the PF private structure * @vf_id: the VF ID to locate * * Locate and return a pointer to the VF structure associated with a given ID. * Returns NULL if the ID does not have a valid VF structure associated with * it. * * This function takes a reference to the VF, which must be released by * calling ice_put_vf() once the caller is finished accessing the VF structure * returned. */ struct ice_vf *ice_get_vf_by_id(struct ice_pf *pf, u16 vf_id) { struct ice_vf *vf; rcu_read_lock(); hash_for_each_possible_rcu(pf->vfs.table, vf, entry, vf_id) { if (vf->vf_id == vf_id) { struct ice_vf *found; if (kref_get_unless_zero(&vf->refcnt)) found = vf; else found = NULL; rcu_read_unlock(); return found; } } rcu_read_unlock(); return NULL; } /** * ice_release_vf - Release VF associated with a refcount * @ref: the kref decremented to zero * * Callback function for kref_put to release a VF once its reference count has * hit zero. */ static void ice_release_vf(struct kref *ref) { struct ice_vf *vf = container_of(ref, struct ice_vf, refcnt); vf->vf_ops->free(vf); } /** * ice_put_vf - Release a reference to a VF * @vf: the VF structure to decrease reference count on * * Decrease the reference count for a VF, and free the entry if it is no * longer in use. * * This must be called after ice_get_vf_by_id() once the reference to the VF * structure is no longer used. Otherwise, the VF structure will never be * freed. */ void ice_put_vf(struct ice_vf *vf) { kref_put(&vf->refcnt, ice_release_vf); } /** * ice_has_vfs - Return true if the PF has any associated VFs * @pf: the PF private structure * * Return whether or not the PF has any allocated VFs. * * Note that this function only guarantees that there are no VFs at the point * of calling it. It does not guarantee that no more VFs will be added. */ bool ice_has_vfs(struct ice_pf *pf) { /* A simple check that the hash table is not empty does not require * the mutex or rcu_read_lock. */ return !hash_empty(pf->vfs.table); } /** * ice_get_num_vfs - Get number of allocated VFs * @pf: the PF private structure * * Return the total number of allocated VFs. NOTE: VF IDs are not guaranteed * to be contiguous. Do not assume that a VF ID is guaranteed to be less than * the output of this function. */ u16 ice_get_num_vfs(struct ice_pf *pf) { struct ice_vf *vf; unsigned int bkt; u16 num_vfs = 0; rcu_read_lock(); ice_for_each_vf_rcu(pf, bkt, vf) num_vfs++; rcu_read_unlock(); return num_vfs; } /** * ice_get_vf_vsi - get VF's VSI based on the stored index * @vf: VF used to get VSI */ struct ice_vsi *ice_get_vf_vsi(struct ice_vf *vf) { if (vf->lan_vsi_idx == ICE_NO_VSI) return NULL; return vf->pf->vsi[vf->lan_vsi_idx]; } /** * ice_is_vf_disabled * @vf: pointer to the VF info * * If the PF has been disabled, there is no need resetting VF until PF is * active again. Similarly, if the VF has been disabled, this means something * else is resetting the VF, so we shouldn't continue. * * Returns true if the caller should consider the VF as disabled whether * because that single VF is explicitly disabled or because the PF is * currently disabled. */ bool ice_is_vf_disabled(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; return (test_bit(ICE_VF_DIS, pf->state) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)); } /** * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset * @vf: The VF being resseting * * The max poll time is about ~800ms, which is about the maximum time it takes * for a VF to be reset and/or a VF driver to be removed. */ static void ice_wait_on_vf_reset(struct ice_vf *vf) { int i; for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) { if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) break; msleep(ICE_MAX_VF_RESET_SLEEP_MS); } } /** * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried * @vf: VF to check if it's ready to be configured/queried * * The purpose of this function is to make sure the VF is not in reset, not * disabled, and initialized so it can be configured and/or queried by a host * administrator. */ int ice_check_vf_ready_for_cfg(struct ice_vf *vf) { ice_wait_on_vf_reset(vf); if (ice_is_vf_disabled(vf)) return -EINVAL; if (ice_check_vf_init(vf)) return -EBUSY; return 0; } /** * ice_trigger_vf_reset - Reset a VF on HW * @vf: pointer to the VF structure * @is_vflr: true if VFLR was issued, false if not * @is_pfr: true if the reset was triggered due to a previous PFR * * Trigger hardware to start a reset for a particular VF. Expects the caller * to wait the proper amount of time to allow hardware to reset the VF before * it cleans up and restores VF functionality. */ static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr) { /* Inform VF that it is no longer active, as a warning */ clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); /* Disable VF's configuration API during reset. The flag is re-enabled * when it's safe again to access VF's VSI. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); /* VF_MBX_ARQLEN and VF_MBX_ATQLEN are cleared by PFR, so the driver * needs to clear them in the case of VFR/VFLR. If this is done for * PFR, it can mess up VF resets because the VF driver may already * have started cleanup by the time we get here. */ if (!is_pfr) vf->vf_ops->clear_mbx_register(vf); vf->vf_ops->trigger_reset_register(vf, is_vflr); } static void ice_vf_clear_counters(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (vsi) vsi->num_vlan = 0; vf->num_mac = 0; memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); } /** * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild * @vf: VF to perform pre VSI rebuild tasks * * These tasks are items that don't need to be amortized since they are most * likely called in a for loop with all VF(s) in the reset_all_vfs() case. */ static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf) { /* Close any IRQ mapping now */ if (vf->vf_ops->irq_close) vf->vf_ops->irq_close(vf); ice_vf_clear_counters(vf); vf->vf_ops->clear_reset_trigger(vf); } /** * ice_vf_recreate_vsi - Release and re-create the VF's VSI * @vf: VF to recreate the VSI for * * This is only called when a single VF is being reset (i.e. VVF, VFLR, host * VF configuration change, etc) * * It releases and then re-creates a new VSI. */ static int ice_vf_recreate_vsi(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; int err; ice_vf_vsi_release(vf); err = vf->vf_ops->create_vsi(vf); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to recreate the VF%u's VSI, error %d\n", vf->vf_id, err); return err; } return 0; } /** * ice_vf_rebuild_vsi - rebuild the VF's VSI * @vf: VF to rebuild the VSI for * * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the * host, PFR, CORER, etc.). * * It reprograms the VSI configuration back into hardware. */ static int ice_vf_rebuild_vsi(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); struct ice_pf *pf = vf->pf; if (WARN_ON(!vsi)) return -EINVAL; if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT)) { dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n", vf->vf_id); return -EIO; } /* vsi->idx will remain the same in this case so don't update * vf->lan_vsi_idx */ vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); vf->lan_vsi_num = vsi->vsi_num; return 0; } /** * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN * @vf: VF to add MAC filters for * @vsi: Pointer to VSI * * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver * always re-adds either a VLAN 0 or port VLAN based filter after reset. */ static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf, struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); struct device *dev = ice_pf_to_dev(vf->pf); int err; if (ice_vf_is_port_vlan_ena(vf)) { err = vlan_ops->set_port_vlan(vsi, &vf->port_vlan_info); if (err) { dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n", vf->vf_id, err); return err; } err = vlan_ops->add_vlan(vsi, &vf->port_vlan_info); } else { err = ice_vsi_add_vlan_zero(vsi); } if (err) { dev_err(dev, "failed to add VLAN %u filter for VF %u during VF rebuild, error %d\n", ice_vf_is_port_vlan_ena(vf) ? ice_vf_get_port_vlan_id(vf) : 0, vf->vf_id, err); return err; } err = vlan_ops->ena_rx_filtering(vsi); if (err) dev_warn(dev, "failed to enable Rx VLAN filtering for VF %d VSI %d during VF rebuild, error %d\n", vf->vf_id, vsi->idx, err); return 0; } /** * ice_vf_rebuild_host_tx_rate_cfg - re-apply the Tx rate limiting configuration * @vf: VF to re-apply the configuration for * * Called after a VF VSI has been re-added/rebuild during reset. The PF driver * needs to re-apply the host configured Tx rate limiting configuration. */ static int ice_vf_rebuild_host_tx_rate_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); int err; if (WARN_ON(!vsi)) return -EINVAL; if (vf->min_tx_rate) { err = ice_set_min_bw_limit(vsi, (u64)vf->min_tx_rate * 1000); if (err) { dev_err(dev, "failed to set min Tx rate to %d Mbps for VF %u, error %d\n", vf->min_tx_rate, vf->vf_id, err); return err; } } if (vf->max_tx_rate) { err = ice_set_max_bw_limit(vsi, (u64)vf->max_tx_rate * 1000); if (err) { dev_err(dev, "failed to set max Tx rate to %d Mbps for VF %u, error %d\n", vf->max_tx_rate, vf->vf_id, err); return err; } } return 0; } /** * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value * @vf: VF to configure trust setting for */ static void ice_vf_set_host_trust_cfg(struct ice_vf *vf) { assign_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps, vf->trusted); } /** * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA * @vf: VF to add MAC filters for * * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset. */ static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); u8 broadcast[ETH_ALEN]; int status; if (WARN_ON(!vsi)) return -EINVAL; if (ice_is_eswitch_mode_switchdev(vf->pf)) return 0; eth_broadcast_addr(broadcast); status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); if (status) { dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %d\n", vf->vf_id, status); return status; } vf->num_mac++; if (is_valid_ether_addr(vf->hw_lan_addr)) { status = ice_fltr_add_mac(vsi, vf->hw_lan_addr, ICE_FWD_TO_VSI); if (status) { dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %d\n", &vf->hw_lan_addr[0], vf->vf_id, status); return status; } vf->num_mac++; ether_addr_copy(vf->dev_lan_addr, vf->hw_lan_addr); } return 0; } /** * ice_vf_rebuild_aggregator_node_cfg - rebuild aggregator node config * @vsi: Pointer to VSI * * This function moves VSI into corresponding scheduler aggregator node * based on cached value of "aggregator node info" per VSI */ static void ice_vf_rebuild_aggregator_node_cfg(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; int status; if (!vsi->agg_node) return; dev = ice_pf_to_dev(pf); if (vsi->agg_node->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { dev_dbg(dev, "agg_id %u already has reached max_num_vsis %u\n", vsi->agg_node->agg_id, vsi->agg_node->num_vsis); return; } status = ice_move_vsi_to_agg(pf->hw.port_info, vsi->agg_node->agg_id, vsi->idx, vsi->tc_cfg.ena_tc); if (status) dev_dbg(dev, "unable to move VSI idx %u into aggregator %u node", vsi->idx, vsi->agg_node->agg_id); else vsi->agg_node->num_vsis++; } /** * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset * @vf: VF to rebuild host configuration on */ static void ice_vf_rebuild_host_cfg(struct ice_vf *vf) { struct device *dev = ice_pf_to_dev(vf->pf); struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) return; ice_vf_set_host_trust_cfg(vf); if (ice_vf_rebuild_host_mac_cfg(vf)) dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n", vf->vf_id); if (ice_vf_rebuild_host_vlan_cfg(vf, vsi)) dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n", vf->vf_id); if (ice_vf_rebuild_host_tx_rate_cfg(vf)) dev_err(dev, "failed to rebuild Tx rate limiting configuration for VF %u\n", vf->vf_id); if (ice_vsi_apply_spoofchk(vsi, vf->spoofchk)) dev_err(dev, "failed to rebuild spoofchk configuration for VF %d\n", vf->vf_id); /* rebuild aggregator node config for main VF VSI */ ice_vf_rebuild_aggregator_node_cfg(vsi); } /** * ice_set_vf_state_qs_dis - Set VF queues state to disabled * @vf: pointer to the VF structure */ static void ice_set_vf_state_qs_dis(struct ice_vf *vf) { /* Clear Rx/Tx enabled queues flag */ bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF); bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); } /** * ice_vf_set_initialized - VF is ready for VIRTCHNL communication * @vf: VF to set in initialized state * * After this function the VF will be ready to receive/handle the * VIRTCHNL_OP_GET_VF_RESOURCES message */ static void ice_vf_set_initialized(struct ice_vf *vf) { ice_set_vf_state_qs_dis(vf); clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_DIS, vf->vf_states); set_bit(ICE_VF_STATE_INIT, vf->vf_states); memset(&vf->vlan_v2_caps, 0, sizeof(vf->vlan_v2_caps)); } /** * ice_vf_post_vsi_rebuild - Reset tasks that occur after VSI rebuild * @vf: the VF being reset * * Perform reset tasks which must occur after the VSI has been re-created or * rebuilt during a VF reset. */ static void ice_vf_post_vsi_rebuild(struct ice_vf *vf) { ice_vf_rebuild_host_cfg(vf); ice_vf_set_initialized(vf); vf->vf_ops->post_vsi_rebuild(vf); } /** * ice_is_any_vf_in_unicast_promisc - check if any VF(s) * are in unicast promiscuous mode * @pf: PF structure for accessing VF(s) * * Return false if no VF(s) are in unicast promiscuous mode, * else return true */ bool ice_is_any_vf_in_unicast_promisc(struct ice_pf *pf) { bool is_vf_promisc = false; struct ice_vf *vf; unsigned int bkt; rcu_read_lock(); ice_for_each_vf_rcu(pf, bkt, vf) { /* found a VF that has promiscuous mode configured */ if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) { is_vf_promisc = true; break; } } rcu_read_unlock(); return is_vf_promisc; } /** * ice_vf_get_promisc_masks - Calculate masks for promiscuous modes * @vf: the VF pointer * @vsi: the VSI to configure * @ucast_m: promiscuous mask to apply to unicast * @mcast_m: promiscuous mask to apply to multicast * * Decide which mask should be used for unicast and multicast filter, * based on presence of VLANs */ void ice_vf_get_promisc_masks(struct ice_vf *vf, struct ice_vsi *vsi, u8 *ucast_m, u8 *mcast_m) { if (ice_vf_is_port_vlan_ena(vf) || ice_vsi_has_non_zero_vlans(vsi)) { *mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; *ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; } else { *mcast_m = ICE_MCAST_PROMISC_BITS; *ucast_m = ICE_UCAST_PROMISC_BITS; } } /** * ice_vf_clear_all_promisc_modes - Clear promisc/allmulticast on VF VSI * @vf: the VF pointer * @vsi: the VSI to configure * * Clear all promiscuous/allmulticast filters for a VF */ static int ice_vf_clear_all_promisc_modes(struct ice_vf *vf, struct ice_vsi *vsi) { struct ice_pf *pf = vf->pf; u8 ucast_m, mcast_m; int ret = 0; ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) { if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { if (ice_is_dflt_vsi_in_use(vsi->port_info)) ret = ice_clear_dflt_vsi(vsi); } else { ret = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); } if (ret) { dev_err(ice_pf_to_dev(vf->pf), "Disabling promiscuous mode failed\n"); } else { clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); dev_info(ice_pf_to_dev(vf->pf), "Disabling promiscuous mode succeeded\n"); } } if (test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) { ret = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); if (ret) { dev_err(ice_pf_to_dev(vf->pf), "Disabling allmulticast mode failed\n"); } else { clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); dev_info(ice_pf_to_dev(vf->pf), "Disabling allmulticast mode succeeded\n"); } } return ret; } /** * ice_vf_set_vsi_promisc - Enable promiscuous mode for a VF VSI * @vf: the VF to configure * @vsi: the VF's VSI * @promisc_m: the promiscuous mode to enable */ int ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m) { struct ice_hw *hw = &vsi->back->hw; int status; if (ice_vf_is_port_vlan_ena(vf)) status = ice_fltr_set_vsi_promisc(hw, vsi->idx, promisc_m, ice_vf_get_port_vlan_id(vf)); else if (ice_vsi_has_non_zero_vlans(vsi)) status = ice_fltr_set_vlan_vsi_promisc(hw, vsi, promisc_m); else status = ice_fltr_set_vsi_promisc(hw, vsi->idx, promisc_m, 0); if (status && status != -EEXIST) { dev_err(ice_pf_to_dev(vsi->back), "enable Tx/Rx filter promiscuous mode on VF-%u failed, error: %d\n", vf->vf_id, status); return status; } return 0; } /** * ice_vf_clear_vsi_promisc - Disable promiscuous mode for a VF VSI * @vf: the VF to configure * @vsi: the VF's VSI * @promisc_m: the promiscuous mode to disable */ int ice_vf_clear_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m) { struct ice_hw *hw = &vsi->back->hw; int status; if (ice_vf_is_port_vlan_ena(vf)) status = ice_fltr_clear_vsi_promisc(hw, vsi->idx, promisc_m, ice_vf_get_port_vlan_id(vf)); else if (ice_vsi_has_non_zero_vlans(vsi)) status = ice_fltr_clear_vlan_vsi_promisc(hw, vsi, promisc_m); else status = ice_fltr_clear_vsi_promisc(hw, vsi->idx, promisc_m, 0); if (status && status != -ENOENT) { dev_err(ice_pf_to_dev(vsi->back), "disable Tx/Rx filter promiscuous mode on VF-%u failed, error: %d\n", vf->vf_id, status); return status; } return 0; } /** * ice_reset_all_vfs - reset all allocated VFs in one go * @pf: pointer to the PF structure * * Reset all VFs at once, in response to a PF or other device reset. * * First, tell the hardware to reset each VF, then do all the waiting in one * chunk, and finally finish restoring each VF after the wait. This is useful * during PF routines which need to reset all VFs, as otherwise it must perform * these resets in a serialized fashion. */ void ice_reset_all_vfs(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; /* If we don't have any VFs, then there is nothing to reset */ if (!ice_has_vfs(pf)) return; mutex_lock(&pf->vfs.table_lock); /* clear all malicious info if the VFs are getting reset */ ice_for_each_vf(pf, bkt, vf) ice_mbx_clear_malvf(&vf->mbx_info); /* If VFs have been disabled, there is no need to reset */ if (test_and_set_bit(ICE_VF_DIS, pf->state)) { mutex_unlock(&pf->vfs.table_lock); return; } /* Begin reset on all VFs at once */ ice_for_each_vf(pf, bkt, vf) ice_trigger_vf_reset(vf, true, true); /* HW requires some time to make sure it can flush the FIFO for a VF * when it resets it. Now that we've triggered all of the VFs, iterate * the table again and wait for each VF to complete. */ ice_for_each_vf(pf, bkt, vf) { if (!vf->vf_ops->poll_reset_status(vf)) { /* Display a warning if at least one VF didn't manage * to reset in time, but continue on with the * operation. */ dev_warn(dev, "VF %u reset check timeout\n", vf->vf_id); break; } } /* free VF resources to begin resetting the VSI state */ ice_for_each_vf(pf, bkt, vf) { mutex_lock(&vf->cfg_lock); vf->driver_caps = 0; ice_vc_set_default_allowlist(vf); ice_vf_fdir_exit(vf); ice_vf_fdir_init(vf); /* clean VF control VSI when resetting VFs since it should be * setup only when VF creates its first FDIR rule. */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_invalidate_vsi(vf); ice_vf_pre_vsi_rebuild(vf); ice_vf_rebuild_vsi(vf); ice_vf_post_vsi_rebuild(vf); mutex_unlock(&vf->cfg_lock); } if (ice_is_eswitch_mode_switchdev(pf)) if (ice_eswitch_rebuild(pf)) dev_warn(dev, "eswitch rebuild failed\n"); ice_flush(hw); clear_bit(ICE_VF_DIS, pf->state); mutex_unlock(&pf->vfs.table_lock); } /** * ice_notify_vf_reset - Notify VF of a reset event * @vf: pointer to the VF structure */ static void ice_notify_vf_reset(struct ice_vf *vf) { struct ice_hw *hw = &vf->pf->hw; struct virtchnl_pf_event pfe; /* Bail out if VF is in disabled state, neither initialized, nor active * state - otherwise proceed with notifications */ if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_reset_vf - Reset a particular VF * @vf: pointer to the VF structure * @flags: flags controlling behavior of the reset * * Flags: * ICE_VF_RESET_VFLR - Indicates a reset is due to VFLR event * ICE_VF_RESET_NOTIFY - Send VF a notification prior to reset * ICE_VF_RESET_LOCK - Acquire VF cfg_lock before resetting * * Returns 0 if the VF is currently in reset, if resets are disabled, or if * the VF resets successfully. Returns an error code if the VF fails to * rebuild. */ int ice_reset_vf(struct ice_vf *vf, u32 flags) { struct ice_pf *pf = vf->pf; struct ice_lag *lag; struct ice_vsi *vsi; u8 act_prt, pri_prt; struct device *dev; int err = 0; bool rsd; dev = ice_pf_to_dev(pf); act_prt = ICE_LAG_INVALID_PORT; pri_prt = pf->hw.port_info->lport; if (flags & ICE_VF_RESET_NOTIFY) ice_notify_vf_reset(vf); if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n", vf->vf_id); return 0; } lag = pf->lag; mutex_lock(&pf->lag_mutex); if (lag && lag->bonded && lag->primary) { act_prt = lag->active_port; if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && lag->upper_netdev) ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); else act_prt = ICE_LAG_INVALID_PORT; } if (flags & ICE_VF_RESET_LOCK) mutex_lock(&vf->cfg_lock); else lockdep_assert_held(&vf->cfg_lock); if (ice_is_vf_disabled(vf)) { vsi = ice_get_vf_vsi(vf); if (!vsi) { dev_dbg(dev, "VF is already removed\n"); err = -EINVAL; goto out_unlock; } ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); if (ice_vsi_is_rx_queue_active(vsi)) ice_vsi_stop_all_rx_rings(vsi); dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n", vf->vf_id); goto out_unlock; } /* Set VF disable bit state here, before triggering reset */ set_bit(ICE_VF_STATE_DIS, vf->vf_states); ice_trigger_vf_reset(vf, flags & ICE_VF_RESET_VFLR, false); vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) { err = -EIO; goto out_unlock; } ice_dis_vf_qs(vf); /* Call Disable LAN Tx queue AQ whether or not queues are * enabled. This is needed for successful completion of VFR. */ ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, NULL, vf->vf_ops->reset_type, vf->vf_id, NULL); /* poll VPGEN_VFRSTAT reg to make sure * that reset is complete */ rsd = vf->vf_ops->poll_reset_status(vf); /* Display a warning if VF didn't manage to reset in time, but need to * continue on with the operation. */ if (!rsd) dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id); vf->driver_caps = 0; ice_vc_set_default_allowlist(vf); /* disable promiscuous modes in case they were enabled * ignore any error if disabling process failed */ ice_vf_clear_all_promisc_modes(vf, vsi); ice_vf_fdir_exit(vf); ice_vf_fdir_init(vf); /* clean VF control VSI when resetting VF since it should be setup * only when VF creates its first FDIR rule. */ if (vf->ctrl_vsi_idx != ICE_NO_VSI) ice_vf_ctrl_vsi_release(vf); ice_vf_pre_vsi_rebuild(vf); if (ice_vf_recreate_vsi(vf)) { dev_err(dev, "Failed to release and setup the VF%u's VSI\n", vf->vf_id); err = -EFAULT; goto out_unlock; } ice_vf_post_vsi_rebuild(vf); vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) { err = -EINVAL; goto out_unlock; } ice_eswitch_update_repr(vsi); /* if the VF has been reset allow it to come up again */ ice_mbx_clear_malvf(&vf->mbx_info); out_unlock: if (flags & ICE_VF_RESET_LOCK) mutex_unlock(&vf->cfg_lock); if (lag && lag->bonded && lag->primary && act_prt != ICE_LAG_INVALID_PORT) ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); mutex_unlock(&pf->lag_mutex); return err; } /** * ice_set_vf_state_dis - Set VF state to disabled * @vf: pointer to the VF structure */ void ice_set_vf_state_dis(struct ice_vf *vf) { ice_set_vf_state_qs_dis(vf); vf->vf_ops->clear_reset_state(vf); } /* Private functions only accessed from other virtualization files */ /** * ice_initialize_vf_entry - Initialize a VF entry * @vf: pointer to the VF structure */ void ice_initialize_vf_entry(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vfs *vfs; vfs = &pf->vfs; /* assign default capabilities */ vf->spoofchk = true; vf->num_vf_qs = vfs->num_qps_per; ice_vc_set_default_allowlist(vf); ice_virtchnl_set_dflt_ops(vf); /* ctrl_vsi_idx will be set to a valid value only when iAVF * creates its first fdir rule. */ ice_vf_ctrl_invalidate_vsi(vf); ice_vf_fdir_init(vf); /* Initialize mailbox info for this VF */ ice_mbx_init_vf_info(&pf->hw, &vf->mbx_info); mutex_init(&vf->cfg_lock); } /** * ice_dis_vf_qs - Disable the VF queues * @vf: pointer to the VF structure */ void ice_dis_vf_qs(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) return; ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); ice_vsi_stop_all_rx_rings(vsi); ice_set_vf_state_qs_dis(vf); } /** * ice_err_to_virt_err - translate errors for VF return code * @err: error return code */ enum virtchnl_status_code ice_err_to_virt_err(int err) { switch (err) { case 0: return VIRTCHNL_STATUS_SUCCESS; case -EINVAL: case -ENODEV: return VIRTCHNL_STATUS_ERR_PARAM; case -ENOMEM: return VIRTCHNL_STATUS_ERR_NO_MEMORY; case -EALREADY: case -EBUSY: case -EIO: case -ENOSPC: return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; default: return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; } } /** * ice_check_vf_init - helper to check if VF init complete * @vf: the pointer to the VF to check */ int ice_check_vf_init(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n", vf->vf_id); return -EBUSY; } return 0; } /** * ice_vf_get_port_info - Get the VF's port info structure * @vf: VF used to get the port info structure for */ struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf) { return vf->pf->hw.port_info; } /** * ice_cfg_mac_antispoof - Configure MAC antispoof checking behavior * @vsi: the VSI to configure * @enable: whether to enable or disable the spoof checking * * Configure a VSI to enable (or disable) spoof checking behavior. */ static int ice_cfg_mac_antispoof(struct ice_vsi *vsi, bool enable) { struct ice_vsi_ctx *ctx; int err; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->info.sec_flags = vsi->info.sec_flags; ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); if (enable) ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; else ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; err = ice_update_vsi(&vsi->back->hw, vsi->idx, ctx, NULL); if (err) dev_err(ice_pf_to_dev(vsi->back), "Failed to configure Tx MAC anti-spoof %s for VSI %d, error %d\n", enable ? "ON" : "OFF", vsi->vsi_num, err); else vsi->info.sec_flags = ctx->info.sec_flags; kfree(ctx); return err; } /** * ice_vsi_ena_spoofchk - enable Tx spoof checking for this VSI * @vsi: VSI to enable Tx spoof checking for */ static int ice_vsi_ena_spoofchk(struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops; int err = 0; vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); /* Allow VF with VLAN 0 only to send all tagged traffic */ if (vsi->type != ICE_VSI_VF || ice_vsi_has_non_zero_vlans(vsi)) { err = vlan_ops->ena_tx_filtering(vsi); if (err) return err; } return ice_cfg_mac_antispoof(vsi, true); } /** * ice_vsi_dis_spoofchk - disable Tx spoof checking for this VSI * @vsi: VSI to disable Tx spoof checking for */ static int ice_vsi_dis_spoofchk(struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops; int err; vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); err = vlan_ops->dis_tx_filtering(vsi); if (err) return err; return ice_cfg_mac_antispoof(vsi, false); } /** * ice_vsi_apply_spoofchk - Apply Tx spoof checking setting to a VSI * @vsi: VSI associated to the VF * @enable: whether to enable or disable the spoof checking */ int ice_vsi_apply_spoofchk(struct ice_vsi *vsi, bool enable) { int err; if (enable) err = ice_vsi_ena_spoofchk(vsi); else err = ice_vsi_dis_spoofchk(vsi); return err; } /** * ice_is_vf_trusted * @vf: pointer to the VF info */ bool ice_is_vf_trusted(struct ice_vf *vf) { return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); } /** * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled * @vf: the VF to check * * Returns true if the VF has no Rx and no Tx queues enabled and returns false * otherwise */ bool ice_vf_has_no_qs_ena(struct ice_vf *vf) { return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) && !bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF)); } /** * ice_is_vf_link_up - check if the VF's link is up * @vf: VF to check if link is up */ bool ice_is_vf_link_up(struct ice_vf *vf) { struct ice_port_info *pi = ice_vf_get_port_info(vf); if (ice_check_vf_init(vf)) return false; if (ice_vf_has_no_qs_ena(vf)) return false; else if (vf->link_forced) return vf->link_up; else return pi->phy.link_info.link_info & ICE_AQ_LINK_UP; } /** * ice_vf_ctrl_invalidate_vsi - invalidate ctrl_vsi_idx to remove VSI access * @vf: VF that control VSI is being invalidated on */ void ice_vf_ctrl_invalidate_vsi(struct ice_vf *vf) { vf->ctrl_vsi_idx = ICE_NO_VSI; } /** * ice_vf_ctrl_vsi_release - invalidate the VF's control VSI after freeing it * @vf: VF that control VSI is being released on */ void ice_vf_ctrl_vsi_release(struct ice_vf *vf) { ice_vsi_release(vf->pf->vsi[vf->ctrl_vsi_idx]); ice_vf_ctrl_invalidate_vsi(vf); } /** * ice_vf_ctrl_vsi_setup - Set up a VF control VSI * @vf: VF to setup control VSI for * * Returns pointer to the successfully allocated VSI struct on success, * otherwise returns NULL on failure. */ struct ice_vsi *ice_vf_ctrl_vsi_setup(struct ice_vf *vf) { struct ice_vsi_cfg_params params = {}; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; params.type = ICE_VSI_CTRL; params.pi = ice_vf_get_port_info(vf); params.vf = vf; params.flags = ICE_VSI_FLAG_INIT; vsi = ice_vsi_setup(pf, ¶ms); if (!vsi) { dev_err(ice_pf_to_dev(pf), "Failed to create VF control VSI\n"); ice_vf_ctrl_invalidate_vsi(vf); } return vsi; } /** * ice_vf_init_host_cfg - Initialize host admin configuration * @vf: VF to initialize * @vsi: the VSI created at initialization * * Initialize the VF host configuration. Called during VF creation to setup * VLAN 0, add the VF VSI broadcast filter, and setup spoof checking. It * should only be called during VF creation. */ int ice_vf_init_host_cfg(struct ice_vf *vf, struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops; struct ice_pf *pf = vf->pf; u8 broadcast[ETH_ALEN]; struct device *dev; int err; dev = ice_pf_to_dev(pf); err = ice_vsi_add_vlan_zero(vsi); if (err) { dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n", vf->vf_id); return err; } vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); err = vlan_ops->ena_rx_filtering(vsi); if (err) { dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n", vf->vf_id); return err; } eth_broadcast_addr(broadcast); err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI); if (err) { dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %d\n", vf->vf_id, err); return err; } vf->num_mac = 1; err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk); if (err) { dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n", vf->vf_id); return err; } return 0; } /** * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access * @vf: VF to remove access to VSI for */ void ice_vf_invalidate_vsi(struct ice_vf *vf) { vf->lan_vsi_idx = ICE_NO_VSI; vf->lan_vsi_num = ICE_NO_VSI; } /** * ice_vf_vsi_release - Release the VF VSI and invalidate indexes * @vf: pointer to the VF structure * * Release the VF associated with this VSI and then invalidate the VSI * indexes. */ void ice_vf_vsi_release(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (WARN_ON(!vsi)) return; ice_vsi_release(vsi); ice_vf_invalidate_vsi(vf); } /** * ice_get_vf_ctrl_vsi - Get first VF control VSI pointer * @pf: the PF private structure * @vsi: pointer to the VSI * * Return first found VF control VSI other than the vsi * passed by parameter. This function is used to determine * whether new resources have to be allocated for control VSI * or they can be shared with existing one. * * Return found VF control VSI pointer other itself. Return * NULL Otherwise. * */ struct ice_vsi *ice_get_vf_ctrl_vsi(struct ice_pf *pf, struct ice_vsi *vsi) { struct ice_vsi *ctrl_vsi = NULL; struct ice_vf *vf; unsigned int bkt; rcu_read_lock(); ice_for_each_vf_rcu(pf, bkt, vf) { if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) { ctrl_vsi = pf->vsi[vf->ctrl_vsi_idx]; break; } } rcu_read_unlock(); return ctrl_vsi; }