// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021, Intel Corporation. */ #include "ice.h" #include "ice_lib.h" #include "ice_trace.h" #define E810_OUT_PROP_DELAY_NS 1 #define UNKNOWN_INCVAL_E822 0x100000000ULL static const struct ptp_pin_desc ice_pin_desc_e810t[] = { /* name idx func chan */ { "GNSS", GNSS, PTP_PF_EXTTS, 0, { 0, } }, { "SMA1", SMA1, PTP_PF_NONE, 1, { 0, } }, { "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } }, { "SMA2", SMA2, PTP_PF_NONE, 2, { 0, } }, { "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } }, }; /** * ice_get_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Read the configuration of the SMA control logic and put it into the * ptp_pin_desc structure */ static int ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins) { u8 data, i; int status; /* Read initial pin state */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* initialize with defaults */ for (i = 0; i < NUM_PTP_PINS_E810T; i++) { snprintf(ptp_pins[i].name, sizeof(ptp_pins[i].name), "%s", ice_pin_desc_e810t[i].name); ptp_pins[i].index = ice_pin_desc_e810t[i].index; ptp_pins[i].func = ice_pin_desc_e810t[i].func; ptp_pins[i].chan = ice_pin_desc_e810t[i].chan; } /* Parse SMA1/UFL1 */ switch (data & ICE_SMA1_MASK_E810T) { case ICE_SMA1_MASK_E810T: default: ptp_pins[SMA1].func = PTP_PF_NONE; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_DIR_EN_E810T: ptp_pins[SMA1].func = PTP_PF_PEROUT; ptp_pins[UFL1].func = PTP_PF_NONE; break; case ICE_SMA1_TX_EN_E810T: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_NONE; break; case 0: ptp_pins[SMA1].func = PTP_PF_EXTTS; ptp_pins[UFL1].func = PTP_PF_PEROUT; break; } /* Parse SMA2/UFL2 */ switch (data & ICE_SMA2_MASK_E810T) { case ICE_SMA2_MASK_E810T: default: ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_EXTTS; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T): ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_NONE; break; case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T): ptp_pins[SMA2].func = PTP_PF_NONE; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; case ICE_SMA2_DIR_EN_E810T: ptp_pins[SMA2].func = PTP_PF_PEROUT; ptp_pins[UFL2].func = PTP_PF_EXTTS; break; } return 0; } /** * ice_ptp_set_sma_config_e810t * @hw: pointer to the hw struct * @ptp_pins: pointer to the ptp_pin_desc struture * * Set the configuration of the SMA control logic based on the configuration in * num_pins parameter */ static int ice_ptp_set_sma_config_e810t(struct ice_hw *hw, const struct ptp_pin_desc *ptp_pins) { int status; u8 data; /* SMA1 and UFL1 cannot be set to TX at the same time */ if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_PEROUT) return -EINVAL; /* SMA2 and UFL2 cannot be set to RX at the same time */ if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_EXTTS) return -EINVAL; /* Read initial pin state value */ status = ice_read_sma_ctrl_e810t(hw, &data); if (status) return status; /* Set the right sate based on the desired configuration */ data &= ~ICE_SMA1_MASK_E810T; if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled"); data |= ICE_SMA1_MASK_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 RX"); data |= ICE_SMA1_TX_EN_E810T; } else if (ptp_pins[SMA1].func == PTP_PF_NONE && ptp_pins[UFL1].func == PTP_PF_PEROUT) { /* U.FL 1 TX will always enable SMA 1 RX */ dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_EXTTS && ptp_pins[UFL1].func == PTP_PF_PEROUT) { dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX"); } else if (ptp_pins[SMA1].func == PTP_PF_PEROUT && ptp_pins[UFL1].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA1 TX"); data |= ICE_SMA1_DIR_EN_E810T; } data &= ~ICE_SMA2_MASK_E810T; if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled"); data |= ICE_SMA2_MASK_E810T; } else if (ptp_pins[SMA2].func == PTP_PF_EXTTS && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 RX"); data |= (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_NONE && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "UFL2 RX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_NONE) { dev_info(ice_hw_to_dev(hw), "SMA2 TX"); data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T); } else if (ptp_pins[SMA2].func == PTP_PF_PEROUT && ptp_pins[UFL2].func == PTP_PF_EXTTS) { dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX"); data |= ICE_SMA2_DIR_EN_E810T; } return ice_write_sma_ctrl_e810t(hw, data); } /** * ice_ptp_set_sma_e810t * @info: the driver's PTP info structure * @pin: pin index in kernel structure * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT) * * Set the configuration of a single SMA pin */ static int ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func) { struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T]; struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; int err; if (pin < SMA1 || func > PTP_PF_PEROUT) return -EOPNOTSUPP; err = ice_get_sma_config_e810t(hw, ptp_pins); if (err) return err; /* Disable the same function on the other pin sharing the channel */ if (pin == SMA1 && ptp_pins[UFL1].func == func) ptp_pins[UFL1].func = PTP_PF_NONE; if (pin == UFL1 && ptp_pins[SMA1].func == func) ptp_pins[SMA1].func = PTP_PF_NONE; if (pin == SMA2 && ptp_pins[UFL2].func == func) ptp_pins[UFL2].func = PTP_PF_NONE; if (pin == UFL2 && ptp_pins[SMA2].func == func) ptp_pins[SMA2].func = PTP_PF_NONE; /* Set up new pin function in the temp table */ ptp_pins[pin].func = func; return ice_ptp_set_sma_config_e810t(hw, ptp_pins); } /** * ice_verify_pin_e810t * @info: the driver's PTP info structure * @pin: Pin index * @func: Assigned function * @chan: Assigned channel * * Verify if pin supports requested pin function. If the Check pins consistency. * Reconfigure the SMA logic attached to the given pin to enable its * desired functionality */ static int ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { /* Don't allow channel reassignment */ if (chan != ice_pin_desc_e810t[pin].chan) return -EOPNOTSUPP; /* Check if functions are properly assigned */ switch (func) { case PTP_PF_NONE: break; case PTP_PF_EXTTS: if (pin == UFL1) return -EOPNOTSUPP; break; case PTP_PF_PEROUT: if (pin == UFL2 || pin == GNSS) return -EOPNOTSUPP; break; case PTP_PF_PHYSYNC: return -EOPNOTSUPP; } return ice_ptp_set_sma_e810t(info, pin, func); } /** * ice_set_tx_tstamp - Enable or disable Tx timestamping * @pf: The PF pointer to search in * @on: bool value for whether timestamps are enabled or disabled */ static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) { struct ice_vsi *vsi; u32 val; u16 i; vsi = ice_get_main_vsi(pf); if (!vsi) return; /* Set the timestamp enable flag for all the Tx rings */ ice_for_each_txq(vsi, i) { if (!vsi->tx_rings[i]) continue; vsi->tx_rings[i]->ptp_tx = on; } /* Configure the Tx timestamp interrupt */ val = rd32(&pf->hw, PFINT_OICR_ENA); if (on) val |= PFINT_OICR_TSYN_TX_M; else val &= ~PFINT_OICR_TSYN_TX_M; wr32(&pf->hw, PFINT_OICR_ENA, val); pf->ptp.tstamp_config.tx_type = on ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; } /** * ice_set_rx_tstamp - Enable or disable Rx timestamping * @pf: The PF pointer to search in * @on: bool value for whether timestamps are enabled or disabled */ static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) { struct ice_vsi *vsi; u16 i; vsi = ice_get_main_vsi(pf); if (!vsi) return; /* Set the timestamp flag for all the Rx rings */ ice_for_each_rxq(vsi, i) { if (!vsi->rx_rings[i]) continue; vsi->rx_rings[i]->ptp_rx = on; } pf->ptp.tstamp_config.rx_filter = on ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; } /** * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit * @pf: Board private structure * @ena: bool value to enable or disable time stamp * * This function will configure timestamping during PTP initialization * and deinitialization */ void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) { ice_set_tx_tstamp(pf, ena); ice_set_rx_tstamp(pf, ena); } /** * ice_get_ptp_clock_index - Get the PTP clock index * @pf: the PF pointer * * Determine the clock index of the PTP clock associated with this device. If * this is the PF controlling the clock, just use the local access to the * clock device pointer. * * Otherwise, read from the driver shared parameters to determine the clock * index value. * * Returns: the index of the PTP clock associated with this device, or -1 if * there is no associated clock. */ int ice_get_ptp_clock_index(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); enum ice_aqc_driver_params param_idx; struct ice_hw *hw = &pf->hw; u8 tmr_idx; u32 value; int err; /* Use the ptp_clock structure if we're the main PF */ if (pf->ptp.clock) return ptp_clock_index(pf->ptp.clock); tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; if (!tmr_idx) param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; else param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); if (err) { dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", err, ice_aq_str(hw->adminq.sq_last_status)); return -1; } /* The PTP clock index is an integer, and will be between 0 and * INT_MAX. The highest bit of the driver shared parameter is used to * indicate whether or not the currently stored clock index is valid. */ if (!(value & PTP_SHARED_CLK_IDX_VALID)) return -1; return value & ~PTP_SHARED_CLK_IDX_VALID; } /** * ice_set_ptp_clock_index - Set the PTP clock index * @pf: the PF pointer * * Set the PTP clock index for this device into the shared driver parameters, * so that other PFs associated with this device can read it. * * If the PF is unable to store the clock index, it will log an error, but * will continue operating PTP. */ static void ice_set_ptp_clock_index(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); enum ice_aqc_driver_params param_idx; struct ice_hw *hw = &pf->hw; u8 tmr_idx; u32 value; int err; if (!pf->ptp.clock) return; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; if (!tmr_idx) param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; else param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; value = (u32)ptp_clock_index(pf->ptp.clock); if (value > INT_MAX) { dev_err(dev, "PTP Clock index is too large to store\n"); return; } value |= PTP_SHARED_CLK_IDX_VALID; err = ice_aq_set_driver_param(hw, param_idx, value, NULL); if (err) { dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", err, ice_aq_str(hw->adminq.sq_last_status)); } } /** * ice_clear_ptp_clock_index - Clear the PTP clock index * @pf: the PF pointer * * Clear the PTP clock index for this device. Must be called when * unregistering the PTP clock, in order to ensure other PFs stop reporting * a clock object that no longer exists. */ static void ice_clear_ptp_clock_index(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); enum ice_aqc_driver_params param_idx; struct ice_hw *hw = &pf->hw; u8 tmr_idx; int err; /* Do not clear the index if we don't own the timer */ if (!hw->func_caps.ts_func_info.src_tmr_owned) return; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; if (!tmr_idx) param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; else param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); if (err) { dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", err, ice_aq_str(hw->adminq.sq_last_status)); } } /** * ice_ptp_read_src_clk_reg - Read the source clock register * @pf: Board private structure * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. */ static u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) { struct ice_hw *hw = &pf->hw; u32 hi, lo, lo2; u8 tmr_idx; tmr_idx = ice_get_ptp_src_clock_index(hw); /* Read the system timestamp pre PHC read */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); /* Read the system timestamp post PHC read */ ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); if (lo2 < lo) { /* if TIME_L rolled over read TIME_L again and update * system timestamps */ ptp_read_system_prets(sts); lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); ptp_read_system_postts(sts); hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); } return ((u64)hi << 32) | lo; } /** * ice_ptp_update_cached_phctime - Update the cached PHC time values * @pf: Board specific private structure * * This function updates the system time values which are cached in the PF * structure and the Rx rings. * * This function must be called periodically to ensure that the cached value * is never more than 2 seconds old. It must also be called whenever the PHC * time has been changed. * * Return: * * 0 - OK, successfully updated * * -EAGAIN - PF was busy, need to reschedule the update */ static int ice_ptp_update_cached_phctime(struct ice_pf *pf) { u64 systime; int i; if (test_and_set_bit(ICE_CFG_BUSY, pf->state)) return -EAGAIN; /* Read the current PHC time */ systime = ice_ptp_read_src_clk_reg(pf, NULL); /* Update the cached PHC time stored in the PF structure */ WRITE_ONCE(pf->ptp.cached_phc_time, systime); ice_for_each_vsi(pf, i) { struct ice_vsi *vsi = pf->vsi[i]; int j; if (!vsi) continue; if (vsi->type != ICE_VSI_PF) continue; ice_for_each_rxq(vsi, j) { if (!vsi->rx_rings[j]) continue; WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); } } clear_bit(ICE_CFG_BUSY, pf->state); return 0; } /** * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b * @cached_phc_time: recently cached copy of PHC time * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value * * Hardware captures timestamps which contain only 32 bits of nominal * nanoseconds, as opposed to the 64bit timestamps that the stack expects. * Note that the captured timestamp values may be 40 bits, but the lower * 8 bits are sub-nanoseconds and generally discarded. * * Extend the 32bit nanosecond timestamp using the following algorithm and * assumptions: * * 1) have a recently cached copy of the PHC time * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 * seconds) before or after the PHC time was captured. * 3) calculate the delta between the cached time and the timestamp * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was * captured after the PHC time. In this case, the full timestamp is just * the cached PHC time plus the delta. * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the * timestamp was captured *before* the PHC time, i.e. because the PHC * cache was updated after the timestamp was captured by hardware. In this * case, the full timestamp is the cached time minus the inverse delta. * * This algorithm works even if the PHC time was updated after a Tx timestamp * was requested, but before the Tx timestamp event was reported from * hardware. * * This calculation primarily relies on keeping the cached PHC time up to * date. If the timestamp was captured more than 2^31 nanoseconds after the * PHC time, it is possible that the lower 32bits of PHC time have * overflowed more than once, and we might generate an incorrect timestamp. * * This is prevented by (a) periodically updating the cached PHC time once * a second, and (b) discarding any Tx timestamp packet if it has waited for * a timestamp for more than one second. */ static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) { u32 delta, phc_time_lo; u64 ns; /* Extract the lower 32 bits of the PHC time */ phc_time_lo = (u32)cached_phc_time; /* Calculate the delta between the lower 32bits of the cached PHC * time and the in_tstamp value */ delta = (in_tstamp - phc_time_lo); /* Do not assume that the in_tstamp is always more recent than the * cached PHC time. If the delta is large, it indicates that the * in_tstamp was taken in the past, and should be converted * forward. */ if (delta > (U32_MAX / 2)) { /* reverse the delta calculation here */ delta = (phc_time_lo - in_tstamp); ns = cached_phc_time - delta; } else { ns = cached_phc_time + delta; } return ns; } /** * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds * @pf: Board private structure * @in_tstamp: Ingress/egress 40b timestamp value * * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. * * *--------------------------------------------------------------* * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | * *--------------------------------------------------------------* * * The low bit is an indicator of whether the timestamp is valid. The next * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, * and the remaining 32 bits are the lower 32 bits of the PHC timer. * * It is assumed that the caller verifies the timestamp is valid prior to * calling this function. * * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC * time stored in the device private PTP structure as the basis for timestamp * extension. * * See ice_ptp_extend_32b_ts for a detailed explanation of the extension * algorithm. */ static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) { const u64 mask = GENMASK_ULL(31, 0); return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, (in_tstamp >> 8) & mask); } /** * ice_ptp_read_time - Read the time from the device * @pf: Board private structure * @ts: timespec structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * This function reads the source clock registers and stores them in a timespec. * However, since the registers are 64 bits of nanoseconds, we must convert the * result to a timespec before we can return. */ static void ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); *ts = ns_to_timespec64(time_ns); } /** * ice_ptp_write_init - Set PHC time to provided value * @pf: Board private structure * @ts: timespec structure that holds the new time value * * Set the PHC time to the specified time provided in the timespec. */ static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) { u64 ns = timespec64_to_ns(ts); struct ice_hw *hw = &pf->hw; return ice_ptp_init_time(hw, ns); } /** * ice_ptp_write_adj - Adjust PHC clock time atomically * @pf: Board private structure * @adj: Adjustment in nanoseconds * * Perform an atomic adjustment of the PHC time by the specified number of * nanoseconds. */ static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) { struct ice_hw *hw = &pf->hw; return ice_ptp_adj_clock(hw, adj); } /** * ice_base_incval - Get base timer increment value * @pf: Board private structure * * Look up the base timer increment value for this device. The base increment * value is used to define the nominal clock tick rate. This increment value * is programmed during device initialization. It is also used as the basis * for calculating adjustments using scaled_ppm. */ static u64 ice_base_incval(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; u64 incval; if (ice_is_e810(hw)) incval = ICE_PTP_NOMINAL_INCVAL_E810; else if (ice_e822_time_ref(hw) < NUM_ICE_TIME_REF_FREQ) incval = ice_e822_nominal_incval(ice_e822_time_ref(hw)); else incval = UNKNOWN_INCVAL_E822; dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n", incval); return incval; } /** * ice_ptp_reset_ts_memory_quad - Reset timestamp memory for one quad * @pf: The PF private data structure * @quad: The quad (0-4) */ static void ice_ptp_reset_ts_memory_quad(struct ice_pf *pf, int quad) { struct ice_hw *hw = &pf->hw; ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, Q_REG_TS_CTRL_M); ice_write_quad_reg_e822(hw, quad, Q_REG_TS_CTRL, ~(u32)Q_REG_TS_CTRL_M); } /** * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state * @port: PTP port for which Tx FIFO is checked */ static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port) { int quad = port->port_num / ICE_PORTS_PER_QUAD; int offs = port->port_num % ICE_PORTS_PER_QUAD; struct ice_pf *pf; struct ice_hw *hw; u32 val, phy_sts; int err; pf = ptp_port_to_pf(port); hw = &pf->hw; if (port->tx_fifo_busy_cnt == FIFO_OK) return 0; /* need to read FIFO state */ if (offs == 0 || offs == 1) err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO01_STATUS, &val); else err = ice_read_quad_reg_e822(hw, quad, Q_REG_FIFO23_STATUS, &val); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n", port->port_num, err); return err; } if (offs & 0x1) phy_sts = (val & Q_REG_FIFO13_M) >> Q_REG_FIFO13_S; else phy_sts = (val & Q_REG_FIFO02_M) >> Q_REG_FIFO02_S; if (phy_sts & FIFO_EMPTY) { port->tx_fifo_busy_cnt = FIFO_OK; return 0; } port->tx_fifo_busy_cnt++; dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n", port->tx_fifo_busy_cnt, port->port_num); if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) { dev_dbg(ice_pf_to_dev(pf), "Port %d Tx FIFO still not empty; resetting quad %d\n", port->port_num, quad); ice_ptp_reset_ts_memory_quad(pf, quad); port->tx_fifo_busy_cnt = FIFO_OK; return 0; } return -EAGAIN; } /** * ice_ptp_check_tx_offset_valid - Check if the Tx PHY offset is valid * @port: the PTP port to check * * Checks whether the Tx offset for the PHY associated with this port is * valid. Returns 0 if the offset is valid, and a non-zero error code if it is * not. */ static int ice_ptp_check_tx_offset_valid(struct ice_ptp_port *port) { struct ice_pf *pf = ptp_port_to_pf(port); struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; u32 val; int err; err = ice_ptp_check_tx_fifo(port); if (err) return err; err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_TX_OV_STATUS, &val); if (err) { dev_err(dev, "Failed to read TX_OV_STATUS for port %d, err %d\n", port->port_num, err); return -EAGAIN; } if (!(val & P_REG_TX_OV_STATUS_OV_M)) return -EAGAIN; return 0; } /** * ice_ptp_check_rx_offset_valid - Check if the Rx PHY offset is valid * @port: the PTP port to check * * Checks whether the Rx offset for the PHY associated with this port is * valid. Returns 0 if the offset is valid, and a non-zero error code if it is * not. */ static int ice_ptp_check_rx_offset_valid(struct ice_ptp_port *port) { struct ice_pf *pf = ptp_port_to_pf(port); struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int err; u32 val; err = ice_read_phy_reg_e822(hw, port->port_num, P_REG_RX_OV_STATUS, &val); if (err) { dev_err(dev, "Failed to read RX_OV_STATUS for port %d, err %d\n", port->port_num, err); return err; } if (!(val & P_REG_RX_OV_STATUS_OV_M)) return -EAGAIN; return 0; } /** * ice_ptp_check_offset_valid - Check port offset valid bit * @port: Port for which offset valid bit is checked * * Returns 0 if both Tx and Rx offset are valid, and -EAGAIN if one of the * offset is not ready. */ static int ice_ptp_check_offset_valid(struct ice_ptp_port *port) { int tx_err, rx_err; /* always check both Tx and Rx offset validity */ tx_err = ice_ptp_check_tx_offset_valid(port); rx_err = ice_ptp_check_rx_offset_valid(port); if (tx_err || rx_err) return -EAGAIN; return 0; } /** * ice_ptp_wait_for_offset_valid - Check for valid Tx and Rx offsets * @work: Pointer to the kthread_work structure for this task * * Check whether both the Tx and Rx offsets are valid for enabling the vernier * calibration. * * Once we have valid offsets from hardware, update the total Tx and Rx * offsets, and exit bypass mode. This enables more precise timestamps using * the extra data measured during the vernier calibration process. */ static void ice_ptp_wait_for_offset_valid(struct kthread_work *work) { struct ice_ptp_port *port; int err; struct device *dev; struct ice_pf *pf; struct ice_hw *hw; port = container_of(work, struct ice_ptp_port, ov_work.work); pf = ptp_port_to_pf(port); hw = &pf->hw; dev = ice_pf_to_dev(pf); if (ice_ptp_check_offset_valid(port)) { /* Offsets not ready yet, try again later */ kthread_queue_delayed_work(pf->ptp.kworker, &port->ov_work, msecs_to_jiffies(100)); return; } /* Offsets are valid, so it is safe to exit bypass mode */ err = ice_phy_exit_bypass_e822(hw, port->port_num); if (err) { dev_warn(dev, "Failed to exit bypass mode for PHY port %u, err %d\n", port->port_num, err); return; } } /** * ice_ptp_port_phy_stop - Stop timestamping for a PHY port * @ptp_port: PTP port to stop */ static int ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; int err; if (ice_is_e810(hw)) return 0; mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); err = ice_stop_phy_timer_e822(hw, port, true); if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping * @ptp_port: PTP port for which the PHY start is set * * Start the PHY timestamping block, and initiate Vernier timestamping * calibration. If timestamping cannot be calibrated (such as if link is down) * then disable the timestamping block instead. */ static int ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port) { struct ice_pf *pf = ptp_port_to_pf(ptp_port); u8 port = ptp_port->port_num; struct ice_hw *hw = &pf->hw; int err; if (ice_is_e810(hw)) return 0; if (!ptp_port->link_up) return ice_ptp_port_phy_stop(ptp_port); mutex_lock(&ptp_port->ps_lock); kthread_cancel_delayed_work_sync(&ptp_port->ov_work); /* temporarily disable Tx timestamps while calibrating PHY offset */ ptp_port->tx.calibrating = true; ptp_port->tx_fifo_busy_cnt = 0; /* Start the PHY timer in bypass mode */ err = ice_start_phy_timer_e822(hw, port, true); if (err) goto out_unlock; /* Enable Tx timestamps right away */ ptp_port->tx.calibrating = false; kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0); out_unlock: if (err) dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n", port, err); mutex_unlock(&ptp_port->ps_lock); return err; } /** * ice_ptp_link_change - Set or clear port registers for timestamping * @pf: Board private structure * @port: Port for which the PHY start is set * @linkup: Link is up or down */ int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) { struct ice_ptp_port *ptp_port; if (!test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) return 0; if (port >= ICE_NUM_EXTERNAL_PORTS) return -EINVAL; ptp_port = &pf->ptp.port; if (ptp_port->port_num != port) return -EINVAL; /* Update cached link err for this port immediately */ ptp_port->link_up = linkup; if (!test_bit(ICE_FLAG_PTP, pf->flags)) /* PTP is not setup */ return -EAGAIN; return ice_ptp_port_phy_restart(ptp_port); } /** * ice_ptp_reset_ts_memory - Reset timestamp memory for all quads * @pf: The PF private data structure */ static void ice_ptp_reset_ts_memory(struct ice_pf *pf) { int quad; quad = pf->hw.port_info->lport / ICE_PORTS_PER_QUAD; ice_ptp_reset_ts_memory_quad(pf, quad); } /** * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt * @pf: PF private structure * @ena: bool value to enable or disable interrupt * @threshold: Minimum number of packets at which intr is triggered * * Utility function to enable or disable Tx timestamp interrupt and threshold */ static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold) { struct ice_hw *hw = &pf->hw; int err = 0; int quad; u32 val; ice_ptp_reset_ts_memory(pf); for (quad = 0; quad < ICE_MAX_QUAD; quad++) { err = ice_read_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, &val); if (err) break; if (ena) { val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M; val |= ((threshold << Q_REG_TX_MEM_GBL_CFG_INTR_THR_S) & Q_REG_TX_MEM_GBL_CFG_INTR_THR_M); } else { val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M; } err = ice_write_quad_reg_e822(hw, quad, Q_REG_TX_MEM_GBL_CFG, val); if (err) break; } if (err) dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n", err); return err; } /** * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block * @pf: Board private structure */ static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf) { ice_ptp_port_phy_restart(&pf->ptp.port); } /** * ice_ptp_adjfine - Adjust clock increment rate * @info: the driver's PTP info structure * @scaled_ppm: Parts per million with 16-bit fractional field * * Adjust the frequency of the clock by the indicated scaled ppm from the * base frequency. */ static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; u64 incval, diff; int neg_adj = 0; int err; incval = ice_base_incval(pf); if (scaled_ppm < 0) { neg_adj = 1; scaled_ppm = -scaled_ppm; } diff = mul_u64_u64_div_u64(incval, (u64)scaled_ppm, 1000000ULL << 16); if (neg_adj) incval -= diff; else incval += diff; err = ice_ptp_write_incval_locked(hw, incval); if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", err); return -EIO; } return 0; } /** * ice_ptp_extts_work - Workqueue task function * @work: external timestamp work structure * * Service for PTP external clock event */ static void ice_ptp_extts_work(struct kthread_work *work) { struct ice_ptp *ptp = container_of(work, struct ice_ptp, extts_work); struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); struct ptp_clock_event event; struct ice_hw *hw = &pf->hw; u8 chan, tmr_idx; u32 hi, lo; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* Event time is captured by one of the two matched registers * GLTSYN_EVNT_L: 32 LSB of sampled time event * GLTSYN_EVNT_H: 32 MSB of sampled time event * Event is defined in GLTSYN_EVNT_0 register */ for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) { /* Check if channel is enabled */ if (pf->ptp.ext_ts_irq & (1 << chan)) { lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx)); hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx)); event.timestamp = (((u64)hi) << 32) | lo; event.type = PTP_CLOCK_EXTTS; event.index = chan; /* Fire event */ ptp_clock_event(pf->ptp.clock, &event); pf->ptp.ext_ts_irq &= ~(1 << chan); } } } /** * ice_ptp_cfg_extts - Configure EXTTS pin and channel * @pf: Board private structure * @ena: true to enable; false to disable * @chan: GPIO channel (0-3) * @gpio_pin: GPIO pin * @extts_flags: request flags from the ptp_extts_request.flags */ static int ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin, unsigned int extts_flags) { u32 func, aux_reg, gpio_reg, irq_reg; struct ice_hw *hw = &pf->hw; u8 tmr_idx; if (chan > (unsigned int)pf->ptp.info.n_ext_ts) return -EINVAL; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; irq_reg = rd32(hw, PFINT_OICR_ENA); if (ena) { /* Enable the interrupt */ irq_reg |= PFINT_OICR_TSYN_EVNT_M; aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M; #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE BIT(0) #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE BIT(1) /* set event level to requested edge */ if (extts_flags & PTP_FALLING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE; if (extts_flags & PTP_RISING_EDGE) aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE; /* Write GPIO CTL reg. * 0x1 is input sampled by EVENT register(channel) * + num_in_channels * tmr_idx */ func = 1 + chan + (tmr_idx * 3); gpio_reg = ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); pf->ptp.ext_ts_chan |= (1 << chan); } else { /* clear the values we set to reset defaults */ aux_reg = 0; gpio_reg = 0; pf->ptp.ext_ts_chan &= ~(1 << chan); if (!pf->ptp.ext_ts_chan) irq_reg &= ~PFINT_OICR_TSYN_EVNT_M; } wr32(hw, PFINT_OICR_ENA, irq_reg); wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg); return 0; } /** * ice_ptp_cfg_clkout - Configure clock to generate periodic wave * @pf: Board private structure * @chan: GPIO channel (0-3) * @config: desired periodic clk configuration. NULL will disable channel * @store: If set to true the values will be stored * * Configure the internal clock generator modules to generate the clock wave of * specified period. */ static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan, struct ice_perout_channel *config, bool store) { u64 current_time, period, start_time, phase; struct ice_hw *hw = &pf->hw; u32 func, val, gpio_pin; u8 tmr_idx; tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; /* 0. Reset mode & out_en in AUX_OUT */ wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0); /* If we're disabling the output, clear out CLKO and TGT and keep * output level low */ if (!config || !config->ena) { wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0); val = GLGEN_GPIO_CTL_PIN_DIR_M; gpio_pin = pf->ptp.perout_channels[chan].gpio_pin; wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) memset(&pf->ptp.perout_channels[chan], 0, sizeof(struct ice_perout_channel)); return 0; } period = config->period; start_time = config->start_time; div64_u64_rem(start_time, period, &phase); gpio_pin = config->gpio_pin; /* 1. Write clkout with half of required period value */ if (period & 0x1) { dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n"); goto err; } period >>= 1; /* For proper operation, the GLTSYN_CLKO must be larger than clock tick */ #define MIN_PULSE 3 if (period <= MIN_PULSE || period > U32_MAX) { dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33", MIN_PULSE * 2); goto err; } wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period)); /* Allow time for programming before start_time is hit */ current_time = ice_ptp_read_src_clk_reg(pf, NULL); /* if start time is in the past start the timer at the nearest second * maintaining phase */ if (start_time < current_time) start_time = div64_u64(current_time + NSEC_PER_SEC - 1, NSEC_PER_SEC) * NSEC_PER_SEC + phase; if (ice_is_e810(hw)) start_time -= E810_OUT_PROP_DELAY_NS; else start_time -= ice_e822_pps_delay(ice_e822_time_ref(hw)); /* 2. Write TARGET time */ wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time)); wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time)); /* 3. Write AUX_OUT register */ val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M; wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val); /* 4. write GPIO CTL reg */ func = 8 + chan + (tmr_idx * 4); val = GLGEN_GPIO_CTL_PIN_DIR_M | ((func << GLGEN_GPIO_CTL_PIN_FUNC_S) & GLGEN_GPIO_CTL_PIN_FUNC_M); wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val); /* Store the value if requested */ if (store) { memcpy(&pf->ptp.perout_channels[chan], config, sizeof(struct ice_perout_channel)); pf->ptp.perout_channels[chan].start_time = phase; } return 0; err: dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n"); return -EFAULT; } /** * ice_ptp_disable_all_clkout - Disable all currently configured outputs * @pf: pointer to the PF structure * * Disable all currently configured clock outputs. This is necessary before * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to * re-enable the clocks again. */ static void ice_ptp_disable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, NULL, false); } /** * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs * @pf: pointer to the PF structure * * Enable all currently configured clock outputs. Use this after * ice_ptp_disable_all_clkout to reconfigure the output signals according to * their configuration. */ static void ice_ptp_enable_all_clkout(struct ice_pf *pf) { uint i; for (i = 0; i < pf->ptp.info.n_per_out; i++) if (pf->ptp.perout_channels[i].ena) ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i], false); } /** * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC * @info: the driver's PTP info structure * @rq: The requested feature to change * @on: Enable/disable flag */ static int ice_ptp_gpio_enable_e810(struct ptp_clock_info *info, struct ptp_clock_request *rq, int on) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_perout_channel clk_cfg = {0}; bool sma_pres = false; unsigned int chan; u32 gpio_pin; int err; if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) sma_pres = true; switch (rq->type) { case PTP_CLK_REQ_PEROUT: chan = rq->perout.index; if (sma_pres) { if (chan == ice_pin_desc_e810t[SMA1].chan) clk_cfg.gpio_pin = GPIO_20; else if (chan == ice_pin_desc_e810t[SMA2].chan) clk_cfg.gpio_pin = GPIO_22; else return -1; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) clk_cfg.gpio_pin = GPIO_20; else clk_cfg.gpio_pin = GPIO_22; } else if (chan == PPS_CLK_GEN_CHAN) { clk_cfg.gpio_pin = PPS_PIN_INDEX; } else { clk_cfg.gpio_pin = chan; } clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) + rq->perout.period.nsec); clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) + rq->perout.start.nsec); clk_cfg.ena = !!on; err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true); break; case PTP_CLK_REQ_EXTTS: chan = rq->extts.index; if (sma_pres) { if (chan < ice_pin_desc_e810t[SMA2].chan) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else if (ice_is_e810t(&pf->hw)) { if (chan == 0) gpio_pin = GPIO_21; else gpio_pin = GPIO_23; } else { gpio_pin = chan; } err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin, rq->extts.flags); break; default: return -EOPNOTSUPP; } return err; } /** * ice_ptp_gettimex64 - Get the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure to hold the current time value * @sts: Optional parameter for holding a pair of system timestamps from * the system clock. Will be ignored if NULL is given. * * Read the device clock and return the correct value on ns, after converting it * into a timespec struct. */ static int ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; if (!ice_ptp_lock(hw)) { dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); return -EBUSY; } ice_ptp_read_time(pf, ts, sts); ice_ptp_unlock(hw); return 0; } /** * ice_ptp_settime64 - Set the time of the clock * @info: the driver's PTP info structure * @ts: timespec64 structure that holds the new time value * * Set the device clock to the user input value. The conversion from timespec * to ns happens in the write function. */ static int ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) { struct ice_pf *pf = ptp_info_to_pf(info); struct timespec64 ts64 = *ts; struct ice_hw *hw = &pf->hw; int err; /* For Vernier mode, we need to recalibrate after new settime * Start with disabling timestamp block */ if (pf->ptp.port.link_up) ice_ptp_port_phy_stop(&pf->ptp.port); if (!ice_ptp_lock(hw)) { err = -EBUSY; goto exit; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_init(pf, &ts64); ice_ptp_unlock(hw); if (!err) ice_ptp_update_cached_phctime(pf); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); /* Recalibrate and re-enable timestamp block */ if (pf->ptp.port.link_up) ice_ptp_port_phy_restart(&pf->ptp.port); exit: if (err) { dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); return err; } return 0; } /** * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) { struct timespec64 now, then; int ret; then = ns_to_timespec64(delta); ret = ice_ptp_gettimex64(info, &now, NULL); if (ret) return ret; now = timespec64_add(now, then); return ice_ptp_settime64(info, (const struct timespec64 *)&now); } /** * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta * @info: the driver's PTP info structure * @delta: Offset in nanoseconds to adjust the time by */ static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) { struct ice_pf *pf = ptp_info_to_pf(info); struct ice_hw *hw = &pf->hw; struct device *dev; int err; dev = ice_pf_to_dev(pf); /* Hardware only supports atomic adjustments using signed 32-bit * integers. For any adjustment outside this range, perform * a non-atomic get->adjust->set flow. */ if (delta > S32_MAX || delta < S32_MIN) { dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); return ice_ptp_adjtime_nonatomic(info, delta); } if (!ice_ptp_lock(hw)) { dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); return -EBUSY; } /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); err = ice_ptp_write_adj(pf, delta); /* Reenable periodic outputs */ ice_ptp_enable_all_clkout(pf); ice_ptp_unlock(hw); if (err) { dev_err(dev, "PTP failed to adjust time, err %d\n", err); return err; } ice_ptp_update_cached_phctime(pf); return 0; } #ifdef CONFIG_ICE_HWTS /** * ice_ptp_get_syncdevicetime - Get the cross time stamp info * @device: Current device time * @system: System counter value read synchronously with device time * @ctx: Context provided by timekeeping code * * Read device and system (ART) clock simultaneously and return the corrected * clock values in ns. */ static int ice_ptp_get_syncdevicetime(ktime_t *device, struct system_counterval_t *system, void *ctx) { struct ice_pf *pf = (struct ice_pf *)ctx; struct ice_hw *hw = &pf->hw; u32 hh_lock, hh_art_ctl; int i; /* Get the HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); if (hh_lock & PFHH_SEM_BUSY_M) { dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n"); return -EFAULT; } /* Start the ART and device clock sync sequence */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M; wr32(hw, GLHH_ART_CTL, hh_art_ctl); #define MAX_HH_LOCK_TRIES 100 for (i = 0; i < MAX_HH_LOCK_TRIES; i++) { /* Wait for sync to complete */ hh_art_ctl = rd32(hw, GLHH_ART_CTL); if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) { udelay(1); continue; } else { u32 hh_ts_lo, hh_ts_hi, tmr_idx; u64 hh_ts; tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; /* Read ART time */ hh_ts_lo = rd32(hw, GLHH_ART_TIME_L); hh_ts_hi = rd32(hw, GLHH_ART_TIME_H); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *system = convert_art_ns_to_tsc(hh_ts); /* Read Device source clock time */ hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx)); hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx)); hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo; *device = ns_to_ktime(hh_ts); break; } } /* Release HW lock */ hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id)); hh_lock = hh_lock & ~PFHH_SEM_BUSY_M; wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock); if (i == MAX_HH_LOCK_TRIES) return -ETIMEDOUT; return 0; } /** * ice_ptp_getcrosststamp_e822 - Capture a device cross timestamp * @info: the driver's PTP info structure * @cts: The memory to fill the cross timestamp info * * Capture a cross timestamp between the ART and the device PTP hardware * clock. Fill the cross timestamp information and report it back to the * caller. * * This is only valid for E822 devices which have support for generating the * cross timestamp via PCIe PTM. * * In order to correctly correlate the ART timestamp back to the TSC time, the * CPU must have X86_FEATURE_TSC_KNOWN_FREQ. */ static int ice_ptp_getcrosststamp_e822(struct ptp_clock_info *info, struct system_device_crosststamp *cts) { struct ice_pf *pf = ptp_info_to_pf(info); return get_device_system_crosststamp(ice_ptp_get_syncdevicetime, pf, NULL, cts); } #endif /* CONFIG_ICE_HWTS */ /** * ice_ptp_get_ts_config - ioctl interface to read the timestamping config * @pf: Board private structure * @ifr: ioctl data * * Copy the timestamping config to user buffer */ int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config *config; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return -EIO; config = &pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode * @pf: Board private structure * @config: hwtstamp settings requested or saved */ static int ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) { switch (config->tx_type) { case HWTSTAMP_TX_OFF: ice_set_tx_tstamp(pf, false); break; case HWTSTAMP_TX_ON: ice_set_tx_tstamp(pf, true); break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: ice_set_rx_tstamp(pf, false); break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: ice_set_rx_tstamp(pf, true); break; default: return -ERANGE; } return 0; } /** * ice_ptp_set_ts_config - ioctl interface to control the timestamping * @pf: Board private structure * @ifr: ioctl data * * Get the user config and store it */ int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) { struct hwtstamp_config config; int err; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return -EAGAIN; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = ice_ptp_set_timestamp_mode(pf, &config); if (err) return err; /* Return the actual configuration set */ config = pf->ptp.tstamp_config; return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * ice_ptp_rx_hwtstamp - Check for an Rx timestamp * @rx_ring: Ring to get the VSI info * @rx_desc: Receive descriptor * @skb: Particular skb to send timestamp with * * The driver receives a notification in the receive descriptor with timestamp. * The timestamp is in ns, so we must convert the result first. */ void ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) { u32 ts_high; u64 ts_ns; /* Populate timesync data into skb */ if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) { struct skb_shared_hwtstamps *hwtstamps; /* Use ice_ptp_extend_32b_ts directly, using the ring-specific * cached PHC value, rather than accessing the PF. This also * allows us to simply pass the upper 32bits of nanoseconds * directly. Calling ice_ptp_extend_40b_ts is unnecessary as * it would just discard these bits itself. */ ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high); hwtstamps = skb_hwtstamps(skb); memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(ts_ns); } } /** * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Disable the OS access to the SMA pins. Called to clear out the OS * indications of pin support when we fail to setup the E810-T SMA control * register. */ static void ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); dev_warn(dev, "Failed to configure E810-T SMA pin control\n"); info->enable = NULL; info->verify = NULL; info->n_pins = 0; info->n_ext_ts = 0; info->n_per_out = 0; } /** * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins * @pf: pointer to the PF structure * @info: PTP clock info structure * * Finish setting up the SMA pins by allocating pin_config, and setting it up * according to the current status of the SMA. On failure, disable all of the * extended SMA pin support. */ static void ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { struct device *dev = ice_pf_to_dev(pf); int err; /* Allocate memory for kernel pins interface */ info->pin_config = devm_kcalloc(dev, info->n_pins, sizeof(*info->pin_config), GFP_KERNEL); if (!info->pin_config) { ice_ptp_disable_sma_pins_e810t(pf, info); return; } /* Read current SMA status */ err = ice_get_sma_config_e810t(&pf->hw, info->pin_config); if (err) ice_ptp_disable_sma_pins_e810t(pf, info); } /** * ice_ptp_setup_pins_e810t - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info) { /* Check if SMA controller is in the netlist */ if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL) && !ice_is_pca9575_present(&pf->hw)) ice_clear_feature_support(pf, ICE_F_SMA_CTRL); if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) { info->n_ext_ts = N_EXT_TS_E810_NO_SMA; info->n_per_out = N_PER_OUT_E810T_NO_SMA; return; } info->n_per_out = N_PER_OUT_E810T; if (ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) { info->n_ext_ts = N_EXT_TS_E810; info->n_pins = NUM_PTP_PINS_E810T; info->verify = ice_verify_pin_e810t; } /* Complete setup of the SMA pins */ ice_ptp_setup_sma_pins_e810t(pf, info); } /** * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs * @pf: pointer to the PF instance * @info: PTP clock capabilities */ static void ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info) { info->n_per_out = N_PER_OUT_E810; if (!ice_is_feature_supported(pf, ICE_F_PTP_EXTTS)) return; info->n_ext_ts = N_EXT_TS_E810; } /** * ice_ptp_set_funcs_e822 - Set specialized functions for E822 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E822 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for E822 * devices. */ static void ice_ptp_set_funcs_e822(struct ice_pf *pf, struct ptp_clock_info *info) { #ifdef CONFIG_ICE_HWTS if (boot_cpu_has(X86_FEATURE_ART) && boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) info->getcrosststamp = ice_ptp_getcrosststamp_e822; #endif /* CONFIG_ICE_HWTS */ } /** * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support * @pf: Board private structure * @info: PTP info to fill * * Assign functions to the PTP capabiltiies structure for E810 devices. * Functions which operate across all device families should be set directly * in ice_ptp_set_caps. Only add functions here which are distinct for e810 * devices. */ static void ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info) { info->enable = ice_ptp_gpio_enable_e810; if (ice_is_e810t(&pf->hw)) ice_ptp_setup_pins_e810t(pf, info); else ice_ptp_setup_pins_e810(pf, info); } /** * ice_ptp_set_caps - Set PTP capabilities * @pf: Board private structure */ static void ice_ptp_set_caps(struct ice_pf *pf) { struct ptp_clock_info *info = &pf->ptp.info; struct device *dev = ice_pf_to_dev(pf); snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", dev_driver_string(dev), dev_name(dev)); info->owner = THIS_MODULE; info->max_adj = 999999999; info->adjtime = ice_ptp_adjtime; info->adjfine = ice_ptp_adjfine; info->gettimex64 = ice_ptp_gettimex64; info->settime64 = ice_ptp_settime64; if (ice_is_e810(&pf->hw)) ice_ptp_set_funcs_e810(pf, info); else ice_ptp_set_funcs_e822(pf, info); } /** * ice_ptp_create_clock - Create PTP clock device for userspace * @pf: Board private structure * * This function creates a new PTP clock device. It only creates one if we * don't already have one. Will return error if it can't create one, but success * if we already have a device. Should be used by ice_ptp_init to create clock * initially, and prevent global resets from creating new clock devices. */ static long ice_ptp_create_clock(struct ice_pf *pf) { struct ptp_clock_info *info; struct ptp_clock *clock; struct device *dev; /* No need to create a clock device if we already have one */ if (pf->ptp.clock) return 0; ice_ptp_set_caps(pf); info = &pf->ptp.info; dev = ice_pf_to_dev(pf); /* Attempt to register the clock before enabling the hardware. */ clock = ptp_clock_register(info, dev); if (IS_ERR(clock)) return PTR_ERR(clock); pf->ptp.clock = clock; return 0; } /** * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port * @work: pointer to the kthread_work struct * * Process timestamps captured by the PHY associated with this port. To do * this, loop over each index with a waiting skb. * * If a given index has a valid timestamp, perform the following steps: * * 1) copy the timestamp out of the PHY register * 4) clear the timestamp valid bit in the PHY register * 5) unlock the index by clearing the associated in_use bit. * 2) extend the 40b timestamp value to get a 64bit timestamp * 3) send that timestamp to the stack * * After looping, if we still have waiting SKBs, then re-queue the work. This * may cause us effectively poll even when not strictly necessary. We do this * because it's possible a new timestamp was requested around the same time as * the interrupt. In some cases hardware might not interrupt us again when the * timestamp is captured. * * Note that we only take the tracking lock when clearing the bit and when * checking if we need to re-queue this task. The only place where bits can be * set is the hard xmit routine where an SKB has a request flag set. The only * places where we clear bits are this work function, or the periodic cleanup * thread. If the cleanup thread clears a bit we're processing we catch it * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread * starts a new timestamp, we might not begin processing it right away but we * will notice it at the end when we re-queue the work item. If a Tx thread * starts a new timestamp just after this function exits without re-queuing, * the interrupt when the timestamp finishes should trigger. Avoiding holding * the lock for the entire function is important in order to ensure that Tx * threads do not get blocked while waiting for the lock. */ static void ice_ptp_tx_tstamp_work(struct kthread_work *work) { struct ice_ptp_port *ptp_port; struct ice_ptp_tx *tx; struct ice_pf *pf; struct ice_hw *hw; u8 idx; tx = container_of(work, struct ice_ptp_tx, work); if (!tx->init) return; ptp_port = container_of(tx, struct ice_ptp_port, tx); pf = ptp_port_to_pf(ptp_port); hw = &pf->hw; for_each_set_bit(idx, tx->in_use, tx->len) { struct skb_shared_hwtstamps shhwtstamps = {}; u8 phy_idx = idx + tx->quad_offset; u64 raw_tstamp, tstamp; struct sk_buff *skb; int err; ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx); err = ice_read_phy_tstamp(hw, tx->quad, phy_idx, &raw_tstamp); if (err) continue; ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx); /* Check if the timestamp is invalid or stale */ if (!(raw_tstamp & ICE_PTP_TS_VALID) || raw_tstamp == tx->tstamps[idx].cached_tstamp) continue; /* The timestamp is valid, so we'll go ahead and clear this * index and then send the timestamp up to the stack. */ spin_lock(&tx->lock); tx->tstamps[idx].cached_tstamp = raw_tstamp; clear_bit(idx, tx->in_use); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; spin_unlock(&tx->lock); /* it's (unlikely but) possible we raced with the cleanup * thread for discarding old timestamp requests. */ if (!skb) continue; /* Extend the timestamp using cached PHC time */ tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); shhwtstamps.hwtstamp = ns_to_ktime(tstamp); ice_trace(tx_tstamp_complete, skb, idx); skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } /* Check if we still have work to do. If so, re-queue this task to * poll for remaining timestamps. */ spin_lock(&tx->lock); if (!bitmap_empty(tx->in_use, tx->len)) kthread_queue_work(pf->ptp.kworker, &tx->work); spin_unlock(&tx->lock); } /** * ice_ptp_request_ts - Request an available Tx timestamp index * @tx: the PTP Tx timestamp tracker to request from * @skb: the SKB to associate with this timestamp request */ s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) { u8 idx; /* Check if this tracker is initialized */ if (!tx->init || tx->calibrating) return -1; spin_lock(&tx->lock); /* Find and set the first available index */ idx = find_first_zero_bit(tx->in_use, tx->len); if (idx < tx->len) { /* We got a valid index that no other thread could have set. Store * a reference to the skb and the start time to allow discarding old * requests. */ set_bit(idx, tx->in_use); tx->tstamps[idx].start = jiffies; tx->tstamps[idx].skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ice_trace(tx_tstamp_request, skb, idx); } spin_unlock(&tx->lock); /* return the appropriate PHY timestamp register index, -1 if no * indexes were available. */ if (idx >= tx->len) return -1; else return idx + tx->quad_offset; } /** * ice_ptp_process_ts - Spawn kthread work to handle timestamps * @pf: Board private structure * * Queue work required to process the PTP Tx timestamps outside of interrupt * context. */ void ice_ptp_process_ts(struct ice_pf *pf) { if (pf->ptp.port.tx.init) kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work); } /** * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps * @tx: Tx tracking structure to initialize * * Assumes that the length has already been initialized. Do not call directly, * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. */ static int ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) { tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); if (!tx->tstamps) return -ENOMEM; tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); if (!tx->in_use) { kfree(tx->tstamps); tx->tstamps = NULL; return -ENOMEM; } spin_lock_init(&tx->lock); kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work); tx->init = 1; return 0; } /** * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker * @pf: Board private structure * @tx: the tracker to flush */ static void ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { u8 idx; for (idx = 0; idx < tx->len; idx++) { u8 phy_idx = idx + tx->quad_offset; spin_lock(&tx->lock); if (tx->tstamps[idx].skb) { dev_kfree_skb_any(tx->tstamps[idx].skb); tx->tstamps[idx].skb = NULL; } clear_bit(idx, tx->in_use); spin_unlock(&tx->lock); /* Clear any potential residual timestamp in the PHY block */ if (!pf->hw.reset_ongoing) ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); } } /** * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker * @pf: Board private structure * @tx: Tx tracking structure to release * * Free memory associated with the Tx timestamp tracker. */ static void ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) { tx->init = 0; kthread_cancel_work_sync(&tx->work); ice_ptp_flush_tx_tracker(pf, tx); kfree(tx->tstamps); tx->tstamps = NULL; bitmap_free(tx->in_use); tx->in_use = NULL; tx->len = 0; } /** * ice_ptp_init_tx_e822 - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * @port: the port this structure tracks * * Initialize the Tx timestamp tracker for this port. For generic MAC devices, * the timestamp block is shared for all ports in the same quad. To avoid * ports using the same timestamp index, logically break the block of * registers into chunks based on the port number. */ static int ice_ptp_init_tx_e822(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port) { tx->quad = port / ICE_PORTS_PER_QUAD; tx->quad_offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT; tx->len = INDEX_PER_PORT; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps * @pf: Board private structure * @tx: the Tx tracking structure to initialize * * Initialize the Tx timestamp tracker for this PF. For E810 devices, each * port has its own block of timestamps, independent of the other ports. */ static int ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) { tx->quad = pf->hw.port_info->lport; tx->quad_offset = 0; tx->len = INDEX_PER_QUAD; return ice_ptp_alloc_tx_tracker(tx); } /** * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped * @hw: pointer to the hw struct * @tx: PTP Tx tracker to clean up * * Loop through the Tx timestamp requests and see if any of them have been * waiting for a long time. Discard any SKBs that have been waiting for more * than 2 seconds. This is long enough to be reasonably sure that the * timestamp will never be captured. This might happen if the packet gets * discarded before it reaches the PHY timestamping block. */ static void ice_ptp_tx_tstamp_cleanup(struct ice_hw *hw, struct ice_ptp_tx *tx) { u8 idx; if (!tx->init) return; for_each_set_bit(idx, tx->in_use, tx->len) { struct sk_buff *skb; u64 raw_tstamp; /* Check if this SKB has been waiting for too long */ if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) continue; /* Read tstamp to be able to use this register again */ ice_read_phy_tstamp(hw, tx->quad, idx + tx->quad_offset, &raw_tstamp); spin_lock(&tx->lock); skb = tx->tstamps[idx].skb; tx->tstamps[idx].skb = NULL; clear_bit(idx, tx->in_use); spin_unlock(&tx->lock); /* Free the SKB after we've cleared the bit */ dev_kfree_skb_any(skb); } } static void ice_ptp_periodic_work(struct kthread_work *work) { struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); int err; if (!test_bit(ICE_FLAG_PTP, pf->flags)) return; err = ice_ptp_update_cached_phctime(pf); ice_ptp_tx_tstamp_cleanup(&pf->hw, &pf->ptp.port.tx); /* Run twice a second or reschedule if phc update failed */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, msecs_to_jiffies(err ? 10 : 500)); } /** * ice_ptp_reset - Initialize PTP hardware clock support after reset * @pf: Board private structure */ void ice_ptp_reset(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err, itr = 1; u64 time_diff; if (test_bit(ICE_PFR_REQ, pf->state)) goto pfr; if (!hw->func_caps.ts_func_info.src_tmr_owned) goto reset_ts; err = ice_ptp_init_phc(hw); if (err) goto err; /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); goto err; } /* Write the initial Time value to PHY and LAN using the cached PHC * time before the reset and time difference between stopping and * starting the clock. */ if (ptp->cached_phc_time) { time_diff = ktime_get_real_ns() - ptp->reset_time; ts = ns_to_timespec64(ptp->cached_phc_time + time_diff); } else { ts = ktime_to_timespec64(ktime_get_real()); } err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); goto err; } /* Release the global hardware lock */ ice_ptp_unlock(hw); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_tx_ena_intr(pf, true, itr); if (err) goto err; } reset_ts: /* Restart the PHY timestamping block */ ice_ptp_reset_phy_timestamping(pf); pfr: /* Init Tx structures */ if (ice_is_e810(&pf->hw)) { err = ice_ptp_init_tx_e810(pf, &ptp->port.tx); } else { kthread_init_delayed_work(&ptp->port.ov_work, ice_ptp_wait_for_offset_valid); err = ice_ptp_init_tx_e822(pf, &ptp->port.tx, ptp->port.port_num); } if (err) goto err; set_bit(ICE_FLAG_PTP, pf->flags); /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); dev_info(ice_pf_to_dev(pf), "PTP reset successful\n"); return; err: dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err); } /** * ice_ptp_prepare_for_reset - Prepare PTP for reset * @pf: Board private structure */ void ice_ptp_prepare_for_reset(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; u8 src_tmr; clear_bit(ICE_FLAG_PTP, pf->flags); /* Disable timestamping for both Tx and Rx */ ice_ptp_cfg_timestamp(pf, false); kthread_cancel_delayed_work_sync(&ptp->work); kthread_cancel_work_sync(&ptp->extts_work); if (test_bit(ICE_PFR_REQ, pf->state)) return; ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); src_tmr = ice_get_ptp_src_clock_index(&pf->hw); /* Disable source clock */ wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M); /* Acquire PHC and system timer to restore after reset */ ptp->reset_time = ktime_get_real_ns(); } /** * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device * @pf: Board private structure * * Setup and initialize a PTP clock device that represents the device hardware * clock. Save the clock index for other functions connected to the same * hardware resource. */ static int ice_ptp_init_owner(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; struct timespec64 ts; int err, itr = 1; err = ice_ptp_init_phc(hw); if (err) { dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n", err); return err; } /* Acquire the global hardware lock */ if (!ice_ptp_lock(hw)) { err = -EBUSY; goto err_exit; } /* Write the increment time value to PHY and LAN */ err = ice_ptp_write_incval(hw, ice_base_incval(pf)); if (err) { ice_ptp_unlock(hw); goto err_exit; } ts = ktime_to_timespec64(ktime_get_real()); /* Write the initial Time value to PHY and LAN */ err = ice_ptp_write_init(pf, &ts); if (err) { ice_ptp_unlock(hw); goto err_exit; } /* Release the global hardware lock */ ice_ptp_unlock(hw); if (!ice_is_e810(hw)) { /* Enable quad interrupts */ err = ice_ptp_tx_ena_intr(pf, true, itr); if (err) goto err_exit; } /* Ensure we have a clock device */ err = ice_ptp_create_clock(pf); if (err) goto err_clk; /* Store the PTP clock index for other PFs */ ice_set_ptp_clock_index(pf); return 0; err_clk: pf->ptp.clock = NULL; err_exit: return err; } /** * ice_ptp_init_work - Initialize PTP work threads * @pf: Board private structure * @ptp: PF PTP structure */ static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp) { struct kthread_worker *kworker; /* Initialize work functions */ kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work); kthread_init_work(&ptp->extts_work, ice_ptp_extts_work); /* Allocate a kworker for handling work required for the ports * connected to the PTP hardware clock. */ kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(ice_pf_to_dev(pf))); if (IS_ERR(kworker)) return PTR_ERR(kworker); ptp->kworker = kworker; /* Start periodic work going */ kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0); return 0; } /** * ice_ptp_init_port - Initialize PTP port structure * @pf: Board private structure * @ptp_port: PTP port structure */ static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port) { mutex_init(&ptp_port->ps_lock); if (ice_is_e810(&pf->hw)) return ice_ptp_init_tx_e810(pf, &ptp_port->tx); kthread_init_delayed_work(&ptp_port->ov_work, ice_ptp_wait_for_offset_valid); return ice_ptp_init_tx_e822(pf, &ptp_port->tx, ptp_port->port_num); } /** * ice_ptp_init - Initialize PTP hardware clock support * @pf: Board private structure * * Set up the device for interacting with the PTP hardware clock for all * functions, both the function that owns the clock hardware, and the * functions connected to the clock hardware. * * The clock owner will allocate and register a ptp_clock with the * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work * items used for asynchronous work such as Tx timestamps and periodic work. */ void ice_ptp_init(struct ice_pf *pf) { struct ice_ptp *ptp = &pf->ptp; struct ice_hw *hw = &pf->hw; int err; /* If this function owns the clock hardware, it must allocate and * configure the PTP clock device to represent it. */ if (hw->func_caps.ts_func_info.src_tmr_owned) { err = ice_ptp_init_owner(pf); if (err) goto err; } ptp->port.port_num = hw->pf_id; err = ice_ptp_init_port(pf, &ptp->port); if (err) goto err; /* Start the PHY timestamping block */ ice_ptp_reset_phy_timestamping(pf); set_bit(ICE_FLAG_PTP, pf->flags); err = ice_ptp_init_work(pf, ptp); if (err) goto err; dev_info(ice_pf_to_dev(pf), "PTP init successful\n"); return; err: /* If we registered a PTP clock, release it */ if (pf->ptp.clock) { ptp_clock_unregister(ptp->clock); pf->ptp.clock = NULL; } clear_bit(ICE_FLAG_PTP, pf->flags); dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err); } /** * ice_ptp_release - Disable the driver/HW support and unregister the clock * @pf: Board private structure * * This function handles the cleanup work required from the initialization by * clearing out the important information and unregistering the clock */ void ice_ptp_release(struct ice_pf *pf) { if (!test_bit(ICE_FLAG_PTP, pf->flags)) return; /* Disable timestamping for both Tx and Rx */ ice_ptp_cfg_timestamp(pf, false); ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); clear_bit(ICE_FLAG_PTP, pf->flags); kthread_cancel_delayed_work_sync(&pf->ptp.work); ice_ptp_port_phy_stop(&pf->ptp.port); mutex_destroy(&pf->ptp.port.ps_lock); if (pf->ptp.kworker) { kthread_destroy_worker(pf->ptp.kworker); pf->ptp.kworker = NULL; } if (!pf->ptp.clock) return; /* Disable periodic outputs */ ice_ptp_disable_all_clkout(pf); ice_clear_ptp_clock_index(pf); ptp_clock_unregister(pf->ptp.clock); pf->ptp.clock = NULL; dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); }