// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include #include "ice_base.h" #include "ice_lib.h" #include "ice_dcb_lib.h" #include "ice_sriov.h" /** * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI * @qs_cfg: gathered variables needed for PF->VSI queues assignment * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) { unsigned int offset, i; mutex_lock(qs_cfg->qs_mutex); offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 0, qs_cfg->q_count, 0); if (offset >= qs_cfg->pf_map_size) { mutex_unlock(qs_cfg->qs_mutex); return -ENOMEM; } bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); for (i = 0; i < qs_cfg->q_count; i++) qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset); mutex_unlock(qs_cfg->qs_mutex); return 0; } /** * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI * @qs_cfg: gathered variables needed for pf->vsi queues assignment * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) { unsigned int i, index = 0; mutex_lock(qs_cfg->qs_mutex); for (i = 0; i < qs_cfg->q_count; i++) { index = find_next_zero_bit(qs_cfg->pf_map, qs_cfg->pf_map_size, index); if (index >= qs_cfg->pf_map_size) goto err_scatter; set_bit(index, qs_cfg->pf_map); qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index; } mutex_unlock(qs_cfg->qs_mutex); return 0; err_scatter: for (index = 0; index < i; index++) { clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; } mutex_unlock(qs_cfg->qs_mutex); return -ENOMEM; } /** * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @ena: enable or disable state of the queue * * This routine will wait for the given Rx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. */ static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) { int i; for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & QRX_CTRL_QENA_STAT_M)) return 0; usleep_range(20, 40); } return -ETIMEDOUT; } /** * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector * @vsi: the VSI being configured * @v_idx: index of the vector in the VSI struct * * We allocate one q_vector and set default value for ITR setting associated * with this q_vector. If allocation fails we return -ENOMEM. */ static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; int err; /* allocate q_vector */ q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL); if (!q_vector) return -ENOMEM; q_vector->vsi = vsi; q_vector->v_idx = v_idx; q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; q_vector->tx.itr_mode = ITR_DYNAMIC; q_vector->rx.itr_mode = ITR_DYNAMIC; q_vector->tx.type = ICE_TX_CONTAINER; q_vector->rx.type = ICE_RX_CONTAINER; q_vector->irq.index = -ENOENT; if (vsi->type == ICE_VSI_VF) { q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector); goto out; } else if (vsi->type == ICE_VSI_CTRL && vsi->vf) { struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi); if (ctrl_vsi) { if (unlikely(!ctrl_vsi->q_vectors)) { err = -ENOENT; goto err_free_q_vector; } q_vector->irq = ctrl_vsi->q_vectors[0]->irq; goto skip_alloc; } } q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc); if (q_vector->irq.index < 0) { err = -ENOMEM; goto err_free_q_vector; } skip_alloc: q_vector->reg_idx = q_vector->irq.index; /* only set affinity_mask if the CPU is online */ if (cpu_online(v_idx)) cpumask_set_cpu(v_idx, &q_vector->affinity_mask); /* This will not be called in the driver load path because the netdev * will not be created yet. All other cases with register the NAPI * handler here (i.e. resume, reset/rebuild, etc.) */ if (vsi->netdev) netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll); out: /* tie q_vector and VSI together */ vsi->q_vectors[v_idx] = q_vector; return 0; err_free_q_vector: kfree(q_vector); return err; } /** * ice_free_q_vector - Free memory allocated for a specific interrupt vector * @vsi: VSI having the memory freed * @v_idx: index of the vector to be freed */ static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_q_vector *q_vector; struct ice_pf *pf = vsi->back; struct ice_tx_ring *tx_ring; struct ice_rx_ring *rx_ring; struct device *dev; dev = ice_pf_to_dev(pf); if (!vsi->q_vectors[v_idx]) { dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); return; } q_vector = vsi->q_vectors[v_idx]; ice_for_each_tx_ring(tx_ring, q_vector->tx) tx_ring->q_vector = NULL; ice_for_each_rx_ring(rx_ring, q_vector->rx) rx_ring->q_vector = NULL; /* only VSI with an associated netdev is set up with NAPI */ if (vsi->netdev) netif_napi_del(&q_vector->napi); /* release MSIX interrupt if q_vector had interrupt allocated */ if (q_vector->irq.index < 0) goto free_q_vector; /* only free last VF ctrl vsi interrupt */ if (vsi->type == ICE_VSI_CTRL && vsi->vf && ice_get_vf_ctrl_vsi(pf, vsi)) goto free_q_vector; ice_free_irq(pf, q_vector->irq); free_q_vector: kfree(q_vector); vsi->q_vectors[v_idx] = NULL; } /** * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set * @hw: board specific structure */ static void ice_cfg_itr_gran(struct ice_hw *hw) { u32 regval = rd32(hw, GLINT_CTL); /* no need to update global register if ITR gran is already set */ if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && (((regval & GLINT_CTL_ITR_GRAN_200_M) >> GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_100_M) >> GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_50_M) >> GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_25_M) >> GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) return; regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & GLINT_CTL_ITR_GRAN_200_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & GLINT_CTL_ITR_GRAN_100_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & GLINT_CTL_ITR_GRAN_50_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & GLINT_CTL_ITR_GRAN_25_M); wr32(hw, GLINT_CTL, regval); } /** * ice_calc_txq_handle - calculate the queue handle * @vsi: VSI that ring belongs to * @ring: ring to get the absolute queue index * @tc: traffic class number */ static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc) { WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); if (ring->ch) return ring->q_index - ring->ch->base_q; /* Idea here for calculation is that we subtract the number of queue * count from TC that ring belongs to from it's absolute queue index * and as a result we get the queue's index within TC. */ return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; } /** * ice_eswitch_calc_txq_handle * @ring: pointer to ring which unique index is needed * * To correctly work with many netdevs ring->q_index of Tx rings on switchdev * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it * here by finding index in vsi->tx_rings of this ring. * * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen, * because VSI is get from ring->vsi, so it has to be present in this VSI. */ static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring) { struct ice_vsi *vsi = ring->vsi; int i; ice_for_each_txq(vsi, i) { if (vsi->tx_rings[i] == ring) return i; } return ICE_INVAL_Q_INDEX; } /** * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring * @ring: The Tx ring to configure * * This enables/disables XPS for a given Tx descriptor ring * based on the TCs enabled for the VSI that ring belongs to. */ static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring) { if (!ring->q_vector || !ring->netdev) return; /* We only initialize XPS once, so as not to overwrite user settings */ if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state)) return; netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, ring->q_index); } /** * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance * @ring: The Tx ring to configure * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized * @pf_q: queue index in the PF space * * Configure the Tx descriptor ring in TLAN context. */ static void ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; tlan_ctx->port_num = vsi->port_info->lport; /* Transmit Queue Length */ tlan_ctx->qlen = ring->count; ice_set_cgd_num(tlan_ctx, ring->dcb_tc); /* PF number */ tlan_ctx->pf_num = hw->pf_id; /* queue belongs to a specific VSI type * VF / VM index should be programmed per vmvf_type setting: * for vmvf_type = VF, it is VF number between 0-256 * for vmvf_type = VM, it is VM number between 0-767 * for PF or EMP this field should be set to zero */ switch (vsi->type) { case ICE_VSI_LB: case ICE_VSI_CTRL: case ICE_VSI_PF: if (ring->ch) tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; else tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; break; case ICE_VSI_VF: /* Firmware expects vmvf_num to be absolute VF ID */ tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id; tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; break; case ICE_VSI_SWITCHDEV_CTRL: tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ; break; default: return; } /* make sure the context is associated with the right VSI */ if (ring->ch) tlan_ctx->src_vsi = ring->ch->vsi_num; else tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); /* Restrict Tx timestamps to the PF VSI */ switch (vsi->type) { case ICE_VSI_PF: tlan_ctx->tsyn_ena = 1; break; default: break; } tlan_ctx->tso_ena = ICE_TX_LEGACY; tlan_ctx->tso_qnum = pf_q; /* Legacy or Advanced Host Interface: * 0: Advanced Host Interface * 1: Legacy Host Interface */ tlan_ctx->legacy_int = ICE_TX_LEGACY; } /** * ice_rx_offset - Return expected offset into page to access data * @rx_ring: Ring we are requesting offset of * * Returns the offset value for ring into the data buffer. */ static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring) { if (ice_ring_uses_build_skb(rx_ring)) return ICE_SKB_PAD; return 0; } /** * ice_setup_rx_ctx - Configure a receive ring context * @ring: The Rx ring to configure * * Configure the Rx descriptor ring in RLAN context. */ static int ice_setup_rx_ctx(struct ice_rx_ring *ring) { int chain_len = ICE_MAX_CHAINED_RX_BUFS; struct ice_vsi *vsi = ring->vsi; u32 rxdid = ICE_RXDID_FLEX_NIC; struct ice_rlan_ctx rlan_ctx; struct ice_hw *hw; u16 pf_q; int err; hw = &vsi->back->hw; /* what is Rx queue number in global space of 2K Rx queues */ pf_q = vsi->rxq_map[ring->q_index]; /* clear the context structure first */ memset(&rlan_ctx, 0, sizeof(rlan_ctx)); /* Receive Queue Base Address. * Indicates the starting address of the descriptor queue defined in * 128 Byte units. */ rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S; rlan_ctx.qlen = ring->count; /* Receive Packet Data Buffer Size. * The Packet Data Buffer Size is defined in 128 byte units. */ rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; /* use 32 byte descriptors */ rlan_ctx.dsize = 1; /* Strip the Ethernet CRC bytes before the packet is posted to host * memory. */ rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS); /* L2TSEL flag defines the reported L2 Tags in the receive descriptor * and it needs to remain 1 for non-DVM capable configurations to not * break backward compatibility for VF drivers. Setting this field to 0 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will * check for the tag */ if (ice_is_dvm_ena(hw)) if (vsi->type == ICE_VSI_VF && ice_vf_is_port_vlan_ena(vsi->vf)) rlan_ctx.l2tsel = 1; else rlan_ctx.l2tsel = 0; else rlan_ctx.l2tsel = 1; rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; /* This controls whether VLAN is stripped from inner headers * The VLAN in the inner L2 header is stripped to the receive * descriptor if enabled by this flag. */ rlan_ctx.showiv = 0; /* For AF_XDP ZC, we disallow packets to span on * multiple buffers, thus letting us skip that * handling in the fast-path. */ if (ring->xsk_pool) chain_len = 1; /* Max packet size for this queue - must not be set to a larger value * than 5 x DBUF */ rlan_ctx.rxmax = min_t(u32, vsi->max_frame, chain_len * ring->rx_buf_len); /* Rx queue threshold in units of 64 */ rlan_ctx.lrxqthresh = 1; /* Enable Flexible Descriptors in the queue context which * allows this driver to select a specific receive descriptor format * increasing context priority to pick up profile ID; default is 0x01; * setting to 0x03 to ensure profile is programming if prev context is * of same priority */ if (vsi->type != ICE_VSI_VF) ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true); else ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3, false); /* Absolute queue number out of 2K needs to be passed */ err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); if (err) { dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", pf_q, err); return -EIO; } if (vsi->type == ICE_VSI_VF) return 0; /* configure Rx buffer alignment */ if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) ice_clear_ring_build_skb_ena(ring); else ice_set_ring_build_skb_ena(ring); ring->rx_offset = ice_rx_offset(ring); /* init queue specific tail register */ ring->tail = hw->hw_addr + QRX_TAIL(pf_q); writel(0, ring->tail); return 0; } /** * ice_vsi_cfg_rxq - Configure an Rx queue * @ring: the ring being configured * * Return 0 on success and a negative value on error. */ int ice_vsi_cfg_rxq(struct ice_rx_ring *ring) { struct device *dev = ice_pf_to_dev(ring->vsi->back); u32 num_bufs = ICE_RX_DESC_UNUSED(ring); int err; ring->rx_buf_len = ring->vsi->rx_buf_len; if (ring->vsi->type == ICE_VSI_PF) { if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) /* coverity[check_return] */ __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, ring->q_index, ring->q_vector->napi.napi_id, ring->vsi->rx_buf_len); ring->xsk_pool = ice_xsk_pool(ring); if (ring->xsk_pool) { xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool); err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_XSK_BUFF_POOL, NULL); if (err) return err; xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq); dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n", ring->q_index); } else { if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) /* coverity[check_return] */ __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, ring->q_index, ring->q_vector->napi.napi_id, ring->vsi->rx_buf_len); err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err) return err; } } xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq); ring->xdp.data = NULL; err = ice_setup_rx_ctx(ring); if (err) { dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n", ring->q_index, err); return err; } if (ring->xsk_pool) { bool ok; if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) { dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n", num_bufs, ring->q_index); dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n"); return 0; } ok = ice_alloc_rx_bufs_zc(ring, num_bufs); if (!ok) { u16 pf_q = ring->vsi->rxq_map[ring->q_index]; dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n", ring->q_index, pf_q); } return 0; } ice_alloc_rx_bufs(ring, num_bufs); return 0; } /** * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI * @qs_cfg: gathered variables needed for pf->vsi queues assignment * * This function first tries to find contiguous space. If it is not successful, * it tries with the scatter approach. * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) { int ret = 0; ret = __ice_vsi_get_qs_contig(qs_cfg); if (ret) { /* contig failed, so try with scatter approach */ qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count, qs_cfg->scatter_count); ret = __ice_vsi_get_qs_sc(qs_cfg); } return ret; } /** * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait * @vsi: the VSI being configured * @ena: start or stop the Rx ring * @rxq_idx: 0-based Rx queue index for the VSI passed in * @wait: wait or don't wait for configuration to finish in hardware * * Return 0 on success and negative on error. */ int ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) { int pf_q = vsi->rxq_map[rxq_idx]; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 rx_reg; rx_reg = rd32(hw, QRX_CTRL(pf_q)); /* Skip if the queue is already in the requested state */ if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) return 0; /* turn on/off the queue */ if (ena) rx_reg |= QRX_CTRL_QENA_REQ_M; else rx_reg &= ~QRX_CTRL_QENA_REQ_M; wr32(hw, QRX_CTRL(pf_q), rx_reg); if (!wait) return 0; ice_flush(hw); return ice_pf_rxq_wait(pf, pf_q, ena); } /** * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started * @vsi: the VSI being configured * @ena: true/false to verify Rx ring has been enabled/disabled respectively * @rxq_idx: 0-based Rx queue index for the VSI passed in * * This routine will wait for the given Rx queue of the VSI to reach the * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach * the requested state after multiple retries; else will return 0 in case of * success. */ int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) { int pf_q = vsi->rxq_map[rxq_idx]; struct ice_pf *pf = vsi->back; return ice_pf_rxq_wait(pf, pf_q, ena); } /** * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors * @vsi: the VSI being configured * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); u16 v_idx; int err; if (vsi->q_vectors[0]) { dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); return -EEXIST; } for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { err = ice_vsi_alloc_q_vector(vsi, v_idx); if (err) goto err_out; } return 0; err_out: while (v_idx--) ice_free_q_vector(vsi, v_idx); dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", vsi->num_q_vectors, vsi->vsi_num, err); vsi->num_q_vectors = 0; return err; } /** * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors * @vsi: the VSI being configured * * This function maps descriptor rings to the queue-specific vectors allotted * through the MSI-X enabling code. On a constrained vector budget, we map Tx * and Rx rings to the vector as "efficiently" as possible. */ void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) { int q_vectors = vsi->num_q_vectors; u16 tx_rings_rem, rx_rings_rem; int v_id; /* initially assigning remaining rings count to VSIs num queue value */ tx_rings_rem = vsi->num_txq; rx_rings_rem = vsi->num_rxq; for (v_id = 0; v_id < q_vectors; v_id++) { struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; u8 tx_rings_per_v, rx_rings_per_v; u16 q_id, q_base; /* Tx rings mapping to vector */ tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); q_vector->num_ring_tx = tx_rings_per_v; q_vector->tx.tx_ring = NULL; q_vector->tx.itr_idx = ICE_TX_ITR; q_base = vsi->num_txq - tx_rings_rem; for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.tx_ring; q_vector->tx.tx_ring = tx_ring; } tx_rings_rem -= tx_rings_per_v; /* Rx rings mapping to vector */ rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); q_vector->num_ring_rx = rx_rings_per_v; q_vector->rx.rx_ring = NULL; q_vector->rx.itr_idx = ICE_RX_ITR; q_base = vsi->num_rxq - rx_rings_rem; for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.rx_ring; q_vector->rx.rx_ring = rx_ring; } rx_rings_rem -= rx_rings_per_v; } } /** * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors * @vsi: the VSI having memory freed */ void ice_vsi_free_q_vectors(struct ice_vsi *vsi) { int v_idx; ice_for_each_q_vector(vsi, v_idx) ice_free_q_vector(vsi, v_idx); vsi->num_q_vectors = 0; } /** * ice_vsi_cfg_txq - Configure single Tx queue * @vsi: the VSI that queue belongs to * @ring: Tx ring to be configured * @qg_buf: queue group buffer */ int ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring, struct ice_aqc_add_tx_qgrp *qg_buf) { u8 buf_len = struct_size(qg_buf, txqs, 1); struct ice_tlan_ctx tlan_ctx = { 0 }; struct ice_aqc_add_txqs_perq *txq; struct ice_channel *ch = ring->ch; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int status; u16 pf_q; u8 tc; /* Configure XPS */ ice_cfg_xps_tx_ring(ring); pf_q = ring->reg_idx; ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); /* copy context contents into the qg_buf */ qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, ice_tlan_ctx_info); /* init queue specific tail reg. It is referred as * transmit comm scheduler queue doorbell. */ ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q); if (IS_ENABLED(CONFIG_DCB)) tc = ring->dcb_tc; else tc = 0; /* Add unique software queue handle of the Tx queue per * TC into the VSI Tx ring */ if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { ring->q_handle = ice_eswitch_calc_txq_handle(ring); if (ring->q_handle == ICE_INVAL_Q_INDEX) return -ENODEV; } else { ring->q_handle = ice_calc_txq_handle(vsi, ring, tc); } if (ch) status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0, ring->q_handle, 1, qg_buf, buf_len, NULL); else status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 1, qg_buf, buf_len, NULL); if (status) { dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", status); return status; } /* Add Tx Queue TEID into the VSI Tx ring from the * response. This will complete configuring and * enabling the queue. */ txq = &qg_buf->txqs[0]; if (pf_q == le16_to_cpu(txq->txq_id)) ring->txq_teid = le32_to_cpu(txq->q_teid); return 0; } /** * ice_cfg_itr - configure the initial interrupt throttle values * @hw: pointer to the HW structure * @q_vector: interrupt vector that's being configured * * Configure interrupt throttling values for the ring containers that are * associated with the interrupt vector passed in. */ void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) { ice_cfg_itr_gran(hw); if (q_vector->num_ring_rx) ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting); if (q_vector->num_ring_tx) ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting); ice_write_intrl(q_vector, q_vector->intrl); } /** * ice_cfg_txq_interrupt - configure interrupt on Tx queue * @vsi: the VSI being configured * @txq: Tx queue being mapped to MSI-X vector * @msix_idx: MSI-X vector index within the function * @itr_idx: ITR index of the interrupt cause * * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector * within the function space. */ void ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 val; itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); if (ice_is_xdp_ena_vsi(vsi)) { u32 xdp_txq = txq + vsi->num_xdp_txq; wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), val); } ice_flush(hw); } /** * ice_cfg_rxq_interrupt - configure interrupt on Rx queue * @vsi: the VSI being configured * @rxq: Rx queue being mapped to MSI-X vector * @msix_idx: MSI-X vector index within the function * @itr_idx: ITR index of the interrupt cause * * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector * within the function space. */ void ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 val; itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); ice_flush(hw); } /** * ice_trigger_sw_intr - trigger a software interrupt * @hw: pointer to the HW structure * @q_vector: interrupt vector to trigger the software interrupt for */ void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) { wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_M); } /** * ice_vsi_stop_tx_ring - Disable single Tx ring * @vsi: the VSI being configured * @rst_src: reset source * @rel_vmvf_num: Relative ID of VF/VM * @ring: Tx ring to be stopped * @txq_meta: Meta data of Tx ring to be stopped */ int ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num, struct ice_tx_ring *ring, struct ice_txq_meta *txq_meta) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; struct ice_hw *hw = &pf->hw; int status; u32 val; /* clear cause_ena bit for disabled queues */ val = rd32(hw, QINT_TQCTL(ring->reg_idx)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(ring->reg_idx), val); /* software is expected to wait for 100 ns */ ndelay(100); /* trigger a software interrupt for the vector * associated to the queue to schedule NAPI handler */ q_vector = ring->q_vector; if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf))) ice_trigger_sw_intr(hw, q_vector); status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, txq_meta->tc, 1, &txq_meta->q_handle, &txq_meta->q_id, &txq_meta->q_teid, rst_src, rel_vmvf_num, NULL); /* if the disable queue command was exercised during an * active reset flow, -EBUSY is returned. * This is not an error as the reset operation disables * queues at the hardware level anyway. */ if (status == -EBUSY) { dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); } else if (status == -ENOENT) { dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); } else if (status) { dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", status); return status; } return 0; } /** * ice_fill_txq_meta - Prepare the Tx queue's meta data * @vsi: VSI that ring belongs to * @ring: ring that txq_meta will be based on * @txq_meta: a helper struct that wraps Tx queue's information * * Set up a helper struct that will contain all the necessary fields that * are needed for stopping Tx queue */ void ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_tx_ring *ring, struct ice_txq_meta *txq_meta) { struct ice_channel *ch = ring->ch; u8 tc; if (IS_ENABLED(CONFIG_DCB)) tc = ring->dcb_tc; else tc = 0; txq_meta->q_id = ring->reg_idx; txq_meta->q_teid = ring->txq_teid; txq_meta->q_handle = ring->q_handle; if (ch) { txq_meta->vsi_idx = ch->ch_vsi->idx; txq_meta->tc = 0; } else { txq_meta->vsi_idx = vsi->idx; txq_meta->tc = tc; } }